
The snapshot package

American Mathematical Society
Michael Downes

Version 2.13, 2012/08/06

1 Introduction
The snapshot package helps the owner of a LATEX document obtain a list of
the external dependencies of the document, in a form that can be embedded
at the top of the document. To put it another way, it provides a snapshot of
the current processing context of the document, insofar as it can be determined
from inside LATEX.

If a document contains such a dependency list, then it becomes possible to
arrange that the document be processed always with the same versions of ev-
erything, in order to ensure the same output. This could be useful for someone
wanting to keep a LATEX document on hand and consistently reproduce an iden-
tical DVI file from it, on the fly; or for someone wanting to shield a document
during the final stages of its production cycle from unexpected side effects of
routine upgrades to the TEX system.

Normal usage of the snapshot package involves the following steps:

1. Add a \RequirePackage statement at the top of the document:

\RequirePackage{snapshot}

\documentclass{article}

...

2. Run LATEX on the document. This will produce a dependency list in
a file \jobname.dep. (I.e., if the document name is vermont.ltx, the
dependency list will be named vermont.dep.)

3. Insert the .dep file at the top of the document, before \documentclass.
The following example shows what you would end up with for a document
that used the article documentclass and the graphicx package:

\RequirePackage{snapshot}[1999/11/03]

\RequireVersions{

*{application}{TeX} {1990/03/25 v3.x}

*{format} {LaTeX2e} {1999/06/01 v2.e}

*{package}{snapshot} {1999/11/03 v1.03}

*{class} {article} {1999/01/07 v1.4a}

*{file} {size10.clo} {1999/01/07 v1.4a}

*{package}{graphicx} {1999/02/16 v1.0f}

1

2. GRAPHICS FILES 2

*{package}{keyval} {1999/03/16 v1.13}

*{package}{graphics} {1999/02/16 v1.0l}

*{package}{trig} {1999/03/16 v1.09}

*{file} {graphics.cfg}{0000/00/00 v0.0}

*{file} {dvips.def} {1999/02/16 v3.0i}

}

\documentclass{article}

\usepackage{graphicx}

...

The package option log will cause the dependency list to appear in the LATEX
log file instead of in a separate .dep file:

\RequirePackage[log]{snapshot}

Making the necessary arrangements to ensure that future LATEX runs of the
document actually call in the specified versions is a separate problem. The
snapshot package only provides a way to generate the dependency list. How-
ever, the \RequireVersions statement does record the given information in a
form that can be accessed from within LATEX. (It is for this purpose that it is
not simply a comment.) In principle a package could be set up so that a later
version would automatically attempt to emulate an earlier version if an earlier
version was specified—much as LATEX currently switches to 2.09 compatibility
mode if it sees \documentstyle instead of \documentclass.

For maximum reliability font checksums should also be reported in the de-
pendency list, but standard TEX 3.x does not provide direct access to font check-
sums for macro programmers. This information could be added by a separate
script that scans the DVI file. (Certain nontrivial complications are possible,
however.)

2 Graphics files
When a graphics file is read in by a LATEX document using the standard
\includegraphics command, it gets a dummy version number string of

Graphics file (type foo)

where foo is typically eps. This is with the current version of the graphics

package (at the time of this writing: 1999/02/16 v1.0l). What this means
in practice is that all graphics files will have their snapshot date and version
number recorded as

Graphics v0.0

and will always compare equal (the string “Graphics” will be used in place
of a date, but since comparison is done with \ifx it doesn’t make any real
difference).

It would be possible, for .eps files at least, to read the CreationDate com-
ment that is normally included in the file header and use that as the basis of
comparison. Recording the bounding box numbers instead of a dummy version

3. FORMALITIES 3

number is another possibility, which you can get with the bbinfo option (as of
snapshot version 2.05).

3 Formalities
The \RequireVersions command scans its argument for file names and associ-\RequireVersions

ated version number information. The syntax of a version line for a particular
file is

*{ file type }{ file name }{ version info }

In other words, the * character in this context is like a command that takes three
arguments. The extension part of the file name should be omitted in the second
argument, except when the file type is file (following the conventions of LATEX’s
\ProvidesPackage and \ProvidesFile commands). The most commonly used
file types are as follows.

class A LATEX documentclass file.

package A LATEX package file.

tfm A TEX font metric file. In this case the “version number” is the checksum,
and unless you are using an extended version of TEX this information is not
accessible from inside LATEX, so it must be filled in by an outside process.
By default, font metric files are not listed in the dependency list since the
checksum info is not available. There is a package option tfm to turn on
the logging of metric files. (Not yet implemented [mjd,1999/09/23])

format This is almost always LaTeX2e. The information comes from \fmtname.
Lambda, eLATEX, and pdfLATEX leave \fmtname unchanged, and although
this may seem dubious at first sight, I guess they have little choice: the
widespread use of \NeedsTeXFormat in existing package files makes them
produce an error message if \fmtname is changed. (Maybe the thing to do
would be to modify the definition of \NeedsTeXFormat as well.)

