
The skdoc document class∗†
Simon Sigurdhsson dsigurdhsson@gmail.comc

Version 1.5b

Abstract The skdoc class provides macros to document the function-
ality and implementation of LATEX packages and document
classes. It is loosely based on the ydoc and ltxdoc classes,
but has a number of incompatible differences.
The class defines a MacroCode environment which substi-
tutes the usual docstripmethod of installing packages. It
has the ability to generate both documentation and code
in a single run of a single file.

Contents

1 Introduction 2

2 Documentation 3
2.1 Options . 3
2.2 General macros . 3

Metadata [4] The preamble [6] The LPPL license [6] Notices and
warnings [7] Referential macros [7]

2.3 Documenting the package 9
Examples [10] Options [10] Macros [11] Environments [13] Other
entities [13]

∗Available on http://www.ctan.org/pkg/skdoc.
†Development version available on https://github.com/urdh/skdoc.

The skdoc document class, v1.5b 1

mailto:sigurdhsson@gmail.com
http://www.ctan.org/pkg/skdoc
https://github.com/urdh/skdoc

2.4 Describing the implementation 14
Implementation environments [14] The MacroCode environment
[15] Hiding the implementation [16]

2.5 Documenting changes 16
2.6 Producing an index . 17

3 Known issues 17

4 Installation 19

5 Changes 19

6 Index 20

7 Bibliography 22

1 Introduction

This document class, inspired by a question on the TEX Stack Exchange1,
aims to provide an alternative to the standard docstripmethod of literate
programming for LATEX packages. It also aims to provide a more modern,
appealing style for LATEX package documentation.
In order to achieve this, it builds upon already existing features of the

expl3, verbatim and ydoc packages as well as the KOMA-script document
classes.
So far it is mainly intended to be an experiment to explore a less cum-

bersome way of writing LATEX packages, and as such I give no guarantee
that this package will continue to exist in a working state (i.e. future
usersmay not be able to extract code from package documentation based
on skdoc) or that its public API (commands and environments described
by this documentation; consider undocumented macros part of a private
API) will be stable.
The documentation of skdoc is in fact typeset using the class itself.

It does not, however, make use of the main feature of this class (the
MacroCode environment), because bootstrapping the class to generate
itself is more complicated than it is useful.
1Lazarides 2012.

The skdoc document class, v1.5b 2

2 Documentation

Since skdoc is based on ydoc many of the macros and environment
present in that package are also available in skdoc, in a possibly redefined
incanation. However, any macros or environment present in ydoc but
not described in this documentation should be considered part of the
private API of skdoc. In the future, the removal of the ydoc dependency
may result in such macros being unavailable, and at present changes
made by skdocmay break such macros without notice.

2.1 Options

load 〈package〉 (\jobname)
The load option declares that if the package specified exists, it should
be loaded. This is intended to load any package provided in the imple-
mentation, but requires that the documentation provides stub variants
of the macros used in the documentation so that LATEX still completes
its first run.

highlight true,false (true)
The highlight option enables or disabled syntax highlighting of the
implementation code. Highlighting is performed using minted, and
falls back to no highlighting if there is no \write18 access, if minted
is unavailable or if the pygmentize binary can’t be found. (Note: On
non-unix platforms, the test for pygmentize will likely fail. Therefore,
syntax highlighting is not supported on such platforms.)
Generally, there should be no reason to disable syntax highlighting un-

less the documentation describes a very large package, and the repeated
calls to pygmentize take too long.

babel The babel option allows you to specify what languages are loaded by
the babel package. It is a key-value option, and its content is passed as
options to the babel \usepackage declaration.

2.2 General macros

The document class defines a number of general macros intended for
use in parts of the document not strictly considered ‘documentation’

The skdoc document class, v1.5b 3

or ‘implementation’, in addition to being used in those parts. These
‘general’ macros include macros that define metadata, generate the
title page, typeset notices or warnings and those that refer to macros,
environments, packages and such.

