
SemanTEX: Semantic mathematics (v0.3α)

Sebastian Ørsted (sorsted@gmail.com)

July 21, 2020

The SemanTEX package for LATEX delivers a more semantic, systematized way of
writing mathematics, compared to the classical math syntax in LATEX. The sys-
tem uses keyval syntax and is highly customizable. At the same time, care has
been taken to make it the syntax as simple, natural, practical, and lightweight
as possible. Note: SemanTEX is still in its alpha stage and cannot be consid-
ered stable at this point. You are more than welcome to report bugs and
come with suggestions!

Let us take an example from elementary analysis to demonstrate the idea
of the package: Suppose we want to take the complex conjugate of a function f
and then derive it n times, i.e. take f

(n)
. SemanTEX allows you to typeset this

something like this:

$ \vf[conj,der=\vn] $ f
(n)

I shall explain the syntax in detail below, but some immediate comments are
in order: First and foremost, the v in the command names \vf and \vn stands
for “variable”, so these commands are the variables f and n. In SemanTEX, it
is usually best to create commands \va, \vA, \vb, \vB, . . . for each variable you
are using, upper- and lowercase. However, it is completely up to the user how
to do that and what to call them. Note also that all of the keys inv, res, etc.
are defined by the user, and they can be modified and adjusted for all sorts of
situations in any kinds of mathematics. In other words, for the most part, you
get to choose your own syntax.

Next, suppose we want to invert a function g and restrict it to a subset U ,
and then apply it to x, i.e. take g−1|U (x). This can be done by writing

$ \vg[inv,res=\vU]{\vx} $ g−1|U (x)

Next, let us take an example from algebraic geometry: Suppose F is a sheaf
and h a map, and that we want to typeset the equation (h−1F)p = Fh(p), saying
that the stalk of the inverse image h−1F at the point p is Fh(p). This can be
accomplished by typing

$ \vh[inverseimage]{\sheafF}[

spar,stalk=\vp]

=

\sheafF[stalk=\vh{\vp}] $

(h−1F)p = Fh(p)

Here, spar (an abbreviation for “symbol parentheses”) is the key that adds the
parentheses around h−1F .

Let us see how you could set up all the above notation:

1

mailto:sorsted@gmail.com

\documentclass{article}

\usepackage{amsmath,semantex}

\NewVariableClass\MyVar % creates a new class of variables,

called "\MyVar"

% Now we create a couple of variables of the class \MyVar:

\NewObject\MyVar\vf{f}

\NewObject\MyVar\vg{g}

\NewObject\MyVar\vh{h}

\NewObject\MyVar\vn{n}

\NewObject\MyVar\vp{p}

\NewObject\MyVar\vU{U}

\NewObject\MyVar\vx{x}

\NewObject\MyVar\sheafF{\mathcal{F}}

% Now we set up the class \MyVar:

\SetupClass\MyVar{

output=\MyVar, % This means that the output of an object

% of class \MyVar is also of class \MyVar

% We add a few keys for use with the class \MyVar:

singlekeys={ % keys taking no values

{inv}{upper={-1}},

{conj}{overline},

{inverseimage}{upper={-1},nopar},

},

valuekeys={ % keys taking a value

{der}{upper={(#1)}},

{stalk}{clower={#1}},

% "clower" means "comma lower", i.e. lower index

% separated from any previous lower index by a comma

{res}{ return ,symbolputright ={|}, lower ={#1} },

},

}

\begin{document}

$ \vf[conj,der=\vn] $

$ \vg[inv,res=\vU]{\vx} $

$ \vh[inverseimage]{\sheafF}[spar,stalk=\vp]

= \sheafF[stalk=\vh{\vp}] $

\end{document}

1 Getting started

To get started using SemanTEX, load down the package with

\usepackage{semantex}

2

The SemanTEX system is object-oriented; all entities are objects of some class.
When you load the package, there is only one class by default, which is simply
called \SemantexBaseObject. You should think of this as a low-level class, the
parent of all other classes. Therefore, I highly advice against using it directly
or modifying it. Instead, we create a new, more high-level variable class. We
choose to call it \MyVar. It is best to always start class names with uppercase
letters to separate them from objects. We could write \NewVariableClass\MyVar,
but we choose to pass some options to it in [...]:

\NewVariableClass\MyVar[output=\MyVar]

This output=\MyVar option will be explained better below. Roughly speaking, it
tells SemanTEX that everything a variable outputs will also be a variable. For in-
stance, if the function \vf (i.e. f) is of class \MyVar, then \vf{\vx} (i.e. f (x)) will
also of class \MyVar.

Now we have a class, but we do not have any objects. To create the object \vf
of class \MyVar with symbol f , we write \NewObject\MyVar\vf{f}. In general,
when you have class \〈Class〉, you can create objects of that class wtih the
syntax

\NewObject\〈Class〉\〈object〉{〈object symbol〉}[〈options〉]

To distinguish objects from classes, it is a good idea to denote objects by
lowercase letters.1 So after writing,

\NewObject\MyVar\vf{f}

\NewObject\MyVar\vx{x}

we get two variables \vf and \vx with symbols f resp. x. Let us perform a
stupid test to see if the variables work:

\vf, \vx f , x

Th general syntax of a variable-type object is

\〈object〉[〈options〉]{〈argument〉}

Both 〈options〉 and 〈argument〉 are optional arguments (they can be left out
if you do not need them). The 〈options〉 should consist of a list of options
separated by commas, using keyval syntax. On the other hand, 〈argument〉 is
the actual argument of the function. By design, SemanTEX does not distinguish
between variables and functions, so all variables can take arguments. This is a
design choice to make the system easier to use; after all, it is fairly common in
mathematics that something is first a variable and then a moment later takes
an argument. So we may write:

$\vf{1}$, $\vf{\vx}$,

$\vx{\vx}$
f (1), f (x), x(x)

So far, we do not have very many options to write in the 〈options〉 position,
since we have not added any keys yet. However, we do have access to the most
important of all options: the index. There is a simple shortcut for writing an
index: You simply write the index itself in the options tag:

1We shall not follow this convention strictly, as we shall later create objects with names
like \Hom; using lowercase letters for these would just look weird.

3

$\vf[1]$, $\vf[\vf]$,

$\vf[1,2,\vf]{2}$
f1, ff , f1,2,f (2)

As long as what you write in the options tag is not recognized as a predefined
key, it will be printed as the index. Other than that, there are two important
predefined keys: upper and lower which simply add something to the upper
and lower index:

$\vf[upper=2]$,

$\vf[lower=3]$
f 2, f3

We are soon going to need more variables than just f and x. In fact, I advise
you to create a variable for each letter in the Latin and Greek alphabets, both
uppercase and lowercase. This is pretty time-consuming, so I did it for you
already:

