Jinwen XU
ProjLib@outlook.com

ABSTRACT

ProjLib TOOLKIT

USER MANUAL

October 2021, Paris

The Projlib toolkit is designed to simplify the preparation before writing IKIgX documents. With the
package ProjLib loaded, you no longer need to set up the theorem-like environments nor configure the
appropriate multilingual settings. Additionally, a series of auxiliary functionalities are introduced.

CONTENTS

Before you start

1 Introduction

2 Usage example
2.1 Howtoloadit

2.2 Example - A complete document
2.2.1 Initialization
2.2.2 Setthelanguage
2.2.3 Title and author information
2.2.4 Draft marks
2.2.5 Theorem-like environments

3 Options of the main package

BEFORE YOU START

In order to use the toolkit, you need to:

OB, DWW OLODN NN R

The components
4.1 Main functions

4.1.1

4.1.2
4.1.3

PJLauthor: enhanced author
block

PJLlang: multi-language support
PJLthm: theorem-like environ-
ments with clever reference and
multilingual support

4.2 Secondary functions

4.2.1
4.2.2
4.2.3
4.2.4

4.2.5

PJLdate: date-time processing
PJLdraft: draft marks

PJLlogo: the logo Proj ib
PJLmath: math symbols and
shortcuts

PJLpaper: paper configuration

Known issues

10
10
10
10

10
11

12

install TeX Live or MikTeX of the latest possible version, and to make sure that projlib is correctly in-

stalled in your TgX system.

be familiar with the basic usage of IXIgX, and to know how to compile your documents with pdfI&TEX,

XAIATEX or Lual&TgX.

1 INTRODUCTION

The name Proj| ib can be regarded as the abbreviation of Project Library in English or Projet Libre in French
(the author prefers the French interpretation). Its main purpose is to provide multi-language support and
theorem-like environments with clever references. In addition, some additional features are provided, such
as the enhanced author block, draft marks, mathematical symbols and shortcuts, etc.

The Projlib toolkit is composed of the main package ProjLib and a series of components whose names
begin with the abbreviation "PJL”. You can learn how to use it through the usage examples in the next

section.

Corresponding to: Projlib 2021/10/16

mailto:ProjLib@outlook.com

2 USAGE EXAMPLE

2.1 HOWTOLOADIT

Just add the following line to your preamble:

\usepackage{ProjLib}

ATTENTION
Since cleveref is used internally, ProjLib needs to be placed after varioref and hyperref.

2.2 EXAMPLE - A COMPLETE DOCUMENT

Let’s first look at a complete document.

1 \documentclass{article}

2 \usepackage [adpaper,margin=.75in] {geometry}
3 \usepackage [hidelinks] {hyperref}

4 \usepackage[palatino] {ProjLib} % Load the toolkit and use font Palatino
5

6 \UseLanguage{French} J Use French from here
7

8 \begin{document}

9

10 \title{{title)}

11 \author{{author)}

12 \date{\PLdate{2022-04-01}}

13

14 \maketitle

15

16 \begin{abstract}

17 (abstract text) \dnf<(some hint)>

18 \end{abstract}

19

20 \section{Un théoréme}

21

22 \begin{theorem}\label{thm:abc}

23 Ceci est un théoréme.

24 \end{theorem}

25

26 Référence du théoréme: \cref{thm:abc} 7 It is recommended to use clever reference
27

28 \end{document}

If you find it a little complicated, don’t worry. Let’s now look at this example piece by piece.

2.2.1 Initialization

\documentclass{article}

\usepackage [adpaper ,margin=.75in] {geometry}
\usepackage [hidelinks] {hyperref}
\usepackage [palatino] {ProjLib}

In standard classes, one usually only need to configure the page size, hyperlinks and load ProjLib before
actually start writing the document. The font option palatino of ProjLib is used here. For all available
options of ProjLib, please refer to the next section.

Of course, you can also use the document class amsart, the configurations are the same.

2.2.2 Setthe language

\UseLanguage{French}

This line indicates that French will be used in the document (by the way, if only English appears in your
article, then there is no need to set the language). You can also switch the language in the same way later
in the middle of the text. Supported languages include Simplified Chinese, Traditional Chinese, Japanese,
English, French, German, Spanish, Portuguese, Brazilian Portuguese and Russian?.