2.2.1 Metadata

Several macros for defining metadata (i.e. information about the pack-
age and its documentation) are made available. These mostly set an
internal variable which is used to typeset the title page, and to insert
PDFmetadata whenever pdfLATEX is used to generate the documentation.

\package [ctan=〈identifier〉,vcs=〈url〉]{〈package name〉}

The \package macro defines the package name used by \thepkg,
\maketitle and similar macros. It also calls \title to set a sens-
ible default title based on the package name. The optional key-value
argument takes two keys: ctan and vcs. The first one accepts an op-
tional value 〈identifier〉, which should be the identifier the package has
on CTAN (the default is \jobname), while the other takes a mandatory
argument 〈url〉 specifying the URL of a VCS repository where develop-
ment versions of the package are available. The two optional keys imply
calls to the \ctan and \repositorymacros, respectively.

\version {〈version〉}

Sets the version number of the package the documentation describes.
Here, 〈version〉 should not include the initial ‘v’, i.e. the argument should
be the same as that given to e.g. the LATEX3 \ProvidesExplPackage
or the standard ltxdoc \changes.

\ctan {〈identifier〉}

As detailed above, this macro defines the CTAN identifier of the package,
which is (optionally) used in the \maketitlemacro.

The skdoc document class, v1.5b 4

\repository {〈url〉}

Again, as detailed above this macro defines the URL of a source code
repository containing a development version of the package, which is
optionally used by \maketitle.

\author {〈name〉}

Defines the name of the package author. This is used by \maketitle
and is mandatory if \maketitle is used.

\email {〈email〉}

Defines the email of the package author. This is used by \maketitle
and is mandatory if \maketitle is used.

\title {〈title〉}

Defines the package title. By default, the \packagemacro sets a sens-
ible title that should suit most packages, but using \title will override
this title (useful for e.g. document classes or BIBTEX styles).
Three macros retrieving the set metadata are also available. They can

be used to typeset the current version of the package, and the package
name, respectively.

\theversion

Returns the version as defined by \version, with a leading ‘v’. That is,
issuing \version{1.0}makes \theversion print ‘v1.0’.

\thepackage
\thepkg

The \thepackage and \thepkgmacros return the package name as
defined by the \packagemacro, enclosed in \pkg*. That is, the pack-
age name is typeset as a package but not indexed.

The skdoc document class, v1.5b 5

2.2.2 The preamble

The preamble of any documentation most often consists of a title page
containing an abstract, and possibly a table of contents. The skdoc
package provides macros and environments that typeset such things,
and these should be fully compatible with most other document classes.

\maketitle

The \maketitlemacro typesets a title page. This title page uses the
metadata defined by the macros described earlier, and typesets them in
a manner which is illustrated by the documentation of this class. This
style is inspired by skrapport, which is in turn inspired by the title pages
of the PracTEX Journal.

\begin{abstract}
〈package abstract〉
\end{abstract}

The abstract environment typesets an abstract of the package. Again,
its style is illustrated by this document and it is inspired by the skrapport
package as well as the PracTEX Journal.

\tableofcontents

Finally, a Table of Contents may be printed. The actual table of contents
is provided by the scrartcl document class, but skdoc redefines a couple
of the internal macros to style the Table of Contents in a manner similar
to that of themicrotypemanual.

2.2.3 The LPPL license

\PrintLPPL

If the LPPL license is present in a directory where LATEX can find it, in a
file called lppl.tex, then \PrintLPPL will include the entire LPPL
license in the document, and typeset it in a fairly compact manner.

The skdoc document class, v1.5b 6

2.2.4 Notices and warnings

The document class provides macros to indicate information that may
be of extra importance in the documentation. Such information is cat-
egorized as either notices or warnings, which are treated differently.

\Notice {〈notice〉}

A notice is a short piece of text that contains information that may ex-
plain some unexpected but unharmful behaviour of a macro or similar. It
is typeset inline, emphasized and in parantheses— as such, the sequence
\Notice{a notice} yields (Note: a notice).