\NewObject\MyVar\va{a}

\NewObject\MyVar\vb{b}

\NewObject\MyVar\vc{c}

\NewObject\MyVar\vd{d}

\NewObject\MyVar\ve{e}

\NewObject\MyVar\vf{f}

\NewObject\MyVar\vg{g}

\NewObject\MyVar\vh{h}

\NewObject\MyVar\vi{i}

\NewObject\MyVar\vj{j}

\NewObject\MyVar\vk{k}

\NewObject\MyVar\vl{l}

\NewObject\MyVar\vm{m}

\NewObject\MyVar\vn{n}

\NewObject\MyVar\vo{o}

\NewObject\MyVar\vp{p}

\NewObject\MyVar\vq{q}

\NewObject\MyVar\vr{r}

\NewObject\MyVar\vs{s}

\NewObject\MyVar\vt{t}

\NewObject\MyVar\vu{u}

\NewObject\MyVar\vv{v}

\NewObject\MyVar\vw{w}

\NewObject\MyVar\vx{x}

\NewObject\MyVar\vy{y}

\NewObject\MyVar\vz{z}

\NewObject\MyVar\vA{A}

\NewObject\MyVar\vB{B}

\NewObject\MyVar\vC{C}

\NewObject\MyVar\vD{D}

\NewObject\MyVar\vE{E}

\NewObject\MyVar\vF{F}

\NewObject\MyVar\vG{G}

\NewObject\MyVar\vH{H}

\NewObject\MyVar\vI{I}

\NewObject\MyVar\vJ{J}

\NewObject\MyVar\vK{K}

\NewObject\MyVar\vL{L}

4

\NewObject\MyVar\vM{M}

\NewObject\MyVar\vN{N}

\NewObject\MyVar\vO{O}

\NewObject\MyVar\vP{P}

\NewObject\MyVar\vQ{Q}

\NewObject\MyVar\vR{R}

\NewObject\MyVar\vS{S}

\NewObject\MyVar\vT{T}

\NewObject\MyVar\vU{U}

\NewObject\MyVar\vV{V}

\NewObject\MyVar\vW{W}

\NewObject\MyVar\vX{X}

\NewObject\MyVar\vY{Y}

\NewObject\MyVar\vZ{Z}

\NewObject\MyVar\valpha{\alpha}

\NewObject\MyVar\vvaralpha{\varalpha}

\NewObject\MyVar\vbeta{\beta}

\NewObject\MyVar\vgamma{\gamma}

\NewObject\MyVar\vdelta{\delta}

\NewObject\MyVar\vepsilon{\epsilon}

\NewObject\MyVar\vvarepsilon{\varepsilon}

\NewObject\MyVar\vzeta{\zeta}

\NewObject\MyVar\veta{\eta}

\NewObject\MyVar\vtheta{\theta}

\NewObject\MyVar\viota{\iota}

\NewObject\MyVar\vkappa{\kappa}

\NewObject\MyVar\vlambda{\lambda}

\NewObject\MyVar\vmu{\mu}

\NewObject\MyVar\vnu{\nu}

\NewObject\MyVar\vxi{\xi}

\NewObject\MyVar\vpi{\pi}

\NewObject\MyVar\vvarpi{\varpi}

\NewObject\MyVar\vrho{\rho}

\NewObject\MyVar\vsigma{\sigma}

\NewObject\MyVar\vtau{\tau}

\NewObject\MyVar\vupsilon{\upsilon}

\NewObject\MyVar\vphi{\phi}

\NewObject\MyVar\vvarphi{\varphi}

\NewObject\MyVar\vchi{\chi}

\NewObject\MyVar\vpsi{\psi}

\NewObject\MyVar\vomega{\omega}

\NewObject\MyVar\vGamma{\Gamma}

\NewObject\MyVar\vDelta{\Delta}

\NewObject\MyVar\vTheta{\Theta}

\NewObject\MyVar\vLambda{\Lambda}

\NewObject\MyVar\vXi{\Xi}

\NewObject\MyVar\vPi{\Pi}

\NewObject\MyVar\vSigma{\Sigma}

\NewObject\MyVar\vUpsilon{\Upsilon}

\NewObject\MyVar\vPhi{\Phi}

\NewObject\MyVar\vPsi{\Psi}

\NewObject\MyVar\vOmega{\Omega}

5

Just like \vf, these can all be regarded as functions, so \va{\vb} pro-
duces a(b). Importantly, parentheses can be scaled. To make parentheses
bigger, use the following keys:

$\vf{\vx}$,

$\vf[par=\big]{\vx}$,

$\vf[par=\Big]{\vx}$,

$\vf[par=\bigg]{\vx}$,

$\vf[par=\Bigg]{\vx}$,

$\vf[par=auto]{\frac{1}{2}}$

f (x), f
(
x
)
, f

(
x
)
, f

(
x

)
, f

x, f
(

1
2

)

Using par=auto corresponds to using \left...\right. Just as for ordinary math,
I advice you to use manual scaling rather than automatic scaling, as TEX has
a tendency to scale things wrong. If you do not want parentheses at all, you
can pass the key nopar (it will still print parentheses if there is more than one
argument, though; to exclude this behaviour, run neverpar instead):

$\vf[nopar]{\vx}$ f x

Primes are added via the key prime or the keys ’, ’’ and ’’’:

$\vf[’] = \vf[prime]$,

$\vf[’’] = \vf[prime,prime]$

$\vf[’’’] = \vf[prime,prime,

prime]$

f ′ = f ′ , f ′′ = f ′′ f ′′′ = f ′′′

So far, so good, but our variables cannot really do anything yet. For this, we
need to assign keys to them. The more pieces of math notation you need, the
more keys you will have to define. Keys are being added via two different keys:

singlekeys and valuekeys.

In short, singlekeys is for keys that do not take a value (i.e. keys using the
syntax \〈object〉[key]), and valuekeys is for keys that do take a value (i.e. keys
using the syntax \〈object〉[key=value])). We explain the syntax for using them
in the next section where we show how to make keyval syntax for elementary
calculus.

For the rest of the manual, we assume that you have already defined a
class \MyVar and the variables \va, \vA, \vb, \vB, . . . , as above.

2 Example: Elementary calculus

One thing we might want to do to a variable is invert it. We therefore add a
key inv that adds an upper index -1 to the symbol. We add this key using the
key singlekeys, which is for keys that do not take a value:

\SetupClass\MyVar{

singlekeys={

{inv}{ upper={-1} },

},

}

Now the key inv has been defined to be equivalent to upper={-1}. Now we can
do the following:

6

$\va[inv]$, $\vf[inv]$,

$\vg[1,2,inv]$,

$\vh[\va,\vb,inv]$

a−1, f −1, g−1
1,2, h−1

a,b

Other keys might need to take a value. For defining such, we have the
command valuekeys. For instance, suppose we want a command for deriving a
function n times. For this, we add the key der:

\SetupClass\MyVar{

singlekeys={

{inv}{ upper={-1} },

},

valuekeys={

{der}{ upper={(#1)} },

},

}

The #1 will contain whatever the user wrote as the value of the key. Now we
can write:

$\vf[der=\vn]{\vx}$ f (n)(x)

Maybe we also want a more elementary key power for raising a variable to a
power:

\SetupClass\MyVar{

singlekeys={

{inv}{ upper={-1} },

},

valuekeys={

{der}{ upper={(#1)} },

{power}{ upper={#1} },

},

}

This allows us to write

$\vx[power=2]$,

$\vy[1,power=2] + \vy[2,power

=2]$

x2, y2
1 + y2

2

Let us try doing something a bit more complicated: adding a key for re-
stricting a function to a smaller subset. For this, we do the following:

\SetupClass\MyVar{

singlekeys={

{inv}{ upper={-1} },

},

valuekeys={

{der}{ upper={(#1)} },

{power}{ upper={#1} },

{res}{ return,symbolputright={|}, lower={#1} },

},

}

This adds a horizonal line “|” to the right of the symbol followed by a lower in-
dex containing whatever you passed to the key (contained in the command #1).

