
numerica-plus

Andrew Parsloe
(ajparsloe@gmail.com)

February 15, 2021

ajparsloe@gmail.com

Abstract

In this module of the numerica package, commands are defined which iterate
and find fixed points of functions of a single variable, which find the zeros or
extrema of such functions, and which calculate the terms of recurrence relations.

Note:
• This document applies to version 1.0.0 of numerica-plus.def.

• Reasonably recent versions of the LATEX3 bundles l3kernel and
l3packages are required.

• I refer a number of times in this document to Handbook of Mathematical
Functions, edited by Milton Abramowitz and Irene A. Segun, Dover, 1965.
This is abbreviated to HMF .

Contents

1 Introduction 3
1.1 Example of use: the rotating disk 3

1.1.1 Circuits . 6
1.2 Shared syntax of the new commands 8

1.2.1 Settings . 9
1.2.2 Nesting . 9

2 Iterating functions: \nmcIterate 11
2.1 Star (*) option: fixed points . 13

2.1.1 Use with \nmcInfo . 14
2.2 Settings option . 14

2.2.1 Inherited settings . 14
2.2.2 \iter-specific settings . 15
2.2.3 Changing default values 18

2.3 Errors . 18

3 Finding zeros and extrema: \nmcSolve 20
3.1 Extrema . 21

3.1.1 The search strategy . 21
3.2 Star (*) option . 23
3.3 Settings option . 23

3.3.1 Inherited settings . 23
3.3.2 \solve-specific settings 25
3.3.3 Changing default values 28

4 Recurrence relations: \nmcRecur 29
4.1 Notational niceties . 30

4.1.1 Vv-list and recurrence variable 30
4.1.2 Form of the recurrence relation 31
4.1.3 First order recurrences (iteration) 32

4.2 Star (*) option . 33
4.3 Settings . 33

4.3.1 Inherited settings . 33
4.3.2 \recur-specific settings 34

1

4.3.3 Changing default values 36
4.3.4 Orthogonal polynomials 36
4.3.5 Nesting . 37

5 Reference summary 39
5.1 Commands defined in numerica-plus 39
5.2 Settings for the three commands 39

5.2.1 Settings for \nmcIterate 39
5.2.2 Settings for \nmcSolve . 40
5.2.3 Settings for \nmcRecur . 40

2

Chapter 1

Introduction

By calling numerica with the plus package option in the preamble,

\usepackage[plus]{numerica}

a number of additional commands are loaded:
• \nmcIterate, a command to iterate a function (apply it repeatedly to

itself), including finding fixed points (values x where f(x) = x);

• \nmcSolve, a command to find the zeros of functions of a single variable
(values x for which f(x) = 0) or, failing that, local maxima or minima of
such functions;

• \nmcRecur, a command to calculate the values of terms in recurrence
relations in a single (recurrence) variable (like the terms of the Fibonacci
sequence or Legendre polynomials).

These commands are defined in the package numerica-plus.def which is loaded
with numerica.sty when the plus option is used. The new commands all share
the syntax of the \nmcEvaluate command. I will discuss them individually in
later chapters but turn first to an example that illustrates their use and gives a
sense of ‘what they are about’.

1.1 Example of use: the rotating disk
Consider a disk rotating uniformly with angular velocity ω in an anticlockwise
sense in an inertial system in which the disk’s centre 0 is at rest. Three distinct
points 1, 2, 3 are fixed in the disk and, in a co-rotating polar coordinate system
centred at 0, have polar coordinates (ri, θi) (i, j = 1, 2, 3). Choose 01 as initial
line so that θ1 = 0.

