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Comments About Version 2.0

Version 2.0 of the readarray package has brought major changes, including a
new and improved syntax. Functionally, the data-reading/parsing code of the
package has been revised to use the powerful listofitems package. This has
two primary advantages: 1) the data that is read is no longer expanded prior
to the read, so that macros can be read and stored in the data arrays using
their unexpanded tokens; and 2) list separators other than a space may now be
employed to parse the data into array cells.

While a newer preferred syntax has been introduced for reading and recalling
arrays, the deprecated syntax is still supported. The user will also note other
small changes, such as the fact that errors arising from array-boundary viola-
tions now appear in the log file rather than the document itself.

1 Description and Commands

The readarray package allows for the creation of data arrays (numeric, string, or
even formatted) using either file contents or \def format for input, such that the
elements of multiple arrays can be set and later recalled in an orderly fashion,
on a cell-by-cell basis. Routines have been developed to support the storage and
recall of both 2-D and 3-D arrays, as well as 1-D file-record arrays.1

1Note: for 1-D arrays that are to be simply parsed on the basis of a specified separator,
the listofitems package is already prepared to do this, without the help of this package.
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The commands included in this package help the user to input data, define it
in terms of array elements, and recall those elements at will. Those commands
are:

To place file data into a data macro:
\readdef{filename}\data-macro

To place file data into a 1-D file-record array:
\readrecordarray{filename}\array-identifier

To parse a data macro and place the results into a 2-D or 3-D array:
\readarray\data-macro\array-identifier[-,columns] (2-D)
\readarray\data-macro\array-identifier[-,rows,columns] (3-D)

Same as above, with leading/trailing spaces removed from array cells:
\readarray*\data-macro\array-identifier[-,columns] (2-D)
\readarray*\data-macro\array-identifier[-,rows,columns] (3-D)

Recall data from indexed array cell:
\array-identifier[row,column] (2-D)
\array-identifier[plane,row,column] (3-D)

To place the actual tokens of an array cell into a macro:
\arraytomacro\array-identifier[-,columns]\macro (2-D)
\arraytomacro\array-identifier[-,rows,columns]\macro (3-D)

To change the array-parsing separator character:
\readarraysepchar{parsing-separator-char}

To select the level of bounds checking on array cell recall:
\nocheckbounds OR \checkbounds OR \hypercheckbounds

In these commands, \data-macro is a command sequence into which the contents
of filename are set into a \def. The array-identifier is a sequence of (catcode
11) letters that identify the array. The starred version of the commands are
used if, during the array creation, it is desired to automatically excise the array
data of leading and trailing spaces.

Unlike earlier versions of this package, where error messages were output into the
typeset document, error messages are now set in the log file. The level of error
messaging is defined by the level of bounds checking, with \hypercheckbounds
providing the most intense level of error checking. When a bounds-checking
error is found in an array invocation, in addition to the error message in the log
file, a “?” is typeset in the document, unless bound checking is disabled with
\nocheckbounds.

Several strings of fixed name are defined through the use the \readdef com-
mand, which are accessible to the user:

\nrows
\ncols
\nrecords
\ArrayRecord[record] (to retrieve record from most recent \readdef)
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The macros \nrows and \ncols, which were gleaned from the file structure, may
be used in the subsequent \readarray invocation to specify the array dimen-
sions. Alternately, those values may be manually overridden by specifying the
desired values in the \readarray invocation. Individual records of the original
file, from the most recent \readdef, may be recalled with the \ArrayRecord
macro.

In addition to the strings of fixed name created during the \readdef, there are
various strings created during the \readarray whose name is a function of the
array-identifier, such as

\array-identifierCELLS
\array-identifierPLANES
\array-identifierROWS
\array-identifierCOLS

where array-identifier is the alphabetic-character string by which you have des-
ignated a particular array. Their meaning will be discussed later in this docu-
ment.

Support routines which are generally not required directly by the user for the
specification and recall of data arrays, but which are useful for debugging include
the following:

\arraydump\array-identifier
\scalardump\array-identifier

These macros print out the complete array, in either a structured or unstruc-
tured form, respectively.

2 Data Structure

The first requirement is to lay out a format for the data interface to this pack-
age. The readarray package is set up to digest data separated by a user-defined
separator character. The default separator is a space character but, as of V2.0,
the separator may be specified by way of \readarraysepchar{separator}. The
format for the data organization to be digested is as follows, for 2-D arrays:

A11 〈pe
s〉 A12 〈pe

s〉 A13 〈pe
s〉 . . . A1(columns)

A21 〈pe
s〉 A22 〈pe

s〉 . . .
...
A(rows)1 〈pe

s〉 A(rows)2 〈pe
s〉 A(rows)3 〈pe

s〉 . . . A(rows)(columns)

For 3-D arrays, the following structure is employed:
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A111 〈pe
s〉 A112 〈pe

s〉 A113 〈pe
s〉 . . . A11(columns)

A121 〈pe
s〉 A122 〈pe

s〉 . . .
...
A1(rows)1 〈pe

s〉 A1(rows)2 〈pe
s〉 A1(rows)3 〈pe

s〉 . . . A1(rows)(columns)

<blank line>

A211 〈pe
s〉 A212 〈pe

s〉 A213 . . . A21(columns)

A221 〈pe
s〉 A222 〈pe

s〉 . . .
...
A2(rows)1 〈pe

s〉 A2(rows)2 〈pe
s〉 A2(rows)3 〈pe

s〉 . . . A2(rows)(columns)

...