\Warning {〈warning〉}

A warning is a short comment that conveys information that the user
must be aware of. This includes unexpected potentially harmful beha-
viour, deprecation notices and so on. It is typeset in its own \fbox—
the sequence \Warning{a warning} yields the following:

Warning: a warning

\LongWarning {〈warning〉}

The \LongWarning macro is a variant of \Warning that has been
adapted for longer texts, possibly including paragraph breaks. Like
\Warning, it is typeset in a box:

Warning:
a long warning

2.2.5 Referential macros

The family of macros originating from \cs are used to typeset various
concepts in running text. In addition to adhering to the general format

The skdoc document class, v1.5b 7

of the corresponding concept, they index their argument. Each of these
macros have a starred variant which does not index its argument; use
these when appropriate.

\cs {〈command sequence〉}

Typesets a command sequence, or macro. The argument should be
provided without the leading backslash, and the command sequence
will be typeset in a monospaced font.

\env {〈environment name〉}

Typesets an environment name, which will be typeset in a monospace
font.

\pkg {〈package name〉}

Typesets a package, document class or bundle name. The name will be
typeset in a sans-serif font.

\opt {〈option〉}

Typesets a package or document class option. As of v1.5b, options are
typeset using a monospace font.

\bib {〈BIBTEX entry type〉}

Typesets a BIBTEX entry type. The agument should be provided without
the leading @ sign. The entry type will be typeset in a monospace font.

\thm {〈theme name〉}

Typesets a theme name. As of v1.5b, the theme name will be typeset in
an upright serif font.

\file {〈filename〉}

Typesets a filename. As of v1.5b, the filename will be typeset in a mono-
space font.

The skdoc document class, v1.5b 8

Table 1: Typesetting arguments

Invokation Result

\marg{argument} {〈argument〉}
\oarg{argument} [〈argument〉]
\parg{argument} (〈argument〉)
\aarg{argument} <〈argument〉>
\sarg *

2.3 Documenting the package

The documentation part of any LATEXmanual is arguably themost import-
ant one, and to facilitate proper typesetting of the documentation skdoc
povides a number of different macros, all inspired by or inherited from
ydoc. The first of these macros that will be discussed are the macros
that typeset differen kinds of arguments in running text.

\meta {〈meta text〉}

The \metamacro typesets a placeholder to be placed in an argument.
This can be used to refer to arguments and contents of macros and envir-
onments described by commands discussed later in this documentation.
It is typeset in brackets: 〈meta text〉.

\marg {〈mandatory argument〉}
\oarg {〈optional argument〉}
\parg {〈picture-style argument〉}
\aarg {〈beamer-style argument〉}
\sarg

Thesemacros typeset different kinds of arguments (mandatory, optional,
picture-style, beamer-style and star arguments, respetively). These can
be used to describe arguments, but aremostly used internally. See table 1
for examples of how these macros are typeset.

The skdoc document class, v1.5b 9

2.3.1 Examples

\begin{example}
〈example code〉

\end{example}
Perhaps the most powerful way to illustrate features of a package is to
show their function by examples. This is made possible by the example
environment. By enclosing example code in this environment, the actual
code is typeset next to the result it would produce, as seen below23:

Example:

Simply typesetting a paragraph
maybe simple enough, but it should
showcase the utility of the envir-
onment well enough.

% Simply typesetting a
% \emph{paragraph} may
% be simple enough, but
% it should showcase
% the utility of the
% environment well enough.
%

Note that for this to work the package obviously needs to be loaded. As
such, it is probably a good idea to combine the use of example with the
load option, so be sure to read up on the caveats of using that option
(see page 3).
Since the example environment is based on the same mechanisms

as MacroCode, (mostly) the same typesetting properties apply. In par-
ticular, the code will be highlighted if minted is available. (Note: Since
the backend utilizes \verbatim, the usual caveats apply. In particular,
leaving whitespace before \end{〈example〉} will result in an extra newline
at the end of the displayed code.)

