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A sectional index for this package is found in §17.

1 Definitions and Terms

Before I describe the various commands of this package, it is best for you to
familiarize yourself with a few terms as used in this package.

1.1 Short Stacks and Long Stacks

In this package, “Short” refers to squeezing or growing the empty space between
glyphs comprising the stack, so that the inter-item gap is solely what is set.
Likewise, “Long” refers to a stack kept at constant inter-item baseline spacing.
Let’s look at the following two examples to see this clearly.

Notice the consistent inter-item gap between short stack items: e
k
y
t

e
k
y
t

Notice the consistent inter-baseline spacing on a long stack: e
k
y
t

e
k
y
t

In this package, the default spacing (i.e., stacklength) for the long
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stack, saved in \Lstackgap is the length \normalbaselineskip (note that
\normalbaselineskip has the same value as \baselineskip, but can be safely
used inside a tabular environment). For short stacks, the default stacklength,
stored in \Sstackgap, is 3pt, which corresponds to the same spacing found
in TEX’s \shortstack command. The default stack type constructed by this
package is short, denoted by the definition of \stacktype as “S” (as opposed
to “L” for long stacks). These defaults can be changed.

1.2 Baseline

The baseline is the horizontal line on which the current (unstacked) text is set.
For non-descending letters, the bottom of the letters sit upon the baseline. In
this document, we will graphically use the symbol BL to denote the current
baseline of the text, as in

BL A
B
C

text continues here

1.3 (Over)Stacks and Understacks

In general terms, a stack is built up from the baseline, while an understack is
built down from the baseline.

So, for example, c
b
a

is a stack, while a
b
c

is an understack.

With this package, both stacks and understacks can be long or short, depending
on how the invocation is made. Sometimes, in this documentation, a stack will
be called an “overstack” in order to avoid confusion with “understack.”

1.4 Anchors

The term “anchor” is used to denote an item in the stack whose baseline does
not change in the course of the stacking operation. In essence, stacking is done
relative to the anchor.

For example, in c
b
a

, the letter “c” is the anchor.
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In the understack a
b
c

, “a” is the anchor.

1.5 Alignment

Anyone familiar with LATEX knows something about the horizontal alignment
settings “l”, “c” and “r”. As pertains to a stack, we refer to the alignment of
the various rows of the stack, as shown in the following examples.

Left: a
ab
abc
abcd

Center: a
ab
abc
abcd

Right: a
ab
abc

abcd

The default alignment within a stack may be set with the \stackalignment

definition, to possible values of l, c, or r, denoting left, center, and right align-
ments, respectively. In addition, a number of the stacking macros provide the
alignment as an argument or optional argument that can be specified at time
of invocation.

The stackengine package defaults to center alignment, unless reset by way of the
\stackalignment definition.

2 Parameter Defaults, Modes, and Macros Pro-
vided by stackengine

2.1 Parameter Defaults and How to Set Them

There are several macros that serve to store package default definitions. When
a stacking macro does NOT explicitly ask for one of the quantities defined by
these defaults, it will use the values of these parameters to serve as the default
value. However, some stacking macros may ask the user to specify an explicit
value for any number of these parameters in the calling arguments. In that case,
an explicit value may be provided or else the macro holding the default value
may itself be provided as the argument.

Let us first consider the stackgap defaults, associated with short and long stacks.
Those stackgaps are actually stored in the \def’s

\Sstackgap

\Lstackgap

The parameter \Sstackgap is the default inter-item gap for any stacking com-\Sstackgap
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mand that builds a short stack. It defaults to 3pt. Correspondingly, \Lstackgap\Lstackgap

is the inter-item baselineskip for any stacking command that builds a long stack.
It defaults to \normalbaselineskip. To change these defaults, the following
macro is provided:\setstackgap

\setstackgap{S}{inter-item stackgap}
\setstackgap{L}{inter-item baselineskip}

In addition, there is the \stackgap macro, which may be invoked by the user.\stackgap

This macro will look at the current value of \stacktype and will output either
\Sstackgap or \Lstackgap, depending on whether \stacktype is defined as
“S” (short) or “L” (long).

In addition to these lengths, there are several parameter definitions that define
default behaviors for those stacking macros when explicit values of these settings
are not requested. The parameters, each set with a \def (or a \renewcommand),
are

\def\stackalignment{l or c or r}
\def\quietstack{T or F}
\def\useanchorwidth{T or F}
\def\stacktype{S or L}

The parameter \stackalignment defaults to “c” (center) and defines the default\stackalignment

stacking alignment. Other options include “l” (left) and “r” (right). See §1.5
for more discussion of this parameter.

The parameter \quietstack defaults to “F” (false) and determines whether the\quietstack

result of a stacking operation is suppressed from the output. If the output is
suppressed by setting this parameter to “T”, the most recent stacking operation
may be recovered with a \usebox{\stackedbox}. See §3.1 for more discussion
of this parameter.

The parameter \useanchorwidth defaults to “F” (false) and indicates that,\useanchorwidth

upon creation, the stack width should be taken as the widest element of the
stack. When set to “T”, the stack width, upon creation, is instead taken as
the width of the anchor. Note that this parameter applies at the time of stack
creation and cannot be used to retroactively change the characteristics of an
existing stack. See §8 for more discussion of this parameter.

The parameter \stacktype defaults to “S” (short stack) and defines the default\stacktype

type of stack to build. When set to “L”, newly created stacks are, by default,
long stacks. Refer to §1.1 for a definition of these terms.

For macros that require explicit specification of some of these parameters, the
parameter token itself (e.g., \stackalignment, \quietstack, etc.) may be
provided as the argument, if the default behavior is desired.
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2.2 Stacking Modes

In addition to parameter definitions, there are several stackengine mode settings:

\stackMath and \lstackMath (global/local declaration)
\stackText and \lstackText (global/local declaration)
\strutlongstacks{T or F}
\strutshortanchors{T or F}
\setstackEOL{end-of-line character}

By default, this package will assume that the arguments of the stacking com-
mands are text. However, an invocation of \stackMath will change the default\stackMath

so that stackengine arguments will be processed in inline math mode (so-called
\textstyle math). Likewise, an invocation of \stackText will reset the de-\stackText

fault processing of arguments to text mode. Both of these modes are global
in their scope, so that invocation, even within a macro, will continue to per-
sist until later changed. If you would like to have a single application stacked
in math mode, without changing the default mode setting, one could use the
\ensurestackMath{} macro (see 2.3.8), or else the local versions that are scope
limited, \lstackMath and/or \lstackText.\lstackMath

\lstackText
By default, stacks made by stackengine are set in unframed boxes that are flush
with the top and bottom of the stack. The \addstackgap macro (§2.3.11) is
one way to add a buffer space above and below a stack. Such an approach
makes more sense for short stacks, where a constant buffer size determines the
gap between objects. But for long stacks, a method involving \strut’s makes
more sense. The mode \strutlongstacks, when set true (T), will automatically\strutlongstacks

cause stackengine to condition each row of a long stack with a \strut during
its construction (see §9 for more details).

The \strutshortanchors macro (§6.1) is used to set the mode of how two\strutshortanchors

items may be vertically combined into a split short-stack anchor. By default
true (T), a split short-stack anchor is set so that the middle of the stack gap
falls halfway up the height of the \strut. This will give the short-stack anchor
the appearance of being split relative to text that sits atop the baseline. When
set false, however, any short-stack anchor that is constructed has its gap split
across the baseline itself.

