# The physconst package* 

Brian W. Mulligan<br>bwmulligan@astronaos.com

January 25, 2020

## 1 Introduction

This package consists of several macros that are shorthand for a variety of physical constants, e.g. the speed of light. The package developed out of physics and astronomy classes that I have taught and wanted to ensure that I had correct values for each constant and did not wish to retype them every time I use them. The constants can be used in two forms, the most accurate available values, or versions that are rounded to 3 significant digits for use in typical classroom settings, homework assignments, etc.

Most constants are taken from CODATA 2018, with the exception of the astronomical objects, whose values are taken from their current wikipedia entries. If you have an interest and/or need for more reliable data, please contact me.

### 1.1 Options

There are three options available: shortconst, cgs, and unseparatedecimals. They can be invoked when the package is declared, e.g.
nst]\{physconst\}.shortconstwillreducetheprecisionto3digitsforallconstants.Thisisintendedwhenyoudon'twanttohavethedetailsoftheconstants,justthegeneralvalue(e.g.$1.60\times10^{-19}\mathrm{C}$insteadof$1.602176634\times10^{-19}\mathrm{C}$).cgswillprovideallconstantsincgs,i.e.theunitsusedinastronomy.unseparatedecimalsisforsituationswhenyoudon'twantspacesinthedecimalportionoffullprecisionconstants.E.g.theelementarychargewouldappearasundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

[^0]$1.602176634 \times 10^{-19} \mathrm{C}$ instead of $1.602176634 \times 10^{-19} \mathrm{C}$. (notice the gaps between digits in the latter.

### 1.2 Macros

### 1.3 Normal Macros

The normal macros are the ones that you will typically use, whose values are determined by the choice of options when the package is invoked.

### 1.4 Naming Convention

Each macro starts with a lower case ' $k$ ' to indicate that it is a constant. If the macro is of special units, e.g. eV, those units will be specified next. If the macro is part of a fundamental unit group, it then gets the name of the group, e.g. Mass, Charge, etc. Finally is the details or name of the constants, e.g. Proton, Planck, etc.

### 1.4.1 Mass

| \kMassElectron | \kMassElectron is the mass of an electron. |
| :---: | :---: |
| \keVMassElectron | \keVMassElectron is the mass of an electron. |
| $\backslash \mathrm{kMassProton}$ | $\backslash \mathrm{kMassProton} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{a} \mathrm{proton}$. |
| \keVMassProton | $\backslash \mathrm{keVMassProton} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{a} \mathrm{proton}$. |
| $\backslash \mathrm{kMassHydrogen}$ | $\backslash \mathrm{kMassHydrogen} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{a} \mathrm{neutral} \mathrm{hydrogen} \mathrm{atom}$. |
| $\backslash k e V M a s s H y d r o g e n ~$ | $\backslash \mathrm{keVMassHydrogen} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{a} \mathrm{neutral} \mathrm{hydrogen} \mathrm{atom}$. |
| $\backslash \mathrm{kMassSun}$ | $\backslash \mathrm{kMassSun}$ is the mass of the Sun. |
| $\backslash \mathrm{kMassAMU}$ | $\backslash \mathrm{kMassAMU}$ is the mass of an atomic mass unit. |
| $\backslash \mathrm{keVMassAMU}$ | $\backslash \mathrm{keVMassAMU}$ is the mass of an atomic mass unit. |

### 1.4.2 Charge

$\backslash k C h a r g e F u n d a m e n t a l$ is the fundamental charge.
\kChargeElectron
\kChargeProton $\backslash k$ ChargeProton is the charge of a proton.

### 1.4.3 Distances and Lengths

\kRadiusBohr
\kAstronomicalUnit
\kParsec
\kRadiusSun
元


### 1.4.4 Energy, Power, and Luminosity

## $\backslash \mathrm{kRydberg}$

 \keVRydberg\kLuminositySun
kPressureAtmosphere
\kPressureStandard
$\backslash k S p e e d L i g h t$
\kAccelGravity

### 1.4.7 Other Constants

\kCoulomb
\kVacuumPermittivity
$\backslash k$ ChargeElectron is the charge of an electron.
$\backslash k R a d i u s B o h r$ is Bohr radius of an atom. Earth and the Sun).
$\backslash \mathrm{kParsec}$ is the length of a parsec $\left(\frac{648000 \mathrm{au}}{\pi}\right)$.
$\backslash k R a d i u s S u n$ is the mean radius of the Sun.
$\backslash k R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen).
$\backslash k L u m i n o s i t y S u n$ is the luminosity of the Sun.

### 1.4.5 Pressure

$\backslash \mathrm{kPressureAtmosphere}$ is the standard atmospheric pressure.
$\backslash \mathrm{kPressureStandard}$ is the standard atmospheric pressure.

### 1.4.6 Velocity, Speed and Acceleration

$\backslash k$ SpeedLight is the speed of light.
$\backslash k$ Coulomb is the Coulomb constant $\left(\frac{1}{4 \pi \epsilon_{0}}\right)$.


\keVRydberg is the Rydberg energy (the binding energy of Hydrogen).
$\backslash k A c c e l$ Gravity is the accelertion due to gravity at the surface of the Earth.


### 1.5 Detailed Macros

These macros are used to access the constants with specific units and precision. They require use of $\backslash$ makeatletter and $\backslash$ makeatother in order to be used. They are used internally by physconst to define the macros that are normally used (those described above.

### 1.6 NamingConvention

The detailed macros are named like @units@precision@name. The units specify which units the constant is in (SI, cgs, or eV). For constants that are independent of the unit system (e.g. Avogadro's number and the fine structure constant), the units are omitted. The precision is either 'short' or 'full' to indicate how much precision is included in the number. All short precision constants have 3 significant figures. The precision of full precision constants vary by their definition and/or inputs. Finally, the name or description of the constant appears.

