
Examples of embedding Sage in LATEX with

SageTEX

Dan Drake and others

January 9, 2019

1 Inline Sage, code blocks

This is an example 2 + 2 = 4. If you raise the current year mod 100 (which
equals 19) to the power of the current day (9), you get 322687697779. Also,
2019 modulo 42 is 3.

Code block which uses a variable s to store the solutions:

1+1

var(’a,b,c’)

eqn = [a+b*c==1, b-a*c==0, a+b==5]

s = solve(eqn, a,b,c)

Solutions of eqn = [bc + a = 1,−ac + b = 0, a + b = 5]:[
a = −1

4
i
√

79 +
11

4
, b =

1

4
i
√

79 +
9

4
, c =

1

10
i
√

79 +
1

10

]
[
a =

1

4
i
√

79 +
11

4
, b = −1

4
i
√

79 +
9

4
, c = − 1

10
i
√

79 +
1

10

]
Now we evaluate the following block:

E = EllipticCurve("37a")

You can’t do assignment inside \sage macros, since Sage doesn’t know how to
typeset the output of such a thing. So you have to use a code block. The elliptic
curve E given by y2 + y = x3 − x has discriminant 37.

You can do anything in a code block that you can do in Sage and/or Python.
Here we save an elliptic curve into a file.

try:

E = load(’E2’)

except IOError:

E = EllipticCurve([1,2,3,4,5])

E.anlist(100000)

E.save(’E2’)

1

The 9999th Fourier coefficient of y2 + xy + 3y = x3 + 2x2 + 4x + 5 is −27.
The following code block doesn’t appear in the typeset file. . . but we can

refer to whatever we did in that code block: e = 7.

var(’x’)

f(x) = log(sin(x)/x)

The Taylor Series of f begins: x 7→ − 1
467775 x

10− 1
37800 x

8− 1
2835 x

6− 1
180 x

4− 1
6 x

2.

2 Plotting

Here’s a very large plot of the elliptic curve E.

-1 1 2 3

-10

-8

-6

-4

-2

2

4

You can use variables to hold plot objects and do stuff with them.

p = plot(f, x, -5, 5)

Here’s a small plot of f from −5 to 5, which I’ve centered:

2

-4 -2 2 4

50

100

150

On second thought, use a size of 3/4 the \textwidth and don’t use axes:

Remember, you’re using Sage, and can therefore call upon any of the software
packages Sage is built out of.

f = maxima(’sin(x)^2*exp(x)’)

g = f.integrate(’x’)

Plot g(x), but don’t typeset it.
You can specify a file format and options for includegraphics. The default

is for EPS and PDF files, which are the best choice in almost all situations.
(Although see the section on 3D plotting.)

3

If you use regular latex to make a DVI file, you’ll see a box, because DVI
files can’t include PNG files. If you use pdflatex that will work. See the
documentation for details.

When using \sageplot, you can pass in just about anything that Sage can
call .save() on to produce a graphics file:

-1 1 2 3 4 5 6

50

100

150

200

To fiddle with aspect ratio, first save the plot object:

p = plot(x, 0, 1) + circle((0,0), 1)

p.set_aspect_ratio(1)

Now plot it and see the circular circle and nice 45 degree angle:

4

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Indentation and so on works fine.

s = 7

s2 = 2^s

P.<x> = GF(2)[]

M = matrix(parent(x),s2)

for i in range(s2):

p = (1+x)^i

pc = p.coefficients(sparse=False)

a = pc.count(1)

for j in range(a):

idx = pc.index(1)

M[i,idx+j] = pc.pop(idx)

matrixprogram = matrix_plot(M,cmap=’Greys’)

And here’s the picture:
0 20 40 60 80 100 120

0

20

40

60

80

100

120

Reset x in Sage so that it’s not a generator for the polynomial ring: x

2.1 Plotting (combinatorial) graphs with TikZ

Sage now includes some nice support for plotting graphs using TikZ. Here, we
mean things with vertices and edges, not graphs of a function of one or two

5

http://www.texample.net/tikz/

variables.
The graphics in this section depends on the tkz-berge package, which is

generally only available in newer TEX distributions (for example, TEXLive 2011
and newer). That package depends in turn on TikZ 2.0, which is also only
available in newer TEX distributions. Installing both of those is in some cases
nontrivial, so this section is disabled by default.

If you have TikZ and tkz-berge and friends, remove the comment environ-
ments below.