Until V3.1 of stackengine, the \Longstack, \Shortstack, \Longunderstack,
and \Shortunderstack macros used, exclusively, space tokens as the end-of-line
separators between rows of these stacks. Not only is such a syntax atypical of
LATEX, but it can be inconvenient when the items within a stack row also contain
spaces. The \setstackEOL macro allows the end-of-line (EOL) character to be\setstackEOL

defined to a more convenient setting, such as \\, though any character will work.
There is a package option [usestackEOL] which sets the end-of-line symbol[usestackEOL]

package option to be used when parsing stack arguments to \\. When the stacking EOL is
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something other than a space token, leading and trailing spaces are ignored in
the row data for the four cited stacking commands, as well as their derivatives
\Centerstack and \Vectorstack. (Note: other stacking commands in the
\stackon / \stackunder family will not ignore, but retain leading/trailing
spaces in their arguments, since there are no EOL separators present.)

Note that these five mode-setting commands are not themselves parameters to
be part of a stackengine argument, but are instead to be issued as separate
declarative commands prior to the invocation of a desired stacking macro.

2.3 Stacking Macros

2.3.1 \stackengine

The basic (and most general) stacking macro provided by this package is
\stackengine. Nearly all other macros of this package merely provide an ab-
breviated invocation form of this macro, tailored for a particular application.
The syntax is:

\stackengine{\Sstackgap or \Lstackgap or \stackgap or stacklength}
{anchor}
{item}

{O or U}
{\stackalignment or l or c or r}
{\quietstack or T or F}
{\useanchorwidth or T or F}
{\stacktype or S or L}

There are no optional arguments with \stackengine. The first item is a stack-
ing length, which can mean different things depending on whether a short- or
long-stack is being created, as discussed in §1.1. The second argument is the
stack anchor, whose baseline does not change. The third argument is the item
stacked relative to the anchor. The fourth argument is either an “O” (for a
normal or overstack) or a “U” (for an understack). The fifth argument denotes
a left, center, or right alignment of the stack items with the use of “l”, “c”, or
“r”. The sixth argument is either a “T” or “F” to denote whether the resulting
stack is NOT printed (“T” denotes “do NOT print”). The seventh argument,
also a “T” or an “F”, denotes when “T” that the width of the whole stack is to
be taken as the width of the anchor. Otherwise, the width of the stack conforms
to the width of the widest item in the stack. The final argument is defined as
either an “S” or an “L” to denote whether a short stack or a long stack is being
requested.

While none of the arguments to \stackengine have default values, there are
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various definitions in the package that store default values. When one wishes
a stack to possess certain default properties, these default definitions may be
passed as the values for the respective arguments to \stackengine. Arguments
1, 5, 6, 7, and 8 each possess a corresponding parameter containing the default
variable. So, for example,

\stackengine{\stackgap}{A}{BC}{O}{\stackalignment}

{\quietstack}{\useanchorwidth}{\stacktype}

will stack the letters “BC” over “A” using the default values of \stackalignment,
\quietstack, \useanchorwidth, and \stacktype. In addition, the stackgap
will be set to \Sstackgap if \stacktype is “S” or to \Lstackgap if \stacktype
is “L”. Alternately, the same stack could be forced to be a long stack with
right-alignment and be typeset using

\stackengine{\Lstackgap}{A}{BC}{O}{r}{F}{\useanchorwidth}{L}

While the stacking macros in the following sections offer the convenience of
a condensed syntax, which can be useful within your document, it may be
preferable to use the \stackengine macro to create your own stacking macros,
since one can achieve the stacking result regardless of how the package defaults
are set.

2.3.2 \stackon and \stackunder

The \stackon and \stackundermacros are abbreviated forms of \stackengine
in which the default values of parameters are taken. The only exception is the
stacklength, which may be provided as an optional argument.

\stackon[stacklength]{anchor}{item}

\stackunder[stacklength]{anchor}{item}

In the case of \stackon, an (over)stack is created, whereas an understack is
created with \stackunder. With both of these commands, the anchor is the
first mandatory argument, and the item to be stacked above or below it is the
second mandatory argument.

2.3.3 \Shortstack and \Longstack

The \Shortstack and \Longstack commands are stacking commands that al-
low more than two stacking rows to be specified at once. The items of a stack
are provided, by default, in a space-separated list, as follows:

7



\Shortstack[alignment]{item {it em} {\item} $item$ ... anchor}
\Longstack[alignment]{item {it em} {\item} $item$ ... anchor}

The first item is at the top of the stack, farthest from the baseline, while the
last item is the anchor of the stack. If an item (the contents of a single row)
contains spaces, enclose the item in braces. If the item ends with a macro,
enclose the item in braces. If used in a mixed text/math mode (see §13 for
more details), math items may be enclosed within dollar-sign delimiters. As of
V3.2, these commands have been made robust and their arguments need not be
\protected.

The alignment may be specified as an optional argument, with other parameters
taken by their defaults. The stacklength is taken as \stackgap, which will
depend on the value of \stacktype.

To give an example of the braced syntax described above, the stack

\Shortstack[r]{a {b c} {\P} $\beta^2$ ANCHOR} will produce ANCHOR
β2

¶
b c
a

.
Note that the use of the math delimiter ($) in the \Shortstack argument was
needed only if the stack contains both inline math as well as text elements. If
the stack is to contain only math-mode elements, then math arguments can be
made the default:
\stackMath\Shortunderstack[c]{{\alpha} {\beta} {\gamma}}

yielding α
β
γ

˙

As of V3.1 of stackengine, the user may define the the argument to \Longstack,
\Shortstack, \Longunderstack, and \Shortunderstack with a row separator
different than a space. The [usestackEOL] package option will make the EOL
character within these stacking commands a \\ macro instead of a space. Here
is an example of equivalent stack arguments for two different EOL characters:

Space EOL: {a {b c} {\P} $\beta^2$ ANCHOR}

\\ EOL: {a \\ b c \\ \P \\ $\beta^2$ \\ ANCHOR}

Note that leading and trailing spaces surrounding the \\ are ignored for rows in
the second case. The \setstackEOL macro allows any arbitrary character to be
set as the “EOL” character (for the purposes of parsing these stacking macros).
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2.3.4 \Shortunderstack and \Longunderstack

The \Shortunderstack and \Longunderstack commands are the understack-
ing equivalents of \Shortstack and \Longstack.

\Shortunderstack[alignment]{anchor item {it em} {\item} $item$ ...}
\Longunderstack[alignment]{anchor item {it em} {\item} $item$ ...}

The caveats to the specification of the space-separated list of items is the same
as that mentioned above for \Shortstack and \Longstack.

Note that the items are still specified from the top downward. In the case of
understacks; however, that means that the anchor is the first item specified,
while the last item in the list is farthest below the baseline.

2.3.5 Top and bottom lapping macros

Top
and
bottom

lapping is achievable through the creation of various long stacks. The

syntax is the same for all six of the macros provided. The six names differentiate
whether the lap is to the top (t) or the bottom (b) of the calling point, and
whether it should appear to the left (l), centered (c), or to the right (r) of the
calling location. The long-stacklength may be provided as an optional argument.

\tllap[stacklength]{item}

\tclap[stacklength]{item}

\trlap[stacklength]{item}

\bllap[stacklength]{item}

\bclap[stacklength]{item}

\brlap[stacklength]{item}

See §5 for more information and examples of use for these lapping commands.
If trying to remember the names of all these lapping commands is too tedious
for you, two functionally identical macros have been introduced:

\toplap[stacklength]{lap H-direction}{item}

\bottomlap[stacklength]{lap H-direction}{item}

The names are simpler to remember, but they require, as their first mandatory
argument, the horizontal direction of lapping (l, c, or r), while the material to
be lapped is now in the second mandatory argument.
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2.3.6 \stackanchor

The \stackanchor macro is one way to create a stack where the baseline is split
between two items in the stack. The syntax is

\stackanchor[stackgap]{top item}{bottom item}

The stacking gap may be provided as an optional argument. All other param-
eters taken are the defaults. There are subtle differences in the way a short
stack anchor versus a long stack anchor is split. One should consult §6.1 for a
description of how the stack is constructed.