2.3.2 Options

Package options are of course important to describe, and to this end
four macros are provided. They aid in describing options of both regular

2Note that the showcased example environment doesn’t contain another example
environment — the environment is not intended to be nested inside itself.

3The percent characters in the example are caused by the docstrip requirement of
prefixing the documentation with them.

The skdoc document class, v1.5b 10

boolean and the more modern key-value syntax. They are intended to
be used in a sequence:
\Option{...}\WithValues{...}\AndDefault{...}

\Option {〈option〉}
\Options {〈option〉,...}

Thesemacros typeset an option, andmaybe followedby the\WithValues
macro (Note: the with \Options, only the first option in the list will work
with \WithValues).

\WithValues {〈value〉,...}

This macro typesets a comma-separated list of values a specific option
can take. It may be followed by the \AndDefaultmacro.

\AndDefault {〈default value〉}

This macro typesets the default value of an option. It may follow either
\Options or \WithValues.
Common constructs using these macros include:

• \Option{〈option〉}\WithValues{〈value〉,...}\AndDefault{〈default〉}

• \Options{〈option〉,no〈option〉}\AndDefault{no〈option〉}

2.3.3 Macros

The skdoc class inherits a number of macros for describing the package
macros from the ydoc package. Only four of them are to be considered
stable.

Warning:
The macros \MakeShortMacroArgs and
\DeleteShortMacroArgs and the environments
DescribeMacros and DescribeMacrosTab provided by ydoc
are unsupported as of skdoc v1.5b. They may work, but this is not
a guarantee and they are most likely broken or may break other
features of skdoc.

The skdoc document class, v1.5b 11

\DescribeMacro 〈\macro〉〈macro arguments〉

The \DescribeMacro macro documents a macro along with its ar-
guments. Any number of 〈macro arguments〉 may follow the macro,
and \DescribeMacro will stop reading arguments on the first non-
argument token. The macro will be indexed.

Warning:
Although 〈\macro〉 can include @ signs, it is not possible to docu-
ment LATEX3-style macros (with underscores and colons) without the
following hack:

\ExplSyntaxOn
\cs_set_protected_nopar:Npn\ExplHack{
\char_set_catcode_letter:n{ 58 }
\char_set_catcode_letter:n{ 95 }

}
\ExplSyntaxOff
\ExplHack

\Macro 〈\macro〉〈macro arguments〉

This is simply a variant of \DescribeMacro for use in running text. It
is equivalent to \MacroArgs\AlsoMacro.

\MacroArgs 〈macro aguments〉

This macro formats 〈macro arguments〉 the same way \DescribeMacro
does. As with \Macro, it is used in running text.

\AlsoMacro 〈\macro〉〈further arguments〉

This macro should be used inside 〈macro arguments〉 of the macros de-
scribed above, and typesets an additional macro as part of the syntax
of the described macro. For instance, the \csname macro could be
described with the sequence \Macro\csname<command sequence
name>\AlsoMacro\endcsname, whichwouldbe renderedas\csname〈command

The skdoc document class, v1.5b 12

sequence name〉\endcsname .

2.3.4 Environments

In addition to the macros describing macros, skdoc also inherits one
environment and onemacro to describe environments. These are similar
to the macros described previously in both form and function, but lack
equivalents for running text.

\DescribeEnv [〈body content〉]{〈name〉}〈arguments〉

Thismacro describes an environment, in the sameway\DescribeMacro
does for macros. The 〈body content〉, which is optional, may be used to
indicate what kind of content the environment is designed to contain.
The \MacroArgsmacro is automatically inserted before 〈body content〉.

2.3.5 Other entities

The document class also provides macros to describe BIBTEX entries and
generic themes. The BIBTEX entries are described using the \BibEntry
and\WithFieldsmacros, while themes are describedusing the\Theme
macro.