### 1.6.1 Mass

\k@SI@short@MassElectron \k@SI@short@MassElectron is the mass of an electron in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@MassElectron
\makeatother
```

Resulting in

```
The value is \(9.11 \times 10^{-34} \mathrm{~kg}\)
```

\k@SI@full@MassElectron
\k@SI@full@MassElectron is the mass of an electron in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@MassElectron
\makeatother
```


## Resulting in

$$
\text { The value is } 9.108980087382 \times 10^{-34} \mathrm{~kg}
$$

$\backslash k @ c g s @ s h o r t @ M a s s E l e c t r o n \quad \backslash k @ c g s @ s h o r t @ M a s s E l e c t r o n$ is the mass of an electron in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@MassElectron
\makeatother
```

Resulting in
The value is $9.11 \times 10^{-31} \mathrm{~g}$
 cision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@MassElectron
\makeatother
```

Resulting in

$$
\text { The value is } 9.108980087382 \times 10^{-31} \mathrm{~g}
$$

$\backslash \mathrm{k@eV@short@MassElectron} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{an} \mathrm{electron} \mathrm{in} \mathrm{eV}$ with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@MassElectron
\makeatother
```

Resulting in

$$
\text { The value is } 5.69 \times 10^{-19} \mathrm{eV} \mathrm{c}^{-2}
$$

$\backslash k @ e V @ f u l l @ M a s s E l e c t r o n ~ \ k @ e V @ f u l l @ M a s s E l e c t r o n$ is the mass of an electron in eV with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@MassElectron
\makeatother
```

Resulting in

```
The value is 5.685378187448\times10-19 eV c
```

\k@SI@short@MassProton is the mass of a proton in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@MassProton
\makeatother
```

Resulting in

The value is $1.67 \times 10^{-30} \mathrm{~kg}$
$\backslash k @ S I @ f u l l @ M a s s P r o t o n ~ \ k @ S I @ f u l l @ M a s s P r o t o n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ p r o t o n ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i s i o n . ~$ (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@MassProton
\makeatother
```

Resulting in
The value is $1.672547813969 \times 10^{-30} \mathrm{~kg}$
 precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@MassProton
\makeatother
```

Resulting in
The value is $1.67 \times 10^{-27} \mathrm{~g}$
\k@cgs@full@MassProton $\backslash k @ c g s @ f u l l @ M a s s P r o t o n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ p r o t o n ~ i n ~ c g s ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i s i o n . ~$ (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@MassProton
\makeatother
```

Resulting in
The value is $1.672547813969 \times 10^{-27} \mathrm{~g}$
$\backslash k @ e V @ s h o r t @ M a s s P r o t o n ~ \ k @ e V @ s h o r t @ M a s s P r o t o n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ p r o t o n ~ i n ~ e V ~ w i t h ~ r e d u c e d ~ p r e c i s i o n . ~$ (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@MassProton
\makeatother
```

Resulting in

$$
\text { The value is } 1.04 \times 10^{-15} \mathrm{eV} \mathrm{c}^{-2}
$$

$\backslash k @ e V @ f u l l @ M a s s P r o t o n ~ \ k @ e V @ f u l l @ M a s s P r o t o n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ p r o t o n ~ i n ~ e V ~ w i t h ~ f u l l ~ p r e c i s i o n . ~(C O-~$ DATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@MassProton
\makeatother
```

Resulting in
The value is $1.043922235836 \times 10^{-15} \mathrm{eV} \mathrm{c}^{-2}$
\k@SI@short@MassHydrogen $\backslash k @ S I @ s h o r t @ M a s s H y d r o g e n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ n e u t r a l ~ h y d r o g e n ~ a t o m ~ i n ~ S I ~ u n i t s ~$ with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@MassHydrogen
\makeatother
```

Resulting in

$$
\text { The value is } 1.67 \times 10^{-30} \mathrm{~kg}
$$

\k@SI@full@MassHydrogen is the mass of a neutral hydrogen atom in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@MassHydrogen
\makeatother
```


## Resulting in

The value is $1.673458687724 \times 10^{-30} \mathrm{~kg}$
\k@cgs@short@MassHydrogen
\k@cgs@short@MassHydrogen is the mass of a neutral hydrogen atom in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@MassHydrogen
\makeatother
```

Resulting in
The value is $1.67 \times 10^{-27} \mathrm{~g}$
\k@cgs@full@MassHydrogen $\backslash k @ c g s @ f u l l @ M a s s H y d r o g e n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ n e u t r a l ~ h y d r o g e n ~ a t o m ~ i n ~ c g s ~ u n i t s ~$ with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@MassHydrogen
\makeatother
```

Resulting in
The value is $1.673458687724 \times 10^{-27} \mathrm{~g}$
\k@eV@short@MassHydrogen
\k@eV@short@MassHydrogen is the mass of a neutral hydrogen atom in eV with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@MassHydrogen
\makeatother
```

Resulting in
The value is $1.04 \times 10^{-15} \mathrm{eV} \mathrm{c}^{-2}$
\k@eV@full@MassHydrogen
$\backslash k @ e V @ f u l l @ M a s s H y d r o g e n ~ i s ~ t h e ~ m a s s ~ o f ~ a ~ n e u t r a l ~ h y d r o g e n ~ a t o m ~ i n ~ e V ~ w i t h ~ f u l l ~$ precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@MassHydrogen
\makeatother
```

Resulting in

```
The value is 1.044490758517\times1\mp@subsup{0}{}{-15}\textrm{eV c}}\mp@subsup{c}{}{-2
```

$\backslash k @ S I @ s h o r t @ M a s s S u n \quad \backslash k @ S I @ s h o r t @ M a s s S u n$ is the mass of the Sun in SI units with reduced precision.
(IAU Resolution B3 2015)
The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@MassSun
\makeatother
```

Resulting in
The value is $1.99 \times 10^{30} \mathrm{~kg}$
\k@SI@full@MassSun $\backslash k @ S I @ f u l l @ M a s s S u n ~ i s ~ t h e ~ m a s s ~ o f ~ t h e ~ S u n ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i s i o n . ~$ (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@MassSun
\makeatother
```