For detailed description of this command and more related commands, please refer to the section on the

multi-language support.

2.2.3 Title and author information

\title{(title)}
\author{{author)}
\date{\PLdate{2022-04-01}}

This part is the title and author information block. The example shows the most basic usage, but in fact,
you can also write:

\author{{author 1)}
\address{{address 1)}
\email{{email 1)}
\author{{author 2)}
\address{{address 2)}
\email{{email 2)}

In addition, if the A\ (S simulation is enabled, you can also write in the .Ap4S fashion (the original way
still works). For this, you should add the package option amsfashion?, i.e., the line that introduces ProjLib
should be written as:

\usepackage [amsfashion,palatino] {ProjLib}

And correspondingly, you will also be able to use these macros:

\dedicatory{{dedicatory)}

However, you need to add the encoding support and fonts of the corresponding language by yourself. For example, for Chinese,
you may need to load the ctex package and set the fonts. As a sidenote, you can try the author’s document classes einfart or lebhart,
in which the corresponding settings have been completed. For the details, run texdoc minimalist or texdoc colorist in the
command line.

2Since this option modifies some internal macros of IATgX, it may conflict with some packages or document classes, and thus it is
not enabled by default.

\subjclass{#sx*x}
\keywords{(keywords)}

In addition, you can also write the abstract before \maketitle, as the way required in the ApS classes:

\begin{abstract}
{abstract text)

\end{abstract}

\maketitle

2.2.4 Draft marks

\dnf<(some hint)>

When you have some places that have not yet been finished yet, you can mark them with this command,
which is especially useful during the draft stage.

2.2.5 Theorem-like environments

\begin{theorem}\label{thm:abc}

Ceci est un théoréme.
\end{theorem}
Référence du théoréme: \cref{thm:abc}

Commonly used theorem-like environments have been pre-defined. Also, when referencing a theorem-
like environment, it is recommended to use \cref{({label)} — in this way, there is no need to explicitly write
down the name of the corresponding environment every time.

3 OPTIONS OF THE MAIN PACKAGE
ProjLib offers the following options:

draft or fast

Fast mode. The functionality will be appropriately reduced to get faster compilation speed, recom-
mended to use during the writing stage.

palatino, times, garamond, noto, biolinum | useosf

Font options. As the names suggest, font with corresponding name will be loaded.
The useosf option is used to enable the old-style figures.

nothms, delaythms, nothmnum, thmnum or thmnum=(counter), regionalref, originalref

Options from the component PJLthm used for setting theorem-like environments, please refer to the
section on this package for details.

author

Load the component PJLauthor used to enhance the author information block. For more information
about its functionality, see the section on this package.

amsfashion
Allow the user to write document in the Ap4S fashion. In the mean time, the option author will be

automatically turned on.

In addition, there are also some options of the components that should be passed as global options of your
document class, such as the language options EN / english /English, FR/french/French etc. of PJLlang,
and paperstyle, preview of PJLpaper. For more information, please refer to the corresponding sections.

4 THE COMPONENTS

4.1 MAIN FUNCTIONS
4.1.1 PJLauthor: enhanced author block

PJLauthor offers \address, \curraddr and \email, and allows you to enter multiple groups of author
information. The standard usage is like this:

\author{{author 1)}
\address{(address 1)}
\email{{email 1)}
\author{{author 2)}
\address{{address 2)}
\email{{email 2)}

The mutual order of \address, \curraddr and \email is not important.

In addition, you can use the option amsfashion to enable the A\ (S fashion. More specifically, the effect
is:

Provides the macros \dedicatory, \keywords and \subjclass;
\thanks can be written outside \author;
The abstract environment can be placed before \maketitle.

ATTENTION

These modifications would only take place in standard classes. In the A\S classes, PJLauthor does
not have any effect.

4.1.2 PJLlang: multi-language support

PJLlang offers multi-language support, including simplified Chinese, traditional Chinese, English, French,
German, Japanese, and Russian (among them, Chinese, Japanese, and Russian require appropriate TgX en-
gines and fonts to support).