For a LATEX format that uses the Babel mechanism for preloading hy-
phenation patterns, the version number of babel.def that was used in
building the format might be of interest. But at first glance there does
not seem to be any easy way of dealing with that, and in the normal
course of things, a document that relies on Babel features will also have a
\usepackage{babel} statement at the top, and that will yield adequate
(I think) information for the snapshot dependency list.

application With standard TeX there is no reliable way to get the exact version
number from inside LATEX. If a document is processed with one of the
recent variants that address this deficiency (such as e-TEX, pdfTEX and
Omega) the available version info is used, but otherwise a presumptive
value of 1990/03/25 v3.x is used (the official release date of TEX 3.0).

file None of the above: some other file of miscellaneous type, e.g., .clo, .cfg,
.tex, or .def.

The \RequireVersions command can be given an optional “ident” argu-
ment, similar to the argument of a \label command. This is not used internally

4. PACKAGE OPTIONS 4

but it could be used to assign a label to particular groups of files in case that
helps with external processing.

4 Package options
The list of options supported by the snapshot package is as follows:

dep date
log version
tfm major-version
warning bbinfo
error test
self-warning

dep, log Write file date and version information to jobname.dep or to the
LATEX log file, respectively.

error, warning, self-warning If the snapshot package is invoked with the
error option and also the document contains a \RequireVersions state-
ment, then each subsequent \ProvidesFile, \ProvidesPackage, and
\ProvidesClass statement will compare date and version number infor-
mation with the corresponding information from the \RequireVersions

statement and give an error message if a mismatch is detected. With the
warning option you get warnings instead of errors. By default both the
date and the version number are compared; this behavior can be modified,
however, by giving additional options:

date compare only dates,
version compare only version numbers,
major-version use only the major version number when comparing.

The self-warning causes a warning to be given, instead of an error, if
the snapshot package itself has a date or version mismatch.

Note: A file that doesn’t have any sort of \ProvidesFile or \ProvidesPackage
statement in it will show up in the dependency list, with a dummy date
and version number of 0000/00/00 v0.0, but testing for a version mismatch
with such a file is then infeasible.

bbinfo For files of type “graphic”, include bounding-box info as the “version
number”. A normal date and version number are seldom available for
such files, and LATEX does not attempt to read them, which means that
the snapshot package could not obtain the information except by dras-
tically modifying the low-level LATEX operations that read graphics file
information—which seems overly risky.

tfm Not implemented yet! Include information about which TEX font metric
files are called by LATEX. This list is usually somewhat different from
the list of fonts that are actually used in the output file (.dvi or .pdf),
primarily because the setup for math formulas will normally preload font
metric information for all the fonts from which LATEX’s basic math sym-
bols are drawn (the symbols documented in the LATEX book), even if the
document does not use symbols from all of those fonts.

5. IMPLEMENTATION 5

test This option is for a special purpose. It drastically changes the action of
the \RequireVersions command so that it does not merely record the
information for later reference, but does a “trial load attempt” for each
file in the list, and then stops the LATEX job as soon as the list is finished,
without continuing any further.

By “trial load attempt” I mean that the \RequireVersions command
will actually input each file, but with various bits redefined so that
\ProvidesPackage and variants will execute \endinput—in other words,
only the first few lines of each file will be read.

What this means, practically speaking, is that if you run such a test
on a document, it gives a relatively quick check on two useful pieces of
information without having to retypeset the entire document (which for
some documents might be very tedious)

1. The actual location on your system from which the file will be loaded.
2. The date and version info from \Provides... line, if present.

Similar results could be obtained by a combination of kpsewhich and
grep, but because the snapshot test option works through LATEX, it is a
system-independent method.

Caveat: If a file does not contain any \ProvidesSomething line, it will be
read in its entirety, which might lead to errors. Or if there is any weird
stuff preceding the \ProvidesWhatever line. But for well-behaved files
the option seemed useful enough to be worth implementing.

5 Implementation
Standard declaration of package name and date.

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{snapshot}[2012/08/06 v2.13]

Calling the snapshot package in a document causes LATEX to list the file
names and versions in the TEX log or in a .dep file, so that the information
may be easily copied into the document file. The list so generated is nothing
more than a slight adaptation of the output from LATEX’s \listfiles command;
it puts essentially the same information into a slightly more structured form so
that it will be easier to use.

For the standard mechanisms that are already built into LATEX (e.g., the
handling of the second optional argument of \LoadClass), the de facto “version
number” is the date given in the optional argument of a \ProvidesClass or
similar command. Even though most \ProvidesWhatever commands also give
something that follows the usual form of version numbers—a string of the form
v2.3—this is only a convention, not used internally by LATEX, and the identifica-
tion string of a random loaded file is not guaranteed to include it. The snapshot
package copies both pieces of information if available; if the second piece is not
present, a dummy number 0.0 is supplied. Similarly, files that don’t include
any \ProvidesWhatever statement will get a dummy date of 0000/00/00;

5. IMPLEMENTATION 6

TEX system administrators who want to ensure maximal ac-
curacy of the snapshot information should therefore make it
a practice to use \ProvidesFile in .cfg files and other local
files that might have an impact on the output fidelity of their
documents.
A couple of shorthand forms.