The cosine rule for solving triangles tells us that the time tij in the underlying
inertial system for a signal to pass from i to j satisfies the equation

tij = c−1
√
r2
i + r2

j − 2rirj cos(θj − θi + ωtij) ≡ f(tij),

3

where c is the speed of light. (Equally, we could be describing an acoustic signal
between points on a disk rotating uniformly in a still, uniform atmosphere – in
which case c would be the speed of sound.) Although the equation doesn’t solve
algebraically for the time tij , it does tell us that t = tij is a fixed point of the
function f(t). To calculate fixed points we use the command \nmcIterate, or
its short-name form \iter, with the star option, \iter*. For \iter the star
option means: continue iterating until a fixed point has been reached and, as
with the \eval command, suppress all elements from the display save for the
numerical result.

First, though, values need to be assigned to the various parameters. Suppose
we use units in which c = 30, r1 = 10 and r3 = 20; also ω = 0.2 radians per
second and θ13 ≡ θ3 − θ1 = 0.2 radians. We shall give t an initial value 1
(plucked from the air). Its position as the rightmost item in the vv-list tells
\iter that t is the iteration variable:

\iter*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
\cos(\theta_{13}+\omega t)}

}[c=30,r_1=10,r_3=20,\theta_{13}=0.2,
\omega=0.2,t=1], \quad\info{iter}.

=⇒ 0.356899, 5 iterations. The \nmcInfo command or, more briefly \info,
can be used to display the number of iterations required to attain the fixed-point
value.

To six figures, only five iterations are needed, which seems rapid but we can
check this by substituting t = 0.356899 back into the formula and \eval-uating
it:

\eval*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
\cos(\theta_{13}+\omega t)}

}[c=30,r_1=10,r_3=20,\theta_{13}=0.2,
\omega=0.2,t=0.356899]

=⇒ 0.356899, confirming that we have indeed calculated a fixed point. That it
took only 5 iterations can be checked by omitting the asterisk from the \iter
command and specifying the total number of iterations to perform. I choose
do=7 to show not just the 5th iteration but also the next two just to confirm
that the result is stable. We shall view all 7: see=7. I have also suppressed
display of the vv-list by giving the key vvd an empty value,1 since there are too
many variables to display on a line:

\iter[do=7,see=7,vvd=]
{\[c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3

\cos(\theta_{13}+\omega t)} \]}
[c=30,r_1=10,r_3=20,\theta_{13}=0.2,

\omega=0.2,t=1]

1See the associated document numerica-basics.pdf, the chapter on settings.

4

=⇒
c−1
√
r2

1 + r2
3 − 2r1r3 cos(θ13 + ωt) = 0.382355

↪→ 0.357756
↪→ 0.356928
↪→ 0.3569
↪→ 0.356899
↪→ 0.356899
↪→ 0.356899

This display makes clear that on the 5th iteration, the 6-figure value has been
attained.

Alternatively, we could use the \nmcRecur command, or its short-name form
\recur, to view the successive iterations since an iteration is a first-order re-
currence: fn+1 = f(fn):

\recur[do=8,see1=0,see2=5,vvd={,\\(vv)\\},*]
{\[f_{n+1}=c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3

\cos(\theta_{13}+\omega f_{n})} \]}
[c=30,r_1=10,r_3=20,\theta_{13}=0.2,

\omega=0.2, f_{0}=1]

=⇒

fn+1 = c−1
√
r2

1 + r2
3 − 2r1r3 cos(θ13 + ωfn)

(c = 30, r1 = 10, r3 = 20, θ13 = 0.2, ω = 0.2, f0 = 1)
→ 0.356928, 0.3569, 0.356899, 0.356899, 0.356899

I have specified do=8 terms rather than 7 since the zero-th term (f0 = 1) is
included in the count. I’ve chosen to view the last 5 of them but none prior
to those by writing see1=0,see2=5. The vv-list has been suppressed from the
display (vvd=) and the numerical results forced onto a new line (without an
equation number – the * in the vv-list).

Another and perhaps more obvious way to find the value of t13, is to look for
a zero of the function f(t) − t. That means using the command \nmcSolve or
its short-name form \solve. I shall do so with the star option \solve* which
suppresses display of all but the numerical result. A trial value for t is required.
I have chosen t=0:

\solve*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
\cos(\theta_{13}+\omega t)} - t }

[c=30,r_1=10,r_3=20,\theta_{13}=0.2,
\omega=0.2,t=0], \quad\nmcInfo{solve}.

