
PM-ISOmath
The Poor Man ISO math bundle

Claudio Beccari∗

v.1.1.07 — 2021/05/15

Contents
1 Introduction 1

2 The pdfLATEX handicaps 3

3 ISO rules summary 4

4 Some existing solutions 5

5 The poor man solution 6

6 Usage 7

7 Examples 8

8 Final remarks 10

9 Acknowledgements 11

10 The code 11

Abstract
The ISO regulations for typesetting math in the field of physics and

technology are pretty stringent and imply legal questions that we do not
treat here; it suffices to say that in certain countries an “Expertise” for a
Legal Court that does not fulfil such regulations may be rejected by the
Court, independently from its expert contents.

Authors may not like them, but in the field of applied sciences, or better,
of experimental sciences, that use measured quantities and units of measure,
they are compulsory.

With LuaLATEX and X ELATEX, while using OpenType math fonts there
should not be any difficulty in fulfilling the regulations, but with pdfLATEX;
things are not so simple. There exist some facilities, but sometimes they do
not work.

This package provides some robust work-arounds to bypass the difficul-
ties experienced by some pdfLATEX users.

1 Introduction
The ISO regulations (formerly ISO31/XI, now ISO80000) are stringent rules to
typeset mathematics in the domains of physics and experimental sciences; their

∗E-mail: claudio dot beccari at gmail dot com

1

title explicitly mentions “physics and technology”, but their careful reading lets us
understand that they apply to all sciences that use the “mathematics of quantities”.
Such entities form a special group or space, where the elements are couples of two
ordered entities (x, y), where y represents the unit of measure and x represents
the ratio of the quantity to the unit of measure. Such paired entities may not be
separated, therefore some special mathematical rules are established in order to
operate on quantities.

Add to these special mathematical bases the fact that the measure component
of the quantity is pretty fuzzy and it is always accompanied by a certain degree
of uncertainty; metrologists are the masters in measuring quantities and handling
their measures and uncertainties, but although for simplicity laypeople handles
measures as if hey were rational numbers (after all aren’t they the ratio of some-
thing to be measured and the unit of measure?) we are facing the domain of fuzzy
sets.

Furthermore quantities are so many that any work in applied sciences should
contain a nomenclature list in order to explain which symbol is used for which
quantity. This is where the ISO regulations set some order and establish a long
list of named quantities with their preferred symbols and their “normal” units
according to the prescriptions of the Comité International des Poids et Mesures,
that established the International System of measures (Système International, SI).

This ISO nomenclature is used uniformly by most, if not all, people involved in
applied sciences; therefore among the few letters of the Latin and Greek alphabets
almost none is available to be used for other purposes.

This means that the usual math italic alphabet can be used for very few sym-
bols if confusion is to be avoided. Other series and shapes must be judiciously
used and the ISO regulations say how.

There are no problems when typesetting applied science documents with
LuaLATEX or X ELATEX, at least if the proper OpenType math fonts are used; such
fonts have available so many slots (code points) that may contain any variation of
any glyph; it suffices to specify the option math style = ISO to the math han-
dling package unicode-math and to select an OpenType math font. The only
problem, if any, is to know which font series and shapes should be used according
to the ISO regulations.

These regulations can be purchased from the ISO site in Switzerland; they are
quite expensive and the cost is affordable by associated professional studios or
large academic and/or research institutions.

For private users I’d suggest to download the PDF document https://
www.nist.gov/pml/special-publication-811-extended-contents. This doc-
ument has been produced by the National Institute for Science and Technology,
the Institution that several years ago was appointed to replace the United States
National Bureau of Standards. Their staff is made essentially by metrologists and
this guide is written to give precise instructions for handling the applied science
mathematics according to the ISO regulations; it establishes also several rules for
writing text about mathematics and metrology. It is extremely valuable for an-
glophones, but, with the due differences concerning the mother languages, it is
extremely useful also for people using languages different from English.

2

2 The pdfLATEX handicaps
Users of pdfLATEX, on the opposite are in trouble. In facts this typesetting program
suffers from an inherited limitation: math fonts are encoded with the old 128 glyph
encodings; this is not a limitation set forth by the underlying interpreter pdfTEX.
Matter of fact there exists the quite recent LibertinusT1math fonts for pdfLATEX,
created by Michael Sharpe, that, to my best knowledge, are the only math 8-bit
encoded fonts with 256 glyphs. Package libertinust1math accepts the ISO option
that allows to fulfil the ISO regulations; it accepts other options; depending on
which ones are specified the number of math groups, beyond the essential first four
ones, increases by three to six units, reaching a maximum of ten; there remains
enough free math groups to satisfy most user requirements.

But even while using such LibertinusT1math fonts, pdfTEX suffers from an-
other handicap derived from the knuthian original TEX-the-program and by the
NFSS (New Font Selection Scheme, which is not new any more, because it dates
back to 1994, when LATEX2.09 became obsolete and was substituted by LATEX2ε.).
I am not complaining about these pdfTEX and LATEX limitations; for decades peo-
ple have been happily typesetting math with results that are much superior to
any other typesetting program at least when the latter does not use some TEX
software.

By now, the handicap I am talking about is the way math alphabets are handled
by pdfTEX and LATEX; such alphabets are loaded in the form of math groups, the
number of which cannot exceed 16 (numbered from 0 to 15); each group loads three
sizes for normal math style, for script style and for script-script style. Taking into
account the bold version, the number of math groups would risk to exceed its
capabilities; in order to avoid exceeding the number limit on the math groups
usable in any math environment, only the medium or the bold series is loaded
and the math version (bold or unbold) must be chosen before entering the math
environment. Packages that allow mixed series math formulas load both versions
and become very critical for using other math alphabets.