Resulting in

```
The value is 1.988409 9 * 10 30 kg
```

$\backslash \mathrm{k@cgs@short@MassSun} \mathrm{is} \mathrm{the} \mathrm{mass} \mathrm{of} \mathrm{the} \mathrm{Sun} \mathrm{in} \mathrm{cgs} \mathrm{units} \mathrm{with} \mathrm{reduced} \mathrm{precision}$. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@MassSun
\makeatother
```

Resulting in

The value is $1.99 \times 10^{33} \mathrm{~g}$
$\backslash k @ c g s @ f u l l @ M a s s S u n \quad \backslash k @ c g s @ f u l l @ M a s s S u n$ is the mass of the Sun in cgs units with full precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@MassSun
\makeatother
```

Resulting in
The value is $1.9884099 \times 10^{33} \mathrm{~g}$
\k@SI@short@MassAMU \k@SI@short@MassAMU is the mass of an atomic mass unit in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@MassAMU
\makeatother
```

Resulting in
The value is $1.66 \times 10^{-30} \mathrm{~kg}$
\k@SI@full@MassAMU \k@SI@full@MassAMU is the mass of an atomic mass unit in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@MassAMU
\makeatother
```

Resulting in
The value is $1.660465492239 \times 10^{-30} \mathrm{~kg}$
\k@cgs@short@MassAMU is the mass of an atomic mass unit in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@MassAMU
\makeatother
```

Resulting in

$$
\text { The value is } 1.66 \times 10^{-27} \mathrm{~g}
$$

$\backslash k @ c g s @ f u l l @ M a s s A M U \backslash k @ c g s @ f u l l @ M a s s A M U$ is the mass of an atomic mass unit in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@MassAMU
\makeatother
```

Resulting in
The value is $1.660465492239 \times 10^{-27} \mathrm{~g}$
\k@eV@short@MassAMU
\k@eV@short@MassAMU is the mass of an atomic mass unit in eV with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@MassAMU
\makeatother
```

Resulting in

```
The value is \(1.04 \times 10^{-15} \mathrm{eV} \mathrm{c}^{-2}\)
```

\k@eV@full@MassAMU is the mass of an atomic mass unit in eV with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@MassAMU
\makeatother
```

Resulting in

The value is $1.036381043764 \times 10^{-15} \mathrm{eV} \mathrm{c}^{-2}$

### 1.6.2 Charge

$\backslash k @ S I @ s h o r t @ C h a r g e F u n d a m e n t a l \backslash k @ S I @ s h o r t @ C h a r g e F u n d a m e n t a l$ is the fundamental charge in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@ChargeFundamental
\makeatother
```

Resulting in
The value is $1.60 \times 10^{-19} \mathrm{C}$
 precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@ChargeFundamental
\makeatother
```

Resulting in
The value is $1.602176634 \times 10^{-19} \mathrm{C}$
\k@cgs@short@ChargeFundamentałk@cgs@short@ChargeFundamental is the fundamental charge in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@ChargeFundamental
\makeatother
```

Resulting in

The value is $4.80 \times 10^{-10}$ esu
$\backslash k @ c g s @ f u l l @ C h a r g e F u n d a m e n t a l \backslash k @ c g s @ f u l l @ C h a r g e F u n d a m e n t a l$ is the fundamental charge in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@ChargeFundamental
\makeatother
```

Resulting in
The value is $4.803204713 \times 10^{-10}$ esu
$\backslash k @ S I @ s h o r t @ C h a r g e E l e c t r o n ~ \ k @ S I @ s h o r t @ C h a r g e E l e c t r o n ~ i s ~ t h e ~ c h a r g e ~ o f ~ a n ~ e l e c t r o n ~ i n ~ S I ~ u n i t s ~ w i t h ~ r e-~$ duced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@ChargeElectron
\makeatother
```

Resulting in
The value is $-1.60 \times 10^{-19} \mathrm{C}$
 precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@ChargeElectron
\makeatother
```

Resulting in
The value is $-1.602176634 \times 10^{-19} \mathrm{C}$
\k@cgs@short@ChargeElectron \k@cgs@short@ChargeElectron is the charge of an electron in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@ChargeElectron
\makeatother
```

Resulting in

$$
\text { The value is }-4.80 \times 10^{-10} \mathrm{esu}
$$

$\backslash \mathrm{k@cgs@full@ChargeElectron} \mathrm{is} \mathrm{the} \mathrm{charge} \mathrm{of} \mathrm{an} \mathrm{electron} \mathrm{in} \mathrm{cgs} \mathrm{units} \mathrm{with} \mathrm{full}$ precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@ChargeElectron
\makeatother
```

Resulting in
The value is $-4.803204713 \times 10^{-10}$ esu
\k@SI@short@ChargeProton
\k@SI@short@ChargeProton is the charge of a proton in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@ChargeProton
\makeatother
```

Resulting in

```
The value is \(1.60 \times 10^{-19} \mathrm{C}\)
```

\k@SI@full@ChargeProton
\k@SI@full@ChargeProton is the charge of a proton in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@ChargeProton
\makeatother
```

Resulting in

The value is $1.602176634 \times 10^{-19} \mathrm{C}$
$\backslash \mathrm{k@cgs@short@ChargeProton} \mathrm{is} \mathrm{the} \mathrm{charge} \mathrm{of} \mathrm{a} \mathrm{proton} \mathrm{in} \mathrm{cgs} \mathrm{units} \mathrm{with} \mathrm{reduced}$ precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@ChargeProton
\makeatother
```

Resulting in

$$
\text { The value is } 4.80 \times 10^{-10} \mathrm{esu}
$$

## \k@cgs@full@ChargeProton

$\backslash k @ c g s @ f u l l @ C h a r g e P r o t o n ~ i s ~ t h e ~ c h a r g e ~ o f ~ a ~ p r o t o n ~ i n ~ c g s ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i-~$ sion. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@ChargeProton
\makeatother
```

Resulting in
The value is $4.803204713 \times 10^{-10}$ esu

### 1.6.3 Distances and Lengths

\k@SI@short@RadiusBohr
$\backslash \mathrm{k@SI@short@RadiusBohr} \mathrm{is} \mathrm{Bohr} \mathrm{radius} \mathrm{of} \mathrm{an} \mathrm{atom} \mathrm{in} \mathrm{SI} \mathrm{units} \mathrm{with} \mathrm{reduced}$ precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@RadiusBohr
\makeatother
```

Resulting in
\k@SI@full@RadiusBohr $\quad \backslash k @ S I @ f u l l @ R a d i u s B o h r ~ i s ~ B o h r ~ r a d i u s ~ o f ~ a n ~ a t o m ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i s i o n . ~$ (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@RadiusBohr
\makeatother
```