PJLlang provides language options. The names of these options have three types, which are abbrevia-
tions (such as EN), lowercase (such as english), and capital letters (such as English). For the option names
of a specific language, please refer to (language name) below. Among them, the first specified language
(first language) will be used as the default language, which is equivalent to specifying \UseLanguage{(first
language)} at the beginning of your document.

TiP

It is recommended to use these language options and pass them as global options. In this way, only
the specified languages are set, thus saving the TgX memory and significantly improving the compi-
lation speed.

The language can be selected by the following macros:

\UseLanguage{(language name)} is used to specify the language. The corresponding settings of the lan-
guage will be applied after it. It can be used either in the preamble or in the main body. When no language
is specified, “English” is selected by default.

\UseOtherLanguage{(language name)}{{content)}, which uses the specified language settings to typeset
(content). Compared with \UseLanguage, it will not modify the line spacing, so line spacing would re-
main stable when CJK and Western texts are mixed.

(language name) can be (it is not case sensitive, for example, French and french have the same effect):

Simplified Chinese: CN, Chinese, SChinese or SimplifiedChinese
Traditional Chinese: TC, TChinese or TraditionalChinese
English: EN or English

French: FR or French

German: DE, German or ngerman

Italian: IT or Italian

Portuguese: PT or Portuguese

Portuguese (Brazilian): BR or Brazilian

Spanish: ES or Spanish

Japanese: JP or Japanese

Russian: RU or Russian

In addition, you can also add new settings to selected language:

\AddLanguageSetting{(settings)}
Add (settings) to all supported languages.
\AddLanguageSetting ({language name)) {(settings)*
Add (settings) to the selected language (language name).
For example, \AddLanguageSetting(German){\color{orange}} can make all German text displayed in
orange (of course, one then need to add \AddLanguageSetting{\color{black}} in order to correct the
color of the text in other languages).
4.1.3 PJLthm: theorem-like environments with clever reference and multilingual support

PJLthm offers the configuration of theorem-like environments. It has the following option:
nothms

Theorem-like environments will not be defined. You may use this option if you wish to apply your
own theorem styles.

delaythms

Defer the definition of theorem-like environments to the end of the preamble. Use this option if you
want the theorem-like environments to be numbered within a custom counter.

nothmnum, thmnum or thmnum={counter)

Theorem-like environments will not be numbered / numbered in order 1, 2, 3... / numbered within
(counter). Here, (counter) should be a built-in counter (such as subsection) or a custom counter defined
in the preamble (with the option delaythms enabled). If no option is used, they will be numbered
within chapter (book) or section (article).

regionalref, originalref

When referencing, whether the name of the theorem-like environment changes with the current lan-
guage. The default is regionalref, i.e., the name corresponding to the current language is used; for
example, when referencing a theorem-like environment in English context, the names “Theorem, Defi-
nition...” will be used no matter which language context the original environment is in. If originalref
is enabled, then the name will always remain the same as the original place; for example, when refer-
encing a theorem written in the French context, even if one is currently in the English context, it will
still be displayed as “Théoreme”.

In fast mode, the option originalref will have no effect.

Preset environments include: assumption, axiom, conjecture, convention, corollary, definition,
definition-proposition, definition-theorem, example, exercise, fact, hypothesis, lemma,
notation, observation, problem, property, proposition, question, remark, theorem, and the corre-
sponding unnumbered version with an asterisk * in the name. The titles will change with the current lan-
guage. For example, theorem will be displayed as “Theorem” in English mode and “Théoreme” in French
mode. For details on how to select a language, please refer to the section on PJLlang.

Tip

When referencing a theorem-like environment, it is recommended to use \cref{(label)}. In this way,
there is no need to explicitly write down the name of the corresponding environment every time.

If you need to define a new theorem-like environment, you must first define the name of the environment
in the language to use. There are two ways for this:

Simple settings: \NameTheorem [{language name)] {(name of environment)}{(name string)}

This approach only sets one main name, the other names, such as those used for clever reference, are set
tobe the same (in particular, for clever reference, the singular and plural form will not be distinguished).
When (language name) is not specified, the name will be set for all supported languages. In addition,
environments with or without asterisk share the same name, therefore, \NameTheorem{envname*} has
the same effect as \NameTheorem{envname} .