=⇒ 0.356898, 1+20 steps.
Nearly the same answer as before is attained but this time many more steps

have been required. This is to be expected. The \solve command uses the

5

bisection method. Since 1/210 ≈ 1/103 or 10 bisections for 3 decimal places,
we can expect about 20 bisections being needed for a 6-decimal-place answer.
The particular form of the \nmcInfo command display, ‘1 + 20 steps’, indicates
that it took 1 search step to find an interval in which the function vanished and,
having found that interval, 20 bisections to narrow the position of the zero to
6-figures.

1.1.1 Circuits
Okay, so we can calculate the time taken in the underlying inertial system for
a signal to pass from one point of the rotating disk to another. How long does
it take to traverse the circuit 1 to 2 to 3 back to 1? That means forming the
sum t12 + t23 + t31, hence calculating the separate tij and then using \eval to
calculate their sum.

To make things neater and easier to read, I assume a little symmetry. Let
the coordinates of 1 be (a, 0), of 2 be (r,−θ), and of 3 be (r, θ): 2 and 3 are at
the same radial distance from the centre 0 and at the same angular distance but
on opposite sides of the line 01, 3 an angle θ ahead of 1, 2 an angle θ behind
1. The rotation is in the direction of positive θ. Rather than just calculate
t12 + t23 + t31 for the circuit 1231, I also calculate the time t13 + t32 + t21
for a signal to traverse the opposite circuit 1321 and compare them (form the
difference).

Note that with 2 and 3 positioned as they are relative to 1,

t31 = c−1
√
r2 + a2 − 2ra cos(θ − ωt31)

and
t12 = c−1

√
a2 + r2 − 2ar cos(θ − ωt12).

Both t12 and t31 are fixed points of the same function

F−1(t) = c−1
√
r2 + a2 − 2ra cos(θ − ωt).

Similarly, both t13 and t21 are fixed points of

F+1(t) = c−1
√
r2 + a2 − 2ra cos(θ + ωt).

Geometrically one can show that t31 = t12 and t13 = t21. Analytically, with the
values c = 30, a = 10, r = 20,

0 < F±1(t) ≤ c−1
√
r2 + a2 + 2ar = c−1(r + a) = 1,

so that we need look for fixed points only in the interval [0, 1]. Differentiat-
ing F−1(t) shows the derivative is negative on [0, 1], hence that F−1 is strictly
decreasing there and can intersect the identity mapping at most once on the
interval. Similarly, differentiating F+1(t) shows the derivative

arω sin(θ + ωt)
c
√
r2 + a2 − 2ar cos(θ + ωt)

6

is positive on [0, 1], but with the given values for c, a and r, and with θ =
0.2, ω = 0.2, F ′+1(t) < 0.1 on [0, 1]: hence F+1 increases sufficiently slowly on
the interval that the identity mapping can intersect it at most once there. In
both cases, there can be at most one fixed point.

It follows that t12 = t31 and t13 = t21 and the round trip times are 2t12 + t23
and 2t13 + t32.

1.1.1.1 Nesting commands

The calculation to compare the round trip times can be done ‘in one go’ by
nesting the \iter* commands to calculate the tij inside an \eval* command
to form the sum of their results and then take the difference.

$
\eval*{ % circuit 1231

2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar
\cos(\theta-\omega t)} }

+ \iter*{ c^{-1}\sqrt{2r^2-2r^2
\cos(2\theta+\omega t)} }

% circuit 1321
- 2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar

\cos(\theta+\omega t)} }
- \iter*{ c^{-1}\sqrt{2r^2-2r^2

\cos(2\theta-\omega t)} }
}[c=30,a=10,r=20,\theta=0.2,\omega=0.2, t=1]