Resulting in

```
The value is \(5.29200659 \times 10^{-8} \mathrm{~m}\)
```

$\backslash k @ c g s @ s h o r t @ R a d i u s B o h r \quad \backslash k @ c g s @ s h o r t @ R a d i u s B o h r$ is Bohr radius of an atom in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@RadiusBohr
\makeatother
```

Resulting in
The value is $5.29 \times 10^{-6} \mathrm{~cm}$
\k@cgs@full@RadiusBohr
\k@cgs@full@RadiusBohr is Bohr radius of an atom in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@RadiusBohr
\makeatother
```

Resulting in
The value is $5.29200659 \times 10^{-6} \mathrm{~cm}$
\k@SI@short@AstronomicalUnit \k@SI@short@AstronomicalUnit is the astronomical unit (the average distance between the Earth and the Sun) in SI units with reduced precision. (IAU Resolution B2 2012)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@AstronomicalUnit
\makeatother
```

Resulting in
The value is $1.50 \times 10^{11} \mathrm{~m}$
 between the Earth and the Sun) in SI units with full precision. (IAU Resolution B2 2012)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@AstronomicalUnit
\makeatother
```


## Resulting in

$$
\text { The value is } 1.495978707 \times 10^{11} \mathrm{~m}
$$

 between the Earth and the Sun) in cgs units with reduced precision. (IAU Resolution B2 2012)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@AstronomicalUnit
\makeatother
```

Resulting in
The value is $1.50 \times 10^{13} \mathrm{~cm}$
$\backslash k @ c g s @ f u l l @ A s t r o n o m i c a l U n i t ~ \ k @ c g s @ f u l l @ A s t r o n o m i c a l U n i t$ is the astronomical unit (the average distance between the Earth and the Sun) in cgs units with full precision. (IAU Resolution B2 2012)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@AstronomicalUnit
\makeatother
```

Resulting in
The value is $1.495978707 \times 10^{13} \mathrm{~cm}$
$\backslash k @ S I @ s h o r t @ P a r s e c \quad \backslash k @ S I @ s h o r t @ P a r s e c ~ i s ~ t h e ~ l e n g t h ~ o f ~ a ~ p a r s e c ~\left(~\left(\frac{648000 \mathrm{au}}{\pi}\right)\right.$ in SI units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Parsec
\makeatother
```

Resulting in

```
The value is \(3.09 \times 10^{16} \mathrm{~m}\)
```

$\backslash k @ S I @ f u l l @ P a r s e c \quad \backslash k @ S I @ f u l l @ P a r s e c ~ i s ~ t h e ~ l e n g t h ~ o f ~ a ~ p a r s e c ~\left(~\left(\frac{648000 ~ a u ~}{\pi}\right)\right.$ in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Parsec
\makeatother
```

Resulting in
The value is $3.085677581 \times 10^{16} \mathrm{~m}$
$\backslash k @ c g s @ s h o r t @ P a r s e c \quad \backslash k @ c g s @ s h o r t @ P a r s e c ~ i s ~ t h e ~ l e n g t h ~ o f ~ a ~ p a r s e c ~\left(~\left(\frac{648000 \mathrm{au}}{\pi}\right)\right.$ in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ c g s @ s h o r t @ P a r s e c\)
\makeatother
```

Resulting in

The value is $3.09 \times 10^{18} \mathrm{~cm}$
$\backslash k @ c g s @ f u l l @ P a r s e c \quad \backslash k @ c g s @ f u l l @ P a r s e c ~ i s ~ t h e ~ l e n g t h ~ o f ~ a ~ p a r s e c ~\left(~\left(\frac{648000 \mathrm{au}}{\pi}\right)\right.$ in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Parsec
\makeatother
```

Resulting in
The value is $3.085677581 \times 10^{18} \mathrm{~cm}$
$\backslash k @ S I @ s h o r t @ R a d i u s S u n \quad \backslash k @ S I @ s h o r t @ R a d i u s S u n$ is the mean radius of the Sun in SI units with reduced precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@RadiusSun
\makeatother
```

Resulting in
The value is $6.96 \times 10^{8} \mathrm{~m}$
\k@SI@full@RadiusSun $\backslash k @ S I @ f u l l @ R a d i u s S u n ~ i s ~ t h e ~ m e a n ~ r a d i u s ~ o f ~ t h e ~ S u n ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~ p r e c i-~$ sion. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@RadiusSun
\makeatother
```

Resulting in

$$
\text { The value is } 6.957 \times 10^{8} \mathrm{~m}
$$

$\backslash k @ c g s @ s h o r t @ R a d i u s S u n \quad \backslash k @ c g s @ s h o r t @ R a d i u s S u n$ is the mean radius of the Sun in cgs units with reduced precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@RadiusSun
\makeatother
```

Resulting in
The value is $6.96 \times 10^{10} \mathrm{~cm}$
$\backslash k @ c g s @ f u l l @ R a d i u s S u n \quad \backslash k @ c g s @ f u l l @ R a d i u s S u n$ is the mean radius of the Sun in cgs units with full precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@RadiusSun
\makeatother
```

Resulting in
The value is $6.957 \times 10^{10} \mathrm{~cm}$

### 1.6.4 Energy, Power, and Luminosity

$\backslash k @ S I @ s h o r t @$ Rydberg $\backslash k @ S I @ s h o r t @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in SI units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Rydberg
\makeatother
```

Resulting in
The value is $2.18 \times 10^{-21} \mathrm{~J}$
$\backslash k @ S I @ f u l l @ R y d b e r g \quad \backslash k @ S I @ f u l l @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Rydberg
\makeatother
```

Resulting in
The value is $2.17977577 \times 10^{-21} \mathrm{~J}$
$\backslash k @ c g s @ s h o r t @ R y d b e r g \quad \backslash k @ c g s @ s h o r t @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@Rydberg
\makeatother
```

Resulting in