7

(There is also an extra key, return, which is a bit more advanced and should be
taken for granted for now. Roughly speaking, it is there to make sure that the
restriction symbol is printed after all indices that you might have added before.
More details in chapter 6.) Now we may write the following:

$\vf[res=\vU]{\vx}$,

$\vg[1,res=\vY]{\vy}$,

$\vh[inv,res=\vT]{\vz}$

f |U (x), g1|Y (y), h−1|T (z)

If the reader starts playing around with the SemanTEX functions, they will
discover that whenever you apply a function to something, the result becomes
a new function that can take an argument itself (this is why we wrote output

=\MyVar in the definition of the class \MyVar). This behaviour is both useful
and extremely necessary in order for the package to be useful in practice. For
instance, you may write

$\vf[der=\vn]{\vx}{\vy}{\vz}

=\vg{\vu,\vv,\vw}[3]{

\vx[1],\vx[2]}[8,1,der=2]{

\vt}$

f (n)(x)(y)(z) = g(u,v,w)3(x1,x2)(2)
8,1(t)

Some people prefer to be able to scale the vertical line in the restriction notation.
I rarely do that, but for this purpose, we could do the following:

\SetupClass\MyVar{

valuekeys={

{bigres}{ return, symbolputright=\big\vert, lower={#1} },

{Bigres}{ return, symbolputright=\Big\vert, lower={#1} },

{biggres}{ return, symbolputright=\bigg\vert, lower={#1} },

{Biggres}{ return, symbolputright=\Bigg\vert, lower={#1} },

{autores}{ return, Otherspar={.}{\vert}{auto},

lower={#1} },

% This auto scales the vertical bar. See the chapter on the

% spar key for information about sparsize and Otherspar

},

}

So to sum up, we first defined a class \MyVar via \NewVariableClass and
then used \SetupClass to add keys to it. In fact, we could have done it all at
once by passing these options directly to \NewVariableClass:

\NewVariableClass\MyVar[

output=\MyVar, % This means that the output of an object

% of class \MyVar is also of class \MyVar

singlekeys={

{inv}{ upper={-1} },

},

valuekeys={

{der}{ upper={(#1)} },

{power}{ upper={#1} },

{res}{ rightreturn, symbolputright={|},

lower={#1} },

},

]

8

As we proceed in this guide, we shall use \SetupClass to add more and more
keys to \MyVar. However, when you set up your own system, you may as well
just add all of the keys at once like this when you create the class and then be
done with it.

Let me add that it is possible to create subclasses of existing classes. You
just write parent=\〈Class〉 in the class declaration to tell that \〈Class〉 is the
parent class. But a word of warning: It is a natural idea to create different
classes for different mathematical entities, each with their own keyval syntax
that fits whatever class you are in; for instance, you could have one class for
algebraic structures like rings and modules with keys for opposite rings and
algebraic closure, and you could have another class for topological spaces with
keys for closure and interior. However, as the reader can probably imagine, this
becomes extremely cumbersome to work with in practice since an algebraic
structure might very well also carry a topology. So at the end of the day, I
advice you to use a single superclass \MyVar that has all the keyval syntax and
mainly use subclasses for further customization. We shall see examples of this
below.

3 Example: Elementary algebra

Let us try to use SemanTEX to build some commands for doing algebra. As an
algebraist, one of the first things you might want to do is to create polynomial
rings k[x,y,z]. Since all variables can already be used as functions (this is a
design choice we discussed earlier), all we need to do is find a way to change
from using parentheses to square brackets. This can be done the following
way:

\SetupClass\MyVar{

singlekeys={

{poly}{

par, % This tells semantex to use parentheses around

% the argument in the first place, in case this

% had been turned off

leftpar=[,rightpar=],

},

},

}

Now we may write

$\vk[poly]{\vx,\vy,\vz}$ k[x,y,z]

It is straightforward how to do adjust this to instead write the field generated
by the variables x,y,z:

\SetupClass\MyVar{

singlekeys={

{poly}{

par, % This tells semantex to use parentheses around

% the argument in the first place, in case this

% had been turned off

leftpar=[,rightpar=],

},

9

{field}{

par,

leftpar=(,rightpar=),

},

},

}

Now \vk[field]{\vx,\vy,\vz} produces k(x,y,z). Of course, leaving out the
field key would produce the same result with the current configuration of the
class \MyVar. However, it is still best to use a key for this, both because this
makes the semantics more clear, but also because you might later change some
settings that would cause the default behaviour to be different.

Adding support for free algebras, power series, and Laurent series is almost
as easy, but there is a catch:

\SetupClass\MyVar{

singlekeys={

{poly}{

par, % This tells semantex to use parentheses around

% the argument in the first place, in case this

% had been turned off

leftpar=[,rightpar=],

},

{field}{

par,

leftpar=(,rightpar=),

},

{freealg}{

par,

leftpar=\langle,

rightpar=\rangle,

},

{powerseries}{

par,

leftpar=\llbracket,

rightpar=\rrbracket,

},

{laurent}{

par,

leftpar=(, rightpar=),

prearg={\!\!\SemantexDelimiterSize(},

postarg={\SemantexDelimiterSize)\!\!},

% These are printed before and after the argument.

% The command "\SemantexDelimiterSize" is substituted

% by \big, \Big, ..., or whatever size the

% argument delimiters have

},

},

}

See for yourself:

$\vk[freealg]{\vx}$,

$\vk[powerseries]{\vy}$,

$\vk[laurent]{\vz}$

k〈x〉, k~y�, k((z))

10

Let us look at some other algebraic operations that we can control via
SemanTEX:

\SetupClass\MyVar{

singlekeys={

{op}{upper={\mathrm{op}}},

% opposite groups, rings, categories, etc.

{algclosure}{overline},

% algebraic closure

{conj}{overline},

% complex conjugation

{dual}{upper=*},

% dual vector space

{perp}{upper=\perp},

% orthogonal complement

},

valuekeys={

{mod}{symbolputright={/#1}},

% for modulo notation like R/I

{dom}{symbolputleft={#1\backslash}},

% for left modulo notation like I\R

% "dom" is "mod" spelled backwards

{oplus}{upper={\oplus#1}},

% for notation like R^{\oplus n}

{tens}{upper={\otimes#1}},

% for notation like R^{\otimes n}

{localize}{symbolputright={ \relax [#1^{-1}] }},

% localization at a multiplicative subset;

% the \relax is necessary becauese, in some cases,

% the [...] can be interpreted as an optional argument

{localizeprime}{lower={#1}},

% for localization at a prime ideal

},

}

Let us see it in practice:

$\vR[op]$, $\vk[algclosure]$,

$\vz[conj]$, $\vV[dual]$,

$\vR[mod=\vI]$,$\vR[dom=\vJ

]$,

$\vR[oplus=\vn]$,

$\vV[tens=\vm]$,

$\vR[localize=\vS]$,

$\vR[localizeprime=\vI]$,

$\vk[freealg]{\vS}[op]$,

$\vV[perp]$

Rop, k, z, V ∗, R/I ,J\R, R⊕n, V ⊗m,
R[S−1], RI , k〈S〉op, V ⊥

4 The spar key

The spar key is one of the most important commands in SemanTEX at all. To
understand why we need it, imagine you want to derive a function n times and
then invert it. Writing something like

11

$\vf[der=\vn,inv]$ f (n)−1

does not yield a satisfactory result. However, the spar key saves the day:

$\vf[der=\vn,spar,inv]$ (f (n))−1

So spar simply adds a pair of parentheses around the current symbol, complete
with all indices that you may have added to it so far. The name spar stands for
“symbol parentheses”. You can add as many as you like:

$ \vf[1,res=\vV,spar,conj,op,

spar,0,inv,spar,mod=\vI,spar,

dual]{\vx} $

((((f1|V)
op

)−1
0)/I)∗(x)

If it becomes too messy, you can scale the parentheses, too. Simply use the
syntax spar=\big, spar=\Big, etc. You can also get auto-scaled parentheses base
on \left...\right, using the key spar=auto:

$\vf[spar]$,

$\vf[spar=\big]$,

$\vf[spar=\Big]$,

$\vf[spar=\bigg]$,

$\vf[spar=\Bigg]$,

$\vf[spar=auto]$

(f),
(
f
)
,
(
f
)
,
(
f

)
,

f , (f)

So returning to the above example, we can write

$\vf[1,res=\vV,spar,conj,op,

spar=\big,0,inv,spar=\Big,mod

=\vI,spar=\bigg,dual]{\vx}$

(((
(f1|V)

op)−1

0

)
/I

)∗
(x)

To adjust the type of brackets, use the leftspar and rightspar keys:

$\vf[leftspar={[},rightspar

={\}},spar,spar=\Bigg]$

[f }


Occassionally, it is useful to be able to input a particular kind of brackets just
once, without adjusting any settings. For this purpose, we have the otherspar

and Otherspar keys. They use the syntax

otherspar={〈opening bracket〉}{〈closing bracket〉}
Otherspar={〈opening bracket〉}{〈closing bracket〉}{〈size〉}

Let us see them in action:

$\vf[otherspar={[}{)},

otherspar={\{}{\rangle},

Otherspar={\langle}{\rangle

}{\Bigg},spar]$

(
〈
{[f)〉

〉
)

5 The \〈Class〉 command

So far, we have learned that every mathematical entity should be treated as an
object of some class. However, then we run into issues the moment we want to
write expressions like

(f ◦ g)(n)(x).

12

We do not want to have to define a new variable with symbol f ◦ g just to
write something like this. Fortunately, once you have created the class \MyVar,
you can actually use \MyVar as a command to create a quick instance of the
class. More precisely \MyVar{〈symbol〉} creates a variable on the spot with
symbol 〈symbol〉. So the above equation can be written

$\MyVar{\vf\circ\vg}[

spar,der=\vn]{\vx}$
(f ◦ g)(n)(x)

More generally, when you crate the class \〈Class〉, you can use it as a command
with the following syntax:

\〈Class〉{〈symbol〉}[〈options〉]〈usual syntax of class〉

6 The return keys

Suppose you want to take the complex conjugate of the variable z1. Then you
might write something like

$\vz[1,conj]$ z1

Notice that the bar has only been added over the z, as is standard mathematical
typography; you normally do not write z1. This reveals a design choice that has
been made in SemanTEX: When you add an index or a command via the command

key, it is not immediately applied to the symbol. Rather, both commands and
indices are added to a register and are then applied at the very last, right
before the symbol is printed. This allows us to respect standard mathematical
typography, as shown above.

However, there are other times when this behaviour is not what you want.
For instance, if you want to comjugate the inverse of a function, the following
looks wrong:

$\vf[inv,conj]$ f
−1

Therefore, there is a command return that can be applied at any point to invoke
the routine of adding all indices and commands to the symbol. Let us try it
out:

$\vf[inv,return,conj]$ f −1

In fact, return is an umbrella key that invokes three different return routines:
leftreturn, innerreturn, and rightreturn. The command leftreturn adds the
left indices to the symbol (we have not discussed left indices yet, though). The
command innerreturn adds all commands to the symbol (those defined using
the command key). Finally, rightreturn adds all right indices and arguments to
the symbol. In general, the user should probably be satisfied with just using
return.

7 The command key

Above, we used the key overline a couple of times:

13

$\va[overline]$,

$\vH[overline]$
a, H

This command applies the command \overline to the symbol. In fact, you can
create similar commands yourself via the command key. In fact, you could have
defined the overline yourself as follows:

\SetupClass\MyVar{

singlekeys={

{overline}{command=\overline},

},

}

This is how the key overline is defined internally, except it is defined on
the level of the superclass \SemantexBaseObject instead. Here are some more
examples of predefined keys that use the command key:

\SetupClass\MyVar{ % do not add these -- they are already

predefined!

novalueskeys={

{smash}{command=\smash},

{tilde}{command=\tilde},

{widetilde}{command=\widetilde},

{bar}{command=\bar},

{bold}{command=\mathbf},

{roman}{command=\mathrm},

},

}

Let us test:

$\va[widetilde]$,

$\va[bold]$,

$\va[roman]$,

$\va[bar]$

ã, a, a, ā

8 Example: Algebraic geometry

Let us discuss how to typeset sheaves and operations on morphisms in algebraic
geometry. First of all, adding commands for sheaves is not a big deal:

\NewObject\MyVar\sheafF{\mathcal{F}}

\NewObject\MyVar\sheafG}{\mathcal{G}}

\NewObject\MyVar\sheafH{\mathcal{H}}

\NewObject\MyVar\sheafreg{\mathcal{O}}

% sheaf of regular functions

\NewObject\MyVar\sheafHom{\mathop{\mathcal{H}om}}

You can of course add as many sheaf commands as you need.
Next, for morphisms of schemes f : X→ Y , we need to be able to typeset

comorphisms as well as the one hundred thousand different pullback and
pushforward operations. For this, we add some keys to the \MyVar key:

\SetupClass\MyVar{

singlekeys={

{comorphism}{upper=\#},

14

% comorphisms, i.e. f^{\#}

{inverseimage}{upper={-1},nopar},

% inverse image of sheaves

{sheafpull}{upper=*,nopar},

% sheaf *-pullback

{sheafpush}{lower=*,nopar},

% sheaf *-pushforward

{sheaf!pull}{upper=!,nopar},

% sheaf !-pullback

{sheaf!push}{lower=!,nopar},

% sheaf !-pushforward

},

}

We have added the command nopar to all pullback and pushforward commands
since it is custom to write, say, f ∗F rather than f ∗(F). Of course, you can decide
that for yourself, and in any case, you can write \vf[sheafpull,par]{\sheafF}

if you want to force it to use parentheses in a particular case. Of course, since
all SemanTEX variables can be used as functions, so can whatever these pullback
and pushforward operations output. So we may write:

For a morphism~$ \vf \colon

\vX \to \vY $ with

comorphism~$ \vf[comorphism]

\colon \sheafreg[\vY] \to

\vf[sheafpush]{\sheafreg[\vX

]} $,

and for a sheaf~$ \sheafF $

on~$ \vY $, we can define the

pullback~$ \vf[sheafpull]{

\sheafF} $ by letting~$

\vf[sheafpull]{ \sheafF}{\vU}

= \cdots $ and the $! $-

pullback by letting~$

\vf[sheaf!pull]{\sheafF}{\vU}

= \cdots $.

For a morphism f : X → Y with co-
morphism f # : OY → f∗OX , and for a
sheaf F on Y , we can define the pull-
back f ∗F by letting f ∗F (U) = · · · and
the !-pullback by letting f !F (U) = · · · .

Maybe some people would write pull, push, etc. instead, but there are many
different kinds of pullbacks in mathematics, so I prefer to use the sheaf prefix
to show that this is for sheaves. Probably, in the long run, an algebraic geometer
might also want to abbreviate inverseimage to invim.