\BibEntry {〈entry name〉}\WithFields[〈optional fields〉]{〈mandatory fields〉}

These two macros describe a BIBTEX entry named 〈entry name〉 (i.e.,
@〈entry name〉) along with its optional and mandatory fields.

\Theme {〈theme name〉}

This macro describes a theme named 〈theme name〉. These could be used
to describe any kind of theme, such as color themes of a document class.

\DescribeFile {〈filename〉}

This macro describes a special file named 〈filename〉. This could be a con-
figuration file or similar that is either part of the package or something
the package reads if available.

The skdoc document class, v1.5b 13

2.4 Describing the implementation

In true TEX (and literal programming) fashion the document class also
provides ways to describe, in detail, parts of the implementation. The
most essential of the implementation environments, without which
skdoc doesn’t generate any files, is the MacroCode environment. Other
than that, the implementation environments should be compatible with
or analogous to the standard ltxdoc document class.

2.4.1 Implementation environments

The environments described in this section indicate the implementation
of different concepts including macros, environments and options. They
each have a starred variant which doesn’t print the concept name (only
indexes it), and a non-starred variant which does (Note: inside these
environments, \changes will refer to the relevant entity instead of logging
‘general’ changes).
Some of the following environment can typeset descriptions of the

internal arguments (#1, #2 etc.) to improve readability of the imple-
mentation code.

\begin{macro}
〈description〉

\end{macro}

{〈\macro〉}[〈# of args〉]{〈arg 1 description〉}[〈default value〉]...{〈arg
n description〉}[〈default value〉]
With this environment, the implementation of a macro is described.
Note that as with \DescribeMacro, LATEX3-style macros can not be
used in 〈\macro〉 without the catcode hack mentioned earlier.

\begin{environment}
〈description〉

\end{environment}

{〈environment〉}[〈# of args〉]{〈arg 1 description〉}[〈default value〉]...{〈arg
n description〉}[〈default value〉]
This environment describes the implementation of an environment.

\begin{option}
〈description〉

\end{option}

{〈option〉}
This environment describes the implementation of an option.

\begin{bibentry}
〈description〉

\end{bibentry}

{〈@entry〉}
This environment describes the implementation of a BIBTEX entry type.

\begin{theme}
〈description〉

\end{theme}

{〈theme〉}
This environment describes the implementation of a theme.

The skdoc document class, v1.5b 14

2.4.2 The MacroCode environment

The ‘main event’ of the skdoc document class is the MacroCode en-
vironment. It has roughly the same role the macrocode environment
has in the docstrip system, except that it in addition to typesetting the
implementation also saves it to the target files.
The workflow is simple; before using MacroCode to export code to a

file the file must be declared using \DeclareFile, which also assigns
a key to the file (the default is the filename). This key is passed to the
MacroCode environment, which saves the code to the specified file.

\DeclareFile [key=〈key〉,preamble=〈preamble〉]{〈filename〉}

The\DeclareFilemacro declares a file for future usewithMacroCode.
The optional argument is a comma separated list of key-value options,
where the possible keys are key and preamble. Here 〈key〉 is a key that
is used instead of the filename in MacroCode, and 〈preamble〉 is a token
or command sequence expanding to a preamble which will be prepended
to the file on output.

\PreambleTo {〈\token〉}{〈filename〉}

Reads the preamble from 〈filename〉. Lines from the file are appended to
〈\token〉 until a line which does not begin with %% is encountered.

\SelfPreambleTo {〈\token〉}

This reads the preamble from the curent file. It is equivalent to the
sequence \PreambleTo{〈\token〉}{\jobname.tex}.

\begin{MacroCode}
〈implementation〉

\end{MacroCode}

{〈key〉,...}
The MacroCode environment typesets and exports 〈implementation〉
verbatim to the file associated with 〈key〉. As such, it is the analogue
of the macrocode environment from ltxdoc, but does not suffer from
some of its drawbacks (the sensitivity to whitespace, for instance). As
detailed by the description of the highlight option (on page 3), the
environment will highlight the code usingminted if possible. Multiple
〈key〉s are allowed, and the code will be written to all corresponding files.