A(planes)11 〈pe
s〉 A(planes)12 〈pe

s〉 A(planes)13 〈pe
s〉 . . . A(planes)1(columns)

A(planes)21 〈pe
s〉 A(planes)22 〈pe

s〉 . . .
...
A(planes)(rows)1 〈pe

s〉 A(planes)(rows)2 〈pe
s〉 A(planes)(rows)3 〈pe

s〉 . . . A(planes)(rows)(columns)

Here, 〈pes〉 is the data separator that is used to parse the input. Terms like
A(plane)(row)(column) refers to the LATEX-formatted data to be associated with
the particlar plane, row, and column of data. Note, that for 3-D arrays, a blank
line can be used to signify to the parsing algorithm the size of a data plane
(alternately, the number of rows per data plane can be explicitly provided to
the \readarray command).

3 Getting Data into Array Structures

One can provide data to be digested by this package in one of two ways: either
through an external file, or by way of “cut and paste” into a \def. If one chooses
the external file approach, the command \readdef is the command which can\readdef
achieve this result. The command takes two arguments. The first is the file in
which the data is stored, while the second is the data macro into which the file’s
data will be placed, for example

\readdef{data.txt}{\dataA}

In this case, the contents of the file data.txt will be placed into the data macro
\dataA. Two alterations to the format occur during this conversion from file to
\def: 1) blank lines in the file are ignored; and 2) a data separator replaces the
end-of-line. At this point, the data is still not digested into a 2-D or 3-D data
“array.” However, two things have been accomplished: 1) the file contents are
\def’ed into the data macro \dataA; and 2) they are also placed into a 1-D file
record array, \ArrayRecord.
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There is no requirement that the input file be organized with structured rows of
data corresponding to individual file records, nor that blank lines exist between
planes of data (if the data is 3-D). However, there is a reason to do so, nonethe-
less. In particular, for datafiles that are organized in the preferred fashion, for
example:

A111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134

A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234

a \readdef attempts to estimate the number columns, and rows-per-plane of
the dataset by analyzing the data structure. These estimates are given by
\ncols and \nrows, in this case to values of 4 and 3, respectively. Such data\ncols

\nrows could prove useful if the array size is not known in advance. When \readdef
is invoked, a string \nrecords will also be set to the number of file records\nrecords
processed by the \readdef command, in this case, to 8. Finally, the 1-D file-
record array, \ArrayRecord, is created to allow access to the most recently\ArrayRecord
read file records. For example, \ArrayRecord[3] produces: “A131 A132 A133
A134”. Note, however, that the array, \ArrayRecord, will be overwritten on the
subsequent invocation of \readdef.

Because \ArrayRecord is only a 1-D file-record array, the actual array metrics,
given by \ArrayRecordCOLS, \ArrayRecordROWS, \ArrayRecordPLANES, and
\ArrayRecordCELLS are 0, 8, 0, and 8, respectively, which do not align with the
estimations provided by \ncols and \nrows.

In lieu of \readdef, a generally less preferred, but viable way to make the data
available is to cut and paste into a \def. However, because a blank line is not
permitted as part of the \def, a filler symbol (% or \relax) must be used in its
place, if it is desired to visually separate planes of data, as shown in the \def
example at the top of the following page. Note that the % is also required at
the end of the line containing \def, in order to guarantee that, in this case,
A111 is the first element of data (and not a space separator). However, unlike
\readdef, this definition will neither set the value of \ncols nor \nrows.
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\def{\dataA}{%
A111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134
%
A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234
}

Once the data to be placed into an array is available in a macro, by way of either
\readdef or \def, the command to digest the data into an array is \readarray
for the case of 2-D or 3-D data. For 1-D file-record arrays, in contrast, the
\readrecordarray command is used to go directly from a file into the 1-D
array, bypassing the intermediate step of a data macro.

3.1 1-D File-Record Arrays

If the desire is merely to parse a string of data based on a common data separa-
tor, such as a comma or any other character, there is no need to use the readarray
package. The listofitems package, which is employed by readarray, already has
those provisions and should be used directly.2

On the other hand, if one wishes a 1-D file-record array, in which each array
element corresponds to the record from a file, then readarray can be used. The
command \readrecordarray can be used to stick the individual “file records”
from a designated file into a 1-D array.

The \readrecordarray command takes two arguments: a file name containing
data records, and the name of a 1-D record-array into which to place the file
records.

So, for example, with the invocation of \readrecordarray{data.txt}\oneD,
the data from the file data.txt is now saved in the \oneD array, and can be
retrieved, for example, the 3rd record, with \oneD[3], which returns “A131
A132 A133 A134”.

If an array name is reutilized, its prior definitions are cleared, so that “old” data
is not inadvertantly retrieved following the reutilization.