By default four groups are always loaded; group 0 for operators; group 1 for
letters; group 2 for symbols; group 3 for large operators and delimiters; users very
often load also the two symbol-fonts provided by the American Mathematical
Society, and this means two more math groups. Apparently there are ten more
groups for other math groups. It seems that this number is abundantly sufficient
to handle any situation, but it is not so. The author of this extension already
reached the limit of 16 without doing anything special – at least he thought so,
but evidently he was wrong. Users who use packages such as the Fourier or the
KPfonts have to pay special attention to the package documentation because they
might specify options that imply loading up to 14 math groups.

Several authors provided packages to help users produce perfect documents
that fulfil the ISO regulations; I would like to cite the excellent Package ISOmath by
Günter Milde, entitled “Mathematical style for science and technology”. It should
be the perfect package to use in order to fulfil the ISO regulations; sometimes
it succeeds with excellent results, but more often than not the results are just
partial, because of the limitations of the math fonts available to pdfLATEX that

3

are in contrast with the requirements of the ISO regulations.
Therefore, dear reader, before using the poor man solutions of this package,

try ISOmath, if your font set passes all the requirements described in that package
documentation, you don’t need the poor man patches offered by this package.

3 ISO rules summary
This summary does not replace the original ISO document nor what is written in
the instructions published by NIST. It simply recalls those rules that this package
tries to implement. In what follows, the word “quantity” is used to represent any
physical entity that may be measured according to the metrological practice; the
word “variable” is used to represent a mathematical entity that represents variable
data.

1. All quantity and variable symbols are represented by one letter (with as
many appositions are needed); but no acronyms are allowed; in computer
science programming, many strings are called variables, in the sense that
they may represent variable data; but computer programs are not mathe-
matics, rather they are a special language that tells the computer what to
do, even mathematics, but the language is not the one that represents math.
Unfortunately some acronyms have gained strong popularity and wide us-
age, but they are forbidden by the ISO rules; example: CMRR is often
used to mean “common mode rejection ratio”, but this is an improper usage
of mathematics. Obviously this rule must be applied by the user, because
LATEX is a typesetting language and does not understand the real meaning
of what it is being typeset.

2. All quantity symbols must be set in italics, slanted type is allowed, but
serifed italics should be preferred unless the ISO rules prescribe a sans serif
font. This implies that the differential symbol be in upright font to avoid
confusion with the physical quantity d; the Napier number ‘e’ must be set
in upright font to avoid confusion with the elementary electric charge e; the
imaginary unit j in electrical engineering, (i in other applied sciences) must
be set in upright font in order to avoid confusion with the electric current
density j or the electric current i; more difficult: the transcendental number
π = 3.14159 . . . should be distinguished from the plane angle π; and similar
other numerical constants represented by Latin or Greek letters.

3. All symbols that do not represent quantities should be typeset in an upright
font, preferably a serifed font, except when the ISO rules require a sans serif
font. This rule includes numbers and their digits, symbols that represent
constant numeric values, all appositions both in subscript and superscript
position. Appositions are not quantities or variables: for example in Vi, the
subscript i is a variable because it represents the i-th element in a sequence,
such as V0, V1, V2, . . . ; on the opposite Vi the subscript is an apposition
because ‘i’ may mean, say, ‘input’.

4. Upright bold roman or black board bold symbols represent sets.

4

5. Italic bold symbols represent matrices; one column matrices may represent
vectors in an algebraic way and should be treated as any other matrix;
in general multirow and multicolumn matrices are typeset with uppercase
letters, while lowercase ones are reserved for vectors; but in some sciences
also vectors may be represented by uppercase letters. Geometrical vectors
that might be typeset with a medium series upper or lowercase italic letter
with an arrow on top of it, are not treated by the ISO regulations that
speak of vectors irrespective if they are considered as one column matrices
or oriented segments; apparently oriented segments should be treated the
same as one column matrices.

6. Labels to geometrical entities, such as points, segments, angles (not their
measures) should be set in upright medium series sans serif fonts; the same
rule applies to labels used in sketches and drawings representing machinery,
electric circuitry, and the like when the label refers to an object and not to
its measure: “the lens L1, “the switch S2”, “the planetary gear G3”, and so
on.

7. Tensors should be set in slanted bold sans serif font.
8. The above rules apply to both Latin and Greek letters.

Such font rules for families, series and shapes are difficult to implement with
pdfLATEX for many reasons that do not imply only the limited number of math
groups, but also the categories of symbols; Greek letters in particular are trouble-
some for a couple of reasons connected with rule 8:

• Uppercase greek letters are taken from the “operators” alphabet and are
letter symbols; they are upright; but if they represent quantities they must
be in italics, or at least slanted;

• Lowercase Greek letters are taken from the “letters” math alphabet and are
ordinary symbols; they are oblique, and this is fine, but as ordinary math
symbols they cannot be modified by commands such as \mathrm; further-
more upright lowercase Greek letters are not available, at least not directly.

4 Some existing solutions
Several packages to be used with pdfLATEX allow for upright Greek letters, espe-
cially those packages for French typography, where the national rules (in contrast
with the ISO regulations) require that all math entities typeset with Greek letters
be upright. Among such packages there are fourier and kpfonts. Other packages
such as newpxmath and newtxmath are intended for general use, but with suitable
options and extra math groups let the user employ upright lowercase Greek letters
as well as oblique uppercase ones.

Package libertinust1math allows the use of the 256 glyph encoded fonts and
are less sensitive to the limit of 16 math groups. Its many options allow to use the
various font styles without requiring the \boldmath declaration; this implies that
medium and bold series are both preloaded without actually using extra math
alphabets beyond the small number it uses for its full functionality. An option

5

ISO is already available to fulfil the ISO regulations. Maybe the only drawback of
such fonts is that they are intended to match the Libertinus text fonts that are
blacker than the standard Computer or Latin Modern ones. The auxiliary font
selection commands used in the ISOmath package are already implemented with
this libertinust1math one.