There are a number of other operations we might want to do for sheaves.
We already defined the key res for restriction, so there is no need to define this
again. However, we might need to stalk, sheafify, take dual sheaves, and twist
sheaves. Let us define keys for this:

\SetupClass\MyVar{

valuekeys={

{stalk}{clower={#1}},

% "clower" means "comma lower", i.e. lower index

% separated from any previous lower index by a comma

{sheaftwist}{return,symbolputright={(#1)}},

},

singlekeys={

{sheafify}{upper=+},

15

{sheafdual}{upper=\vee},

},

}

The key clower stands for “comma lower”. It is like lower, except that it checks
whether the index is already non-empty, and if so, it separates the new index
from the previous index by a comma. There is, of course, a cupper key that
does the same with the upper index.

$\sheafF[res=\vU,stalk=\vp]$,

$\sheafF[res=\vU,spar,stalk=

\vp]$,

$\sheafreg[\vX,stalk=\vp]$,

$\sheafG[sheafify]$,

$\vf[inverseimage]{\sheafreg[

\vY]}[spar,stalk=\vx]$

$\sheafG[sheafdual]$,

$\sheafreg[\vX][sheaftwist

=-1]$,

$\sheafreg[sheaftwist=1,

sheafdual]$

F |U,p, (F |U)p, OX,p, G+, (f −1OY)x G∨,
OX(−1), O(1)∨

9 Example: Homological algebra

Before you venture into homological algebra, you should probably define some
keys for the standard constructions:

\NewObject\MyVar\Hom{\operatorname{Hom}}

\NewObject\MyVar\Ext{\operatorname{Ext}}

\NewObject\MyVar\Tor{\operatorname{Tor}}

Now the ability to easily print indices via the options key will come in handy:

$\Hom[\vA]{\vM,\vN}$,

$\Ext[\vA]{\vM,\vN}$
HomA(M,N), ExtA(M,N)

You will probably need several keyval interfaces, some of which will be covered
below. But right now, we shall implement a shift operation X 7→ X[n]:

\SetupClass\MyVar{

valuekeys={

{shift}{ return,symbolputright={ \relax [{#1}] } },

% \relax is necessary since otherwise [...] can

% occasionally be interpreted as an optional argument

},

}

Let us see that it works:

$\vX\mapsto\vX[shift=\vn]$ X 7→ X[n]

Finally, let us define a command for the differential (in the homolgoical algebra
sense):

\NewObject\MyVar\dif{d}[nopar]

$\dif{\vx} = 0$ dx = 0

16

9.1 The keys i = index and d = deg = degree

Homological algebra is a place where people have very different opinions about
the positions of the gradings. As an algebraist, I am used to upper gradings
(“cohomological” grading), whereas many topologists prefer lower gradings
(“homological” grading). The SemanTEX system supports both, but the default
is upper gradings (the package author has the privilege to decide). You can
adjust this by writing gradingposition=upper or gradingposition=lower.

We already learned about the keys upper and lower. There are two more,
“relative” keys that print the index either as an upper index or as a lower index,
depending on your preference for cohomological or homological grading. They
are called

index and degree

The degree is the actual grading in the homological algebra sense. The index

is an additional index where you can put extra information that you might
need. To understand the difference, keep the following two examples in mind:
the hom complex Hom·A and the simplicial homology H∆· (we will define the
command \ho for homology in the next section):

$\Hom[index=\vA,degree=0]$,

$\ho[index=\vDelta,degree=1]$
Hom0

A, H∆
1

These names are not perfect; many people would say that the degree is also an
index, but feel free to come up with a more satisfactory naming principle, and
I shall be happy to consider it. These names probably become a bit too heavy
to write in the long run, so both keys have abbreviated equivalents:

i = index and d = deg = degree

Let us see them in action:

$ \vX[d=3,i=\vk] $

\SetupObject\vX{

gradingposition=lower

}

$ \vX[d=3,i=\vk] $

X3
k

Xk3

(We haven’t seen the command \SetupObject before, but I imagine you can
guess what it does). If you want to print a bullet as the degree, there is the
predefined key * for this:

$ \vX[*] $

\SetupObject\vX{

gradingposition=lower

}

$ \vX[*] $

X·
X·

I guess it is also time to reveal that the previously mentioned shorthand no-
tation \vx[1] for indices always prints the 1 on the index position. So changing
the grading position changes the position of the index:

17

$ \vX[1] $

\SetupObject\vX{

gradingposition=lower

}

$ \vX[1] $

X1
X1

In other words, in the first example above, we could have written

$\Hom[\vA,d=0]$,

$\ho[\vDelta,d=1]$
Hom0

A, H∆
1

Note that the use of the short notations d and i does not prevent you from
writing \vx[d] and \vx[i]. This still works fine:

$\vf[i]$, $\vf[i=]$,

$\vf[d]$, $\vf[d=]$
fi , f , fd , f

As we see, it is only when a d or i key is followed by an equality sign = that
the routines of these keys are invoked. In fact, SemanTEX carefully separates
valuekeys from singlekeys.

9.2 The Cohomology class type

Now homological algebra is hard unless we can do cohomology and homology. In
principle, this is not hard to do, as we can write e.g. \vH[d=0]{\vX} to getH0(X).
However, some people might find it cumbersome to have to write d= every
time you want to print an index. This is probably the right time to reveal
that SemanTEX supports multiple class types. So far, we have been exclusively
using the Variable class type, which is what you create when you apply the
command \NewVariableClass. The first other class type we shall need is the
Cohomology class type, which has a different input syntax that fits cohomology.
Let us try to use it:

\NewCohomologyClass\MyCohomology[

parent=\MyVar,gradingposition=upper

]

\NewObject\MyCohomology\co{H}

\NewCohomologyClass\MyHomology[

parent=\MyCohomology,gradingposition=lower

]

\NewObject\MyHomology\ho{H}

The cohomology command \co in general works very much like a command of
Variable type. However, the input syntax is a bit different:

\co[〈options〉]{〈degree〉}{〈argument〉}

All three arguments are optional. Let us see it in practice:

18

$\co{0}$, $\co{*}$,

$\co{\vi}{\vX}$,

$\co[\vG]{0}$,

$\co[\vH]{*}$,

$\co[\vDelta]{\vi}{\vX}$

H0, H ·, H i(X), H0
G, H ·H , H i

∆(X)

$\ho{0}$, $\ho{*}$,

$\ho{\vi}{\vX}$,

$\ho[\vG]{0}$,

$\ho[\vH]{*}$,

$\ho[\vDelta]{\vi}{\vX}$

H0, H·, Hi(X), HG
0 , HH· , H∆

i (X)

Of course, you can define similar commands for cocycles, coboundaries, and
all sorts of other entities that show up in homological algebra.