2For a simple 1-D list punctuated by data separators, one may use the listofitems package
directly:

\setsepchar{ }
\readlist\oneDlist{\dataA}
\oneDlistlen{} list items, 12th item is ‘‘\oneDlist[12]’’.

which produces the following output: 25 list items, 12th item is “A134”.
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3.2 Creating 2-D and 3-D Arrays

The \readarray command, used to convert raw parsable data into data arrays,\readarray
takes three arguments. The first is the data macro into which the unarrayed
raw data had previously been stuffed (e.g., by way of \readdef or \def). The
second is array-identifier macro into which the parsed data is to be placed.
Finally, the last compound argument, enclosed in square brackets, denotes the
rank and range of the array to be created.

There is a starred version of the command, \readarray*, which is used to
remove leading/trailing spaces from the array elements, when parsed. This
option, is only relevant when the data separator is not already a space.

If an array name is reutilized, its prior definitions are cleared, so that “old” data
is not inadvertantly retrieved following the reutilization.

3.2.1 2-D Arrays

For a 2-D array, this last argument of \readarray will be of the form
[-,<columns>]. If the data had recently been read by way of \readdef, the
string \ncols may be used to signify the <columns> value. The - (or any other
character before the initial comma) reminds us that the range of row numbers
is not specified in advance, but is dictated by the length of the data macro
containing the raw file data. For such a 2-D array, only the column range is
specified.

Consider, for example, the previously discussed file, dataA.txt, which had been
digested into the data macro \dataA. One can process that as a 2-D array
with an invocation of \readarray\dataA\twoD[-,\ncols], since \ncols had
been set to a value of 4, based on the prior \readdef. Thereafter, data may
be retieved, for example the 3rd row, 2nd column, with \twoD[3,2], to give
“A132”.

The actual array size is given by \twoDROWS, \twoDCOLS, \twoDCELLS as 6, 4,
and 24, respectively. The number of rows in the array is fewer than the number
of file records, 8, because blank rows in the input file are ignored. One should
also note that if the end of the data stream results in a partial final row of data,
the partial row will be discarded.

3.2.2 3-D Arrays

For the 3-D case, the only difference in the invocation of \readarray is in the
3rd argument, in which the rank and range of the array is specified. This last
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argument will be of the form [-,<rows>,<columns>]. As before, the - denotes
the fact that the range of the planes of data is unknown before the fact, and
governed by the length of data in the dataset. Only the range of rows and
columns are specifiable here. If \readdef had been used on a properly formed
input file, both \nrows and \ncols may be used to supply the range arguments
of the 3-D array.

For example, using the same \dataA dataset, but reading it as a 3-D array can
be accomplished with \readarray\dataA\threeD[-,\nrows,\ncols]. This re-
sults in an array with 2 planes, 3 rows, and 4 columns (24 data cells total). Data
from the 2nd plane, 1st row, 2nd column can be obtained via \threeD[2,1,2]
as “A212”.

If, perchance, a row or plane is only partially defined by \readarray, the partial
data is discarded from the array.

3.2.3 Array Parsing Separator

While it may be easily envisioned that the array data is numerical, this need
not be the case. The array data may be text, and even formatted text.

Furthermore, one may introduce space characters into the data of individual
cells simply by resetting the readarray parsing separator to something other
than the default space, “ ”. This can be done, for example employing a comma
as the separator, by way of \readarraysepchar{,}.\readarraysepchar

Note also, using the facilities of the underlying listofitems package, that com-
pound separators are possible. For example, either a comma or a period may
be used for the data parsing, by specifying a logical-OR (||) separated list:
\readarraysepchar{,||.}. Similarly, a multicharacter separator is possible,
so that setting \readarraysepchar{!!} will cause \readarray to look for in-
stances of “!!” to divide the data into separate array elements.

Consider the following comma-separated input in, let us say, the file conjuga-
tion.txt.

\textit{am} , \textit{are}, have \textit{been}, have \textit{been}
\textit{are}, \textit{are} , have \textit{been}, have \textit{been}
\textit{is} , \textit{are} , has \textit{been} , have \textit{been}

\textit{was} , \textit{were}, had \textit{been}, had \textit{been}
\textit{were}, \textit{were}, had \textit{been}, had \textit{been}
\textit{was} , \textit{were}, had \textit{been}, had \textit{been}

will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}
will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}
will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}
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The sequence of commands

\readarraysepchar{,}
\readdef{conjugation.txt}\dataC
\readarray*\dataC\tobeConjugation[-,\nrows,\ncols]

will employ a comma separator to parse the file. It will then create a 3-D
array using data from the file, placed into the array \tobeConjugation. Lead-
ing/trailing spaces will be removed from the data, with the use of the star form
of the \readarray command. Data can then be directly accessed, so that, for
example \tobeConjugation[1,3,3] will yield the entry from the 1st plane, 3rd
row, 3rd column as “has been”.

The 3-D array metrics are \tobeConjugationPLANES, \tobeConjugationROWS,
\tobeConjugationCOLS, and \tobeConjugationCELLS, which are here given as
3, 3, 4, and 36. respectively.