3 \let\@xp=\expandafter \let\@nx=\noexpand

A function to compare two strings and return FT or TT (for use with \if).

4 \def\str@cmp#1#2\str@cmp#3{%

5 \if #1#3\else F\@car\fi \str@cmp#2\str@cmp

6 }

7 \def\string@equal#1#2{%

8 \str@cmp#1\relax\str@cmp#2{\relax\@gobbletwo}\@nil TT%

9 }

\RequireVersions Optional argument of \RequireVersions allows assigning a name to a partic-
ular collection of files. This might be useful for setting a TEX inputs path.

10 \newcommand{\RequireVersions}[2][]{}%

11 \renewcommand{\RequireVersions}[1][]{%

12 \def\snap@check{\snap@compare@versions}%

13 \toks@{#1}\afterassignment\snap@storem

14 \let\@let@token=

15 }

16 \def\snap@storem{%

17 \ifx\@let@token\bgroup

18 \else

19 \PackageError{snapshot}{Expected a ‘\@charlb’ character here}\@ehc

20 \@xp\@gobblefour

21 \fi

22 \futurelet\@let@token\snap@branch

23 }

24 \@onlypreamble\RequireVersions

25 \let\snap@check\@gobble

26 \def\snap@finish{\toks@\bgroup}

27 \def\snap@branch{%

28 \ifx\@let@token\egroup

29 \@xp\snap@finish

30 \else\ifx\@let@token *%

31 \let\reserved@c\snap@store@version

32 \else\ifx\@let@token\@sptoken

33 \lowercase{\def\reserved@c} {\futurelet\@let@token\snap@branch}%

34 \else

35 \let\reserved@c\snap@store@error

36 \fi\fi\fi

37 \reserved@c

38 }

5. IMPLEMENTATION 7

39 \def\snap@store@error#1{%

40 \PackageError{snapshot}{Expected ’*’ here, not ’#1’}\@ehc

41 }

42 \@onlypreamble\snap@store@error

43 \def\snap@store@version #1#2#3#4{%

44 \@xp\snap@store@b\csname snapx@#2\endcsname{#2}{#3}{#4}%

45 }

46 \@onlypreamble\snap@store@version

Detection of e-LATEX, pdfLATEX, pdfeLATEX, and Lambda [Omega]:

47 \ifx\OmegaVersion\@@undefined

48 \else

49 \edef\snapshotApplication{%

50 {Omega}\space\space\space

51 {0000/00/00 v\OmegaVersion}%

52 }%

53 \fi

54 \ifx\eTeXversion\@@undefined

55 \else

56 \edef\snapshotApplication{%

57 {eTeX}\space\space\space\space

58 {0000/00/00 v\number\eTeXversion\eTeXrevision}%

59 }%

60 \fi

61 \ifx\pdftexversion\@@undefined

62 \else

63 \edef\snapshotApplication{%

64 \ifx\eTeXversion\@@undefined

65 {pdfTeX}\space\space

66 \else

67 {pdfeTeX}\space

68 \fi

69 {0000/00/00 v0.\number\pdftexversion\pdftexrevision}%

70 }%

71 \fi

If none of the above information is available, the exact version number of TEX
is not accessible from inside LATEX. We then fall back to using a nominal date
of 1990/03/25, which is when version 3.0 of tex.web was released by Knuth.

72 \@ifundefined{snapshotApplication}{%

73 \edef\snapshotApplication{%

74 {TeX}\space\space\space\space\space

75 {1990/03/25 v3.x}%

76 }%

77 }{}

78 \def\@fmtextension{fmt}

79 \def\@tfmextension{tfm}

80 \edef\snapx@package{.\@pkgextension}

81 \edef\snapx@class{.\@clsextension}

5. IMPLEMENTATION 8

82 \edef\snapx@format{.\@fmtextension}

83 \edef\snapx@tfm{.\@tfmextension}

84 \long\def\snapx@ignore{}

85 \let\snapx@application=\snapx@ignore

86 \let\snapx@file=\@empty

87 \let\snapx@end\@@end

88 \expandafter\let\csname snapx@-------\endcsname\snapx@end

For a package named foo.sty, this function defines \rqv@foo.sty to hold
the date and version information.

89 \def\snap@store@b#1#2#3#4{%

90 \ifx#1\snapx@end

91 \@xp\snap@finish

92 \else

93 \ifx#1\relax \let#1\@empty\fi

94 \def\@tempa##1 ##2 ##3\@nil{##1 ##2}%

95 \ifx#1\snapx@application

96 \@xp\xdef\csname rqv@#3#1\endcsname{\@tempa#4 v?.? ? \relax\@nil}%

97 \else

98 \xdef\rqv@list{\rqv@list{#3#1}}%

99 \@xp\xdef\csname rqv@#3#1\endcsname{\@tempa#4 v?.? ? \relax\@nil}%

100 \snap@intest{#3}{#1}%

101 \ifx#1\snapx@format \snap@check{#3.fmt}%

Test if current file is snapshot.sty. Need to pre-expand the extension part to
ensure the test is correct.