The skdoc document class, v1.5b 15

2.4.3 Hiding the implementation

For lagre packages it may be of interest to hide the implementation from
the documentation. This is accomplished using the two marker macros
\Implementation and \Finale (which should be present even if not
hiding the implementation), and the switchmacro\OnlyDescription.

\Implementation

This macro indicates the start of the implementation. Normally, this
would directly precede the \section under which the implementation
is organized.

\Finale

This macro indicates the end of the implementation. Usually the only
things happening after this is the printing of indices, the change log,
bibliographies and the end of the document environment.

\OnlyDescription

This macro, which should be issued in the preamble, indicates that the
implementation should be hidden.

Warning: this has the side effect that a page break is inserted where
the implementation would normally reside.

2.5 Documenting changes

One type of useful information you should provide in your documenta-
tion is a list of changes. The skdoc document class provides a change list
system based on the glossaries package. As such, including a change list
in your documentation requires you to run makeglossaries between
the first and second LATEX run.

The skdoc document class, v1.5b 16

\changes {〈version〉}{〈description〉}

The \changes macro provides the main interface to the change list
system, and adds changes to the change list. Each change is added with
a context; if the macro is issued inside one of the macros described in
section 2.4.1, the concept currenly being described will be the context.
Outside these environment, the context is ‘general’. For every context
and 〈version〉, only one change may be recorded, otherwise glossaries
will issue a warning.

\PrintChanges

This macro prints the list of changes. As explained earlier, this requires
you to run makeglossaries between the two LATEX runs.

2.6 Producing an index

Themacros previously discussed in sections 2.2.5, 2.3 and 2.4.1 automat-
ically index their aguments using glossaries. By runningmakeglossaries
you can include an index of all macros, environments, packages and
such that are discussed, documented or implemented in your package.

\PrintIndex

Much like the \PrintChangesmacro, this prints the index. As with the
list of changes, this requires that you run makeglossaries between
the two LATEX runs.

3 Known issues

A list of current issues is available in the Github repository of this pack-
age4, but as of the release of v1.5b, there are two known issues.

#30 The use of expl3-style macros in \csmay cause issues when gener-
ating a glossary. Since such macros are in general implementation

4https://github.com/urdh/skdoc/issues

The skdoc document class, v1.5b 17

https://github.com/urdh/skdoc/issues

details, a workaround may be to omit the implementation from
the output by using \OnlyDescription.

#34 When generating examples utilizing the documented package, if a
previous version of this package is installed on the machine where
this generation is done, the installed version will be used instead
of the version being documented. This may cause incorrect output
or compiler errors. A workaround is to temporarily remove the
installed version while generating documentation for the more
recent version.

If you discover any bugs in this package, please report them to the
issue tracker in the skdoc Github repository.

The skdoc document class, v1.5b 18

4 Installation

The easiest way to install this package is using the package manager
provided by your LATEX installation if such a program is available. Failing
that, provided you have obtained the package source (skdoc.dtx and
Makefile) fromeitherCTANorGithub, runningmake install inside
the source directory works well. This will extract the documentation and
code from skdoc.dtx, install all files into the TDS tree at TEXMFHOME
and run mktexlsr.
If you want to extract code and documentation without installing

the package, run make all instead. If you insist on not using make,
remember that skdoc.cls is generated by running tex, while the doc-
umentation is generated by running pdflatex.

5 Changes

v1.0
General: Initial version.

v1.1
General: Added support for syntax

highlighting usingminted.

v1.1a
General: Deprecate the use of bib-

tex in favour of biblatex.

v1.2
General: Use l3prg booleans in-

stead of toggles.

v1.2b
General: Use inconsolata. Don’t

use ascii.

v1.3

General: Allowmultiple targets per
MacroCode.

v1.3b

General: Use sourcecodepro in-
stead of inconsolata. Fix is-
sue with index entries of dif-
ferent types with same name.

v1.4

General: Added option to control
babel. Allow optional default
value arguments in macro
and friends. Fix spacing issue
in option and friends.