4 Recalling Data from Array Structures

While one must specify the number of columns and/or rows associated with
the \readarray invocation, those numbers may not yet be known to the user,
if the values employed came from the \readdef estimations of \ncols and
\nrows. Therefore, the \readrray command variants also define the following\array-identifierCELLS

\array-identifierPLANES
\array-identifierROWS
\array-identifierCOLS

strings: \array-identifierCELLS, \array-identifierPLANES, \array-identifierROWS,
and \array-identifierCOLS, where \array-identifier is the array name sup-
plied to the \readarray command. Note, for 3-D arrays, that

\array-identifierCELLS =
\array-identifierPLANES × \array-identifierROWS × \array-identifierCOLS

For the \tobeConjugation example of the prior section, 36=3×3×4. Likewise,
for 2-D arrays

\array-identifierCELLS = \array-identifierROWS × \array-identifierCOLS

To retrieve the data from the array, one merely supplies the array name in the
form of \array-identifier , along with the array-cell nomenclature in the form of\array-identifier[...]
[plane,row,column] for 3-D arrays, [row,column] for 2-D arrays, and [row]
for 1-D arrays.

Thus, in the case of the earlier example involving conjugation of the verb to be,
the second-person future-perfect tense of the verb is given by

\tobeConjugation[3,2,4]

9



which yields “will have been”.

5 Bounds Checking

While the user is developing his or her application involving the readarray pack-
age, there may accidentally arise the unintended circumstance where an array
element is requested which falls outside the array bounds. In general, when a
non-existent array element is requested in the absence of bounds checking, the
call will expand to \relax.

The package provides three declarations to set the manner in which array bounds
are be monitored. The setting \nocheckbounds is used when bounds are not\nocheckbounds
to be checked. This is the default behavior for readarray. For some bounds
checking, \checkbounds may be set. With this setting, bounds violations are\checkbounds
noted, but no guidance is provided as to the allowable index range for the array.
However, with \hypercheckbounds set, full bounds checking is possible. With\hypercheckbounds
this setting, not only are violations noted, but a description of the actual array
range is provided.

As of V2.0, bounds violations are noted in the log file, rather than the document
itself. However, if an array bound is violated when bounds checking is turned
on, a “?” shows up in the document itself.

6 Accessing Array Cells if Full Expansion is Re-
quired (e.g., placed in an \edef)

If full expansion is required of array cell contents (and assuming the cell content
is expandable), it is advisable to set \nocheckbounds, so that the error checking
code is not included in the expansion. Results may be also expanded even with
\checkbounds set, though the error-checking code is part of the expansion.
However, with \hypercheckbounds set, full expansion of array cells is no longer
possible.

7 Accessing Array Cells if No Expansion is Re-
quired

With the normal use of \array-identifier syntax for accessing array cells, several
levels of expansion are required to directly recover the original tokens of the cell,
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and then only when bounds checking is disabled. When the actual unexpanded
tokens of cell are required, the use of the \arraytomacro command provides\arraytomacro
the means to accomplish this. The command takes the array name and index
as the initial arguments followed by a generic macro name into which to place
the unexpanded tokens of the indexed array cell.

So, for example \arraytomacro\tobeConjugation[2,2,3]\thiscell will place
the cell’s original tokens in the macro \thiscell. Upon detokenization, \thiscell
contains “had \textit {been}”.

8 Support Routines

The package provides two commands that can help one understand how a data
set has been parsed into an array. Both of these commands dump the specified
array to the document. In the case of \arraydump, the array is formatted in\arraydump
the structure of the array, broken up by columns, rows, and planes. In the case
of \scalardump, however, the elements of the array are dumped sequentially,\scalardump
without reference to the array’s heirarchy.

For the case of 1-D record array \oneD employed in prior sections, for example,
the invocations of

\arraydump\oneD
\scalardump\oneD

results in

1-D:
A111 A112 A113 A114 <Record 1>

A121 A122 A123 A124 <Record 2>

A131 A132 A133 A134 <Record 3>

<Record 4>

A211 A212 A213 A214 <Record 5>

A221 A222 A223 A224 <Record 6>

A231 A232 A233 A234 <Record 7>

<Record 8>

8 ELEMENTS:
A111 A112 A113 A114 A121 A122 A123 A124 A131 A132 A133 A134 A211
A212 A213 A214 A221 A222 A223 A224 A231 A232 A233 A234
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The \twoD equivalent, resulting from parsing the same data file as a 2-D, rather
than a 1-D record array, is

\arraydump\twoD
\scalardump\twoD

2-D:
A111 A112 A113 A114 <Row 1>

A121 A122 A123 A124 <Row 2>

A131 A132 A133 A134 <Row 3>

A211 A212 A213 A214 <Row 4>

A221 A222 A223 A224 <Row 5>

A231 A232 A233 A234 <Row 6>

24 ELEMENTS:
A111 A112 A113 A114 A121 A122 A123 A124 A131 A132 A133 A134 A211
A212 A213 A214 A221 A222 A223 A224 A231 A232 A233 A234

For the case of the 3-D array (earlier read as \threeD), the \arraydump would
appear as

\arraydump\threeD
\scalardump\threeD

3-D: Plane 1
A111 A112 A113 A114 <Row 1>

A121 A122 A123 A124 <Row 2>

A131 A132 A133 A134 <Row 3>

Plane 2
A211 A212 A213 A214 <Row 1>

A221 A222 A223 A224 <Row 2>

A231 A232 A233 A234 <Row 3>

24 ELEMENTS:
A111 A112 A113 A114 A121 A122 A123 A124 A131 A132 A133 A134 A211
A212 A213 A214 A221 A222 A223 A224 A231 A232 A233 A234

Note that the \scalardump of \threeD is indistinguishable from that of \twoD,
since both arrays are comprised of the same data cells, though arrayed into
different plane/row/column structures.
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For comparison, the \arraydump of \tobeConjugation is

3-D: Plane 1
am are have been have been <Row 1>

are are have been have been <Row 2>

is are has been have been <Row 3>

Plane 2
was were had been had been <Row 1>

were were had been had been <Row 2>

was were had been had been <Row 3>

Plane 3
will be will be will have been will have been <Row 1>

will be will be will have been will have been <Row 2>

will be will be will have been will have been <Row 3>

9 Deprecated, Vestigial, and Defunct Features

Deprecated

The following commands are supplied, but are no longer the preferred embodi-
ment of package syntax.