102 \else

103 \edef\@tempa{\@nx\string@equal{snapshot.sty}{#3#1}}%

104 \if\@tempa \snap@selfcheck \fi

105 \fi

106 \fi

107 \fi

108 \futurelet\@let@token\snap@branch

109 }

110 \@onlypreamble\snap@store@b

Default setup is geared to write the dependency list to a .dep file. The
option log means write it to the TEX log instead.

111 \def\snap@write{\immediate\write\snap@out}

112 \let\snap@out\sixt@@n % fallback, probably never used

113 \DeclareOption{dep}{%

114 \def\snap@write{\immediate\write\snap@out}%

115 }

116 \DeclareOption{log}{%

117 \let\snap@write\typeout

118 }

The purpose of the ‘test’ option is to support a separate testing procedure
for resolving file names and pre-checking version numbers. See §?? for more
information.

5. IMPLEMENTATION 9

119 \let\snap@intest=\@gobbletwo

120 \DeclareOption{test}{\def\snap@intest{True}}

For each font used by a document, we would like to list the .tfm file name and
checksum. If TEX provided a \fontchecksum primitive similar to \fontname

that could be used to get the checksum of any font, it would just about be
feasible to do this entirely from within LATEX. As a partial solution we could at
least generate the list of font file names, to make it easier for an external utility
to add the checksums.

In practice, extracting font names and checksums from the .dvi file will
probably work well enough, leaving no work to be done by the snapshot package
in this area. But theoretically speaking the output of a document could be
affected by font metric files that are loaded during LATEX processing but that
do not show up in the .dvi file.

121 \DeclareOption{tfm}{%

122 \typeout{Option ’tfm’ not implemented yet [1999/09/23]}%

123 }

Warnings and errors.

124 \def\snap@mismatch@warning#1#2#3{\PackageWarningNoLine{#1}{#2}}

125 \def\snap@mismatch{\snap@mismatch@warning}

126 \DeclareOption{error}{%

127 \def\snap@mismatch{\PackageError}%

128 \def\snap@selfcheck{\snap@selfcheck@a}%

129 \ifx\snap@select\@empty \let\snap@select\snap@select@all \fi

130 }

131 \DeclareOption{warning}{%

132 \def\snap@mismatch{\snap@mismatch@warning}%

133 \def\snap@selfcheck{\snap@selfcheck@a}%

134 \ifx\snap@select\@empty \let\snap@select\snap@select@all \fi

135 }

Because the exact form of the version number is not mandated by LATEX,
just take the first two “words” delimited by spaces. And take a little extra care
to properly handle multiple spaces between the words.

136 \def\snap@select@all#1#2 #3#4 #5\@nil{#1#2 #3#4}

137 \let\snap@select\@empty

If the naming conventions seem a little peculiar here, it’s because I had to
add some pieces later that I didn’t think of initially, and I wanted to minimize
the chances of compatibility problems for client packages [mjd,2002-11-04].

138 \def\snap@seldate#1#2 #3\@nil{#1#2}%

139 \def\snap@selversion#1#2 #3{\snap@select@version #3}%

140 \def\snap@selmajor#1#2 #3{\snap@select@major #3}%

141 \DeclareOption{date}{\let\snap@select=\snap@seldate}

142 \def\snap@select@version#1{%

143 \ifodd 0#11 \@xp\snap@sva\@xp#1\else\@xp\snap@select@version\fi

144 }

5. IMPLEMENTATION 10

145 \def\snap@sva#1.#2 #3\@nil{#1.#2}

146 \def\snap@select@major#1{%

147 \ifodd 0#11 \@xp\snap@svm\@xp#1\else\@xp\snap@select@major\fi

148 }

149 \def\snap@svm#1.#2\@nil{#1}

150 \DeclareOption{version}{\let\snap@select\snap@selversion}

151 \DeclareOption{major-version}{\let\snap@select\snap@selmajor}

152 \def\snap@bbinfo{01}

153 \DeclareOption{bbinfo}{\def\snap@bbinfo{00}}

Give this an inert definition, for the time being, until we are ready to do the
split.

154 \let\snap@splitter=?

155 \AtBeginDocument{%

156 \xdef\@filelist{\@filelist\snap@splitter}%

157 }

158 \let\snap@selfcheck\@empty

159 \let\snap@selfcheck@a\@empty

The self-warning option would normally be used in conjunction with the
error option.

160 \DeclareOption{self-warning}{%

161 \def\snap@selfcheck{%

162 \begingroup

163 \def\snap@mismatch{\snap@mismatch@warning}%

164 \snap@selfcheck@a

165 \endgroup

166 }

167 }

168 \ExecuteOptions{warning}

169 \ProcessOptions\relax

We need the following patch to make up for the fact that \@pkgextension

and \@clsextension are marked in the LATEX kernel as “only preamble”.

170 \edef\snap@restore@extensions{%

171 \def\@nx\@pkgextension{\@pkgextension}%

172 \def\@nx\@clsextension{\@clsextension}%

173 }

Pad filename strings out to 8+3 length so that the list will look pretty.