If a short stack is being created with a split anchor, the \strutshortanchors{}
mode setting will determine whether the split occurs at the mid-height of the
strutbox (“T”) or whether it will occur about the baseline (“F”).

If a long stack is to be created with a split anchor, it is best to formulate and
\savestack both the upper portion (with a stack) and the lower portion (with
an understack), and then \stackanchor the two parts together. Alternately,
one could use the \Centerstack macro (§2.3.7).

2.3.7 \Centerstack and the math variants of \Vectorstack

The macro \Centerstack produces a type of \Longstack that is vertically cen-
tered about the mid-strut above the baseline. In essence, it is like a \stackanchor
version of a \Longstack. Additionally, it is locally processed with the mode
\strutlongstacks set as T, so as to ensure the proper vertical centering.

The \Centerstack macro has a math-mode equivalent called \Vectorstack, in
which the stacking argument is automatically processed in math mode, regard-
less if whether the \stackMath mode is currently active.

The syntax is the same as \Longstack, except that the anchor is not specified,
but results naturally from the centering operation:

\Centerstack[alignment]{item {it em} {\item} $item$ ... item}

\Vectorstack[alignment]{item {it em} {\item} ... item}

One of the main purposes of providing this vertically centered stack is to be
compatible with mathematical bracketing commands embodied in the use of the
LATEX syntax \left(...\right), which require vertically centered material. To
this end, there are several variants of \Vectorstack macro that are for specific
use in mathmode. Here are examples of all of these macros demonstrated:
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which are, respectively,
\Centerstack{p q r s}

\Vectorstack{p q r s}

$\parenVectorstack{p q r s}$

$\bracketVectorstack{p q r s}$

$\braceVectorstack{p q r}$.

$\vertVectorstack{p q r}$.

2.3.8 \ensurestackMath

The macro \ensurestackMath{}macro is used to force its argument (a stacking
command) to be processed in math mode, without setting the global default
stacking mode to math mode (accomplished via \stackMath). Note that this
macro does not ensure that all elements of its argument are processed in math
mode (i.e., it does not use, nor is it a replacement for \ensuremath), but only
that stacking macros are processed in math mode.

2.3.9 \abovebaseline and \belowbaseline

The macros \abovebaseline and \belowbaseline also creates the means to
shift an item’s baseline. The syntax is

\abovebaseline[stackgap]{item}

\belowbaseline[stackgap]{item}

where the stackgap defines the stackgap distance. In a long stack, it will define
the upward (for \abovebaseline) or downward shift (for \belowbaseline) of
the baseline of the item. In a short stack, it will define the upward/downward
vertical gap between the original baseline and the bottom/top of the shifted
item.

For long stacks, a negative stackshift for \belowbaseline will produce the same
result as the corresponding positive stackshift for \abovebaseline. But this will
not be the case for short stacks. One should consult §6.2 for more details.

This command can also be employed to redefine the baseline of graphical objects,
which can provide a useful technique to achieve horizontal alignment with other
objects. Negative stack gaps are valid (see §6.2 for examples). While these
macros will carry slightly more processing overhead than a simple \raisebox,
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it may be the case that specifying the shift in terms of the baseline, rather than
with respect to the current configuration, may make for more streamlined logic.

2.3.10 \stackinset

The macro \stackinset is for insetting smaller items (e.g., images or text)
inside of a larger background items (e.g., images or text). The syntax is

\stackinset{H-align}{H-offset}{V-align}{V-offset}{inset item}{anchor item}

In addition to providing the inset and background items as the last two ar-
guments, the inset may be vertically and horizontally offset relative to various
references. The first argument H-align, is either an l, c, or r, indicating whether
the horizontal offset is relative to the left, center, or right of the anchor. The
second argument is a length corresponding to the actual horizontal offset, rela-
tive to the horizontal alignment. For l and c alignments, a positive horizontal
offset is rightward, whereas it is leftward for a r alignment.

In the case of vertical measures, the third argument, V-align, can have values
of t, c, or b, corresponding to top, center, and bottom, respectively. The fourth
argument is a length corresponding to the vertical offset from the alignment
location. For b and c alignments, a positive vertical offset is upward, whereas
it is downward for a t alignment.

For horizontal and vertical offsets, negative lengths are allowed. However, this
macro is always executed with the \usestackanchor parameter set as true
(meaning that the resultant stack will be the horizontal size of the anchor, even
if the inset spills outside of it).

While this command was designed with inlaid images in mind (see §10), there
is nothing that prevents its use to inlay character glyphs upon each other, as in
O* , accomplished with \stackinset{c}{}{c}{-.3ex}{*}{O}.

2.3.11 \addstackgap

The \addstackgap macro provides a user-requested feature to add a specified
gap above and below an object. The syntax is

\addstackgap[stackgap]{item}

When a stack is otherwise created, it by default will vertically extend from the
top of the top-most item in the stack to the bottom of the bottom-most item in
the stack, but with no extra gap applied. Depending on how the user employs
that stack, there may not be enough vertical gap between the stack and its
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adjacent objects. This macro will apply a fixed gaplength (either specified or,
by default, an amount given by \Sstackgap) above and below the argument of
the macro. Negative gaps will have no effect on the vertical extent of the item.

Here’s an example of a stack, before and after \addstackgap is applied, framed

for clarity: \stackon{g}{a}: g
a

versus \addstackgap{\stackon{g}{a}} g
a
.

This macro provides a slightly different result than the \strutlongstacksmode
described in §2.2. For more details of the comparison, see §9.

2.3.12 \hsmash

The macro \hsmash is a horizontal version of the popular \smash macro:

\hsmash{item}

In this case, the result is centered over its zero-width anchor position. If one
wanted left or right aligned versions of this macro, the existing LATEX macros
\rlap and \llap would suffice.

The primary utility of this macro is in applying \hsmash to an object (often
wider than the \textwidth), in order to extend the object into the margins in
a controllable manner, such as in the case of these items below:

wide object

2.3.13 \savestack

The macro \savestack provides a means to save an intermediate result (in
a box that can be recalled with the specified macro) without printing it. Its
syntax is

\savestack{macro token}{stacking operation}

The macro token is a backslashed name that you can later use to recall the
boxed intermediate result. The stacking operation is the intermediate result
you wish to save in a box without printing. Reasons why this might be a useful
macro are described in §3.2.

Note that while \savestack is designed to save an intermediate stacking oper-
ation in a box, the reality is that you can use this macro to save any sequence
of boxable output, even if it is not a stacking operation. So, for example,
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\savestack{\mymacro}{\fbox{A}} can later be recalled with an invocation of
\mymacro, to yield A .

3 Making a Stack in Stages

There are times where one needs to make a stack in several consecutive steps.
In order to do so, there are several ways, detailed below.

3.1 Suppressing Output

One can define \quietstack as T to suppress output. Then, the intermediate
stack can be passed as an argument to the next stacking operation with a
\usebox{\stackedbox}. That same \usebox may be used to output the final
stack, as long as \quietstack remains defined as “T”. Otherwise, \quietstack
must again be defined “F” (false) to re-enable automatic output.

3.2 Saving a Stack without Printing It

Perhaps a quicker and better way is to use the package’s \savestack macro, of
the form \savestack{macro token}{stacking operation} . This will perform the
stacking operation and place it into the supplied token (without printing it), so
that the intermediate stack can be passed to the subsequent stacking operation
by executing the token macro.