You might also want to implement feature like reduced cohomology, Čech
cohomology, and hypercohomology. This is quite easy with the command key:

\SetupClass\MyVar{

singlekeys={

{reduced}{command=\widetilde},

{cech}{command=\check},

{hyper{command=\mathbb},

},

}

$\co[reduced]{i}$,

$\co[cech]{*}$,

$\co[hyper,cech]{0}{\vX}$

H̃ i , Ȟ ·, Ȟ0(X)

The Cohomology class type also provides a nice way to implement derived
functors:

\NewObject\MyCohomology\Lder{\mathbb{L}}[nopar]

\NewObject\MyCohomology\Rder{\mathbb{R}}[nopar]

For instance, we can write

$\Lder{\vi}{\vf}$,

$\Rder{0}{\vf}$
L
if , R0f

Alternatively, the user might prefer to use keyval syntax on the level of the
function itself (f in this case). This can be done the following way:

\SetupClass\MyVar{

valuekeys={

{Lder} {

innerreturn,leftreturn,

symbolputleft=\mathbb{L}^{#1},

},

{Rder} {

innerreturn,leftreturn,

symbolputleft=\mathbb{R}^{#1},

},

},

singlekeys={

{Lder} {

19

innerreturn,leftreturn,

symbolputleft=\mathbb{L},

},

{Rder} {

innerreturn,leftreturn,

symbolputleft=\mathbb{R},

},

},

}

Then the syntax becomes:

$\vF[Lder=\vi]$,

$\vF[Lder]{\vX[*]}$,

$\vF[Rder]{\vX[*]}$,

$\Hom[Rder]{\vX,\vY}$

L
iF, LF(X·), RF(X·), RHom(X,Y)

If you get tired of having to write \Hom[Rder] all the time, you can create a
shortcut:

\NewObject\MyVar\RHom[clone=\Hom,Rder]

The clone key is like the parent key, except it allows you to inherit the settings
from an object rather than a class. Notice that we did not specify a symbol;
the symbol argument is optional, and in this case, it was unnecessary, as the
symbol was inherited from \Hom. Let us see it in action:

$\RHom{\vX,\vY}$ RHom(X,Y)

10 Keyval syntax in arguments (Example: Cohomology with
coefficients)

Imagine we want to do cohomology with coefficients in some ring R. It is
common to write this as H ·(X;R) with a semicolon instead of a comma. This
can be implemented, too, with the syntax

$\co{*}{\vX,coef=\vR}$ H ·(X;R)

This shows that arguments of functions also support keyval syntax. In order to
customize this, there are two extra keys:

argsinglekeys and argvaluekeys

These work exactly like singlekeys and valuekeys.

\SetupClass\MyVar{

argkeyval=true, % this turns keyval syntax in arguments on

argvaluekeys={

{coef}{ othersep={;}{#1} },

},

}

20

The key othersep is a key that controls the separator between the current
argument and the previous argument (it will only be printed if there was a
previous argument). By default, this separator is a comma. So in the syntax \co

{*}{\vX,coef=\vR}, there are two arguments, \vX and \vR, and the separator is
a semicolon.

As you see above, we had to turn keyval syntax on in order for it to work.
By default, only singlekeys are turned on in the argument, not valuekeys. The
reason is that valuekeys in arguments are only useful in very rare cases, like
cohomology with coefficients. If such keys were turned on in general, it would
mess up every occurrence of an equality sign in arguments, and the following
would not work:

$\Hom[\sheafreg[\vU]]{

\sheafF[res=\vU],

\sheafG[res=\vU]

}$

HomOU (F |U ,G|U)

The key argkeyval can take four arguments: true (as above), false (no
singlekeys or valuekeys allowed), singlekeys (the default behaviour where
only singlekeys are turned on), and onesinglekey (only allows one singlekey).

It should be noted that there are several predefined singlekeys which are
defined on the level of the class \SemantexBaseObject. The full list is: FiXme Fatal:

Finish this

• slot, . . .

We should also talk about the arg key.

11 Multi-value keys

Sometimes, a key with one value is simply not enough. For instance, if you
work in GIT, you will eventually have to take the proj quotient X//χG of X with
respect to the action of the group G and the character χ. In other words, the
proj quotient depends on two parameters, χ and G. For this purpose, we have
the key 2valuekeys. It works exactly like valuekeys, except you get to use two
arguments instead of one:

\SetupClass\MyVar{

2valuekeys={

{projquotient}{ symbolputright={ /\!\!/ _ { #1 } #2 } },

}

}

$\vX[projquotient={\vchi}{\vG

}] $
X//χG

21

There are also commands 3valuekeys, 4valuekeys, . . . , 9valuekeys. The syntax
for these is completely analoguous. There are also commands arg2valuekeys,
arg3valuekeys, . . . , arg9valuekeys for keys in arguments with multiple values.

12 The Simple class type (Example: Derived tensor products
and fibre products)

The SemanTEX system has facilities for printing tensor products ⊗ as well as
derived tensor products ⊗L. For this, we need the Simple class type. This has
exactly the same syntax as the Variable class type, except that it cannot take
an argument. In other words, its syntax is

\〈object〉[〈options〉]

(You should normally only use it for special constructions like binary operators
and not for e.g. variables – the ability to add arguments to variables comes in
handy much more often than one might imagine.) Let us try to use it to define
tensor products and fibre products:

\NewSimpleClass\MyBinaryOperator[

singlekeys={

{Lder}{upper=L},

{Rder}{upper=R},

},

mathbin,

% this makes sure that the output is wrapped in \mathbin

]

\NewObject\MyBinaryOperator\tensor{\otimes}[

singlekeys={

{der}{Lder},

},

]

\NewObject\MyBinaryOperator\fibre{\times}[

% Americans are free to call it \fiber instead

singlekeys={

{der}{Rder},

},

]

As you see, this is one of the few cases where I recommend adding keyval
syntax to other classes than your superclass \MyVar. Also, notice that it does
not have any parent=\MyVar, as I do not really see any reason to inherit all the
keyval syntax from the \MyVar class. Now we first define keys Lder and Rder for
left and right derived binary operators. Next, we build in a shortcut in both
\tensor and \fibre so that we can write simply der and get the correct notion
of derived functor. Let us see it in action:

$\vA \tensor \vB$,

$\vX[*] \tensor[\vR] \vY[*]$

$\vk \tensor[\vA,der] \vk$,

$\vX \fibre[\vY,der] \vX$

A⊗B, X· ⊗R Y · k ⊗LA k, X ×RY X

22

13 Class types

The SemanTEX system uses several different class types. We have been almost
exclusively using the Variable class type (which is by far the most important
one), but in the last chpaters, we were introduced to the Cohomology and the
Simple class types.

In fact, all class types are identical internally; the low-level machinery
of SemanTEX does not “know” what type a class has. The only difference
between the class types is the input syntax. In other words, it determines which
arguments an object of that class can take. The syntax for creating new objects
also varies.

The current implementation has the following class types:

• Variable: A new class is declared with the syntax

\NewVariableClass{\〈Class〉}[〈options〉]

A new object is declared by

\NewObject\〈Class〉\〈object〉{〈symbol〉}[〈options〉]

The syntax for this object is

\〈object〉[〈options〉]{〈argument〉}

• Cohomology: A new class is declared with the syntax

\NewCohomologyClass\〈Class〉[〈options〉]

A new object is declared by

\NewObject\〈Class〉\〈object〉{〈symbol〉}[〈options〉]

The syntax for this object is

\〈object〉[〈options〉]{〈degree〉}{〈argument〉}

• Simple: A new class is declared with the syntax

\NewSimpleClass\〈Class〉[〈options〉]

A new object is declared by

\NewObject\〈Class〉\〈object〉{〈symbol〉}[〈options〉]

The syntax for this object is

\〈object〉[〈options〉]{〈argument〉}

• Delimiter: A new class is declared with the syntax

\NewDelimiterClass\〈Class〉[〈options〉]

A new object is declared by

\NewObject\〈Class〉\〈object〉{〈left bracket〉}{〈right
bracket〉}[〈options〉]

23

The syntax for this object is

\〈object〉[〈options〉]{〈argument〉}

Let me add that SemanTEX uses a very clear separation between the input
syntax and the underlying machinery. Because of this, if the user needs a
different kind of class type, it is not very hard to create one. You must simply
open the source code of SemanTEX, find the class you want to modify, and then
copy the definition of the command \New〈Class type〉Class and modify it in
whatever way you want.