Of course the ISOmath package might solve all problems if the user math
environment has the necessary functionalities, in particular all the math alphabets
needed for the task and if there are no difficulties with the number of math groups.

5 The poor man solution
The poor man solution described in this document is very simple in theory; it
handles text fonts in math expressions through the \text command provided by
the amsmath package; of course there are functionalities to chose families series
and shapes in a comfortable way by means of the powerful command definition
commands provided by the xparse package; for Greek letters it uses the function-
alities of the alphabeta package, that allows to use in text mode the same control
sequences that are used in math mode. The default families for Latin and Greek
letters are the Latin Modern ones that allow a piecewise continuous scaling of any
available particular font of the collection.

It goes without saying that this poor man solution has advantages and disad-
vantages over the other indicated solutions.

The main advantage is that no math groups are involved, therefore the user may
couple any font family with any series and shape that family allows; the default
family for Greek fonts are the Latin Modern compliant LGR encoded collection of
CBfonts; they are always available with any up-to-date and complete TEX system
installation.

This is also a disadvantage, in the sense that Latin Modern fonts might not be
the best ones to use with any specific text font; for example they have an x-height
smaller than the Palatino ones, and a larger ‘em’ unit compared to the Times
ones; they have also a slightly lighter “color” compared to most other fonts.

Nevertheless they work very well with the ISO regulations and in spite of the
disadvantages listed above, they are usable without problems. This very docu-
mentation is typeset with Latin Modern fonts. The examples shown in a following
section show the ease with which the ISO regulations may be fulfilled. Some
problems, though, still remain, and require the user intervention.

There are other Greek fonts that may be used in place of those of the CBfonts
collection, especially those distributed by the Greek Font Society (GFS) that are
already part of the TEX system distribution; they are LGR encoded and have their
specific .fd files. They are not so rich in series and shapes (some of them may
lack the bold extended series and sometimes lack also the bold series); I would say
the the GFS Bodoni family is sufficiently rich of series and shapes, and may be
used also for the Latin fonts.

There are also the Greek fonts that are “companions” to the Times fonts. So
the user is not limited to the Latin Modern fonts, but admittedly there is not a

6

great choice and, if it is necessary, the disadvantage of an unmatching Greek font
is the price to pay if the user has to use pdfLATEX.

6 Usage
The usage of the package is very simple; in your preamble add the line

\usepackage[engineer]{pm-isomath}

The engineer option is used to set the imaginary unit the way electrical engineers
usually do.

The main macros that support the whole package, and that may be used also
by the end user, are:

\MathLatin{〈letter〉}{〈family〉}[〈series〉](〈shape〉)

and

\MathGreek{〈letter〉}{〈family〉}[〈series〉](〈shape〉)

where \MathLatin sets the text encoding to T1, while \MathGreek sets it to LGR. In
both commands the arguments specified with {〈family〉}[〈series〉](〈shape〉) are
all optional, including the first one in spite of being surrounded by curly braces.
In both cases the default values for each argument are respectively lmr, m, and n
(normal, upright). Notice the codes: lmr, m, and n are the codes that appear in
the .fd file to declare the possible family, series, and shape combinations available
for a given family. Further information is given below in table 2 on page 14, and
how to discover these codes.

Such default values, after loading pm-isomath, may be globally redefined by
using in the preamble:

\renewcommand{ISOfam}{〈family〉}
\renewcommand{ISOser}{〈series〉}
\renewcommand{ISOsha}{〈shape〉}

We discourage this global redefinitions unless the user really knows what s/he is
doing; in practice it must be checked that T1 encoded families and LGR encoded
ones have the same family names. If the encoding+family.fd files are not available
either they have to be created, or such default values should not be redefined.

For Latin letters to use in the \MathLatin command mandatory argument
there are no problems.

For Greek letters you might use \MathGreek and the math letter commands
\alpha, \beta,. . . , \Omega commands, but it is much simpler to avoid\MathGreek
and use the package commands \ISOalpha, \ISObeta,. . . , \ISOOmega. All these
commands follow the syntax:

\ISO〈lettername〉{〈family〉}[〈series〉](〈shape〉)

7

where all the arguments are optional, including the first one in spite of being
surrounded by curly braces. Such optional arguments must follow that order but
all possible combinations are usable, for example:
\ISOalpha
\ISOalpha{〈family〉}
\ISOalpha[〈series〉]
\ISOalpha(〈shape〉)
\ISOalpha[〈series〉](〈shape〉)
\ISOalpha{〈family〉}[〈series〉]
\ISOalpha{〈family〉}(〈shape〉)
\ISOalpha{〈family〉}[〈series〉](〈shape〉)
This offers the maximum flexibility in using the necessary commands.

The package defines other macros for fulfilling the rules relative to the differ-
ential symbol and the numerical constants represented with letters; furthermore
it defines the commands for the \ohm unit of measure and the \micro SI prefix;
this latter macro uses a special shape of the CBfonts where an upright shape with
serifed lowercase Greek letters is available; if another family, lacking this shape, is
being used, then the normal upright shape is used. In typesetting this documen-
tation, evidently there are no problems, but with other font selections, especially
with Greek fonts, there might be some mismatching shapes.

Commands similar to those defined by the ISOmath package are also defined
so as to simplify the font selection for vectors, matrices and tensors.

7 Examples
ISO Greek letters In the examples represented in table 1, we typeset an

array in math mode, where we show all the Greek letters that can be typeset
with the \ISO〈lettername〉 macros; the array is typeset in normal math style, but
the ISO letters are in bold style so that there is no confusion with a normal bold
math setting; some letters, equal to the Latin ones, are also defined because some
users have experienced difficulties in remembering the correct signs especially while
labelling diagrams. The array in table 1 may be a useful reference.