For example,

\savestack{\pdq}{\Longstack[r]{6 5 4 {3 3}}}%

\Longstack[l]{{\pdq} 2 1 0}%

would first place “3 3
4
5
6

” into \pdq, without printing it, in a right-aligned fashion,
with the “3 3” on the baseline. Then, the second \Longstack would place the
first stack atop of the “2” in a left-aligned fashion. The resulting stack would
look as follows, with the “0” on the final baseline.
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0
1
2
3 3
4
5
6

BL

4 Choosing the Anchor Element

Nearly all stacking done with the stackengine package has a designated anchor
element. The baseline of the anchor does not change. Instead, the other items
are placed relative to the anchor. By adding items at first above and then below
the anchor, any arbitrary stack can be built around the anchor.

Here is a Longstack/understack example: 0
1
2
3

-1
-2
-3
-4
-5

that was achieved as follows:

\savestack{\pdq}{\Longstack{3 2 1 0}}%

\Longunderstack[r]{{\pdq} -1 -2 -3 -4 -5}

In the first stack, “0” is the anchor of \pdq. In the second stack, \pdq is the
anchor (which means that “0” remains the anchor of the composite stack).

5 Top and Bottom Lapping

Top and bottom lapping can be accomplished with a long stack, using a null item
as the anchor, and \useachorwidth set to T. This technique is encoded in six
\xylap commands, where x can be t or b (for “top” and “bottom,” respectively)
and y can be l, c, or r (for “left,” “center,” and “right,” respectively). Note
that this y is not the same as the \stackalignment, but rather refers to the
direction where the lapped item is placed relative to the lap invocation.

For illustration only, laps will be shown at a visible lapmark (given by ), defining
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the point of invocation. In these examples, I lap a \parbox above or below the
selected location.

For example here
this is a
bottom-left
lap \bllap

or el
this is a
bottom-right
lap \brlap

se here, or else I can put it here

this is a
top-left lap
\tllap

or here

this is a
top-right
lap \trlap

.

Of course, I can per
this is a bottom-
center lap \bclap

form center lapping, as we

this is a top-center
lap \tclap

ll. To see, for example, how the

above was achieved, the last lap in the prior sentence was achieved by invoking

\tclap{\fbox{\parbox[b]{1.1in}{this is a top-center lap \tcl}}}

in the middle of the word “well.” (Note that \tcl is a box containing the
verbatim text “\tclap,” created with the verbatimbox package.)

Note that \toplap and \bottomlap have also been introduced as macros that
are functionally identical to these six lapping commands. While requiring an
extra argument, their names may be easier for you to remember. See §2.3.5.

6 Shifting the Anchor’s Baseline

By default, the baseline of the anchor becomes the baseline of the stack. If one
wanted the stack baseline to not conform to the baseline of any of the individual
stacked items, something needs to change. If one quantitatively knows the shift
desired, a simple \raisebox could be used to vertically shift the anchor, after
(or possibly prior to) stacking. There are also some other options provided by
the package.

6.1 The \stackanchor Macro for “L” and “S” Stack Types

If one would like the anchor’s baseline to be “midway” between two vertically
arrayed items, the \stackanchor macro attempts to provide that capability for
both “L” and “S” stack types, though the definitions of “midway” are different
for each. The macro \stackanchor works for two-item stacks in both “L” and
“S” stack types, as shown below.
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In the case on a long stack, what is satisfied is that the baseline of the anchor
is made equidistant from the baselines of the two respective items comprising
the stacked anchor.

BL
top

L-bottom BL

In the case of a short stack, the middle of the inter-item gap is vertically located
at the center of the font’s \strutbox, so that the middle of the stackgap would
be at the same vertical level as the middle of parentheses, were they located on
the original baseline.

BL
top

S-bottom
(Mid-strut) BL

If one does not want to have the short-stack gap split at the mid-strut height,
but rather at the baseline, the \strutshortanchors{F} mode may be set prior
to the \stackanchor invocation.

BL
top

S-bottom
BL

The \strutshortanchors mode will only affect short stacks (\stacktype “S”),
since long stacks do not use a strut as part of the \stackanchor definition.

For stackanchors with more than two rows, one should compose the top portion
with a stack and the bottom portion with an understack, and then, finally, shift
the anchor by applying \stackanchor to these two “substacks.”

BL
top

over text

under text
S-bottom

(Mid-strut)

6.2 \belowbaseline for Moving the Anchor’s Baseline

The command \belowbaseline is intended to be used to set an item, such
as a stack anchor, below the baseline (this discussion is equally valid for the
macro \abovebaseline, but in the opposite sense). The macro accomplishes
this task by stacking the item below a null object. However, \useanchorwidth
is temporarily set to F so that the stacked object takes on the width of the
under-placed object.

The command can be used with both stacktypes. With \stacktype “S”,
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the optional argument will denote the stackgap below the baseline (default
\Sstackgap),

Short stacktype
0pt below baseline 6pt

-6pt

When used with \stacktype “L”, the optional length denotes the distance to
the baseline of the understacked object (default \Lstackgap).

Long stacktype 0pt below baseline
18pt

-18pt

As the above images show, there is nothing to prevent the use of negative
numbers being used to raise the the object above the baseline. But care must
be taken, since a \belowbaseline with a negative shift will not necessarily
equal the \abovebaseline with the corresponding positive shift (that equal-
ity only holds for long stacks). To better appreciate the meaning of nega-
tive baseline shifts, we compare, below, negative shifts for \belowbaseline to
\abovebaseline with the corresponding positive argument.

Short stacktype -6pt below
6pt above

BL

Long stacktype -6pt below 6pt above BL
The \belowbaseline command is also useful for forcing objects, such as images,
to be top-aligned. This can be a useful feature when trying to achieve a desired
horizontal alignment of disparate elements in tabular columns.

\def\stacktype{S}\belowbaseline[0pt]{\imgi}

\belowbaseline[-\ht\strutbox]{\imgi}:

BL

Image Image
A parbox
with [t]
alignment

BL

7 Negative Stack Gap

A negative gap can be used to overlap things. For example, .plus “i” can
make, when the stack gap is suitably negative, the following:
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i
.

Note that the use of a negative stack gap for a two-item stack is actually very
similar to the \stackinset macro described in §2.3.10 and §10. The issue of
negative stackgaps is also discussed in §6.2.

8 The \useanchorwidth Option

Because.has width larger than the dot glyph itself (we box its extent here:.), stacking it could otherwise be a problem. For example, th i
.

s uses the
whole stackwidth to set the dotted-i in its place. On the other hand, when
\useanchorwidth is defined as T, “thi

.
s” uses only the anchor width to set the

stack (where the “i” is the anchor).

Below, we show an \fbox around the dotted i, clearly demonstrating that the
dot does not influence the width of the stack when \useanchorwidth is defined
as “T”.

thi
.
s

9 Adding Gap Above and Below a Stack

By default, a stack is vertically clipped with no gap as in these two \Longstack

examples: G
A

g
a

This package provides two ways to conveniently add gaps above and below a
stack. For any type of stack (short or long), the \addstackgap macro (§2.3.11)
adds a fixed amount of gap above and below a completed object. Alternately,
during the construction of long stacks, the \strutlongstacks mode (§2.2) will
automatically employ struts in each row of a long stack during its construction.
However, these two approaches are not equivalent:

\addstackgap[3pt]{}: G
A

g
a

\strutlongstacks{T}: G
A

g
a

Make sure you use the one that best applies to your situation.
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10 Image Insets

The command \stackinset allows images (or other data) to be stacked atop
one another, to produce the effect of an inset image. In addition to specifying the
two images, the effect can be tailored by specifying the vertical and horizontal
offset of the inset image.