There is another class type, called the plain class type, which is the class
type of the class \SemantexBaseObject. This class is pretty useless as all it does
is print its symbol, without allowing any keyval syntax, so don’t use it.

14 The Delimiter class type

Delimiters are what they sound like: functions like ‖−‖ and 〈−,−〉 that are
defined using brackets only. Let us define a class of type Delimiter:

\NewDelimiterClass\MyDelim[parent=\MyVar]

Now we can create instances of the class \MyDelim with the following syntax:

\NewObject\MyDelim\〈object〉{〈left bracket〉}{〈right bracket〉}[〈
options〉

Now we can do the following:

\NewObject\MyDelim\norm{\lVert}{\rVert}

\NewObject\MyDelim\inner{\langle}{\rangle}

Indeed:

$\norm{\va}$,

$\inner{\va,\vb}$,

$\inner{slot,slot}$

‖a‖, 〈a,b〉, 〈−,−〉

We can also use it for more complicated constructions, like sets. The following
is inspired from the mathtools package where a similar construction is created
using the commands from that package. My impression is that Lars Madsen is
the main mastermind behind the code I use for the \where command:

\newcommand\where{

\nonscript\:

\SemantexDelimiterSize\vert

\allowbreak

\nonscript\:

\mathopen{}

}

\NewObject\MyDelim\Set{\lbrace}{\rbrace}[

prearg={\,},postarg={\,},

% adds \, inside {...}, as recommended by D. Knuth

valuekeys={

{arg}{argwithoutkeyval={#1}},

% this turns off all keyval syntax in the argument

}

]

24

Now you can use

$\Set{ \vx \in \vY \where

\vx \ge 0 }$
{x ∈ Y | x ≥ 0 }

Don’t forget that anything created with SemanTEX outputs as a variable-type
object. So you can do stuff like

$\Set{

\vx \in \vY[\vi]

\where

\vx \ge 0

}[conj,\vi\in\vI]$

{x ∈ Yi | x ≥ 0 }i∈I

Tuple-like commands are also possible:

\NewObject\MyDelim\tup{(}{)} % tuples

\NewObject\MyDelim\pcoor{[}{]}[% projective coordinates

setargsep=\mathpunct{:},

% changes the argument separator to colon

setargdots=\cdots,

% changes what is inserted if you write "..."

]

Let us see them in action:

$\tup{\va,\vb,...,\vz}$,

$\pcoor{\va,\vb,...,\vz}$
(a,b, . . . , z), [a:b: · · · :z]

One can also use tuples for other, less obvious purposes, like calculus
differentials:

\NewDelimiterClass\CalculusDifferential[

parent=\MyVar,

argvaluekeys={

{default}{s={d\!#1}},

% default is the key that is automatically applied by the

% system to anything you write in the argument. The s key

% is a key that prints the value of the key with the

% standard argument separator in front.

},

setargdots=\cdots,

neverpar,

% neverpar is like nopar, except nopar will still print

% parentheses when there is more than one argument

% -- neverpar does not even print parentheses in this case

]

\NewObject\CalculusDifferential\intD{(}{)}[setargsep={\,},

iffirstarg=false]

\NewObject\CalculusDifferential\wedgeD{(}{)}[setargsep=\wedge]

$\int \vf \intD{\vx[1],

\vx[2],...,\vx[n]}$,

$\int \vf \wedgeD{\vx[1],

\vx[2],...,\vx[n]}$

∫
f dx1 dx2 · · · dxn,∫
f dx1 ∧ dx2 ∧ · · · ∧ dxn

25

15 The parse routine

As you can see above, SemanTEX has a “waterfall-like” behaviour. It runs keys
in the order it receives them. This works fine most of the time, but for some
more complicated constructions, it is useful to be able to provide a data set in
any order and have them printed in a fixed order. For this purpose, we have
the parse routine.

Suppose we want to be able to write the set of n×m-matrices with entries
in k as Matn×m(k). We can in principle do the following:

\NewObject\MyVar\Mat{

\operatorname{Mat}}

$ \Mat[\vn\times\vm]{\vk} $.

Matn×m(k).

However, this is not quite as systematic and semantic as we might have wanted.
Indeed, what if later you would like to change the notation to Matn,m(k)? (In
this case, you could use multi-value keys, though.) In this chapter, we show
how to eanble a syntax like the following instead:

$ \Mat[rows=\vn,columns=\vm

]{\vk} $, $ \Mat[rows=\vn,

columns=\vn]{\vk} $

Matn×m(k), Matn(k)

The important ingredient here is the parse routine. This routine is executed
right before the function is being rendered, and you can add code to it via the
key parseoptions. However, we need a bit more programming keys to make it
work. Let us see it in action and explain the syntax below:

\NewObject\MyVar\Mat{\operatorname{Mat}}[

% We provide data sets "rows" and "columns" to

% be set up by the user later

dataprovide={rows},

dataprovide={columns},

valuekeys={

{rows}{ dataset={rows}{#1} }, % set the rows data set

{columns}{ dataset={columns}{#1} }, % set the columns data

set

},

parseoptions={ % Here we add code to the parse routine

% We check whether columns = rows. If so, we only write

% the number once

ifeqTF={\SemantexDataGetExpNot{columns}}

{\SemantexDataGetExpNot{rows}}

{

% We use a very weird key called "setkeysx" -- this

% fully executes the content of the keys before

% setting them

setkeysx={

lower={\SemantexDataGetExpNot{columns}},

},

}

{

setkeysx={

lower={

\SemantexDataGetExpNot{rows}

26

\times

\SemantexDataGetExpNot{columns}

},

},

},

},

]

Here we used a lot of programmking keys. Let us see the full list of them.
(An important notice: For some of these keys, such as boolifTF, you currently
cannot use spaces in the 〈bool〉 argument, so e.g. boolifTF{ mybool } { ...

} { ... } will not work; you have to write boolifTF{mybool}. I am trying to
solve this problem, but have not yet been able to do so.)