A small matrix equation
b = Ma

is typeset with the following code
\[\vectorsymbol{b} = \matrixsymbol{M}\vectorsymbol{a} \]

A resistivity value The resistivity of copper is 1.68μΩ cm (in text mode:
1.68 μΩ cm) is typeset with the following code
$1.68\,\micro\ohm\,\mathrm{cm}$ (in text mode: 1.68\unit{\micro\ohm\,cm})

If the siunitx package has been loaded (as it is for typesetting this documenta-
tion) its unit ohm is redefined so as to always be an upright capital omega.

8

\ISOalpha α \ISObeta β \ISOgamma γ \ISOdelta δ

\ISOepsilon ε \ISOzeta ζ \ISOeta η \ISOtheta θ

\ISOiota ι \ISOkappa κ \ISOlambda λ \ISOmu μ

\ISOnu ν \ISOxi ξ \ISOomicron ο \ISOpi π

\ISOrho ρ \ISOsigma σ \ISOtau τ \ISOupsilon υ

\ISOphi φ \ISOchi χ \ISOpsi ψ \ISOomega ω

\ISOGamma Γ \ISODelta Δ \ISOEta Η \ISOTheta Θ

\ISOLambda Λ \ISOXi Ξ \ISOPi Π \ISORho Ρ

\ISOSigma Σ \ISOUpsilon Υ \ISOPhi Φ \ISOChi Χ

\ISOPsi Ψ \ISOOmega Ω

Table 1: The \ISO〈letter〉 macros and their rendering in bold style

A tensor
D = ε0εrE

is typeset with the following code

\[
\vectorsymbol{D} = \epsilon_0\tensorsymbol{\epsilon}\ped{r}\vectorsymbol{E}
\]

Solid angle An energy flux of light form an isomorphic source that irradiates
the power P through the solid angle Ω generates a flux

Φ = P

Ω

is typeset with the following code

\[\Phi = \frac{P}{\Omega}\]

where, as you see the uppercase Greek letters are slanted, as the ISO rules require,
instead of upright, as LATEX sets them by default.

A bold formula This is the very important inverse Laplace transform1

f(t) =
1

2πi
−
∫ σ+i∞

σ−i∞
ept dp for σ > σc

typeset with the following code

{\boldmath\[
f(t) = \frac{1}{2\ISOpi\iu} -\mkern-19mu

1Some packages may have a control sequence to insert a Cauchy principal value integral sign
into a math expression; here we fake it by means of the superposition of a normal integral sign
to a minus sign.

9

\int_{\sigma-\iu\infty}^{\sigma+\iu\infty}\eu^{pt}\diff p
\qquad \text{for } \sigma > \sigma\ped{c}

\]}

Notice the the use of \boldmath does not imply the use of new math groups; but
the bold upright π is rendered without any problem.

Various styles of Greek fonts Here are some examples of Greek fonts in
various styles; within the same table bold and medium series fonts stay side by
side, as well as glyphs coming from different families.
\ISOgamma, \ISOzeta, \ISOeta, \ISOOmega γ, ζ, η,Ω
\ISOgamma[bx], \ISOzeta[bx], \ISOeta[bx], \ISOOmega[bx] γ,ζ,η,Ω
\ISOgamma{lmss}, \ISOzeta{lmss}, \ISOeta{lmss}, \ISOOmega{lmss} γ, ζ, η,Ω
\ISOgamma{artemisia}, \ISOzeta{artemisia}, \ISOeta{artemisia}, \ISOOmega{artemisia} γ, ζ, η,Ω
\ISOgamma(rs), \ISOzeta(rs), \ISOeta(rs), \ISOOmega(rs) γ, ζ, η,Ω

ISO upright partial differential Among the fonts used to typeset math
when using pdflatex, only the LibertinusT1math font contains the upright partial
differential symbol that conforms the ISO regulations. All other fonts at the
moment available to typeset mathematics do not contain an upright symbol, but
they contain the original slanted symbol as used with the CM fonts. With a poor-
man trick it is possible to have available an upright symbol so as to describe the
Electrical field as the opposite of the electric potential gradient. Compare the
following formulas, where the second one is ISO compliant:

E = −∇V = −
(
∂V

∂x
ex + ∂V

∂y
ey + ∂V

∂z
ez

)
(1)

E = −∇V = −
(
∂V

∂x
ex + ∂V

∂y
ey + ∂V

∂z
ez

)
(2)

8 Final remarks
This package pm-isomath is far from perfect, and its results are questionable; of
course poor man solutions are just patches, incomplete solutions; nevertheless the
results are not so bad. It has the indubitable advantage that is does not use any
math groups, therefore there is no risk to exceed their limit of 16 math groups.

As patches are not perfect, the above display of examples shows what can be
done without human intervention. Attentive users have shown that the commands
for vectors, matrices, and command do not perform well in certain circumstances.
Such cases require some spacing corrections, but we were not capable to create
sufficiently intelligent commands that could avoid human intervention. See below
where, when and why human intervention is required.

10

9 Acknowledgements
I want to thank very much Laurent Van Deik, who remarked several typos and
bugs; in particular he convinced me that the partial differential symbol, that
in my previous version of this package was obtained by rotating and scaling the
slanted one, had a different style from the other math glyphs; therefore I recreated
the macro by applying an affine shearing transformation; I believe that this new
solution, thanks to Laurent Van Deik’s suggestion, is better suited to typeset ISO
compliant math in a better way. He also helped a lot with the vector, matrix, and
tensor macro testing.

10 The code
This package was loosely inspired by the ISOmath package by Günter Milde, but
tackles the problem of insufficient maximum number of math font groups so as
to avoid any problem with such group limitation, and therefore to avoid all the
caveats in Milde’s package.

That package is much more comfortable to use than this one; but it is subject
to a number of conditions that, depending on the user environment, may even
result in a complete failure. This package avoids problems with math font groups
because it does not use any, but it is not so comfortable to use because sometimes
optional settings and spacing commands have to be specified.

The preliminary lines have been already defined; therefore we start with real
code.