$

=⇒ 0.034746.
By itself this result is of little interest beyond seeing that numerica can han-

dle it. What is interesting is to find values of θ, say, given the other parameters
and especially the value of r, such that the time difference vanishes. Is there a
circuit, despite the rotation of the disk, such that it takes a signal the same time
to travel in opposite directions around the circuit? That is a job for \nmcSolve
(or \solve):

\solve[p=.,var=\theta,vvi=]{$ % circuit 1231
2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar

\cos(\theta-\omega t)} }
+ \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2

\cos(2\theta+\omega t)} }
% circuit 1321

- 2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar
\cos(\theta+\omega t)} }

- \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2
\cos(2\theta-\omega t)} }

$}[c=30,a=10,r=20,\theta=0.1,\omega=0.2, {t}=1]

7

=⇒ 2× 0.53778 + 1.221268− 2× 0.614421− 1.067986 = 0→ θ = 1.035745.
One point to note here is the use of \times (in 2\times\iter*) as against

the previous example with \eval* where \times was not used. In the present
case the formula is displayed (\solve wraps around math delimiters); the star on
the \eval command in the previous example suppressed display of the formula.
Without the \times the ‘2’s would be juxtaposed against the following decimals,
making it look as if the signal travel times were 20.537778 and 20.614419 and no
doubt causing perplexity. Also note the vvi= to suppress display of the vv-list.

But this is not a research paper on the rotating disk. I wished to show
how the different commands of numerica-plus can be used to explore a mean-
ingful problem. And although it looks as if a lot of typing is involved, once
c−1
√
r2 + a2 − 2ra cos(θ − ωt) has been formed in LATEX and values specified

in the vv-list, much of the rest is copy-and-paste followed by minor editing.

1.2 Shared syntax of the new commands
numerica-plus offers three new commands for three processes: \nmcIterate
(short-name form \iter) for iterating functions, \nmcSolve (short-name form
\solve) for finding the zeros or (local) extrema of functions, and \nmcRecur
(short-name form \recur) for calculating terms of recurrence relations.

All three commands share the syntax of the \nmcEvaluate (or \eval) com-
mand detailed in the associated document numerica-basics.pdf. When all
options are used then the command looks like

\nmcIterate*[settings]{expr.}[vv-list][num. format]

You can substitute \nmcSolve, or \nmcRecur for \nmcIterate here. The argu-
ments are similar to those for \nmcEvaluate.

1. * optional switch; if present ensures a single number output with no for-
matting, or an appropriate error message if the single number cannot be
produced;

2. [settings] optional comma-separated list of key=value settings for this
particular command and calculation;

3. {expr.} the only mandatory argument; the mathematical expression in
LATEX form that is the object of interest;

4. [vv-list] optional comma-separated list of variable=value items; for
\iter and \solve the rightmost (or innermost) variable in the vv-list
may have special significance;

5. [num. format] optional format specification for presentation of the nu-
merical result (rounding, padding with zeros, scientific notation); boolean
output is suppressed for these commands.

8

Boolean output makes little sense for these three commands and is turned off.
Entering a question mark in the trailing number-format option of each command
has no effect – see §.

All commands also share with \nmcEvaluate changes in the way the re-
sult is displayed depending on whether they wrap around math delimiters, or
are wrapped within math delimiters, or are employed in the absence of math
delimiters. These distinctions are relevant only if the optional star * is absent.

• When the star option is used, the result is a number only without any
formatting or vv-list display, or an error message is displayed.

• When the star option is not used and one of the following is the case

– the command wraps around math delimiters, e.g. \iter{$ expr. $},
then the result is displayed in the form expression = result or the form
expression → result as appropriate, where result may be multi-line
and may include the vv-list,

– the command is used within math delimiters, e.g. \[\iter...\],
then only the result is presented, where result may be multi-line and
may include the vv-list,

– the command is used in the absence of delimiters, then the result is
presented as if it had been used between \[and \].

Looking at the various examples in the preceding section on the rotating disk
you will see illustrations of all these situations.