174 \def\snap@pad#1#2#3#4#5#6#7#8#9{\snap@pad@a{#1#2#3#4#5#6#7#8#9}}

175 \def\snap@pad@a#1#2#3#4#5\@nil{\snap@pad@b#1#2#3#4\space\@nil}

176 \def\snap@pad@b#1\space#2\@nil#3{\def#3{#2}}

First stage: discard leading spaces before the first and second nonspace
strings in the argument. Take the first nonspace string as the date. Since we
only do equal/not-equal testing on dates, it does not seem essential to test if it
is really a valid date string or not (yyyy/mm/dd).

177 \def\snap@trim@version#1#2 #3{#1#2 \snap@trim@b #3}

5. IMPLEMENTATION 11

Second stage: Scan for a version number. In order to handle some idiosyncratic
cases, such as url.sty version 1.4, we can’t simply take the second nonspace
string as the version number but need to look for a leading digit.

178 \def\snap@trim@b#1{\ifodd 0#11 v#1\@xp\snap@trim@c\fi \snap@trim@b}

Arg 1 here is \snap@trim@b, which we just need to discard.

179 \def\snap@trim@c#1#2 #3\@nil{#2}

180 \let\rqv@list=\@empty

If \fmtname.fmt is not already in the file list, add it.

181 \edef\@tempc#1\fmtname{#1\fmtname}\@tempc

182 \def\@tempa#1,\fmtname.fmt,#2#3\@nil{#2}

183 \edef\@tempb{\@nx\@tempa,\@filelist,\fmtname.fmt,}

184 \if ?\@tempb?\@nil

185 \edef\@filelist{\fmtname.fmt,\@filelist}%

186 \def\@tempc{LaTeX2e}%

187 \@xp\edef\csname ver@\fmtname.fmt\endcsname{%

188 \fmtversion\space

189 v\ifx\@tempc\fmtname 2.e\else ?.?\fi

190 }%

191 \fi

Ensure that files get recorded.

192 \listfiles

193 \def\snap@doit#1{%

194 \begingroup

195 \ifx\delimiter#1\delimiter

196 \else

197 \filename@parse{#1}%

198 \let\@tempd\@empty

199 \ifx\filename@ext\relax

200 \def\@tempa{file}\def\@tempb{~~~}%

201 \else\ifx\filename@ext\@pkgextension

202 \def\@tempa{package}\let\@tempb\@empty

203 \else\ifx\filename@ext\@clsextension

204 \def\@tempa{class}\def\@tempb{~~}%

205 \else\ifx\filename@ext\@fmtextension

206 \def\@tempa{format}\def\@tempb{~}%

207 \else\ifx\filename@ext\@tfmextension

208 \def\@tempa{tfm}\def\@tempb{~~~~}%

209 \else

210 \def\@tempa{file}\edef\@tempd{.\filename@ext}%

211 \def\@tempb{~~~}%

212 \fi\fi\fi\fi\fi

213 \@xp\let\@xp\@tempe

214 \csname ver@\filename@base %

215 \ifx\filename@ext\relax\else.\filename@ext\fi\endcsname

216 \ifx\@tempe\@empty \let\@tempe\relax \fi

217 \edef\@tempe{%

5. IMPLEMENTATION 12

218 \ifx\@tempe\relax 0000/00/00 v0.0%

219 \else

220 \@xp\@xp\@xp\snap@trim@version\@xp\@tempe\space v0.0 v0.0 \@nil

221 \fi

222 }%

223 \edef\@tempc{\filename@area\filename@base\@tempd}% full file name

224 \@xp\snap@pad\@tempc\space~~~~~~~~~~~~~~~~\@nil\@tempd

225 \let~\space

226 \snap@write{\space\space *{\@tempa}\@tempb{\@tempc}\@tempd{\@tempe}}%

227 \fi

228 \aftergroup\snap@doit

229 \endgroup

230 }%

231 \def\snap@bracify#1#2,{%

232 \ifx\@empty#1\expandafter\@gobble\else {#1#2}\fi \snap@bracify

233 }

234 \def\snap@splitter@a{%

235 \iffalse{{\fi }}% close current file name, end definition

236 \xdef\specific@files{%

237 \iffalse}\fi

238 \specific@files

239 \expandafter\@gobble\string % discard one closing brace

240 }

241 \def\snap@fdcheck#1{%

242 \ifx\delimiter#1\@xp\@gobble

243 \else\snap@fda#1\@empty.fd\@empty ?\@nil

244 \fi

245 \snap@fdcheck

246 }

247 \def\snap@fda#1.fd\@empty#2#3\@nil{%

248 \if ?#2%

249 \xdef\specific@files{\specific@files {#1}}%

250 \else

251 \xdef\general@files{\general@files {#1.fd}}%

252 \fi

253 }

254 \let\general@files\@empty

255 \let\specific@files\@empty

The \SpecialInput command is related to the packages-only option.
Apart from some ad hoc handling for .fd files that get loaded on demand, all
files that are input after \begin{document} are put into the specific-files list,
and all files before \begin{document} go into the general-files (packages-only)
list. If there is a macro file for a book (say), that contains definitions specific to
that book, and that is loaded in the preamble, loading it with \SpecialInput

will cause it to go in the specific-files list.