dataprovide={〈data〉}, % provides data

dataset={〈data〉}{〈value〉}, % sets data

datasetx={〈data〉}{〈value〉}, % sets data after expanding it

dataputright={〈data〉}{〈value〉}, % adds to the right of data

dataputrightx={〈data〉}{〈value〉}, % adds to the right of data

after expanding it

dataputleft={〈data〉}{〈value〉}, % adds to the left of data

dataputleftx={〈data〉}{〈value〉}, % adds to the left of data

after expanding it

dataclear={〈data〉,} % clears a piece of data

setkeys={〈keys〉}, % sets the keys in question, which is rather

useless since you could have just written those keys directly

instead

keysset={〈keys〉}, % equivalent to setkeys

setkeysx={〈keys〉}, % executes the keys in question after

expanding them

keysset={〈keys〉}, % equivalent to setkeysx

ifeqTF={〈str1〉}{〈str2〉}{〈if true〉}{〈if false〉}, % checks if

strings are equal

ifeqT={〈str1〉}{〈str2〉}{〈if true〉},
ifeqF={〈str1〉}{〈str2〉}{〈if false〉},
ifblankTF={〈str〉}{〈if true〉}{〈if false〉}, % checks if string is

blank

ifblankT={〈str〉}{〈if true〉},
ifblankF={〈str〉}{〈if false〉},
boolprovide={〈bool〉}, % provides a boolean

boolsettrue={〈bool〉}, % sets the boolean to true

boolsetfalse={〈bool〉}, % sets the boolean to false

boolifTF={〈bool〉}{〈if true〉}{〈if false〉}, % checks if boolean

is true

boolifT={〈bool〉}{〈if true〉},
boolifF={〈bool〉}{〈if false〉,
intprovide={〈int〉}, % provides an integer

intclear={〈int〉}, % sets the integer to 0

intincr={〈int〉}, % adds 1 to the integer

intset={〈int〉}{〈value〉}, % sts the integer

intifgreaterthanTF={〈num1〉}{num2〉}{〈if true〉}{〈if false〉}, %

checks which number of greater

intifgreaterthanT={〈num1〉}〈{num2〉}{〈if true〉},
intifgreaterthanF={〈num1〉}{〈num2〉}{〈if false〉},

27

intifequalTF={〈num1〉}{num2〉}{〈if true〉}{〈if false〉}, % checks

if the numbers are equal

intifequalT={〈num1〉}〈{num2〉}{〈if true〉},
intifequalF={〈num1〉}{〈num2〉}{〈if false〉},
intiflessthanTF={〈num1〉}{num2〉}{〈if true〉}{〈if false〉}, %

checks which number of less

intiflessthanT={〈num1〉}〈{num2〉}{〈if true〉},
intiflessthanF={〈num1〉}{〈num2〉}{〈if false〉},
ERRORkeyvaluenotfound={〈key〉}{〈value〉}, % throws an error

saying that the key has been set to an unkonwn value

ERROR={〈error text〉}, % throws a general error with the

provided error test

execute={〈error text〉}, % executes the code in question

When using these keys (including inside the key execute), you can use a
number of commands that provide and manipulate data. Most of them are just
command versions of the keys above, and for now, I leave it to the reader to
guess what they do based on the above picture:

\SemantexDataProvide

\SemantexDataSet

\SemantexDataSetx

\SemantexDataPutRight

\SemantexDataPutRightx

\SemantexDataPutLeft

\SemantexDataPutLeftx

\SemantexDataGet

\SemantexDataGetExpNot

\SemantexDataClear

\SemantexKeysSet

\SemantexKeysSetx

\SemantexStrIfEqTF

\SemantexStrIfEqT

\SemantexStrIfEqF

\SemantexIfBlankTF

\SemantexIfBlankT

\SemantexIfBlankF

\SemantexBoolProvide

\SemantexBoolSetTrue

\SemantexBoolSetFalse

\SemantexBoolIfTF

\SemantexBoolIfT

\SemantexBoolIfF

\SemantexIntProvide

\SemantexIntGet

\SemantexIntClear

\SemantexIntIncr

\SemantexIntSet

\SemantexIntIfGreaterThanTF

\SemantexIntIfGreaterThanT

\SemantexIntIfGreaterThanF

\SemantexIntIfEqualTF

\SemantexIntIfEqualT

\SemantexIntIfEqualF

\SemantexIntIfLessThanTF

28

\SemantexIntIfLessThanT

\SemantexIntIfLessThanF

\SemantexExpNot##1

\SemantexERRORKeyValueNotFound

\SemantexERROR

Let us look at a more complicated example: Let us create a command for
partial derivatives:

\NewObject\MyVar\partialdif[

nopar,

boolprovide={raisefunction},

boolsettrue={raisefunction},

setidots=\cdots,

setisep=\,,

valuekeys={

{default}{

si={\partial #1},

},

{raise}{

ifeqTF={#1}{true}

{

boolsettrue={raisefunction},

}

{

ifeqTF={#1}{false}

{

boolsetfalse={raisefunction},

}

{

ERRORkeyvaluenotfound={raise}{#1},

},

},

},

},

parseoptions={

ifblankTF={ \SemantexDataGet{upper} }

{

intifgreaterthanTF={ \SemantexIntGet{numberoflowerindices

} } { 1 }

{

setkeysx={

symbol={

\frac

{

\partial ^ { \SemantexIntGet{numberoflowerindices

} }

\SemantexBoolIfT{raisefunction}

{

\SemantexDataGet{arg}

}

}

{

\SemantexDataGet{lower}

}

29

},

},

}

{

setkeysx={

symbol={

\frac

{

\partial

\SemantexBoolIfT{raisefunction}

{

\SemantexDataGet{arg}

}

}

{

\SemantexDataGet{lower}

}

},

}

},

}

{

setkeysx={

symbol={

\frac

{

\partial ^ { \SemantexDataGet{upper} }

\SemantexBoolIfT{raisefunction}

{

\SemantexDataGet{arg}

}

}

{

\SemantexDataGet{lower}

}

},

},

},

dataclear={lower},

dataclear={upper},

boolifT={raisefunction}

{

dataclear={arg},

dataclear={numberofarguments},

},

},

]

Let us see it in action:

30

\[

\partialdif[\vx,\vy,\vz]{

\vf } ,

\partialdif[\vu^2,\vv^2,

d=4]{ \vf },

\partialdif[\vx[1],

\vx[2],...,\vx[\vn],

d=\vn]{ \vf }

\]

\[

\partialdif[\vx,\vy,\vz,

raise=false]{ \vf } ,

\partialdif[\vu^2,\vv^2,

d=4,raise=false]{

\vf },

\partialdif[\vx[1],

\vx[2],...,\vx[\vn],

d=\vn,raise=false]{

\vf }

\]

∂3f

∂x∂y ∂z
,
∂4f

∂u2∂v2 ,
∂nf

∂x1∂x2 · · · ∂xn

∂3

∂x∂y ∂z
f ,

∂4

∂u2∂v2 f ,
∂n

∂x1∂x2 · · · ∂xn
f

As you see, we use the d key to tell the command what superscript it should
put on the ∂ in the enumerator. If it does not receive a d, it counts the number
of variables you wrote and prints that. That is why the following would give
the wrong result:

\[

\partialdif[\vu^2,\vv^2]{

\vf },

\partialdif[\vx[1],

\vx[2],...,\vx[\vn]]{

\vf }

\]

∂2f

∂u2∂v2 ,
∂4f

∂x1∂x2 · · · ∂xn

16 Bugs

The biggest unsolved problem I know of is how to correctly strip spaces in
programming keys such as boolifTF. Similarly, I would also like to allow keys
to be defined using the syntax { inv } { upper=-1 } rather than {inv}{ upper

=-1 }. This will hopefully be solved soon.
For now, the system seems to work fine as long as you do “normal” things.

The only real bug that I currently know of occurs if you use the key Otherspar

in a heading. Then it all dies painfully. Then again, why the heck would you
do that in the first place? Who scales parentheses in headings?

31

	Getting started
	Example: Elementary calculus
	Example: Elementary algebra
	The spar key
	The Class command
	The return keys
	The command key
	Example: Algebraic geometry
	Example: Homological algebra
	The keys i = index and d = deg = degree
	The Cohomology class type

	Keyval syntax in arguments (Example: Cohomology with coefficients)
	Multi-value keys
	The Simple class type (Example: Derived tensor products and fibre products)
	Class types
	The Delimiter class type
	The parse routine
	Bugs