1.2.1 Settings
Nearly all the settings available to the \eval command are available to these
other commands. To save switching between documents I reproduce in Table 1.1
the options found in numerica-basics.pdf, although for discussion of the op-
tions you will need to refer to that document. In addition, each of the present
commands also has settings of its own, discussed at the relevant parts of the
following chapters.

1.2.2 Nesting
Provided the starred form of a command actually does produce a numerical
result and not an error message then it can be nested within the main argument
of any one of the commands, including itself. The example of use, §1.1 above,
shows several examples of this. The starred form can also be used in the vv-
list of any one of the commands, including itself. The associated document
numerica-basics.pdf shows examples of an \eval* command being used in
the vv-list of an \eval command.

9

Table 1.1: Inherited settings options

key type meaning default

dbg int debug ‘magic’ integer 0
^ char exponent mark for sci.

notation input
e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. function arg. parsing 0
o degree switch for trig.

funcions
log num base of logarithms for \log 10
vvmode int (0/1) vv-list calculation mode 0
vvd tokens vv-list display-style spec. {,}\mskip 12mu plus 6mu

minus 9mu(vv)
vvi token(s) vv-list text-style spec. {,}\mskip 36mu minus

24mu(vv)
* suppress equation

numbering if \\ in vvd
p char(s) punctuation (esp. in

display-style)
, (comma)

S+ int extra rounding for stopping
criterion for sums

2

S? int ≥ 0 stopping criterion query
terms for sums

0

P+ int extra rounding for stopping
criterion for products

2

P? int ≥ 0 stopping criterion query
terms for products

0

10

Chapter 2

Iterating functions:
\nmcIterate

Only in desperation would one try to evaluate a continued fraction by stacking
fraction upon fraction upon fraction like so:

1 + 1
1 + 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1+ 1
1+ 1

1

numerica-plus provides a command for tackling problems like this sensibly. In
such problems a function is repeatedly applied to itself (iterated). This can be
achieved in numerica through the command \nmcIterate or (short-name form)
\iter. Thus to evaluate this continued fraction we write

\iter[do=15,see=5]{\[1+1/x \]}[x=1] =⇒

1 + 1/x = 2, (x = 1)
. . . final 5 of 15:
↪→ 1.618056
↪→ 1.618026
↪→ 1.618037
↪→ 1.618033
↪→ 1.618034

The \iter command evaluates 1 + 1/x when x = 1 and then uses this value
as a new x-value to substitue into 1 + 1/x, to once again evaluate and use as a
new x-value, and so on. It looks as if the repeated iterations are approaching
\eval{$ \tfrac{\sqrt{5}+1}2 $} =⇒

√
5+1
2 = 1.618034.

Increasing the number of iterations in the example from do=15 to, say, do=18,
shows that this is indeed the case. I’ve taken the opportunity to also put a

11

question mark in the number-format option to get boolean output in order to
show that it has no effect:

\iter[do=18,see=5]{\[1+1/x \]}[x=1][?] =⇒

1 + 1/x = 2, (x = 1)
. . . final 5 of 18:
↪→ 1.618033
↪→ 1.618034
↪→ 1.618034
↪→ 1.618034
↪→ 1.618034

But iteration of functions is not limited to continued fractions. Particularly
since the emergence of chaos theory, iteration has become an important study
in its own right. Any function whose range lies within its domain can be iterated
– repeatedly applied to itself. The cosine, for instance,

\iter[do=20,see=4]{\[\cos x \]}[x=\pi/2] =⇒

cosx = 0, (x = π/2)
. . . final 4 of 20:
↪→ 0.738369
↪→ 0.739567
↪→ 0.73876
↪→ 0.739304

which displays the first one and last four of 20 iterations of cosx when x = π
2 . It

looks as if the cosine is ‘cautiously’ approaching a limit, perhaps around 0.738
or 0.739. You need to nearly double the number of iterations (do=40) to confirm
that this is so.