256 \newcommand{\SpecialInput}[1]{%

257 \xdef\specific@files{\specific@files{#1}}%

5. IMPLEMENTATION 13

258 \@@input#1\relax

259 }

Our definition of \@dofilelist does not retain much resemblance to the
original in the LATEX kernel.

260 \def\@dofilelist{%

261 \snap@restore@extensions

262 \xdef\general@files{\@xp\snap@bracify \@filelist \@empty,\@empty,}%

263 \let\snap@splitter\snap@splitter@a

264 \xdef\general@files{\general@files}%

265 \let\@tempa\specific@files \global\let\specific@files\@empty

266 \@xp\snap@fdcheck\@tempa{\delimiter}%

267 \ifx\rqv@list\@empty

268 \else \rqv@compare@lists

269 \fi

270 \ifx\snap@write\typeout

271 \else

272 \newwrite\snap@out

273 \immediate\openout\snap@out=\jobname.dep \relax

274 \fi

275 \snap@write{\string\RequireVersions\@charlb}%

276 \snap@write{\space\space *{application}%

277 \snapshotApplication

278 }%

279 \@xp\snap@doit\general@files{\delimiter\aftergroup\@gobble\@gobble}%

280 \ifx\specific@files\@empty

281 \else

282 \snap@specific

283 \fi

284 \snap@write{\@charrb}%

285 \ifx\snap@write\typeout

286 \else \immediate\closeout\snap@out

287 \typeout{Dependency list written on \jobname.dep.}%

288 \fi

289 }%

290 \def\snap@specific{%

291 \snap@write{ \space *{-------}{Document-specific files:}{----}}%

292 \@xp\snap@doit\specific@files{\delimiter\aftergroup\@gobble\@gobble}%

293 }

The \rqv@compare@lists function checks to see if any files are found only
in the RequireVersions list or only in the \general@files list.

294 \def\rqv@condense#1{%

295 \@xp\ifx\csname ver@#1\endcsname\N

296 \else

297 \edef\L{\L{#1}}%

298 \@xp\let\csname ver@#1\endcsname=\N

299 \fi

300 \rqv@condense

301 }

5. IMPLEMENTATION 14

302 \def\rqv@condend{\endcsname ?\fi

303 \@xp\@xp\@xp\@gobbletwo\csname @xp\iftrue}

304 \def\rqv@overloaded#1{%

305 \snap@mismatch{snapshot}{^^J%

306 File #1 loaded though not in \noexpand\RequireVersions list%

307 }\@ehc

308 }

309 \def\rqv@notloaded#1{%

310 \snap@mismatch{snapshot}{^^J%

311 File #1 [\csname rqv@#1\endcsname] required but not loaded%

312 }\@ehc

313 }

314 \def\rqv@set#1{\@xp\let\csname ver@#1\endcsname\N \rqv@set}

315 \def\rqv@test#1{\csname ver@#1\endcsname{#1}\rqv@test}

316 \def\rqv@compare@lists{%

317 \begingroup

Clear up duplicate file names (just in case) to avoid redundant warning messages.
This should seldom be necessary in practice.

318 \def\N{1}\let\L\@empty

319 \@xp\rqv@condense\rqv@list\rqv@condend

320 \global\let\rqv@list=\L

321 \def\N{2}\let\L\@empty

322 \@xp\rqv@condense\general@files\rqv@condend

323 \global\let\general@files=\L

Let’s make a shorthand for the code that terminates our recursion.

324 \def\T{\@firstoftwo{\endcsname\@empty\@gobbletwo}}%

Set all the loaded general files to an error function.

325 \let\N\rqv@overloaded \@xp\rqv@set\general@files \T

Set all the required files to an ignore function.

326 \let\N\@gobble \@xp\rqv@set\rqv@list \T

Execute all the general files.

327 \@xp\rqv@test\general@files{\endcsname\csname @gobbletwo}%

And now do essentially the same thing in the reverse direction.

328 \let\N\rqv@notloaded \@xp\rqv@set\rqv@list \T

329 \let\N\@gobble \@xp\rqv@set\general@files \T

330 \@xp\rqv@test\rqv@list{\endcsname\csname @gobbletwo}%

331 \endgroup

332 }

Compensate for a bug in old versions of amsgen.sty. This is a little tricky.
Old version: \ver@amsgen=1996/10/29 v1.2b
New version: \ver@amsgen.sty=1999/11/30 v2.0

333 %\@namedef{ver@amsgen.sty}{1996/10/29 v1.2b}

334 \AtBeginDocument{%

5. IMPLEMENTATION 15

335 \@ifundefined{ver@amsgen}{}{%

336 \@xp\let\csname ver@amsgen.sty\@xp\endcsname

337 \csname ver@amsgen\endcsname

338 }%

339 }

Because \ProvidesFile is used in .fd files which are normally read with
special catcodes, there tend to be problems with whitespace characters being er-
roneously lost from the second argument. Since we have to put in a \snap@check

call anyway, while we’re at it let’s fix a bug of this type that affected some older
versions of LATEX.