Image
Image

Image
Image

The last figure was obtained with \stackinset{l}{3pt}{b}{2pt}{\imgii}{\imgi},
showing that \imgii was offset 2pt from the bottom and 3pt from the left edge
of \imgi.

The syntax of \stackinset allows for a convenient nesting of figure text labels.
For example,

\stackinset{l}{ .1in}{b}{.2in}{Note 1}{%

\stackinset{r}{ .1in}{t}{.2in}{Note 2}{%

\stackinset{c}{-.5in}{c}{.4in}{Note 3}{%

\stackinset{r}{ .8in}{b}{.6in}{Note 4}{%

\stackinset{r}{ .1in}{c}{.0in}{\imgi}{%

\includegraphics[width=3in]{example-image}%

}}}}}

gives the following result:
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Image Image

Note 4

Note 3

Note 2

Note 1

Figure 1. An example of \stackinset.
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11 Stacking for Subfiguring and Baseline Ma-
nipulation

The stacking commands provide a convenient way to underset a subfigure no-
tation under the corresponding image. Furthermore, because of the flexibility
of the stacking commands, the baselines of the subfigures can be manipulated
in many ways, which may come in handy depending on how you are choosing
to lay out your subfigures.

Examples of this are shown in figure 2.

BL (a)

Image
Image

Image
Image

(b)
(c2)

Image

(c1)

Image

Image

(d)

Figure 2. Image stacking with stacktype “S”, stack gap set to 3pt and using:
(a) \stackon{(a)}{\imga}, (b) \stackunder{\imgb}{(b)},
(c) \Shortstack{{\imgi} (c1) {} {\imgi} (c2)}, and
(d) \belowbaseline[0pt]{\stackunder{\imgi}{(d)}}.

12 Nested Stacking Commands

The macros \Shortstack, \Longstack, and the corresponding understack macros
are set up to conveniently stack multiple objects using a space separated argu-
ment list. Because of parsing constraints on the space-separated list, however
(see §13), there may be times that you would prefer building stacks by way of
nesting the more primitive stacking macros.

Nesting can be accomplished, but some care must be taken, in the case of long
stacks. But first, let us see the ways in which nesting may be applied for short
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stacks:

\stackunder{1}{\stackunder{2}{\stackunder{3}{\stackunder{4}{5}}}}

\stackunder{\stackunder{\stackunder{\stackunder{1}{2}}{3}}{4}}{5}

\stackon{1}{\stackon{2}{\stackon{3}{\stackon{4}{5}}}}

\stackon{\stackon{\stackon{\stackon{1}{2}}{3}}{4}}{5}

will produce the following: 1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

BL

In these cases, the nesting could be applied on either the first or the second
argument of the \stackunder or \stackon commands, with the same end result.

In the case of long stacks however, employing the identical methodology gives

a different, at first unexpected, result: 1
2
3
4
5

1
2345
1
2
3
4
5

1
2345

BL

In this case, nesting the second argument works as hoped, but nesting the first
argument does not. The reason for this “failure” stems not from a failure of
logic, but an enforcement of it. It stems from the very definition of a long stack,
in which the baseline of the second argument is placed \LStackgap below or
above the baseline of the first argument. By nesting the first argument, all the
second arguments are placed \Lstackgap from the unchanging stack baseline
(thus overlapping), and not relative to the current top or bottom of the nested
stack.

Therefore, to nest long stacks, only the second argument of the stackengine may
be nested.
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13 Math Mode and Mixed Mode Usage

As of V3.0, the stackengine package was extended to allow its arguments to be
processed, by default, using inline math-mode (\textstyle math). The math-
mode default is brought about with an invocation of \stackMath, which can be
later reversed via \stackText.

Except in circumstances that require the particular features of this package,
stackengine may not be the best package for math mode since there are many
packages that already cater directly to the need to stack and align mathematical
objects. However, if there is a need to use stackengine there, because of its
particular facility with stacking gaps and alignment, there are several hints to
remember.

Hints for use in math mode: (operating under \stackMath)

1. Arguments to stacking commands are only taken in math mode, by default,
following the invocation of the \stackMath macro.

2. The \stackMath and \stackText macros, as well as their locally scoped
counterparts, \lstackMath and \lstackText, are not to be used within
stacking arguments, but are invoked prior to stacking, to set the manner
in which stacking arguments are subsequently processed.

3. As described in §2.3.3, if the math argument has spaces in a command
which uses space-separated lists, or if the argument ends in a macro, the
argument must be enclosed in braces.

\(y = \Shortstack{{a + b} {\odot} b} x\): y = b
⊙

a+ b

x

4. In math mode, the \stackanchor command seems to preserve the math
axis better with an “S” \stacktype, rather than type “L”.

Hints for using math in text mode: (operating under \stackText)

1. Stacking commands from this package can be used in math mode, but will
set their arguments as text,

\( y = \stackunder{a}{+} x\): y = a
+
x

2. To set an argument in math style, it must be set between math delimiters.

\( y = \stackunder{$a$}{+} x\): y = a
+
x

3. To set a particular stack completely in math style, without globally setting
the mode with a \stackMath, one can use \ensurestackMath{}.
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4. If not using \ensurestackMath, each space-separated item of the argu-
ment to \Shortstack, \Longstack, and the corresponding understacks
must each be enclosed in their own set of math delimiters (either $...$
or \(...\)).

\(y = \Shortstack{$a$ . $b$} x\): y = b
.a
x

5. For more complex items, the \savestack command can be used to save
an intermediate math expression (even if it isn’t actually a stack).

\savestack{\a}{\(\sqrt{a + b}\)}

\savestack{\dash}{- - - - -}

\(y = \stackunder{\stackon{\dash}{\a}}{$b$} x\):
y = - - - - -

√
a+ b

b
x

14 Deprecated Features

There are several definitions and macros from earlier versions of the stackengine
package that are still fully functional, but are discouraged because of more
preferable alternatives. They have been omitted from the current documenta-
tion, except for mention here. They are:

• \bottominset and \topinset. These macros are subsumed by the much
more versatile \stackinset macro. The replacement offers insets relative
to not only the top and bottom, but also the mid-height of the anchor. It
also provides the capability to horizontally place the inset relative to the
center of the anchor, in addition to the left or the right. Most importantly,
the placement of the anchor as the last argument of \stackinset means
that the syntax for nested insets is much more readable vis-à-vis the nested
syntax for \bottominset and \topinset.

15 Backward Compatibility

The author of this package profoundly apologizes for the fact that the syntax
of this package changed between versions 1.0 and 2.0 of this package.

In version 1.0 of this package, stackgaps could be directly defined by setting the\setstackgap

LATEX lengths \Sstackgap and \Lstackgap. The problem with this approach is
that, under fontsize changes, these stackgaps were not automatically updated to
reflect the new fontsize. As of V2.0, that deficiency was remedied. The syntax
that replaces these length specifications is
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\setstackgap{S}{inter-item stackgap}
\setstackgap{L}{inter-item baselineskip} .

Thus, \Sstackgap and \Lstackgap are no longer lengths (but instead \defs),
and cannot be set via the \Sstackgap=... or \setlength{\Sstackgap}{...}
syntax. It is these settings which will need to be revised to modernize older
code.