The logistic function kx(1 − x) exhibits a variety of behaviours depending
on the value of k. For instance, with k = 3.5 we get a period-4 cycle:

\iter[do=12,see=8]{\[kx(1-x) \]}[k=3.5,x=0.5] =⇒

kx(1− x) = 0.875, (k = 3.5, x = 0.5)
. . . final 8 of 12:
↪→ 0.874997
↪→ 0.38282
↪→ 0.826941
↪→ 0.500884
↪→ 0.874997
↪→ 0.38282
↪→ 0.826941
↪→ 0.500884

and with k = 3.1 we get a period-2 cycle, although it takes many more iterations
to stabilize there:

12

\iter[do=44,see=8]{\[kx(1-x) \]}[k=3.1,x=0.5] =⇒

kx(1− x) = 0.775, (k = 3.1, x = 0.5)
. . . final 8 of 44:
↪→ 0.764567
↪→ 0.558013
↪→ 0.764567
↪→ 0.558014
↪→ 0.764567
↪→ 0.558014
↪→ 0.764567
↪→ 0.558014

2.1 Star (*) option: fixed points
In the first two of these examples, iteration eventually ended at a fixed point.
This is a point x where f(x) = x and, by induction, fn(x) = x. Appending
a star (asterisk) to the \iter command is the signal for iteration to continue
until a fixed point has been reached at the specified rounding value:

\iter*{ 1+a/x }[a=n(n+1),n=1,x=1] =⇒ 2

(with the default rounding value 6).1 The star overrides any value for the
number of iterations to perform (the do key) that may have been entered in
the settings option. It also overrides any elements of the display other than the
numerical result. With the star option math delimiters are irrelevant – other
than displaying minus signs correctly when \iter* is between them.

A function may not approach a fixed point when iterated – see the examples
with the logistic function above. To prevent an infinite loop \iter* counts the
number of iterations performed and when that number reaches a certain cut-off
value – the default is 100 – the loop terminates and a message is displayed:

\iter*{kx(1-x)}[k=3.5,x=0.5] =⇒
!!! No fixed point attained after 100 iterations of: formula. !!!

In this case we know that a fixed point does not exist, but that may not always
be the case. One response is to change parameter values or starting value of the
iteration variable. For instance, changing the parameter value to k = 1.5,

\iter*{kx(1-x)}[k=1.5,x=0.5] =⇒ 0.333334,

and a fixed point is now attained.
But should a fixed point still not eventuate after ‘fiddling’ with parameter

and start values, there are two general adjustments one might try: either

1. reduce the rounding value, from the default 6 (or the one specified), to a
smaller value, or

1For your own interest try also putting n = 2, 3, 4,

13

2. increase the cut-off figure from the default 100 to some higher value.

The former is done via the trailing [num format] optional argument; the latter
is done via the settings option, see §2.2.

2.1.1 Use with \nmcInfo

It is of interest to know how many iterations are required to reach a fixed point at
a particular rounding value. That knowledge allows a good guess as to whether
a fixed point will be attained at a greater rounding value. Thus when iterating
the function

f(tij) = c−1
√
r2
i + r2

j − 2rirj cos(θj − θi + ωtij)

in §1.1 only 5 iterations were required to attain 6-figure accuracy for the fixed
point. That information came by following the \iter* command with \nmcInfo
(or \info) with the argument iter. And generally, for any ‘infinite’ process,
follow the command with an \info command if you want to know how many
‘steps’ – in the present case iterations – are required to achieve the result. So, if
5 iterations achieve 6-figure accuracy, presumably something like 10 iterations
will achieve 12-figure accuracy:

\iter*{ c^{-1}\sqrt{r_i^2+r_j^2-2r_i r_j
\cos(\theta_{ij}+\omega t)}

}[c=30,r_i=10,r_j=20,\theta_{ij}=0.2,
\omega=0.2,t=1][12],

\quad\info{iter}.

=⇒ 0.356899026113, 9 iterations. Only 9 iterations suffice to achieve 12-figure
accuracy. Or again, with another earlier example,

$ \iter*{\cos x}[x=\pi/2] $,\ \info{iter}. =⇒ 0.739085, 37 iterations.