The trick of this package is that all fonts different from the four or six ones
(including the AMS symbol fonts) are textual fonts used in math typesetting
through the intermediate action of the \text command defined by the amsmath
package. Therefore we start by verifying if packages amsmath, alphabeta and
xparse have already been loaded in the document preamble; this implies a weak
loading order, that is this package must be loaded after all the above packages are
loaded; in facts if such packages are not, they get loaded by this one, but without
any option. The package loading mechanism assures avoiding conflicts if packages
are loaded without options; this is why if one of the three packages is loaded after
this one but with some option specified, an “Option clash” error flag is raised; this
is where the “weak” loading order error becomes a very “strong” one.

Then we verify if the document is being typeset with pdfLATEX; if it is not, an
error flag is raised and reading of this package is immediately interrupted. For
this purpose we need an engine-detecting package, and we use the iftex one.

1 \@ifpackageloaded{iftex}{}{\RequirePackage{iftex}}
2 \unless\ifPDFTeX
3 \PackageError{pm-isomath}{%
4 **\MessageBreak
5 This package should be used only when \MessageBreak
6 typesetting with pdfLaTeX. \MessageBreak
7 Loading this package is skipped \MessageBreak
8 **\MessageBreak

11

9 }{%
10 **\MessageBreak
11 Press the X key and restart typesetting \MessageBreak
12 while using pdfLaTeX\MessageBreak
13 **\MessageBreak
14 }
15 \expandafeter\@firstoftwo
16 \else
17 \PackageInfo{pm-isomath}{%
18 **\MessageBreak
19 Typesetting this document with pdfLaTeX! \MessageBreak
20 **\MessageBreak
21 }
22 \expandafter\@secondoftwo
23 \fi
24 {\endinput}{\relax}

Actually this package accepts an option: engineer. This option is for deciding
if the imaginary unit should be defined as ‘i’ or as ‘j’. As we have remarked in
the previous documentation, engineers, especially those who deal with electric-
ity and electrical quantities, but also electronics, automatic control systems, and
telecommunications engineers, use ‘j’; all these varieties of engineers could not do
anything in their profession if they don’t use complex numbers and quantities (the
latter called phasors). Possibly they are the applied scientists who use complex
numbers more often than any other scientist.

Notice: this option has not been used to prepare this very document.
25 \newif\ifengineer \engineerfalse
26 \DeclareOption{engineer}{\engineertrue}
27 \ProcessOptions*\relax

Are the necessary packages already loaded? Notice that in previous versions we
just loaded xparse unless it was already loaded; since 2020 the main functionalities
of this package are already contained into the LATEX kernel, but we are going to
use one of those “deprecated” functionalities that did not make their way to the
LATEX kernel.
28 \@ifpackageloaded{amsmath}{}{\RequirePackage{amsmath}}
29 \@ifpackageloaded{etoolbox}{}{\RequirePackage{etoolbox}}
30 \RequirePackage{xparse}

Now we have almost all software instruments available. We define a macro to
switch the definitions of certain math Greek symbols; some of these are defined
in the LATEX kernel: the lowercase Greek variant letters; some others are defined
in the amsmath package: the uppercase slanted greek letters. All these variant
letters have a name identical to the regular ones but prefixed with the string var;
example \epsilon and \varepsilon, \Omega and \varOmega. We switch the
control sequence definitions between the var-less and the var-prefixed ones. The
first group of lowercase letters is switched because the glyphs give a better match
with those produced with the textual Greek glyphs obtained when the ISO macros
are used. Especially the Greek lowercase letter group is not appreciated by certain

12

users, because they need to correct any previously typeset document that uses
the standard LATEX symbols. They may easily revert to the previous settings by
applying again the global switching macros \switchvarlowercasegreekletters
and or \switchvaruppercasegreekletters. We discourage such reset, but users
are free to chose what they need.
31 \newcommand\switchvarsymbols[1]{%
32 \letcs{\tempA}{#1}\csletcs{#1}{var#1}\cslet{var#1}{\tempA}}
33 %%%%
34 \newcommand\switchvarlowercasegreekletters{%
35 \switchvarsymbols{epsilon}
36 \switchvarsymbols{theta}
37 \switchvarsymbols{rho}
38 \switchvarsymbols{phi}}
39 %%%%
40 \newcommand\switchvaruppercasegreekletters{%
41 \switchvarsymbols{Gamma}
42 \switchvarsymbols{Delta}
43 \switchvarsymbols{Theta}
44 \switchvarsymbols{Lambda}
45 \switchvarsymbols{Xi}
46 \switchvarsymbols{Pi}
47 \switchvarsymbols{Sigma}
48 \switchvarsymbols{Upsilon}
49 \switchvarsymbols{Phi}
50 \switchvarsymbols{Psi}
51 \switchvarsymbols{Omega}}
52 %%%%%
53 \switchvarlowercasegreekletters
54 \switchvaruppercasegreekletters

Eventually we load the alphabeta package; it allows using the same macros
used in math mode while typesetting in text mode. We find it very useful in this
package.
55 \@ifpackageloaded{alphabeta}{}{\RequirePackage{alphabeta}}

The next line defines the default family, series and shape to be used in the
macros that follow; as it can be seen, the default family is the Latin Modern
roman; the series is medium one and the shape is normal (or upright) one. The
codes used are the same used in the font description files with extension .fd. The
name of these .fd files is obtained by merging the encoding name with the family
name; therefore the default font description file for Latin characters is t1lmr.fd
while the one for Greek characters is lgrlmr.fd; these files define the series they
contain and that are identified with codes such as m (medium); bx (bold extended);
b (bold). Other fonts, with different series may have also other codes. For each
series the .fd file defines the codes for shapes, and for every valid combination of
series, shape and size it defines the specific font file to use.