```
The value is 2.18 * 10-14 erg
```

$\backslash k @ c g s @ f u l l @$ Rydberg $\backslash k @ c g s @ f u l l @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Rydberg
\makeatother
```

Resulting in
The value is $2.17977577 \times 10^{-14} \mathrm{erg}$
$\backslash k @ e V @ s h o r t @ R y d b e r g \quad \backslash k @ e V @ s h o r t @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in eV with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ e V @ s h o r t @ R y d b e r g\)
\makeatother
```

Resulting in

$$
\text { The value is } 1.36 \times 10^{-2} \mathrm{eV}
$$

$\backslash k @ e V @ f u l l @ R y d b e r g \quad \backslash k @ e V @ f u l l @ R y d b e r g$ is the Rydberg energy (the binding energy of Hydrogen) in eV with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@Rydberg
\makeatother
```

Resulting in
The value is $1.36050903 \times 10^{-2} \mathrm{eV}$
$\backslash k @ S I @ s h o r t @ L u m i n o s i t y S u n \quad \backslash k @ S I @ s h o r t @ L u m i n o s i t y S u n ~ i s ~ t h e ~ l u m i n o s i t y ~ o f ~ t h e ~ S u n ~ i n ~ S I ~ u n i t s ~ w i t h ~ r e d u c e d ~$ precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@LuminositySun
\makeatother
```

Resulting in
The value is $3.83 \times 10^{26} \mathrm{~W}$
\k@SI@full@LuminositySun $\backslash k @ S I @ f u l l @ L u m i n o s i t y S u n ~ i s ~ t h e ~ l u m i n o s i t y ~ o f ~ t h e ~ S u n ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~$ precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@LuminositySun
\makeatother
```

Resulting in

$$
\text { The value is } 3.828 \times 10^{26} \mathrm{~W}
$$

\k@cgs@short@LuminositySun is the luminosity of the Sun in cgs units with reduced precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@LuminositySun
\makeatother
```

Resulting in
The value is $3.83 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$
 precision. (IAU Resolution B3 2015)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@LuminositySun
\makeatother
```

Resulting in

$$
\text { The value is } 3.828 \times 10^{33} \mathrm{erg} \mathrm{~s}^{-1}
$$

### 1.6.5 Pressure

\k@SI@short@PressureAtmospherkk@SI@short@PressureAtmosphere is the standard atmospheric pressure in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@PressureAtmosphere
\makeatother
```

Resulting in

$$
\text { The value is } 1.01 \times 10^{5} \mathrm{~Pa}
$$

 units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@PressureAtmosphere
\makeatother
```

Resulting in
The value is $1.01325 \times 10^{5} \mathrm{~Pa}$
\k@cgs@short@PressureAtmosphetecgs@short@PressureAtmosphere is the standard atmospheric pressure in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@PressureAtmosphere
\makeatother
```

Resulting in

```
The value is }1.01\textrm{mbar
```

\k@cgs@full@PressureAtmospherkk@cgs@full@PressureAtmosphere is the standard atmospheric pressure in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@PressureAtmosphere
\makeatother
```

Resulting in

## The value is 1.01325 mbar

$\backslash k @ S I @ s h o r t @ P r e s s u r e S t a n d a r d \backslash k @ S I @ s h o r t @ P r e s s u r e S t a n d a r d$ is the standard atmospheric pressure in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ S I @ s h o r t @ P r e s s u r e S t a n d a r d\)
\makeatother
```

Resulting in

The value is $1.00 \times 10^{5} \mathrm{~Pa}$
$\backslash k @ S I @ f u l l @ P r e s s u r e S t a n d a r d \quad \backslash k @ S I @ f u l l @ P r e s s u r e S t a n d a r d$ is the standard atmospheric pressure in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@PressureStandard
\makeatother
```

Resulting in

$$
\text { The value is } 1.00000 \times 10^{5} \mathrm{~Pa}
$$

$\backslash k @ c g s @ s h o r t @ P r e s s u r e S t a n d a r d \backslash k @ c g s @ s h o r t @ P r e s s u r e S t a n d a r d$ is the standard atmospheric pressure in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@PressureStandard
\makeatother
```

Resulting in

## The value is 1.00 mbar

$\backslash k @ c g s @ f u l l @ P r e s s u r e S t a n d a r d ~ \ k @ c g s @ f u l l @ P r e s s u r e S t a n d a r d$ is the standard atmospheric pressure in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@PressureStandard
\makeatother
```

Resulting in
The value is 1.00000 mbar

### 1.6.6 Velocity, Speed and Acceleration

$\backslash k @ S I @ s h o r t @ S p e e d L i g h t \quad \backslash k @ S I @ s h o r t @ S p e e d L i g h t ~ i s ~ t h e ~ s p e e d ~ o f ~ l i g h t ~ i n ~ S I ~ u n i t s ~ w i t h ~ r e d u c e d ~ p r e c i s i o n . ~$
(CODATA 2018)
The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@SpeedLight
\makeatother
```

Resulting in
The value is $3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\backslash k @ S I @ f u l l @ S p e e d L i g h t \quad \backslash k @ S I @ f u l l @ S p e e d L i g h t$ is the speed of light in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@SpeedLight
\makeatother
```

Resulting in
The value is $2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\backslash k @ c g s @ s h o r t @ S p e e d L i g h t \quad \backslash k @ c g s @ s h o r t @ S p e e d L i g h t$ is the speed of light in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@SpeedLight
\makeatother
```

Resulting in

$$
\text { The value is } 3.00 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}
$$

$\backslash k @ c g s @ f u l l @ S p e e d L i g h t \quad \backslash k @ c g s @ f u l l @ S p e e d L i g h t$ is the speed of light in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@SpeedLight
\makeatother
```

Resulting in

$$
\text { The value is } 2.99792458 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}
$$

 Earth in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@AccelGravity
\makeatother
```

Resulting in

$$
\text { The value is } 6.67 \times 10^{-11} \mathrm{~N} \mathrm{~kg}^{-2} \mathrm{~m}^{2}
$$

\k@SI@full@AccelGravity
\k@SI@full@AccelGravity is the accelertion due to gravity at the surface of the Earth in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@AccelGravity
\makeatother
```