\copyrecords{array-identifier}
\readArrayij{\data-macro}{array-identifier}{columns}
\readArrayij*{\data-macro}{array-identifier}{columns}
\readArrayijk{\data-macro}{array-identifier}{rows}{columns}
\readArrayijk*{\data-macro}{array-identifier}{rows}{columns}
\showrecord[error]{record number}
\Arrayij[error]{array-identifier}{row}{column}
\Arrayijk[error]{array-identifier}{plane}{row}{column}
\arrayij{array-identifier}{row}{column}
\arrayijk{array-identifier}{plane}{row}{column}

Vestigial

The following support macros are provided but no longer recommended. Their
capability is more fully served by way of the listofitems package.

\getargsC{\macro or string}
\argindex
\narg
\showargs
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Note that whereas \getargs could previously (pre-V2.0 readarray) employ only
a space as the parsing separator, \getargs now respects the currently set value
of separator, as (re)defined by \readarraysepchar.

Defunct

The following macros are no longer supported.

\converttilde
\recordindex

Since the package now supports arbitrary parsing separators, there is no need
for the function of \converttilde. However, were one desiring to parse, while
treating hard spaces as spaces, this can be simply achieved under V2.0 readar-
ray by setting the parsing character as either a space or a hard space, using
readarraysepchar{ ||~}. Likewise, the indirect addressing (using a roman-
numeral index) provided by the internal command \recordindex is fully su-
perceded by the ability to directly address any record of readarray’s 1-D record
arrays.
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11 Code Listing

\def\readarrayPackageVersion{2.0}
\def\readarrayPackageDate{2016/11/07}
\ProvidesPackage{readarray}
[\readarrayPackageDate\ \readarrayPackageVersion\ %
Routines for inputting 2D and 3D array data and recalling it on an
element-by-element basis.]
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3c or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status ‘maintained’.
%
% The Current Maintainer of this work is Steven B. Segletes.
%
% Revisions:
% v1.01 -Documentation revision
% v1.1 -Added \csname record\roman{@row}\endcsname to \readdef
% v1.2 -Corrected the [truncated] LPPL license info
% -Added \arrayij and \arrayijk, which can be put into \edef
% -Used \romannumeral in preference to \roman{}, when possible,
% to avoid unnecessary use of counters.
% v1.3 -Moved \newread outside of \readdef, so as not to exhaust the
% 16 allotted file streams (Thanks to Ken Kubota for the tip).
% v2.0 -Converted parsing to listofitems package. This allows for
% ANY parsing character or combination of characters (via logical OR).
% -Replaced all \protected@edef’s with appropriately expanded \def’s.
% -Use listofitems package in preference to \getargsC.
% -Deprecated \Arrayijk, \arrayijk, \Arrayij, & \arrayij. Direct
% access now preferred, e.g., \xyz[2,3,1].
% -Deprecated most other commands in favor of a more natural syntax.
\RequirePackage{ifthen}
\RequirePackage{listofitems}[2016-10-22]
%
\newcounter{@index}
\newcounter{@plane}
\newcounter{@row}
\newcounter{@col}
\newcounter{use@args}
\newcounter{@record}
\newcounter{arg@index}
\newcounter{break@count}
\newcounter{index@count}
\newcounter{loop@count}
\newtoks\Arg@toks
\newtoks\@arrayident@toks
\newread\rdar@file
%
\newcommand\readdef[2]{\@readdef{#1}{#2}{ArrayRecord}}
%
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\newcommand\readrecordarray[2]{%
\edef\@arrayident{\rdar@macroname#2}%
\def\ra@TermA{\@readdef{#1}}%
\def\ra@TermB{\expandafter\ra@TermA\csname\@arrayident def\endcsname}%
\expandafter\ra@TermB\expandafter{\@arrayident}%

}
%
\newcommand\readarray{\@ifstar{\read@array@newsyntax[*]}{\read@array@newsyntax[]}}
%
\def\arraytomacro#1[#2]#3{%

\edef\@arrayident{\rdar@macroname#1[#2]}%
\@arrayident@toks=\expandafter\expandafter\expandafter{\csname\@arrayident\endcsname}%
\expandafter\def\expandafter#3\expandafter{\the\@arrayident@toks}%

}
%
\newcommand\readarraysepchar[1]{\def\read@array@sepchar{#1}}
%
\def\nocheckbounds{\def\rootmacro@aux##1##2##3{##1%
}\typeout{readarray: bounds checking OFF}%

}
%
\def\checkbounds{\def\rootmacro@aux##1##2##3{##1%

\expandafter\ifx##1\relax\readarrayboundfailmsg%
\setbox0=\hbox{\typeout{readarray Warning: ##1 out of bounds.}}%
\fi%