We should not care for the font names, but in order to use different font families,
series, and shapes the user should know their codes. this is generally a difficult
task, but not impossible; it “suffices” to open the packages that allow to use the

13

Latin (T1) Greek (LGR)
Series Code Shape Code Shape Code
medium m normal n normal n

italics it italics it
slanted sl slanted sl

lipsian li
serif rs
serif oblique ro

upright italics ui upright italics ui
small caps sc small caps sc

bold b lipsian li
normal n
slanted sl

bold extended bx normal n normal n
italics it italics it
slanted sl slanted sl

lipsian li
serif rs
serif oblique rs
upright italics ui
small caps sc

Table 2: Series and shapes available with the Latin Modern regular family with
Latin and Greek fonts

desired fonts, read the code and find out the names of the .fd files; then search
these files on the trees of the TEX system, and eventually find out the codes for
the available series and shapes.

For the Modern Latin and Greek .fd files we have the series and shapes shown
in table 2.
56 \def\ISOfam{lmr}\def\ISOser{m}\def\ISOsha{n}

As explained in the initial documentation, all font changing commands are
constructed in such a way as to have a default family, series and shape common
to both Latin and Greek fonts; therefore with three optional arguments that the
user can specify with different delimiters, but respecting their order, the user can
get eight different choice combinations that allow the selection of a large number
of different looks.

We now define the main and service macros that allow such font selection; we
have to create similar macros that mostly differ in the encoding choice for Latin
or Greek letters.

The user macros are defined by means of the defining commands provided by
the xparse package functionalities, while the service macros use normal LATEX
commands. The user commands follow this special syntax:

14

\MathLatin{〈Latin letter〉}{〈family〉}[〈series〉](〈shape〉)
\MathGreek{〈Greek letter〉}{〈family〉}[〈series〉](〈shape〉)

where in both cases the last three arguments are differently delimited optional
values, even the first one of the three, in spite of being delimited by curly braces.
In both cases the only mandatory argument is the Latin or Greek letter; the latter
one may be specified by the macros \alpha, \beta,. . . , \Omega, the same ones that
are normally used in math (although they are going to be used in text mode).
57 \NewDocumentCommand\MathLatin{m g O{m} D(){it}}{%
58 \bgroup\edef\y{\IfNoValueTF{#2}{\ISOfam}{#2}}%
59 \edef\x{\noexpand\egroup\noexpand\MLatin{\noexpand#1}{\y}}\x{#3}{#4}%
60 }
61
62 \providecommand\MLatin[4]{\text{\def\ISOfam{#2}\def\ISOsha{#4}%
63 \ifcsstring{math@version}{bold}{\def\ISOser{bx}}{\def\ISOser{#3}}%
64 \usefont{T1}{\ISOfam}{\ISOser}{\ISOsha}#1}}
65
66 \NewDocumentCommand\MathGreek{ m g O{m} d()}{%
67 \edef\y{\IfNoValueTF{#2}{\ISOfam}{#2}}%
68 \edef\x{\IfNoValueTF{#4}{\ISOsha}{#4}}%
69 \MGreek{#1}{\y}{#3}{\x}}
70
71 \newcommand{\MGreek}[4]{\text{\def\ISOfam{#2}\def\ISOsha{#4}%
72 \ifcsstring{math@version}{bold}{\def\ISOser{bx}}{\def\ISOser{#3}}%
73 {\usefont{LGR}{\ISOfam}{\ISOser}{\ISOsha}#1}}}
74

We now define the macros for all lowercase Greek letters and several uppercase
ones (even some that are identical to some Latin letters) that should save several
keystrokes when entering such letters in the source file. The shorter the code to
type in, the smaller the the number of potential typos.
75 \newcommand\ISOalpha{\MathGreek{\alpha}}
76 \newcommand\ISObeta{\MathGreek{\beta}}
77 \newcommand\ISOgamma{\MathGreek{\gamma}}
78 \newcommand\ISOdelta{\MathGreek{\delta}}
79 \newcommand\ISOepsilon{\MathGreek{\epsilon}}
80 \newcommand\ISOzeta{\MathGreek{\zeta}}
81 \newcommand\ISOeta{\MathGreek{\eta}}
82 \newcommand\ISOtheta{\MathGreek{\theta}}
83 \newcommand\ISOiota{\MathGreek{\iota}}
84 \newcommand\ISOkappa{\MathGreek{\kappa}}
85 \newcommand\ISOlambda{\MathGreek{\lambda}}
86 \newcommand\ISOmu{\MathGreek{\mu}}
87 \newcommand\ISOnu{\MathGreek{\nu}}
88 \newcommand\ISOxi{\MathGreek{\xi}}
89 \newcommand\ISOomicron{\MathGreek{\omicron}}
90 \newcommand\ISOpi{\MathGreek{\pi}}
91 \newcommand\ISOrho{\MathGreek{\rho}}
92 \newcommand\ISOsigma{\MathGreek{\sigma}}
93 \newcommand\ISOtau{\MathGreek{\tau}}

15

94 \newcommand\ISOupsilon{\MathGreek{\upsilon}}
95 \newcommand\ISOphi{\MathGreek{\phi}}
96 \newcommand\ISOchi{\MathGreek{\chi}}
97 \newcommand\ISOpsi{\MathGreek{\psi}}
98 \newcommand\ISOomega{\MathGreek{\omega}}
99 \newcommand\ISOGamma{\MathGreek{\Gamma}}

100 \newcommand\ISODelta{\MathGreek{\Delta}}
101 \newcommand\ISOEta{\MathGreek{\Eta}}
102 \newcommand\ISOTheta{\MathGreek{\Theta}}
103 \newcommand\ISOLambda{\MathGreek{\Lambda}}
104 \newcommand\ISOXi{\MathGreek{\Xi}}
105 \newcommand\ISOPi{\MathGreek{\Pi}}
106 \newcommand\ISORho{\MathGreek{\Rho}}
107 \newcommand\ISOSigma{\MathGreek{\Sigma}}
108 \newcommand\ISOUpsilon{\MathGreek{\Upsilon}}
109 \newcommand\ISOPhi{\MathGreek{\Phi}}
110 \newcommand\ISOChi{\MathGreek{\Chi}}
111 \newcommand\ISOPsi{\MathGreek{\Psi}}
112 \newcommand\ISOOmega{\MathGreek{\Omega}}

We redefine also the \mathrm and \mathit so that if they have to contain Greek
letters the default shape is set equal to that of the enclosing command. Such
macros are just those defined in the LATEX kernel where the \ISOsha redefinition
is added.