The skdoc document class, v1.5b 19

v1.4a
General: Fix various compatibility

issues with latest glossaries.

v1.4b
General: Track expl3 changes

(thanks to Joseph Wright).

v1.5
General: Fix incompatibilities with

minted.

v1.5a

General: Track expl3 changes
(thanks to Felix Faltin).

v1.5b

General: Track expl3 changes
(thanks to Phelype Oleinik).
Replace opensans option
osfigures with oldstyle
(#40).

6 Index

Numbers written in italic refer to the page where the corresponding
entry is described; numbers underlined refer to the page were the imple-
mentation of the corresponding entry is discussed. Numbers in roman
refer to other mentions of the entry.

A
\aarg 9
abstract (environment) 6
\AlsoMacro 12
\AndDefault 11
\author 5

B
babel (option) 3
babel (package) 3
bibentry (environment) 14
\BibEntry 13
\bib 8

C

\changes 4, 14, 17
\cs 7, 8, 17
\csname 12
\ctan 4

D
\DeclareFile 15
\DeleteShortMacroArgs 11
\DescribeEnv 13
\DescribeFile 13
\DescribeMacro 12, 13, 14
DescribeMacros (environment)

11
DescribeMacrosTab (environ-

ment) 11

The skdoc document class, v1.5b 20

docstrip (package) 1, 2, 10, 15
document (environment) 16

E
\email 5
\endcsname 12, 13
\end 10
environment (environment) 14
\env 8
example (environment) 10
expl3 (package) 2, 17

F
\fbox 7
\file 8
\Finale 16

G
glossaries (package) 16, 17

H
highlight (option) 3, 15

I
\Implementation 16

J
\jobname 3, 4

L
load (option) 3, 10
\LongWarning 7
lppl.tex (file) 6
ltxdoc (package) 1, 4, 14, 15

M
\MacroArgs 12, 13
MacroCode (environment) 1, 2,

10, 14, 15
macrocode (environment) 15
macro (environment) 14
\Macro 12
Makefile (file) 19
\MakeShortMacroArgs 11
\maketitle 4, 5, 6
\marg 9
\meta 9
microtype (package) 6
minted (package) 3, 10, 15

N
\Notice 7

O
\oarg 9
\OnlyDescription 16, 18
option (environment) 14
\Option 11
\Options 11
\opt 8

P
\package 4, 5
\parg 9
\pkg* 5
\pkg 8
\PreambleTo 15
\PrintChanges 17
\PrintIndex 17
\PrintLPPL 6

The skdoc document class, v1.5b 21

\ProvidesExplPackage 4

R
\repository 4, 5

S
\sarg 9
scrartcl (package) 6
\section 16
\SelfPreambleTo 15
skdoc.cls (file) 19
skdoc.dtx (file) 19
skrapport (package) 6

T
\tableofcontents 6
theme (environment) 14
\Theme 13
\thepackage 5

\thepkg 4, 5
\theversion 5
\thm 8
\title 4, 5

V
\verbatim 10
verbatim (package) 2
\version 4, 5

W
\Warning 7
\WithFields 13
\WithValues 11
\write18 3

Y
ydoc (package) 1–3, 9, 11

7 Bibliography

Lazarides, Yannis (2012). Different approach to literate programming for
LATEX. URL: http://tex.stackexchange.com/q/47237/66.

The skdoc document class, v1.5b 22

http://tex.stackexchange.com/q/47237/66

	Introduction
	Documentation
	Options
	General macros
	Metadata
	The preamble
	The LPPL license
	Notices and warnings
	Referential macros

	Documenting the package
	Examples
	Options
	Macros
	Environments
	Other entities

	Describing the implementation
	Implementation environments
	The MacroCode environment
	Hiding the implementation

	Documenting changes
	Producing an index

	Known issues
	Installation
	Changes
	Index
	Bibliography