}\typeout{readarray: bounds checking ON}%
}
%
\def\hypercheckbounds{\def\rootmacro@aux##1##2##3{##1%

\expandafter\ifx##1\relax\readarrayboundfailmsg%
\typeout{readarray Warning: ##1 out of bounds:}%

\fi%
\setcounter{index@count}{0}%
\parse@index##3,\relax%
\setcounter{loop@count}{0}%
\whiledo{\value{loop@count}<\value{index@count}}{%

\stepcounter{loop@count}%
\ifnum\csname parsed@index[\theloop@count]\endcsname<0%

\relax\typeout{\nonposmessage{##2}{##3}}\fi%
}%
\ifnum \value{index@count}=1\relax%

\ifnum\csname parsed@index[1]\endcsname>%
\csname##2CELLS\endcsname\relax\typeout{\recordmessage{##2}{##3}}\fi%

\fi
\ifnum \value{index@count}=2\relax%

\ifnum\csname parsed@index[1]\endcsname>%
\csname##2ROWS\endcsname\relax\typeout{\rowmessage{##2}{%

\csname parsed@index[1]\endcsname}}\fi%
\ifnum\csname parsed@index[2]\endcsname>%

\csname##2COLS\endcsname\relax\typeout{\colmessage{##2}{%
\csname parsed@index[2]\endcsname}}\fi%

\fi
\ifnum \value{index@count}=3\relax%

\ifnum\csname parsed@index[1]\endcsname>%
\csname##2PLANES\endcsname\relax\typeout{\planemessage{##2}{%

\csname parsed@index[1]\endcsname}}\fi%
\ifnum\csname parsed@index[2]\endcsname>%

16



\csname##2ROWS\endcsname\relax\typeout{\rowmessage{##2}{%
\csname parsed@index[2]\endcsname}}\fi%

\ifnum\csname parsed@index[2]\endcsname>%
\csname##2COLS\endcsname\relax\typeout{\colmessage{##2}{%

\csname parsed@index[3]\endcsname}}\fi%
\fi%

}\typeout{readarray: bounds hyperchecking ON}%
}
%
\def\rdar@macroname{\expandafter\@gobble\string}
%
\def\getArg@toks[#1]{\Arg@toks\expandafter\expandafter\expandafter{\Arg@list[#1]}}
%
\newcommand\@readdef[3]{%

\clear@array{#3}%
\edef\former@recordcount{\csname #3CELLS\endcsname}%
\def\first@row{T}%
\def\first@plane{T}%
\catcode\endlinechar=9 %
\def#2{}%
\setcounter{@record}{0}%
\openin\rdar@file=#1%
\loop\unless\ifeof\rdar@file%

\read\rdar@file to\rdar@fileline % Reads a line of the file into \rdar@fileline%
\addtocounter{@record}{1}%
\expandafter\g@addto@macro\expandafter#2\expandafter{\rdar@fileline}%
\ifthenelse{\equal{\rdar@fileline}{}}{}{\expandafter\g@addto@macro%

\expandafter#2\expandafter{\read@array@sepchar}}%
\if T\first@row\read@array{#2}\setcounter{@col}{\numexpr(\Arg@listlen-1)}%

\edef\ncols{\arabic{@col}}\def\first@row{F}\setcounter{@row}{1}%
\else%

\if T\first@plane%
\ifthenelse{\equal{\rdar@fileline}{}}{%

\edef\nrows{\arabic{@row}}\def\first@plane{F}%
}{%

\addtocounter{@row}{1}%
}%

\fi%
\fi%
\def\record@name{\csname #3[\the@record]\endcsname}%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\record@name\expandafter{\rdar@fileline}%
\repeat%
\edef\nrecords{\arabic{@record}}%
\expandafter\edef\csname #3PLANES\endcsname{0}%
\expandafter\edef\csname #3ROWS\endcsname{\nrecords}%
\expandafter\edef\csname #3COLS\endcsname{0}%
\expandafter\edef\csname #3CELLS\endcsname{\nrecords}%
\closein\rdar@file%
\catcode\endlinechar=5 %
\define@rootmacro{#3}%

}
%
\def\read@array@newsyntax[#1]#2#3[#4,#5]{%

\edef\@arrayident{\rdar@macroname#3}%
\setcounter{index@count}{0}%
\parse@index#5,\relax%
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\ifnum\value{index@count}=1\relax%
\def\ra@TermA{\readArrayij#1{#2}}%
\edef\ra@TermB{{\@arrayident}{\csname parsed@index[1]\endcsname}}%
\expandafter\ra@TermA\ra@TermB%

\else
\ifnum\value{index@count}=2\relax%

\def\ra@TermA{\readArrayijk#1{#2}}%
\edef\ra@TermB{{\@arrayident}{\csname parsed@index[1]\endcsname}%
{\csname parsed@index[2]\endcsname}}%

\expandafter\ra@TermA\ra@TermB%
\fi\fi

}
%
\newcommand\read@Arrayijk[5][]{%

\clear@array{#3}%
\read@array[#1]{#2}%
\setcounter{@plane}{\numexpr(\Arg@listlen/#5/#4)}%
\setcounter{use@args}{\numexpr\arabic{@plane}*#4*#5}%
\ifthenelse{\arabic{use@args} > \Arg@listlen}{%