Detailed settings (recommended):

\NameTheoremn{(name of environment)}{
(language name 1)={
name=(Name),
crefname={(name)}{{names)},
Crefname={(Name)}{(Names)},
autorefname=(name),
theoremheading=(Name),
e
(language name 2)={. ..},
}

or

\NameTheorem [{language name)] {{name of environment)+{
name=(Name),
crefname={(name)}{(names)},
Crefname={(Name)}{(Names)},
autorefname={name),
theoremheading=(Name),

This approach sets all the names. When (language name) is not specified, the full interface will be en-
abled; when it is specified, only the names of the corresponding language are set. Similarly, environ-
ments with or without asterisk share the same name, therefore, \NameTheorem{envname*} has the
same effect as \NameTheorem{envname} .

TiP

In addition, you can also name a theorem-like environment while defining it, see the description of
\CreateTheoren later.

And then define this environment in one of following five ways:
\CreateTheorem*{(name of environment)}
Define an unnumbered environment {name of environment)
\CreateTheorem{(name of environment)}
Define a numbered environment (name of environment), numbered in order 1,2,3,...
\CreateTheorem{(name of environment)} [(numbered like)]
Define a numbered environment (name of environment), which shares the counter (numbered like)
\CreateTheorem{(name of environment)}<(numbered within)>
Define a numbered environment (name of environment), numbered within the counter (numbered within)

\CreateTheorem{{name of environment)} ({existed environment))
\CreateTheorem*{(name of environment)} ({existed environment))

Identify (name of environment) with {existed environment) or {existed environment)*.

This method is usually useful in the following two situations:

1. To use a more concise name. For example, with \CreateTheorem{thm} (theorem), one can then
use the name thm to write theorem.

2. To remove the numbering of some environments. For example, one can remove the numbering of
the remark environment with \CreateTheorem{remark} (remark*).

Tip

This macro utilizes the feature of amsthm internally, so the traditional theoremstyle is also appli-
cable to it. One only needs declare the style before the relevant definitions.

You can also name a theorem-like environment while defining it, by adding afterwards a group of paren-
theses containing the settings:

\CreateTheorem{(name of environment)}{

(language name 1)={
name=(Name),
crefname={(name)}{(names)},
Crefname={(Name)}{(Names)},
autorefname=({name),
theoremheading=(Name),

},

(language name 2)={. . .},

Here is an example. The following code:

\NameTheorem [EN] {proofidea}{Idea}
\CreateTheorem*{proofideax}
\CreateTheorem{proofidea}<subsection>

defines an unnumbered environment proofidea* and a numbered environment proofidea (numbered
within subsection) respectively. They can be used in English context. The effect is as follows (the actual
style is related to the document class):

Idea | The proofidea* environment.

Idea 4.1.1 | The proofidea environment.

Of course, you can also use a set of more detailed name:

\NameTheorem{proofidea}{
EN = {
name = Idea,
crefname = {idea}{ideas},
Crefname = {Idea}{Ideas},

}
\CreateTheorem*{proofideax}
\CreateTheorem{proofidea}<subsection>

or set the names while defining them (for proofidea* and proofidea, set once suffices):

\CreateTheorem*{proofideax}
\CreateTheorem{proofidea}<subsection>{
EN = {
name = Idea,
crefname = {ideal}{ideas},
Crefname = {Idea}{Ideas},

4.2 SECONDARY FUNCTIONS
4.2.1 PJLdate: date-time processing

PJLdate offers the \PLdate(yyyy-mm-dd) (or \PJLdate(yyyy-mm-dd)) macro to convert (yyyy-mm-dd)
into the date format of the currently selected language. For example, in current English context, \PLdate
{2022-04-01} would become “April 1, 2022”, while in French context as “1¢* avril 2022”.

For details on how to select a language, please refer to the section on PJLlang.

4.2.2 PJLdraft: draft marks

PJLdraft offers the following macros:

\dnf or \dnf<...>. The effectis: [To be finished #1)] or[To be finished #2: ...]J.

The prompt text changes according to the current language. For example, it will be displayed as(Pas_encore fini #3]
in French mode.