While not encouraged, the V1.0 syntax may be recovered via[oldsyntax]

\usepackage[oldsyntax]{stackengine}

If you retain the “oldsyntax” setting, you must remember that stackengine will
honor your specified gap sizes (\Sstackgap and \Lstackgap) at the time of their
definition, rather than at the time of their invocation. Thus, if \Sstackgap
is specified as 0.7ex when the text is \normalsize, the gap length is set in
a \normalsize font, even if the fontsize is later changed. To overcome this
behavior, the stackgap must be redefined at the new fontsize, or better still,
[oldsyntax] usage needs to be relegated.
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17 Sectional index of stackengine definitions, modes,
& macros

Definition, Mode, or Macro § Defined § Used

\abovebaseline 2.3.9 6.2
\addstackgap 2.3.11 2.3.2, 9
\bclap 2.3.5 5
\belowbaseline 2.3.9 6.2
\bllap 2.3.5 5
\bottomlap 2.3.5 5
\braceVectorstack 2.3.7
\bracketVectorstack 2.3.7
\brlap 2.3.5 5
\Centerstack 2.3.7 2.3.6
\ensurestackMath 2.3.8 2.2, 13
\hsmash 2.3.12
\Longstack 2.3.3 1.1, 1.3, 2.2, 2.3.4, 2.3.7, 3.2, 4, 9, 12, 13
\Longunderstack 2.3.4 1.3, 2.2, 4, 12, 13
\Lstackgap 2.1 1.1, 2.3.1, 6.2, 12, 15
\lstackMath 2.2
\lstackText 2.2
\parenVectorstack 2.3.7
\quietstack 2.1 2.3.1, 3.1
\savestack 2.3.13 2.3.6, 3.2, 4, 13
\setstackEOL 2.2 2.3.3
\Shortstack 2.3.3 1.1, 1.3, 1.4, 1.5, 2.2, 2.3.4, 6.1, 11, 12, 13
\Shortunderstack 2.3.4 1.1, 1.3, 1.4, 2.2, 2.3.3, 12, 13
\Sstackgap 2.1 1.1, 2.3.1, 2.3.11, 6.2, 15
\stackalignment 2.1 1.5, 2.3.1, 4, 5
\stackanchor 2.3.6 2.3.7, 2.3.10, 6.1, 13
\stackengine 2.3.1 2.3.2
\stackgap 2.1 2.3.1, 2.3.3
\stackinset 2.3.10 7, 10, 14
\stackMath 2.2 2.3.3, 2.3.8, 13
\stackon 2.3.2 2.3.11, 7, 8, 11, 12, 13
\stackText 2.2 13
\stacktype 2.1 1.1, 2.3.1, 2.3.3, 6.1, 6.2, 11, 13
\stackunder 2.3.2 11, 12, 13
\strutlongstacks 2.2 2.3.7, 2.3.11, 9
\strutshortanchors 2.2 2.3.6, 6.1, 14
\tclap 2.3.5 5
\tllap 2.3.5 5
\toplap 2.3.5 5
\trlap 2.3.5 5
\useanchorwidth 2.1 2.3.1, 6.2, 8
\Vectorstack 2.3.7
\vertVectorstack 2.3.7
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18 Code Listing

\def\stackengineversionnumber{v4.1}

\ProvidesPackage{stackengine}

[2021/07/15 \stackengineversionnumber\

Stacking text and objects in convenient ways]

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% This work has the LPPL maintenance status ‘maintained’.

%

% The Current Maintainer of this work is Steven B. Segletes.

%

% V1.0 -Initial release.

% V2.0 -Revised syntax, making \Sstackgap=len, \Lstackgap=len syntax

% obsolete. New syntax is \setstackgap{S}{len} and

% \setstackgap{L}{len}

% -Condensed several routines

% -Revised documentation for clarity and to eliminate typos.

% -Added \toplap and \bottomlap.

% -Disallowed \quietstack for lapping.

% -added \abovebaseline

% V3.0 -Added \stackMath and \stackText macros to treat arguments,

% by default, in math mode or not.

% V3.1 -Added \hsmash, for zero-width, center-aligned argument (note:

% other alignments can be achieved with \llap and \rlap)

% -Eliminated need for \usepackage{readarray} through the

% implementation of \@readMANYrows and \@processROW

% -Added [usestackEOL] package option to use \\ separator, rather

% than space separator in \Shortstack, \Longstack,

% \Shortunderstack, and \Longunderstack

% -Implemented \setstackEOL to define new separator in \Shortstack,

% \Longstack, \Shortunderstack, and \Longunderstack

% -Renamed some package internal variables with @...

% -Added \addstackgap to place vertical gap above and below an

% existing stack. Negative gaps have no effect.

% -Added \stackinset, deprecates \topinset & \bottominset.

% -allow c \stackalignment on \stackinset, \topinset, and

% \bottominset to have meaning (rightward offset relative to

% centerline, can be positive or negative).

% -Forced \useanchorwidth{T} for insets, since otherwise the

% stackwidth could vary for reasons not obvious to user.

% -Added \strutlongstacks{} mode for auto-adding a strut to

% each row of a long stack

% -Recommend \strutshortanchors{} mode in preference to

% \def\usestackstrut{} definition (now deprecated).

% V3.11 -Corrected bug in \stackinset which did not condition the

% anchor when using vertical centering in \stackMath mode

% V3.2 -Incorporated changes suggested by E. Gregorio to make robust

% the supporting macro \@readMANYrows

% -Introduced routines: \Centerstack, \Vectorstack, \parenVectorstack
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% \bracketVectorstack, \braceVectorstack, \vertvectorstack,

% and \ensurestackMath

% V3.21 -Corrected a bug in \stackinset introduced in V3.11

% V3.22 -Removed \usepackage{calc}

% -Corrected \@STRT placement to not inadvertantly force a \mathop

% on rows beginning with a minus sign.

% V3.23 -Made EOL-separated stacks (i.e., \Longstack, \Shortstack,

% \Centerstack, \Vectorstack, etc.) work properly when a single

% (unstacked) row is input.

% -Noted in documentation that while EOL-separated stacks

% ignore leading/trailing spaces in their arguments (unless the

% EOL itself is a space token), the \stackon / \stackunder

% family of macros do not ignore spaces in their arguments.

% -Reinstated \usepackage{calc} (Oops!)

% V3.24 -Replaced references to \roman with \romannumeral, since \roman

% is redefined by packages like spanish babel.

% V3.25 -Default longstack gap is now \normalbaselineskip, so as to

% automatically work in tabular environments.

% V3.26 -V3.25 on partially fixed the problem of \normalbaselineskip.

% V4.00 -Incorporate listofitems package methodology for parsing, requiring

% some package rewrite, primarily macro \@readMANYrows.

% -Eliminated all uses of \protected@edef.fxf

% V4.01 -Removed unnecessary\global specifiers from \newlength and

% \setlength, which could also cause potential problems with the

% calc package.

% -Changed \global\def to \gdef and \global\edef to \xdef.

% V4.1 -Removed \widthof type measurements in \stackinset and

% \stackengine, instead setting things in saveboxes from the

% outset and using \wd, thereby only setting stacked content

% once. This is helpful for speed and also if counters are

% present in arguments, which are now incremented only once.

% -Save and restore counter entering/exiting \@stack, which

% favorably resolves issue of nesting for multi-row stacks.

% -Introduce \lstackMath and \lstackText as local versions of

% \stackMath and \stackText (which are global).