340 \def\ProvidesFile#1{%

341 \def\snap@checker{\snap@check{#1}}%

342 \begingroup

343 \aftergroup\snap@checker

344 \catcode‘\ 10

Added guards from 2001/06/01 version of LATEX. These are necessary because,
for example, inputenc sets \endlinechar to a large (nonvalid character) value
when reading input encoding files. The guards prevent an “invalid character”
error.

345 \ifnum\endlinechar < 256

346 \ifnum \endlinechar>\m@ne

347 \catcode\endlinechar 10

348 \fi

349 \fi

350 \@makeother\/%

351 \@makeother\&%

352 \kernel@ifnextchar[{\snap@providesfile{#1}}{\snap@providesfile{#1}[]}%

353 }

Normally the string found in the second arg of \ProvidesFile (for a non-
graphics file) would begin with the usual date string. The \includegraphics

command, however, begins the second arg with Graphic file instead. This test
therefore just checks if the first two letters are Gr; this is enough, ordinarily, for
us to conclude that we are dealing with a graphic file.

354 \def\snap@graphic@test#1#2#3\@nil{r\if G#1#2\else X\fi}

355 \def\snap@providesfile#1[#2]{%

356 \wlog{File: #1 #2}%

357 \if\snap@graphic@test#2@@\@nil

358 \snap@record@graphic#1\relax #2 (type ??)\@nil

359 \else

360 \expandafter\xdef\csname ver@#1\endcsname{#2}%

361 \fi

362 \endgroup

363 }

This is what \includegraphics does to record graphic file information.

\@providesfile #1[#2]->

\wlog {File: #1 #2}\expandafter \xdef \csname ver@#1\endcsname {#2}

5. IMPLEMENTATION 16

\endgroup

#1<-\Gin@base \Gin@ext

#2<-Graphic file (type eps)

Check the graphics info.

364 \def\snap@record@graphic#1\relax #2(type #3)#4\@nil{%

365 \expandafter\xdef\csname ver@#1\endcsname{%

366 Graphic%

367 \if\snap@bbinfo :bb=\Gin@llx/\Gin@lly/\Gin@urx/\Gin@ury\fi

368 \space v0.0%

369 }%

370 }

371 \def\@pr@videpackage [#1]{%

372 \expandafter\xdef\csname ver@\@currname.\@currext\endcsname{#1}%

373 \ifx\@currext\@clsextension

374 \typeout{Document Class: \@gtempa\space#1}%

375 \else

376 \wlog{Package: \@gtempa\space#1}%

377 \fi

378 \snap@check{\@currname.\@currext}%

379 }

380 \def\snap@selfcheck@a{\snap@check{snapshot.sty}}

381 \def\@nofmt#1.fmt.#2 {#1 }

382 \def\snap@mismatch@a#1#2#3{%

383 \snap@mismatch{snapshot}{^^J%

384 \space\space Required version #2 of \@nofmt#1.fmt. and^^J%

385 \space\space provided version #3 do not match%

386 }\@ehc

387 }

When comparing \rqv@foo.sty (information from a previous LATEX run)
with \ver@foo.sty (information from current run), we first call \snap@trim@version
on the latter to clear away any idiosyncrasies in the contents.

388 \def\snap@compare@versions#1{%

389 \begingroup

390 \@ifundefined{rqv@#1}{}{%

391 \edef\0{\csname rqv@#1\endcsname}%

392 \edef\1{\csname ver@#1\endcsname}%

393 \edef\1{\@xp\snap@trim@version\1 v0.0 v0.0 \@nil}%

394 \edef\@tempa{\@xp\snap@select\0 v0.0 v0.0 \@nil}%

395 \edef\@tempb{\@xp\snap@select\1 v0.0 v0.0 \@nil}%

396 \ifx\@tempa\@tempb

397 \else

398 \edef\@tempd{\@nx\snap@mismatch@a{#1}{\@tempa}{\@tempb}}%

399 \@xp\@tempd

400 \fi

401 }%

402 \endgroup

6. COMPATIBILITY 17

When the test option is in effect, jump out of the current file instead of con-
tinuing.

403 \snap@test@abort

404 }

405 \let\snap@test@abort=\@empty

6 Compatibility
Suppose that I have a LATEX document containing a \RequireVersions state-
ment generated by snapshot and I send this to my colleague who, we believe,
has a LATEX setup that is for our purposes identical. Suppose that our belief is
erroneous in the following way: My colleague has a newer version of snapshot
and a newer version of one of the affected files.

Here is what we don’t want to happen: That the differing version of snap-
shot would cause the other differing file to be accepted without demur.

Conversely, if it is I who have the newer version of snapshot, the main con-
cern is that some difference in the contents of the \RequireVersions statement
would lead to an error when my colleague attempts to process the document.