\addtocounter{@plane}{-1}%
\setcounter{use@args}{\numexpr\arabic{@plane}*#4*#5}%

}{}%
\expandafter\edef\csname#3PLANES\endcsname{\arabic{@plane}}%
\expandafter\edef\csname#3ROWS\endcsname{#4}%
\expandafter\edef\csname#3COLS\endcsname{#5}%
\expandafter\edef\csname#3CELLS\endcsname{\arabic{use@args}}%
\setcounter{@index}{0}%
\setcounter{@plane}{1}%
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\whiledo{\value{@index} < \value{use@args}}{%

\addtocounter{@index}{1}%
\addtocounter{@col}{1}%
\ifthenelse{\value{@col} > #5}%

{\addtocounter{@row}{1}%
\addtocounter{@col}{-#5}}%

{}%
\ifthenelse{\value{@row} > #4}%

{\addtocounter{@plane}{1}%
\addtocounter{@row}{-#4}}%

{}%
\def\arg@name{\csname#3[\the@plane,\the@row,\the@col]\endcsname}%
\getArg@toks[\the@index]%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{\the\Arg@toks}%
}%
\define@rootmacro{#3}%

}
%
\newcommand\read@Arrayij[4][]{%

\clear@array{#3}%
\read@array[#1]{#2}%
\setcounter{@row}{\numexpr(\Arg@listlen/#4)}%
\setcounter{use@args}{\numexpr\arabic{@row}*#4}%
\ifthenelse{\arabic{use@args} > \Arg@listlen}{%

\addtocounter{@row}{-1}%
\setcounter{use@args}{\numexpr\arabic{@row}*#4}%
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}{}%
\expandafter\edef\csname#3PLANES\endcsname{0}%
\expandafter\edef\csname#3ROWS\endcsname{\arabic{@row}}%
\expandafter\edef\csname#3COLS\endcsname{#4}%
\expandafter\edef\csname#3CELLS\endcsname{\arabic{use@args}}%
\setcounter{@index}{0}%
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\whiledo{\value{@index} < \value{use@args}}{%

\addtocounter{@index}{1}%
\addtocounter{@col}{1}%
\ifthenelse{\value{@col} > #4}%

{\addtocounter{@row}{1}%
\addtocounter{@col}{-#4}}%

{}%
\def\arg@name{\csname#3[\the@row,\the@col]\endcsname}%
\getArg@toks[\the@index]%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{\the\Arg@toks}%
}%
\define@rootmacro{#3}%

}
%
\newcommand\clear@array[1]{%

\expandafter\ifx\csname #1\endcsname\relax\else%
\setcounter{@row}{0}%
\whiledo{\value{@row}<\csname #1ROWS\endcsname}{%

\stepcounter{@row}%
\ifnum\csname #1COLS\endcsname=0\relax%

\expandafter\let\csname #1[\the@row]\endcsname\relax%
\else

\setcounter{@col}{0}%
\whiledo{\value{@col}<\csname #1COLS\endcsname}{%

\stepcounter{@col}%
\ifnum\csname #1PLANES\endcsname=0\relax%

\expandafter\let\csname #1[\the@row,\the@col]\endcsname\relax%
\else

\setcounter{@plane}{0}%
\whiledo{\value{@plane}<\csname #1PLANES\endcsname}{%

\stepcounter{@plane}%
\expandafter%

\let\csname #1[\the@plane,\the@row,\the@col]\endcsname\relax%
}%

\fi%
}%

\fi%
}%

\fi%
}
%
\newcommand\read@array[2][]{%

\bgroup%
\expandafter\setsepchar\expandafter{\read@array@sepchar}%
\greadlist#1\Arg@list{#2}%
\egroup%
\edef\Arg@listCELLS{\Arg@listlen}%

}
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%
\def\define@rootmacro#1{%

\expandafter\def\csname#1\endcsname[##1]{%
\expandafter\rootmacro@aux\csname #1[##1]\endcsname{#1}{##1}}%

}
%
\def\parse@index#1,#2\relax{%

\stepcounter{index@count}%
\expandafter\gdef\csname parsed@index[\theindex@count]\endcsname{#1}%
\ifx\relax#2\relax\else\parse@index#2\relax\fi%

}
% INITIALIZATION
\readarraysepchar{ }
\nocheckbounds
%
\def\nonposmessage#1#2{Negative index [#2] impermissable for #1.}
\def\recordmessage#1#2{RECORD=#2 exceeds bounds(=\csname#1CELLS\endcsname) for #1.}
\def\planemessage#1#2{PLANE=#2 exceeds bounds(=\csname#1PLANES\endcsname) for #1.}
\def\rowmessage#1#2{ROW=#2 exceeds bounds(=\csname#1ROWS\endcsname) for #1.}
\def\colmessage#1#2{COL=#2 exceeds bounds(=\csname#1COLS\endcsname) for #1.}
%
\def\the@showargs@rule{\kern.2pt\rule{.8ex}{1.6ex}\hspace{.2pt}}%
\def\readarrayboundfailmsg{?}% DISPLAYED WHEN ARRAY CALL OUT OF BOUNDS
%
% SUPPORT/DEBUG ROUTINES
%
% \arraydump INITIALIZATIONS
\def\row@spacer{\\}
\def\row@msg{\the@showargs@rule\hfill{\scriptsize\scshape$<$\row@sign~\arabic{@row}$>$}}
\def\header@msg{{\bfseries\ra@rank:}~}
\def\last@row{\\}
\def\plane@msg{\plane@sign\hrulefill\mbox{}\\}
\def\close@out{}
%
\newcommand\arraydump[1]{%