% -Eliminated \usestackstrut (became internal \@usestackstrut)

\RequirePackage{etoolbox}

\RequirePackage{listofitems}% REQUIRES listofitems.sty AND listofitems.tex

\usepackage{calc}

\newtoggle{@doneROWreads}

\newtoggle{stackloop@done}

\newcounter{@stackindex}

\newlength\@boxshift

\newlength\stack@tmplength

\newlength\temp@stkl

\newlength\@stackedboxwidth

\newsavebox\@addedbox

\newsavebox\@anchorbox

\newsavebox\@insetbox

\newsavebox\@backgroundbox

\newsavebox\stackedbox

\newsavebox{\@centerbox}

\newcounter{ROWcellindex@}

%% Following 3 lines thanks to Prof. Enrico Gregorio, from:

%% http://tex.stackexchange.com/questions/42318/
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\begingroup\lccode‘\|=‘\\

\lowercase{\endgroup\def\removebs#1{\if#1|\else#1\fi}}

\newcommand{\stack@macro@name}[1]{\expandafter\removebs\string#1}

%% Following macro was, in V3.2, made robust with the help of

%% Prof. Enrico Gregorio. See:

%% http://tex.stackexchange.com/questions/137298/

\newcommand\setstackEOL[1]{%

\ifstrempty{#1}{\def\SEP@char{ }}{\def\SEP@char{#1}}%

}

% FOR PROCESSING A GROUP OF STACK ROWS SEPARATED BY \SEP@char

% EMPLOYS listofitems PACKAGE, AS OF V4.0

\newcommand\@readMANYrows[1]{%

\expandafter\setsepchar\expandafter{\SEP@char}%

\readlist*\stack@arg{#1}%

\edef\stackengine@args{\stack@arglen}%

}

%%%%%

% PROCESS PACKAGE OPTIONS

\newif\ifstackengine@oldsyntax

\newif\ifstackengine@usestackEOL

\DeclareOption{oldsyntax}{\stackengine@oldsyntaxtrue}

\DeclareOption{usestackEOL}{\stackengine@usestackEOLtrue}

\ProcessOptions\relax

\ifstackengine@oldsyntax%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% THIS VERSION 1.0 SYNTAX WAS PHASED OUT %%%%%%%%%%%%%%%%%%%

%%%%% (but can invoke with \usepackage[oldsyntax]{stackengine} )

\newlength\Sstackgap\newlength\Lstackgap

\newcommand\stackgap{\if S\stacktype\the\Sstackgap\else\the\Lstackgap\fi}

\setlength{\Sstackgap}{3pt}

\setlength{\Lstackgap}{\normalbaselineskip}

\else%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% AND REPLACED WITH THE FOLLOWING %%%%%%%%%%%%%%%%%%%%%%%%%%

% Again, thanks to Prof. Gregorio for his lucid explanation that helped

% improve this package. See:

% http://tex.stackexchange.com/questions/123443/

% defining-a-length-that-scales-with-fontsize-changes/123470#123470

\newcommand{\setstackgap}[2]{\@namedef{#1stackgap}{#2}}

\newcommand\stackgap{\@nameuse{\if S\stacktype S\else L\fi stackgap}\relax}

\setstackgap{S}{3pt}% SHORTSTACKING GAP BETWEEN ITEMS (SAME AS \shortstack)

\setstackgap{L}{\normalbaselineskip}% LONGSTACKING BASELINESKIP (\normalbaselineskip)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\fi

\ifstackengine@usestackEOL%

% USE \\ AS SEPERATOR IN \Shortstack, \Longstack,

% \Shortunderstack, and \Longunderstack

\setstackEOL{\\}

\else

% USE SPACE TOKEN AS SEPERATOR IN \Shortstack, \Longstack,

% \Shortunderstack, and \Longunderstack

\setstackEOL{ }

\fi
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%%%%% PACKAGE DEFAULT DEFINITIONS

\def\useanchorwidth{F}% T= FORCE BOX WIDTH TO ANCHOR-WIDTH

\def\quietstack{F}% T = SUPPRESS OUTPUT OF ALL COMMANDS

% (USE \usebox{\stackedbox} TO RETRIEVE)

\def\stackalignment{c}% l, c, or r for left, center or right alignment

\def\stacktype{S}% S for constant gap shortstack;

% L for constant baselineskip longstack

%%%%% MODES

\newcommand\stackMath{\gdef\stack@delim{$}}

\newcommand\stackText{\gdef\stack@delim{}}

\newcommand\lstackMath{\def\stack@delim{$}}

\newcommand\lstackText{\def\stack@delim{}}

\stackText

\newcommand\strutlongstacks[1]{\def\@strutlongstacks{#1}}

\strutlongstacks{F}

\newcommand\strutshortanchors[1]{\def\@usestackstrut{#1}}

\strutshortanchors{T}

%%%%% MACROS

%\stackengine{\Sstackgap or \Lstackgap or \stackgap or stacklength}

% {anchor}

% {item}

% {O or U}

% {\stackalignment or l or c or r}

% {\quietstack or T or F}

% {\useanchorwidth or T or F}

% {\stacktype or S or L}

\newcommand*\stackengine[8]{%

\def\@STRT{}%

\if T\@strutlongstacks\if L#8\def\@STRT{\strut}\fi\fi%

\sbox{\stackedbox}{%

\sbox{\@anchorbox}{\@STRT\stack@delim#2\stack@delim}%

\sbox{\@addedbox}{\@STRT\stack@delim#3\stack@delim}%

\setlength{\@stackedboxwidth}{\wd\@anchorbox}%

\if F#7%

\ifdim\wd\@addedbox>\@stackedboxwidth%

\setlength{\@stackedboxwidth}{\wd\@addedbox}%

\fi%

\fi%

\setlength{\@boxshift}{#1}%

\if L#8%

\if U#4%

\setlength{\@boxshift}{-\@boxshift}%

\fi%

\else%

\if U#4%

\setlength{\@boxshift}{-\dp\@anchorbox -\ht\@addedbox -\@boxshift}%

\else%

\setlength{\@boxshift}{\ht\@anchorbox +\dp\@addedbox +\@boxshift}%

\fi%

\fi%

\if c#5%

\hspace{.5\@stackedboxwidth}%
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\hspace{-.5\wd\@anchorbox}%

\usebox{\@anchorbox}%

\hspace{-.5\wd\@anchorbox}%

\hspace{-.5\wd\@addedbox}%

\raisebox{\@boxshift}{\usebox{\@addedbox}}%

\hspace{-.5\wd\@addedbox}%

\hspace{.5\@stackedboxwidth}%

\else%

\if l#5%

\usebox{\@anchorbox}%

\hspace{-\wd\@anchorbox}%

\raisebox{\@boxshift}{\usebox{\@addedbox}}%

\hspace{-\wd\@addedbox}%

\hspace{\@stackedboxwidth}%

\else%

\if r#5%

\hspace{\@stackedboxwidth}%

\hspace{-\wd\@anchorbox}%

\usebox{\@anchorbox}%

\hspace{-\wd\@addedbox}%

\raisebox{\@boxshift}{\usebox{\@addedbox}}%

\fi%

\fi%

\fi%

}%

\if F#6\usebox{\stackedbox}\fi%

}

\newcommand*\stackunder[3][\stackgap]{\stackengine%

{#1}{#2}{#3}{U}{\stackalignment}{\quietstack}{\useanchorwidth}{\stacktype}}

\newcommand*\stackon[3][\stackgap]{\stackengine%

{#1}{#2}{#3}{O}{\stackalignment}{\quietstack}{\useanchorwidth}{\stacktype}}

\newcommand*\Shortstack[2][\stackalignment]{\@stack{#1}{#2}{O}{S}}

\newcommand*\Longstack[2][\stackalignment]{\@stack{#1}{#2}{O}{L}}

\newcommand*\Shortunderstack[2][\stackalignment]{\@stack{#1}{#2}{U}{S}}

\newcommand*\Longunderstack[2][\stackalignment]{\@stack{#1}{#2}{U}{L}}

\newcommand*\@stack[4]{%

\edef\sv@stackindex{\the@stackindex}%

\bgroup% SO AS NOT TO INTERFERE WITH loi’s \setsepchar

\@readMANYrows{#2}%

\if U#3%

\setcounter{@stackindex}{\stackengine@args}%

\def\@stacksign{-}%

\def\@stackcondition{\the@stackindex > 1}%

\else%

\setcounter{@stackindex}{1}%

\def\@stacksign{}%

\def\@stackcondition{\the@stackindex < \stackengine@args}%

\fi%

\def\@STRT{}%

\if T\@strutlongstacks\if L#4\def\@STRT{\strut}\fi\fi%
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\sbox{\stackedbox}{%