113 \DeclareRobustCommand{\mathrm}%
114 {\relax\ifmmode\else\expandafter\non@alpherr
115 \csname mathrm \endcsname\fi
116 \def\ISOsha{n}\expandafter\use@mathgroup
117 \csname M@OT1\endcsname\symoperators}
118
119 \DeclareRobustCommand{\mathit}%
120 {\relax\ifmmode\expandafter\non@alpherr
121 \csname mathit \endcsname\fi
122 \def\ISOsha{it}\expandafter\use@mathgroup
123 \csname M@OT1\endcsname{9}}

Imitating the ISOmath package we define also the macros for selecting the bold
italics math fonts (with results similar to those obtained with package bm,without
requiring any math group), and sans serif in both normal and bold slanted shape.

124 \AtBeginDocument{%
125 \providecommand\mathrmbf[1]{\MathLatin{#1}{lmr}[bx](n)}
126 \providecommand\mathbfit[1]{\MathLatin{#1}{lmr}[bx](it)}
127 \providecommand\mathsfit[1]{\MathLatin{#1}{lmss}[m](sl)}
128 \providecommand\mathsfbfit[1]{\MathLatin{#1}{lmss}[bx](sl)}
129 \providecommand\mathsfbf[1]{\MathLatin{#1}{lmss}[bx](n)}
130 }

Package ISOmath defines macros for typesetting vectors, matrices and tensors; we
do the same, but avoid the abbreviation sym and replace it with symbol. The
strange test with the digit ‘9’ is a dirty trick (described in the TEXbook) in order
to discover if the symbol is a digit or a letter; With digits the vector and tensor

16

symbols should be upright, while with letters they should be italic or slanted. The
italic correction \/ contained by the font selection command is useful in situations
where the “text” produced by such command is followed by a tall or raised object

131 \AtBeginDocument{%
132 \unless\ifdefined\vectorsymbol
133 \NewDocumentCommand\vectorsymbol{s m}{%
134 \ifnum 9<1#2\relax
135 \mathrmbf{#2}%
136 \else
137 \IfBooleanTF{#1}{\!}{}\mathbfit{#2\/}%
138 \fi}%
139 \fi
140 \unless\ifdefined\matrixsymbol\let\matrixsymbol\vectorsymbol\fi
141 \unless\ifdefined\tensorsymbol
142 \NewDocumentCommand\tensorsymbol{s m}{%
143 \ifnum 9<1#2\relax
144 \mathsfbf{#2}%
145 \else
146 \IfBooleanT{#1}{\!}\mathsfbfit{#2\/}%
147 \fi}%
148 \fi
149 }

As shown in the previous various examples, such macros work pretty well, but
in some circumstances they require human help; when the symbol is parenthesised,
for example when it is the argument of a function, or when it is at the beginning
of a math sub expression, it is not centred between the parentheses or has extra
blank space at its left; this happens only if the vector or tensor symbol is a letter,
while if it is a digit such extra space does not appear; such considerations hold
true also for the \matrixsymbol command. Therefore a negative math kerning is
required at the left of the literal symbol. For this purpose such commands have
the variant with asterisk, therefore their syntax have these two similar forms:

\vectorsymbol{〈symbol〉}
\vectorsymbol*{〈symbol〉}
\tensorsymbol{〈symbol〉}
\tensorsymbol*{〈symbol〉}

where the asterisk can be used by the author in order to eliminate spurious left
blanc spaces; if the symbol is numeric, the asterisk presence is ignored: see the
following examples:

Vector T is null: T = 0
VectorT is null: T = 0
Tensor T is null: T = 0
TensorT is null: T = 0

They are typeset with the following code:

Vector \vectorsymbol{T} is null: $\vectorsymbol{T}=\vectorsymbol{0}$\\

17

Vector $\vectorsymbol*{T}$ is null: $\vectorsymbol*{T}=\vectorsymbol*{0}$\\
Tensor \tensorsymbol{T} is null: $\tensorsymbol{T}=\tensorsymbol{0}$\\
Tensor $\tensorsymbol*{T}$ is null: $\tensorsymbol*{T}=\tensorsymbol{0}$

We now define the macros required to set some elements with the proper fonts;
the idea is the same as that for vectors, matrices and tensors, except that these
macros produce directly the desired symbol without using arguments, if possible.

The imaginary unit is subject to the state of the engineer switch, set with the
proper option on calling the package. If such option has been specified in calling
this package, the \iu command is let to \junit, otherwise it’s let to \iunit. In
spite of this option-driven aliases, both commands \iunit and \junit are still
available to the user.

The Napier number ‘e’ is defined in roman type, but as an operator; this
number is not an operator in the mathematical sense, but it is most often used
as the base of an exponential; therefore such math “atom” must be treated as an
operator as well as when the official operator macro \exp is used.

The transcendental number π, different from the plane angle π, is defined so as
to be typeset in upright style; similar definitions may be used for other numerical
constants; we define just \uppi because we think it is the most used symbol in any
kind of mathematics. The π Greek letter in upright sans serif font may indicate
the subatomic particle “pion” so that a similar macro, say, \pion may be given a
suitable definition.