Resulting in
The value is $6.67430 \times 10^{-11} \mathrm{~N} \mathrm{~kg}^{-2} \mathrm{~m}^{2}$
\k@cgs@short@AccelGravity is the accelertion due to gravity at the surface of the Earth in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ c g s @ s h o r t @ A c c e l G r a v i t y\)
\makeatother
```

Resulting in

$$
\text { The value is } 6.67 \times 10^{-8} \mathrm{dyn}^{-2} \mathrm{~cm}^{2}
$$

 Earth in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@AccelGravity
\makeatother
```

Resulting in
The value is $6.67430 \times 10^{-8} \mathrm{dyn}^{-2} \mathrm{~cm}^{2}$

### 1.6.7 Other Constants

 precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Coulomb
\makeatother
```

Resulting in

```
The value is }8.99\times1\mp@subsup{0}{}{13}\mp@subsup{\textrm{Nm}}{}{2}\mp@subsup{\textrm{C}}{}{-2
```

$\backslash k @ S I @ f u l l @ C o u l o m b \quad \backslash k @ S I @ f u l l @ C o u l o m b$ is the Coulomb constant $\left(\frac{1}{4 \pi \epsilon_{0}}\right)$ in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Coulomb
\makeatother
```

Resulting in
$\backslash k @ c g s @ s h o r t @ C o u l o m b \quad \backslash k @ c g s @ s h o r t @ C o u l o m b$ is the Coulomb constant $\left(\frac{1}{4 \pi \epsilon_{0}}\right)$ in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@Coulomb
\makeatother
```

Resulting in

```
The value is }1.0
```

$\backslash k @ c g s @ f u l l @ C o u l o m b \quad \backslash k @ c g s @ f u l l @ C o u l o m b$ is the Coulomb constant $\left(\frac{1}{4 \pi \epsilon_{0}}\right)$ in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Coulomb
\makeatother
```

Resulting in

```
The value is 1.000 000 00
```

\k@SI@short@VacuumPermittivityk@SI@short@VacuumPermittivity is the electric permittivity of the vacuum in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@VacuumPermittivity
\makeatother
```

Resulting in
The value is $8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
 units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@VacuumPermittivity
\makeatother
```

Resulting in

$$
\text { The value is } 8.8541878128 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}
$$

\k@cgs@short@VacuumPermittivity@cgs@short@VacuumPermittivity is the electric permittivity of the vacuum in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@VacuumPermittivity
\makeatother
```

Resulting in
The value is $7.96 \times 10^{-2}$
\k@cgs@full@VacuumPermittivit奴@cgs@full@VacuumPermittivity is the electric permittivity of the vacuum in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@VacuumPermittivity
\makeatother
```

Resulting in

```
The value is 7.9577471546\times10-2
```

 in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@VacuumPermeability
\makeatother
```

Resulting in

The value is $8.85 \times 10^{-12} \mathrm{NA}^{-2}$
 SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@VacuumPermeability
\makeatother
```

Resulting in
The value is $8.8541878128 \times 10^{-12} \mathrm{NA}^{-2}$
\k@cgs@short@VacuumPermeabilitk@cgs@short@VacuumPermeability is the magnetic permeability of the vacuum in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@VacuumPermeability
\makeatother
```

Resulting in
The value is $1.26 \times 10^{1}$
\k@cgs@full@VacuumPermeabilit䇇@cgs@full@VacuumPermeability is the magnetic permeability of the vacuum in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@VacuumPermeability
\makeatother
```

Resulting in
The value is $1.2566370614 \times 10^{1}$
\k@short@VacuumImpedance $\backslash k @ s h o r t @ V a c u u m I m p e d a n c e ~ i s ~ t h e ~ c h a r a c t e r i s t i c ~ i m p e d a n c e ~ o f ~ t h e ~ v a c u u m ~ w i t h ~$ reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@short@VacuumImpedance
\makeatother
```

Resulting in

$$
\text { The value is } 3.77 \times 10^{2} \Omega
$$

$\backslash k @ f u l l @ V a c u u m I m p e d a n c e ~ \ k @ f u l l @ V a c u u m I m p e d a n c e ~ i s ~ t h e ~ c h a r a c t e r i s t i c ~ i m p e d a n c e ~ o f ~ t h e ~ v a c u u m ~ w i t h ~$ full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@full@VacuumImpedance
\makeatother
```

Resulting in
The value is $3.76730313668 \times 10^{2} \Omega$
\k@SI@short@Boltzmann
\k@SI@short@Boltzmann is the Boltzmann constant in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Boltzmann
\makeatother
```

Resulting in

```
The value is }1.38\times1\mp@subsup{0}{}{-23}\mp@subsup{\textrm{J K}}{}{-1
```

\k@SI@full@Boltzmann is the Boltzmann constant in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ S I @ f u l l @ B o l t z m a n n\)
\makeatother
```

Resulting in

The value is $1.380649 \times 10^{-23} \mathrm{JK}^{-1}$
$\backslash k @ c g s @ s h o r t @ B o l t z m a n n \quad \backslash k @ c g s @ s h o r t @ B o l t z m a n n$ is the Boltzmann constant in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@Boltzmann
\makeatother
```

Resulting in
The value is $1.38 \times 10^{-16} \operatorname{erg~K}{ }^{-1}$
$\backslash k @ c g s @ f u l l @ B o l t z m a n n \quad \backslash k @ c g s @ f u l l @ B o l t z m a n n$ is the Boltzmann constant in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Boltzmann
\makeatother
```

Resulting in
The value is $1.380649 \times 10^{-16} \mathrm{erg} \mathrm{K}^{-1}$
$\backslash k @ e V @ s h o r t @ B o l t z m a n n \quad \backslash k @ e V @ s h o r t @ B o l t z m a n n$ is the Boltzmann constant in eV with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@Boltzmann
\makeatother
```

Resulting in
The value is $8.62 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$
$\backslash k @ e V @ f u l l @ B o l t z m a n n \quad \backslash k @ e V @ f u l l @ B o l t z m a n n$ is the Boltzmann constant in eV with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@Boltzmann
\makeatother
```

Resulting in

$$
\text { The value is } 8.617333 \times 10^{-5} \mathrm{eV} \mathrm{~K}^{-1}
$$