\@STRT\stack@delim\ignorespaces%

\stack@arg[\the@stackindex]%

\unskip\stack@delim}%

\ifnum\stackengine@args>1%

\togglefalse{stackloop@done}%

\else%

\toggletrue{stackloop@done}%

\fi%

\whileboolexpr{test {\nottoggle{stackloop@done}}}{%

\addtocounter{@stackindex}{\@stacksign 1}%

\stackengine{\csname#4stackgap\endcsname}%

{\stack@arg[\the@stackindex]}%

{\usebox{\stackedbox}}{#3}{#1}{T}{\useanchorwidth}{#4}%

\ifnum\@stackcondition\else\toggletrue{stackloop@done}\fi%

}%

\if F\quietstack\usebox{\stackedbox}\fi%

\egroup%

\setcounter{@stackindex}{\sv@stackindex}%

}

% PERHAPS THESE SIX MACROS CAN BE REPLACED BY \toplap AND \bottomlap

\newcommand*\tllap[2][\Lstackgap]{\@stacklap{#1}{l}{#2}{O}}

\newcommand*\tclap[2][\Lstackgap]{\@stacklap{#1}{c}{#2}{O}}

\newcommand*\trlap[2][\Lstackgap]{\@stacklap{#1}{r}{#2}{O}}

\newcommand*\bllap[2][\Lstackgap]{\@stacklap{#1}{l}{#2}{U}}

\newcommand*\bclap[2][\Lstackgap]{\@stacklap{#1}{c}{#2}{U}}

\newcommand*\brlap[2][\Lstackgap]{\@stacklap{#1}{r}{#2}{U}}

\newcommand*\toplap[3][\Lstackgap]{\@stacklap{#1}{#2}{#3}{O}}

\newcommand*\bottomlap[3][\Lstackgap]{\@stacklap{#1}{#2}{#3}{U}}

\newcommand*\@stacklap[4]{%

\if l#2\stackengine{#1}{}{#3}{#4}{r}{F}{T}{L}\else%

\if r#2\stackengine{#1}{}{#3}{#4}{l}{F}{T}{L}\else%

\stackengine{#1}{}{#3}{#4}{c}{F}{T}{L}%

\fi%

\fi

}

\newcommand*\hsmash[1]{\stackengine{0pt}{}{#1}{O}{c}{F}{T}{L}}

\newcommand*\stackanchor[3][\stackgap]{%

\setlength{\stack@tmplength}{#1}%

\setlength{\stack@tmplength}{.5\stack@tmplength}%

\if T\@usestackstrut%

\if S\stacktype\addtolength{\stack@tmplength}%

{.5\ht\strutbox-.5\dp\strutbox}\fi%

\fi%

\stackengine{\stack@tmplength}{}{#2}{O}{\stackalignment}{T}{F}{\stacktype}%

\if T\@usestackstrut%

\if S\stacktype\addtolength{\stack@tmplength}%

{-\ht\strutbox+\dp\strutbox}\fi%

\fi%

\stackengine{\stack@tmplength}{\usebox{\stackedbox}}{#3}{U}%

{\stackalignment}{\quietstack}{F}{\stacktype}%

}
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\newcommand*\abovebaseline[2][\stackgap]{%

\stackengine{#1}{}{#2}{O}{\stackalignment}{\quietstack}{F}{\stacktype}}

\newcommand*\belowbaseline[2][\stackgap]{%

\stackengine{#1}{}{#2}{U}{\stackalignment}{\quietstack}{F}{\stacktype}}

\newcommand*\savestack[2]{%

\xdef\sv@name{\stack@macro@name{#1}}%

\@ifundefined{\sv@name content}{%

\expandafter\newsavebox\expandafter{\csname\sv@name content\endcsname}%

}{}%

\expandafter\sbox\csname\sv@name content\endcsname{#2}%

\expandafter\def\expandafter#1\expandafter{\expandafter\usebox\expandafter%

{\csname\sv@name content\endcsname}}%

}

\newcommand*\addstackgap[2][\Sstackgap]{\stackengine{#1}{%

\stackengine{#1}{#2}{}{O}{c}{\quietstack}{T}{S}}{}{U}{c}{\quietstack}{T}{S}}

\newcommand*\topinset[4]{\stackinset{\stackalignment}{#4}{t}{#3}{#1}{#2}}% DEPRECATED

\newcommand*\bottominset[4]{\stackinset{\stackalignment}{#4}{b}{#3}{#1}{#2}}% DEPRECATED

%\stackinset{l/c/r}{x}{b/c/t}{y}{inset}{anchor}

\newcommand*\stackinset[6]{%

\sbox\@backgroundbox{\stack@delim#6\stack@delim}%

\sbox\@insetbox{\stack@delim#5\stack@delim}%

\ifstrequal{#4}{}%

{\setlength{\stack@tmplength}{0pt}}%

{\setlength{\stack@tmplength}{#4}}%

\if c#3%

\setlength{\temp@stkl}{\ht\@backgroundbox+\dp\@backgroundbox%

-\ht\@insetbox-\dp\@insetbox}%

\addtolength{\stack@tmplength}{.5\temp@stkl}%

\fi%

\ifstrequal{#2}{}{\def\stack@tmp{0pt}}{\def\stack@tmp{#2}}%

\def\stack@lroffset{\rule{\stack@tmp}{0pt}}%

\addtolength{\stack@tmplength}{\ht\@insetbox+\dp\@insetbox}%

\if c#1%

\def\conditioned@inset{\stack@lroffset\stack@lroffset\usebox{\@insetbox}}%

\else%

\def\conditioned@inset{\stack@lroffset\usebox{\@insetbox}\stack@lroffset}%

\fi%

\stackengine{-\stack@tmplength}{\usebox{\@backgroundbox}}%

{\conditioned@inset}{\inset@valign{#3}}{#1}{\quietstack}{T}{S}%

}

\def\inset@valign#1{\if t#1O\else U\fi}

\newcommand\Centerstack[2][\stackalignment]{%

\sbox{\@centerbox}{\strutlongstacks{T}\Longstack[#1]{#2}}%

\raisebox{-.5\ht\@centerbox+.5\ht\strutbox}{\usebox{\@centerbox}}}

\newcommand\Vectorstack[2][\stackalignment]{%

\ensurestackMath{\Centerstack[#1]{#2}}}
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\newcommand\parenVectorstack[2][\stackalignment]{%

\ensurestackMath{\left(\Centerstack[#1]{#2}\right)}}

\newcommand\bracketVectorstack[2][\stackalignment]{%

\ensurestackMath{\left[\Centerstack[#1]{#2}\right]}}

\newcommand\braceVectorstack[2][\stackalignment]{%

\ensurestackMath{\left\{\Centerstack[#1]{#2}\right\}}}

\newcommand\vertVectorstack[2][\stackalignment]{%

\ensurestackMath{\left|\Centerstack[#1]{#2}\right|}}

\newcommand\ensurestackMath[1]{%

\let\sv@stackmode\stack@delim\stackMath%

#1\global\let\stack@delim\sv@stackmode}

\endinput
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