2.2 3D plotting

3D plotting right now (Sage version 4.3.4) is problematic because there’s no
convenient way to produce vector graphics. We can make PNGs, though, so
if you pass sageplot a graphics object that cannot be saved to EPS or PDF
format, we will automatically save to a PNG file, which can be used when
typesetting a PDF file, but not when creating a DVI file. However, you can
specify the “imagemagick” option, which will use the Imagemagick convert

utility to make EPS files. See the documentation for details.
Here’s a 3D plot whose format we do not specify; it will automatically get

saved as a PNG file and won’t work when using latex to make a DVI file.

Here’s the (perhaps-not-so-) famous Sage cube graph in 3D.

G = graphs.CubeGraph(5)

6

7

3 Pausing SageTEX

Sometimes you want to “pause” for a bit while writing your document if you
have embedded a long calculation or just want to concentrate on the LATEX and
ignore any Sage stuff. You can use the \sagetexpause and \sagetexunpause

macros to do that.
A calculation: (SageTEX is paused) and a code environment that simulates

a time-consuming calculation. While paused, this will get skipped over.

import time

time.sleep(15)

Graphics are also skipped: SageTEX is paused; no graphic

4 Make Sage write your LATEX for you

With SageTEX, you can not only have Sage do your math for you, it can write
parts of your LATEX document for you! For example, I hate writing tabular envi-
ronments; there’s too many fiddly little bits of punctuation and whatnot. . . and
what if you want to add a column? It’s a pain—or rather, it was a pain. Just
write a Sage/Python function that outputs a string of LATEX code, and use
\sagestr. Here’s how to make Pascal’s triangle.

def pascals_triangle(n):

start of the table

s = [r"\begin{tabular}{cc|" + "r" * (n+1) + "}"]

s.append(r" & & k: & \\")

second row, with k values:

s.append(r" & ")

for k in [0..n]:

s.append("& {0} ".format(k))

s.append(r"\\")

the n = 0 row:

s.append(r"\hline" + "\n" + r"n: & 0 & 1 & \\")

now the rest of the rows

for r in [1..n]:

s.append(" & {0} ".format(r))

for k in [0..r]:

s.append("& {0} ".format(binomial(r, k)))

s.append(r"\\")

add the last line and return

s.append(r"\end{tabular}")

8

return ’’.join(s)

how big should the table be?

n = 8

Okay, now here’s the table. To change the size, edit n above. If you have
several tables, you can use this to get them all the same size, while changing
only one thing.

k:
0 1 2 3 4 5 6 7 8

n: 0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

5 Include doctest-like examples in your docu-
ment

Here are some examples of using the sageexample environment:

sage: 2+2

4

sage: print(’middle’)

sage: factor(x^2 + 2*x + 1)

(x + 1)
2

Note above that no output from the print statement appears. That is because
we have to use Python’s exec to execute that statement (and not eval()), and
we can’t get the output from that.

That said, if you want to see the plain-text output you put into your .tex file
as well as the Sage-computed typeset output, renew the sageexampleincludetextoutput
command to True:

\renewcommand{\sageexampleincludetextoutput}{True}

This can be useful to check that the two outputs are consistent. Here’s the print
statement with text output included:

9

sage: print(’middle’)

middle

When typesetting your document, the validity of the outputs is not checked. In
fact, the provided outputs are completely ignored:

sage: is_prime(57)

toothpaste

False

Multiline statements with the “....:” continuation marks are supported, as
are triple-quoted strings delimited by single quotes (double quotes won’t work):

sage: gcd([5656565656,

....: 4747474747,

....: 123456789])

1

sage: mystr = ’’’my

....: string

....: has

....: several

....: lines.’’’

sage: len(mystr)

28

sage: def f(a):

....: ’’’This function is really quite nice,

....: although perhaps not very useful.’’’

....: print("f called with a = {}".format(a))

....: y = integrate(SR(cyclotomic_polynomial(10)) + a, x)

....: return y + 1

sage: f(x)

1

5
x5 − 1

4
x4 +

1

3
x3 + x + 1

Note that the “f called with. . . ” stuff doesn’t get typeset, since when running
Sage on example.sagetex.sage, that gets printed to the terminal.

Typesetting your document produces a file named example doctest.sage

containing all the doctest-like examples, and you can have Sage check them for
you with:

$ sage -t example_doctest.sage

10

You should get a doctest failure from the “toothpaste” line above. The line
numbers from sage -t refer to the “_doctest.sage” file.