$\backslash k @ S I @ s h o r t @ P l a n c k \quad \backslash k @ S I @ s h o r t @ P l a n c k$ is the Planck constant in SI units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Planck
\makeatother
```

Resulting in
The value is $6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\backslash k @ S I @ f u l l @ P l a n c k ~ \ k @ S I @ f u l l @ P l a n c k$ is the Planck constant in SI units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Planck
\makeatother
```

Resulting in

$$
\text { The value is } 6.62607015 \times 10^{-34} \mathrm{~J} \mathrm{~s}
$$

\k@cgs@short@Planck is the Planck constant in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ c g s @ s h o r t @ P l a n c k\)
\makeatother
```

Resulting in

The value is $6.63 \times 10^{-27} \mathrm{ergs}$
$\backslash k @ c g s @ f u l l @ P l a n c k \quad \backslash k @ c g s @ f u l l @ P l a n c k$ is the Planck constant in cgs units with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Planck
\makeatother
```

Resulting in
The value is $6.62607015 \times 10^{-27} \mathrm{ergs}$
$\backslash k @ e V @ s h o r t @ P l a n c k \quad \backslash k @ e V @ s h o r t @ P l a n c k$ is the Planck constant in eV with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@Planck
\makeatother
```

Resulting in
The value is $4.14 \times 10^{-15} \mathrm{eV} \mathrm{s}$
$\backslash k @ e V @ f u l l @ P l a n c k ~ \ k @ e V @ f u l l @ P l a n c k$ is the Planck constant in eV with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@Planck
\makeatother
```

Resulting in
The value is $4.13566770 \times 10^{-15} \mathrm{eV} \mathrm{s}$
\k@SI@short@PlanckReduced is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in SI units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@PlanckReduced
\makeatother
```

Resulting in

$$
\text { The value is } 1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}
$$

\k@SI@full@PlanckReduced
\k@SI@full@PlanckReduced is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@PlanckReduced
\makeatother
```

Resulting in

$$
\text { The value is } 1.05457182 \times 10^{-34} \mathrm{~J} \mathrm{~s}
$$

$\backslash k @ c g s @ s h o r t @ P l a n c k R e d u c e d \quad \backslash k @ c g s @ s h o r t @ P l a n c k R e d u c e d$ is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@PlanckReduced
\makeatother
```

Resulting in
The value is $1.05 \times 10^{-27} \mathrm{ergs}$
$\backslash k @ c g s @ f u l l @ P l a n c k R e d u c e d$ is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ c g s @ f u l l @ P l a n c k R e d u c e d\)
\makeatother
```

Resulting in

The value is $1.05457182 \times 10^{-27} \mathrm{erg} \mathrm{s}$
$\backslash k @ e V @ s h o r t @ P l a n c k R e d u c e d \quad \backslash k @ e V @ s h o r t @ P l a n c k R e d u c e d$ is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in eV with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@short@PlanckReduced
\makeatother
```

Resulting in

$$
\text { The value is } 6.58 \times 10^{-16} \mathrm{eV} \mathrm{~s}
$$

\k@eV@full@PlanckReduced
$\backslash k @ e V @ f u l l @ P l a n c k R e d u c e d$ is the Reduced Planck constant $\left(\frac{h}{2 \pi}\right)$ in eV with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@eV@full@PlanckReduced
\makeatother
```

Resulting in
The value is $6.58211957 \times 10^{-16} \mathrm{eV} \mathrm{s}$
\k@SI@short@Gravity $\backslash k @ S I @ s h o r t @ G r a v i t y ~ i s ~ N e w t o n ' s ~ g r a v i t a t i o n a l ~ c o n s t a n t ~ i n ~ S I ~ u n i t s ~ w i t h ~ r e d u c e d ~$ precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Gravity
\makeatother
```

Resulting in
The value is $6.67 \times 10^{-15} \mathrm{~N} \mathrm{~kg}^{-2} \mathrm{~m}^{2}$
\k@SI@full@Gravity $\backslash k @ S I @ f u l l @ G r a v i t y ~ i s ~ N e w t o n ' s ~ g r a v i t a t i o n a l ~ c o n s t a n t ~ i n ~ S I ~ u n i t s ~ w i t h ~ f u l l ~ p r e-~$ cision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Gravity
\makeatother
```

Resulting in
The value is $6.67430 \times 10^{-15} \mathrm{~N} \mathrm{~kg}^{-2} \mathrm{~m}^{2}$
\k@cgs@short@Gravity \k@cgs@short@Gravity is Newton's gravitational constant in cgs units with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@Gravity
\makeatother
```

Resulting in

$$
\text { The value is } 6.67 \times 10^{-8} \mathrm{dyn} \mathrm{~g}^{-2} \mathrm{~cm}^{2}
$$

 precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \(\backslash k @ c g s @ f u l l @ G r a v i t y\)
\makeatother
```

Resulting in
The value is $6.67430 \times 10^{-8} \mathrm{dyn} \mathrm{g}^{-2} \mathrm{~cm}^{2}$
\k@SI@short@StefanBoltzmann is the Stefan-Boltzmann blackbody constant $\left(\frac{2 \pi^{5} k_{\mathrm{B}}}{15 h^{3} c^{2}}\right)$ in SI units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@StefanBoltzmann
\makeatother
```

Resulting in

$$
\text { The value is } 5.67 \times 10^{-6} \mathrm{~J} \mathrm{~K}^{-4} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
$$

\k@SI@full@StefanBoltzmann
$\backslash k @ S I @ f u l l @ S t e f a n B o l t z m a n n$ is the Stefan-Boltzmann blackbody constant $\left(\frac{2 \pi^{5} k_{B}}{15 h^{3} c^{2}}\right)$ in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@StefanBoltzmann
\makeatother
```

Resulting in

$$
\text { The value is } 5.670374 \times 10^{-6} \mathrm{~J} \mathrm{~K}^{-4} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
$$