The differential symbol is not an operator, but it requires a special treatment;
a macro \diff for the differential symbol uses an empty ‘operator’ and a negative
shift to typeset an upright letter ‘d’ with an operator spacing on its left, so that
proper spacing is used in math typesetting; notice that the given definition does
not perform as the direct use of a thin math space before the upright ‘d’, because
spacing between math atoms depends on their category, while the thin space \,
is absolute and does not change depending on the preceding math atom.

The ISO regulations require that any letter-like symbol that does not refer to a
measurable quantity be set in upright shape; we already applied the regulation to
the regular differential symbol, that may appear in both the derivative fractions
and in the differential integrators. With partial derivatives the default symbol
is slanted since the very beginning of TEX, when the OMS Computer Modern
Symbol font was defined; according to the ISO regulations such symbol should
be upright. For use with pdfLATEXthe only font distributed with any TEXsystem
that contains such an upright symbol is the LibertinusT1math one; all other OMS
encoded fonts available today do no contain it. The defined command \uppartial
name is identical to the one used by the LibertinusT1math font; therefore it is
easy to check if this symbol has already been defined.

On tex.stachexchange.com some questions were asked on how to produce a
suitable upright partial differential symbol, when fonts did not have one available.
The solutions we found in that site were of different kinds: some were based on
rotating and scaling the available slanted sign, while others used a shearing affine
transformation of the available partial differential symbol. We follow a similar
approach, but we avoid to redefine this symbol if it is already available. The used

18

commands \pdfsave, \pdfrestore, and \pdfsetmatrix are little known internal
commands of the pdftex interpreter2; they are sort of intermediate between TEX
and the PDF internals; they are used to form something similar to a group, within
which some PDF settings are locally modified; in this case an affine shearing
transformation is defined by means of a matrix (apparently made up of one row
and four columns, but in reality it represents the alignment of the rows of a
2× 2 matrix) that can do many things in a way that is more comfortable for the
programmer compared to writing the actual PDF language code.

The default 〈shearing coefficient〉 is fixed to 0.25, but it may be changed by
means of an optional argument; see below. Of course this solution is a patch; we
tested it at several sizes but only with the Latin Modern Type 1 fonts. May be
with other fonts the results might need some adjustments. We also fixed some
kerning adjustments so that the normal math spacings take place. The whole
syntax is the following

\uppartial[〈shearing coefficient〉]

The command \unit for appending the units of measure to the numerical value
of the measure is added if no packages have already defined it; package siunitx
is a particularly recommended one, but its units and prefixes expressed by means
of Greek letters must be used only within its \si and \SI commands. Similar
considerations hold true for the \ap and \ped (apex and pedex, respectively;
i.e superscript and subscript); therefore such command definitions are deferred
to the start of the document so as to be sure to avoid damaging other package
settings. All these commands may be used in both text and math modes; therefore
a robust macro \textormath is (re)defined even if often such command is already
available; the \DeclareRobustCommand unconditionally declares and redeclares
robust commands even if they are already defined; possibly an information line
is written in the .log file in case a redefinition takes palace. These commands
typeset their arguments in upright math fonts, but with the current font in text
mode.

The \ohm and \micro macros produce their symbols in upright style while in
math mode, and with the current font and shape in text mode.

150 \newcommand\iunit{\MathLatin{i}(n)}
151 \newcommand\junit{\MathLatin{j}(n)}
152 \ifengineer
153 \let\iu\junit
154 \else
155 \let\iu\iunit
156 \fi
157 % i
158 \let\eu\undefined
159 \DeclareMathOperator\eu{\MathLatin{e}(n)}
160 \providecommand\uppi{}
161 \renewcommand\uppi{\ISOpi(n)}
162 %

2See the documentation with texdoc pdftex-a at §8.20

19

163 \providecommand*\diff{}
164 \renewcommand*\diff{\ensuremath{\mathop{}\!\MathLatin{d}(n)}}
165 %
166 \newbox{\PMpartialbox}
167 \AtBeginDocument{%
168 \unless\ifdefined\uppartial%
169 \NewDocumentCommand\uppartial{O{0.25}}{\bgroup%
170 \setbox\PMpartialbox\hbox{%
171 $\mkern1mu\partial$}\hspace{1.3\wd\PMpartialbox}%
172 \pdfsave\pdfsetmatrix{1 0 -#1 1}\llap{\box\PMpartialbox}\pdfrestore
173 \mkern-1.5mu\egroup}
174 \fi}
175 %
176 \providecommand*\micro{}
177 \AtBeginDocument{\@ifpackageloaded{textcomp}%
178 {\renewcommand*\micro{\textormath{\textmu}{\ISOmu(rs)}}}%
179 {\renewcommand*\micro{\ISOmu(rs)}}%
180 }
181 %
182 \providecommand*\ohm{}\def\ISOohm{\ISOOmega(n)}
183 \AtBeginDocument{%
184 \@ifpackageloaded{siunitx}{\let\ohm\ISOohm}{\let\ohm\ISOohm}%
185 }%
186
187 %
188 \global\csletcs{bbl@it@ped}{undefined}
189 \global\csletcs{bbl@it@ap}{undefined}
190 %
191 \DeclareRobustCommand\textormath{%
192 \unless\ifmmode\expandafter\@firstoftwo
193 \else\expandafter\@secondoftwo\fi}
194 %
195 \AfterEndPreamble{\let\ped\undefined\let\ap\undefined
196 \DeclareRobustCommand*\ped[1]{%
197 \textormath{\textsubscript{#1}}{_{\mathrm{#1}}}}%
198 %
199 \providecommand\ap{}
200 \DeclareRobustCommand\ap[1]{%
201 \textormath{#1}{^{\mathrm{#1}}}}%
202 %
203 \unless\ifcsname unit\endcsname
204 \DeclareRobustCommand{\unit}[1]{\,\textormath{#1}{\mathrm{#1}}}
205 \fi}
206
207 \endinput

HAPPY TEXing !

20