Beware that sage -t does not really handle file names with special charac-
ters in them, particularly dashes, dots, and spaces—this ultimately comes from
the way Python interprets import statements. Also, running doctests on files
outside the main Sage library does not always work, so contact sage-support

if you run into troubles.
Some more examples. This environment is implemented a little bit differently

than the other environments, so it’s good to make sure that definitions are
preserved across multiple uses. This will correctly define a, but not print its
output because the statement is made up of a sequence of expressions and we
can’t use Python’s eval(); we have to use exec and we can’t capture the output
from that.

sage: 1; 2; a=4; 3; a

However, after that, Sage should remember that a = 4 and be able to use that
in future sageexample blocks:

sage: f(a)

1

5
x5 − 1

4
x4 +

1

3
x3 − 1

2
x2 + 5x + 1

6 Plotting functions in TikZ with SageTEX

(The code in this section should work with any reasonable version of TikZ,
which means it should work with all but the most terribly out-of-date TEX
installations—but to make sure we can accomodate everyone, the code here is
commented out. You can almost certainly uncomment and run them. Make
sure you do \usepackage{tikz} in the preamble.)

7 The sagecommandline environment

When writing a TEX document about Sage, you may want to show some ex-
amples of commands and their output. But naturally, you are lazy and don’t
want to cut and paste the output into your document. “Why should I have to
do anything? Why can’t Sage and TEX cooperate and do it for me?” you may
cry. Well, they can cooperate:

1sage: 1+1

22

3sage: is_prime (57)

4False

5sage: if is_prime (57):

6....: print(’prime ’)

7....: else:

8....: print(’composite ’)

11

Note that the output of the commands is not included in the source file, but
are included in the typeset output.

Because of the way the environment is implemented, not everything is ex-
actly like using Sage in a terminal: the two commands below (and the “if is
prime” one above, did you notice that?) would produce some output, but don’t
here:

9sage: x = 2010; len(x.divisors ())

10sage: print(’Hola , mundo!’)

The difference lies in the Python distinction between statements and expres-
sions; we can use eval() for an expression and get its output, but we must use
exec for a statement and can’t get the output, if any.

One nice thing is that you can set labels by using an @ sign:

11sage: l = matrix ([[1,0 ,0] ,[3/5,1 ,0] ,[-2/5 ,-2,1]])

12sage: d = diagonal_matrix ([15, -1, 4])

13sage: u = matrix ([[1 ,0 ,1/3] ,[0 ,1 ,2] ,[0 ,0 ,1]]) # foo

14sage: l*d*u # this is a comment

15[15 0 5]

16[9 -1 1]

17[-6 2 6]

And then refer to that label: it was on line 12, which is on page 12. Note
that the other text after the hash mark on that line does not get typeset as
a comment, and that you cannot have any space between the hash mark and
the @. You will also need to typeset your document twice

You can also typeset the output by changing the value of \sagecommandlinetextoutput
to False:

18sage: l*d*u 15 0 5
9 −1 1
−6 2 6

19sage: x = var(’x’)

20sage: (1-cos(x)^2).trig_simplify ()

sin (x)
2

The Sage input and output is typeset using the listings package with the
styles SageInput and SageOutput, respectively. If you don’t like the defaults
you can change them. It is recommended to derive from DefaultSageInput

and DefaultSageOutput, for example. . . makes things overly colorful:

21sage : p i . n (100)
223.1415926535897932384626433833

12

Plotting things doesn’t automatically pull in the plot, just the text repre-
sentation of the plot (the equivalent of applying str() to it):

23sage: plot(sin(x), (x, 0, 2*pi))

24Graphics object consisting of 1 graphics primitive

You can include output, but it will be ignored. This is useful for doctesting,
as all the sagecommandline environment things get put into the “ doctest.sage”
file. However, note that if you don’t include any output, then the corresponding
doctest will fail if the command produces output. The doctest output from this
file will have lots of failures because not many of the commands have output
included in the source .tex file.

The command below has incorrect output included in the .tex file; in
the PDF, you see the correct Sage-computed answer, but if you do sage -t

example doctest.sage you will get a genuine doctest failure.

25sage: factor(x^2 + 2*x + 1)

26(x + 1)^2

13

	Inline Sage, code blocks
	Plotting
	Plotting (combinatorial) graphs with TikZ
	3D plotting

	Pausing SageTeX
	Make Sage write your LaTeX for you
	Include doctest-like examples in your document
	Plotting functions in TikZ with SageTeX
	The sagecommandline environment