\edef\@arrayident{\rdar@macroname#1}%
\expandafter\ifx\csname\@arrayident\endcsname\relax\else%

\edef\ra@TmpA{\csname\@arrayident PLANES\endcsname}%
\edef\ra@TmpB{\csname\@arrayident COLS\endcsname}%
\def\ra@rank{3-D}%
\ifnum\ra@TmpA=0\relax\def\ra@TmpA{1}\def\plane@sign{\mbox{}}\def\ra@rank{2-D}%

\else\def\plane@sign{{\scriptsize\scshape Plane \arabic{@plane}}}\fi%
\ifnum\ra@TmpB=0\relax\def\ra@TmpB{1}\def\row@sign{Record}\def\ra@rank{1-D}%

\else\def\row@sign{Row}\fi%
\par\noindent\header@msg%
\setcounter{@plane}{0}%
\whiledo{\value{@plane}<\ra@TmpA}{%

\stepcounter{@plane}%
\plane@msg%
\setcounter{@row}{0}%
\whiledo{\value{@row}<\csname\@arrayident ROWS\endcsname}{%

\ifnum\value{@row}=0\relax\else\row@spacer\fi%
\stepcounter{@row}%
\setcounter{@col}{0}%
\whiledo{\value{@col}<\ra@TmpB}{%

\the@showargs@rule%
\stepcounter{@col}%
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\ifnum\csname\@arrayident COLS\endcsname=0\relax%
#1[\the@row]%

\else%
\ifnum\csname\@arrayident PLANES\endcsname=0\relax%

#1[\the@row,\the@col]%
\else%

#1[\the@plane,\the@row,\the@col]%
\fi%

\fi%
}\row@msg%

}\last@row%
}\close@out\mbox{}\hrulefill\mbox{}\par%

\fi%
}
%
\newcommand\scalardump[1]{\bgroup%

\def\row@spacer{}%
\def\row@msg{}%
\def\header@msg{{\bfseries\csname\@arrayident CELLS\endcsname\ ELEMENTS:}%

~\hrulefill\mbox{}\\}%
\def\last@row{}%
\def\plane@msg{}%
\def\close@out{\the@showargs@rule\\}%
\arraydump#1\egroup%

}
%
% DEPRECATED COMMANDS (NOT PREFERRED EMBODIMENT OF PACKAGE SYNTAX)
%
\newcommand\readArrayijk{\@ifstar{\read@Arrayijk[*]}{\read@Arrayijk}}
\newcommand\readArrayij{\@ifstar{\read@Arrayij[*]}{\read@Arrayij}}
\newcommand\arrayijk[4]{\csname#1[#2,#3,#4]\endcsname}
\newcommand\arrayij[3]{\csname#1[#2,#3]\endcsname}
\newcommand\Arrayijk[5][\relax]{%

\bgroup%
\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\csname#2\endcsname[#3,#4,#5]%
\egroup%

}
\newcommand\Arrayij[4][\relax]{%

\bgroup%
\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\csname#2\endcsname[#3,#4]%
\egroup%

}
\newcommand\copyrecords[1]{%

\clear@array{#1}%
\edef\former@recordcount{\csname #1CELLS\endcsname}%
\setcounter{@record}{0}%
\whiledo{\value{@record} < \nrecords}{%

\addtocounter{@record}{1}%
\def\arg@name{\csname#1[\the@record]\endcsname}%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{%
\csname ArrayRecord[\the@record]\endcsname}%

}%
\expandafter\edef\csname#1PLANES\endcsname{0}%
\expandafter\edef\csname#1ROWS\endcsname{\nrecords}%
\expandafter\edef\csname#1COLS\endcsname{0}%
\expandafter\edef\csname#1CELLS\endcsname{\nrecords}%
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\define@rootmacro{#1}%
}
\newcommand\showargs[1][0]{\bgroup%

\def\Arg@listPLANES{0}%
\def\Arg@listCOLS{0}%
\let\Arg@listROWS\Arg@listCELLS%
\scalardump\Arg@list\egroup%

}
\newcommand\showrecord[2][\relax]{%

\bgroup\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\ArrayRecord[#2]\egroup%
}
% The support routine \getargs{} is provided for backward compatibility.
% It is preferable to directly use facilities of the
% listofitems package to accomplish these tasks.
\def\getargsC#1{%

\bgroup%
\expandafter\setsepchar\expandafter{\read@array@sepchar}%
\greadlist\Arg@list{#1}%
\egroup%
\edef\narg{\Arg@listlen}%
\let\Arg@listCELLS\narg%
\setcounter{@index}{0}%
\whiledo{\value{@index}<\narg}{%

\stepcounter{@index}%
\expandafter\edef\csname arg\romannumeral\value{@index}\endcsname{%

\Arg@list[\value{@index}]}%
}%

}
\endinput
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