\k@cgs@short@StefanBoltzmann \k@cgs@short@StefanBoltzmann is the Stefan-Boltzmann blackbody constant $\left(\frac{2 \pi^{5} k_{\mathrm{B}}}{15 h^{3} c^{2}}\right)$ in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@StefanBoltzmann
\makeatother
```

Resulting in
The value is $5.67 \times 10^{-5} \mathrm{erg} \mathrm{K}^{-4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\k@cgs@full@StefanBoltzmann \k@cgs@full@StefanBoltzmann is the Stefan-Boltzmann blackbody constant $\left(\frac{2 \pi^{5} k_{B}}{15 h^{3} c^{2}}\right)$ in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@StefanBoltzmann
\makeatother
```

Resulting in

```
The value is 5.670 374 \times 10-5 erg K
```

$\backslash k @ S I @ s h o r t @ R a d i a t i o n \quad \backslash k @ S I @ s h o r t @ R a d i a t i o n ~ i s ~ t h e ~ r a d i a t i o n ~ c o n s t a n t, ~ a ~\left(\frac{8 \pi^{5} k_{B}^{4}}{15 c^{3} h^{3}}\right)$ in SI units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@short@Radiation
\makeatother
```

Resulting in
The value is $7.57 \times 10^{-16} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-4}$
$\backslash k @ S I @ f u l l @ R a d i a t i o n \quad \backslash k @ S I @ f u l l @ R a d i a t i o n ~ i s ~ t h e ~ r a d i a t i o n ~ c o n s t a n t, ~ a ~\left(\frac{8 \pi^{5} k_{B}^{4}}{15 c^{3} h^{3}}\right)$ in SI units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@SI@full@Radiation
\makeatother
```

Resulting in
The value is $7.565733 \times 10^{-16} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-4}$
$\backslash k @ c g s @ s h o r t @ R a d i a t i o n ~ \ k @ c g s @ s h o r t @ R a d i a t i o n ~ i s ~ t h e ~ r a d i a t i o n ~ c o n s t a n t, ~ a ~\left(\frac{8 \pi^{5} k_{B}^{4}}{15 c^{3} h^{3}}\right)$ in cgs units with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@short@Radiation
\makeatother
```

Resulting in
The value is $7.57 \times 10^{-15} \mathrm{erg} \mathrm{cm}^{-3} \mathrm{~K}^{-4}$
$\backslash k @ c g s @ f u l l @ R a d i a t i o n \quad \backslash k @ c g s @ f u l l @ R a d i a t i o n ~ i s ~ t h e ~ r a d i a t i o n ~ c o n s t a n t, ~ a ~\left(\frac{8 \pi^{5} k_{B}^{4}}{15 c^{3} h^{3}}\right)$ in cgs units with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@cgs@full@Radiation
\makeatother
```

Resulting in

$$
\text { The value is } 7.565733 \times 10^{-15} \mathrm{erg} \mathrm{~cm}^{-3} \mathrm{~K}^{-4}
$$

$\backslash k @$ short@FineStructure $\backslash k @$ short $@$ FineStructure is the fine structure constant with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@short@FineStructure
\makeatother
```

Resulting in

$$
\text { The value is } 7.30 \times 10^{-3}
$$

$\backslash k @ f u l l @$ FineStructure $\backslash k @ f u l l @ F i n e S t r u c t u r e ~ i s ~ t h e ~ f i n e ~ s t r u c t u r e ~ c o n s t a n t ~ w i t h ~ f u l l ~ p r e c i s i o n . ~(C a l-~$ culated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@full@FineStructure
\makeatother
```

Resulting in
The value is $7.29735257 \times 10^{-3}$
$\backslash k @ s h o r t @ F i n e S t r u c t u r e R e c i p r o d \nless$ short@FineStructureReciprocal is the reciprocal of the fine structure constant with reduced precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@short@FineStructureReciprocal
\makeatother
```

Resulting in
The value is $1.37 \times 10^{2}$
\k@full@FineStructureReciprocak@full@FineStructureReciprocal is the reciprocal of the fine structure constant with full precision. (Calculated)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@full@FineStructureReciprocal
\makeatother
```

Resulting in
The value is $1.37035999 \times 10^{2}$
 with reduced precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@short@Avogadro
\makeatother
```

Resulting in

```
The value is }6.02\times1\mp@subsup{0}{}{23
```

\k@full@Avogadro \k@full@Avogadro is Avogadro's Number (the number of particles in a mole) with full precision. (CODATA 2018)

The macro can be invoked by (e.g.)

```
\makeatletter
The value is \k@full@Avogadro
\makeatother
```

Resulting in

The value is $6.02240760 \times 10^{23}$

## Change History

## v1.0.0

General: Initial version

## Index

| C |
| :---: |
| Charge |
| Electron |
| Elementary |
| Proton |
| D |
| Distances and Lengths |
| Astronomical Unit |
| Bohr Radius |
| Parsec |
| Solar Radius . . . . . . . . . 3 |
| E |
| Energy, Power, and Luminosity |
| Rydberg |
| Solar Luminosity . . . . . . . 3 |
| M |
| Mass |
| amu . . . . . . . . . . . . . . . . ${ }_{\text {a }}$ |
| Electron |
| Hydrogen atom in eV |
|  |  |
|  |
|  |
| Sun |

v1.0.1
General: Add options section and fix formatting . . . . . . . . . . . . .

Other Constants . . . . . . . . . . . . 3
Avogadro's Number . . . . . .
Boltzmann . . . . . . . . . . . . .
in eV . . . . . . . . . . . . . .
Coulomb Constant . . . . . . . 3
Fine Structure . . . . . . . . . .
Reciprocal . . . . . . . . . . 4
Newton's Gravitational
Constant . . . . . . . . .
Planck . . . . . . . . . . . . . . . .
in eV
Radiation
Reduced Planck ......
in eV . . . . . . . . . . . . . .
Stefan-Boltzmann
Vacuum Impedance
Vacuum Permeability . . . . .
Vacuum Permittivity ..... 3

## P

Pressure . . . . . . . . . . . . . . . .
Standard Atmosphere . . . . . ${ }^{3}$
Standard Pressure . . . . . . . 3

## V

Velocity, Speed and Acceleration Acceleration due to Gravity Speed of Light $\qquad$


[^0]:    *This document corresponds to physconst v1.0.1, dated 2020/01/25.