\needgraph or \needgraph<. . .>. The effect is:

[A graph is needed here #1]|

or

[A graph is needed here #2: ...|

The prompt text changes according to the current language. For example, in French mode, it will be
displayed as

|I1 manque une image ici #3|

For details on how to select a language, please refer to the section on PJLlang.

4.2.3 PJLlogo: the logo Projlib

PJLlogo offers the macro \ProjLib to draw the logo, which looks like Proj ib. It is similar to ordinary
text macros and can be used with different font size macros:

\tiny: Projlib
\scriptsize: ProjLib
\footnotesize: Projlib
\normalsize: ProjLib
\large: ProjLib
\Large: PI'OJZ b

z
\LARGE: ProjLib

X
\huge: PFOJ b

\uge: ProjLib

4.2.4 PJLmath: math symbols and shortcuts
PJLmath offers the following shortcuts:

i) \mathfrak{-} — \mf: or \frak-. For example, \mfA (or \mf{A}) has the same effect as \mathfrak{
A%}. This works for both upper and lower case, producing:

abcdefghijtlmnopgrstuvrory;
ABCDEFBNTIRLEMNOPOARGTULWI XY 3

10

if) \mathbb{-} — \bb- . This only works for uppercase alphabet and the number 1.
ABCDEFGHIJKLMNOPQRSTUVWXYZ1
There are also special command for well-known algebraic structures: \N, \Z, \Q, \R, \C, \F, \A.
INZQRCFA

iii) \mathcal{-} — \mc- or \cal-. This only works for uppercase alphabet.
ABCDEFGHIIKLMNOPQARETUVWIXYZ
iv) \mathscr{-} — \ms- or \scr-. This only works for uppercase alphabet.

ARBCDEFGH I FHNLMNOPLRS TUVW XY ZE

In addition, PJLmath also provides some math symbols that are not by default included in I&TEX.

\abs \abs{a} — |q] absolute value symbol
\norm \norm{a} — ||a]| norm symbol

\injection \injection —» < arrow symbol for injection
\surjection \surjection — -» arrow symbol for surjection
\bijection \bijection —» — arrow symbol for bijection

These shortcuts and symbols are defined in such a way that they will not conflict with existing or user-
defined commands. Thus, even if you do not use these shortcuts or symbols, there is no need to worry that
their existence will bring errors.

4.2.5 PJLpaper: paper configuration
PJLpaper is mainly used to adjust the paper color. It has the following options:
paperstyle = {(paper style name)
Set the paper color style. The options available for {paper style name) are: yellow, dark and nord.
yellowpaper, darkpaper, nordpaper
Same as paperstyle with the corresponding (paper style name) specified.
preview

Preview mode. Crop the white edges of pdf file for the convenience of reading.

It is recommended to use them as global options of the document class. In this way, the paper settings
would be clear at a glance.

11

5 KNOWN ISSUES
PJLauthor is still in its preliminary stage, its effect is not as good as the relatively mature authblk.

PJLlang: It is still quite problematic with the configuration of polyglossia, so main features are imple-
mented through babel for now.

PJLpaper: the preview option is mainly implemented with the help of package geometry, so it does not
work quite as well in the KOMA document classes.

PJLthm: The numbering and theorem-style settings of the theorem-like environments cannot be accessed
by the user at present.

PJLthm: The localization of cleveref is not yet complete for all supported languages of PJLlang, especially
for Chinese, Japanese and Russian.

Error handling mechanism is incomplete: no corresponding error prompt when some problems occur.

There are still many things that can be optimized in the code. Some takes too long to run, especially the
setup of theorem-like environments in PJLthm.

12

	Before you start
	Introduction
	Usage example
	How to load it
	Example - A complete document
	Initialization
	Set the language
	Title and author information
	Draft marks
	Theorem-like environments

	Options of the main package
	The components
	Main functions
	PJLauthor: enhanced author block
	PJLlang: multi-language support
	PJLthm: theorem-like environments with clever reference and multilingual support

	Secondary functions
	PJLdate: date-time processing
	PJLdraft: draft marks
	PJLlogo: the logo ProjLib
	PJLmath: math symbols and shortcuts
	PJLpaper: paper configuration

	Known issues