7 In conclusion
406 \ifx\snap@select\@empty

407 \let\snap@compare@versions\@gobble

408 \let\snap@check\@gobble

409 \fi

Fallback for a command that is sometimes used in AMS journal production.
410 \providecommand{\controldates}[1]{}

8 And finally . . .
If the embedded \RequireVersions data in a LATEX document is extracted to
a separate file, and

\RequirePackage[test]{snapshot}

is added at the top, then the file can be run as a small separate LATEX job
that will, among other things, produce in the log file a nice list of fully resolved
file names—sort of a limited, but system-independent variant of the kpsewhich

idea.

411 \ifx\snap@intest\@gobbletwo \endinput \fi

Some old, ill-behaved packages might throw in a \makeatother at the end
which can cause problems for the next file that comes along when testing.

412 \def\restore@some@catcodes{}

413 \def\save@some@catcodes{%

414 \edef\restore@some@catcodes{%

415 \catcode\number‘\@=\number\catcode‘\@

416 \catcode\number‘\"=\number\catcode‘\"

417 \catcode\number‘\^=\number\catcode‘\^

418 \catcode\number‘_=\number\catcode‘_

8. AND FINALLY . . . 18

419 \relax

420 }%

421 }

Some typical calls of \snap@intest:

\snap@intest{LaTeX2e}{\snapx@format}

\snap@intest{snapshot}{\snapx@package}

\snap@intest{mcom-l}{\snapx@class}

\snap@intest{amsmath}{\snapx@package}

\snap@intest{umsa.fd}{\snapx@file}

\snap@intest{pictex}{\snapx@file}

The extant public versions of the following files (in the teTeX distribu-
tion, at least) are known to be problematic when we are trying to read a
\ProvidesWhatever line from the top of the file: psfig.sty, pictex.sty, pictex.tex,
epic.sty, amstex.sty, xy.tex. Either (a) they don’t have a \ProvidesWhatever

line at all, or (b) they include some code before the \ProvidesWhatever line
that makes some assumption true in normal processing but false in snapshot-test
processing. E.g., there is code in amstex.sty that assumes \documentstyle or
\documentclass was already executed and that the \if@compatibility switch
got set accordingly.

422 \def\snap@intest#1#2{%

423 \message{^^J}%

424 \begingroup \edef\0{#1#2}\def\9{latex209.def}%

425 \ifx\0\9\global\@compatibilitytrue \fi

426 \ifx#2\snapx@format

If arg1 + arg2 = “LaTeX2e.fmt”, the calling function \snap@storeb will run
\snap@check separately. This is a crude way of making things work in that case
without much extra trouble.

427 \def\snap@test@abort{\endgroup}%

428 \else

429 \edef\N{%

430 \noexpand\snap@intest@b{#1#2}%

431 {#1}{\@xp\@gobble#2\@empty}%

432 {\csname rqv@#1#2\endcsname}}%

433 \expandafter\endgroup\N

434 \fi

435 }

436 \def\snap@intest@b#1#2#3#4{%

437 \def\@currname{#2}\def\@currext{#3}%

438 \begingroup \lccode‘\/=‘\0\relax\lowercase{\endgroup

439 \ifnum\snap@seldate#4 00 0\@nil>\z@

440 }% matches \lowercase

441 \save@some@catcodes

442 \@@input #1 \relax

443 \restore@some@catcodes

444 \else

445 \snap@specialtest{#1}{#4}%

8. AND FINALLY . . . 19

446 \fi

447 }

448 \def\snap@specialtest#1#2{%

449 \fake@input{#1}%

450 }

451 \def\fake@input#1{%

452 \begingroup

453 % Ensure that outer \foo or unmatched braces don’t trip us up

454 \catcode‘\\=12 \catcode‘\{=12 \catcode‘\}=12

455 \endinput

Note that these definitions of \G and \? are local, and recall that one-letter cs
names don’t use up hash table entries.

456 \def\G{\@car\endgroup}%

457 \expandafter\futurelet\expandafter\?\expandafter\G\@@input#1 \relax\@nil

458 }

459 \let\snap@test@abort=\endinput

460 \let\snap@selfcheck=\@empty

There’s an extra close-brace left hanging around at the end, but I guess we
don’t care.

461 \def\snap@finish{%%

462 \endgroup \message{^^J}%

463 \def\X##1{##1,\X}%

464 \edef\@filelist{\@xp\X\rqv@list{\@gobbletwo}}%

465 \def\X##1,?{##1}\edef\@filelist{\@xp\X\@filelist ?}%

466 \@dofilelist

467 \@@end

468 }%

469 \def\snap@mismatch#1#2#3{}

Problematic: xy.sty, because it calls xy.tex before it calls \ProvidesPackage.
And pictex.tex because it doesnt use \ProvidesFile at all.

470 \renewcommand{\RequireVersions}[2][]{%

471 \begingroup

472 \makeatletter

473 \def\snap@check{\snap@compare@versions}%%

474 \let\snapx@tfm=\snap@ignore

This seems to help, with english.ldf for example, to prevent an endless loop
when attempting to load babel.def.

475 \def\ProvidesLanguage##1{\ProvidesFile{##1.ldf}}%

476 \iffalse{\fi \futurelet\@let@token\snap@branch #2}%

477 \endgroup

478 }

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

479 \endinput