That suggests that around 74 iterations will give 12-figure accuracy, well within
the cut-off figure of 100:

$ \iter*{\cos x}[x=\pi/2][12] $,\ \info{iter}. =⇒ 0.739085133215,
72 iterations.

2.2 Settings option
The settings option is a comma-separated list of items of the form key = value.

2.2.1 Inherited settings
Nearly all of the keys discussed in the settings option for \nmcEvaluate are
available for \nmcIterate. Table 1.1 above lists these, repeating a table from

14

numerica-basics.pdf. Thus should a quantity in the vv-list depend on the
iteration variable, forcing an implicit mode calculation, simply enter (as with
\eval) vvmode=1 in the settings option:

\iter*[vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1] =⇒ 4.

Implicit in this example is the default multi-token setting xx=1 inherited from
\eval and ensuring that the multi-token variable f(x) is treated correctly.

Let’s add dbg=1 to the example:

\iter*[dbg=1,vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1] =⇒

vv-list: x=1, a=12, _nmcu =a/x
formula: 1+_nmcu
stored: x=4.000000223240948, a=12, _nmcu =2.999999832569298

fp-form: 1+(2.999999832569298)
result: 4

The multi-token variable f(x) has been changed to the single-token _nmcu.
The values of x and _nmcu shown are those of the final iteration.

2.2.2 \iter-specific settings
In addition to the inherited settings there are some specific to \nmcIterate.
These are listed in Table 2.1.

2.2.2.1 Iteration variable

In nearly all of the examples so far, the iteration variable has been the rightmost
variable in the vv-list and has not needed to be otherwise specified. However
it is sometimes not feasible to indicate the variable in this way. In that case,
entering

var = <variable name>

in the settings option enables the variable to be specified, irrespective of what
the rightmost variable in the vv-list is. Here, <variable name> will generally
be a character like x or t or a token like \alpha, but it could also be a multi-
token name like x' or \beta_{ij} (or even Fred if you so chose). Although
the iteration variable can be independently specified like this, it must still be
given an initial value in the vv-list – only it need not be the rightmost variable.

In the following example the rightmost variable is a which is clearly not the
iteration variable:

15

Table 2.1: Settings for \nmcIterate

key type meaning default

var token(s) iteration variable
+ int fixed point extra rounding 0
max int > 0 max. iteration count (fixed points) 100
do int > 0 number of iterations to perform 5
see int > 0 number of final iterations to view 4
reuse int (0/1/2) form of result saved with \reuse 0

\iter[var=x'',do=40,see=5]{$ 1+a/x'' $}[x''=a/6,a=6][*] =⇒
1 + a/x′′ = 7.000000, (x′′ = a/6, a = 6)

. . . final 5 of 40:
↪→ 2.999998
↪→ 3.000001
↪→ 2.999999
↪→ 3.000000
↪→ 3.000000

2.2.2.2 Extra rounding for fixed-point calculations

numerica determines that a fixed point has been reached when the difference
between successive iterations vanishes when rounded to the current rounding
value. One might want reassurance that this really is the correct value by
seeking a fixed point at a higher rounding value than that displayed. This extra
rounding is achieved by entering

+ = <integer>

in the settings option. By default this extra rounding is set to zero.
We have seen before that cosx starting at x = 1

2π takes 37 iterations to
reach a 6-figure fixed point 0.739085, about 6 iterations per decimal place. By
entering +=1 in the settings option the number of iterations is increased to 43,
6 more than 37 but, reassuringly, the 6-figure result that is displayed remains
unchanged:

$ \iter*[+=1]{\cos x}[x=\pi/2] $,\ \info{iter}. =⇒ 0.739085, 43
iterations.

2.2.2.3 Maximum iteration count for fixed point searches

To prevent a fixed-point search from continuing indefinitely when no fixed point
exists, there needs to be a maximum number of iterations specified after which
point the search is called off. By default this number is 100. To change it enter

16

max = <positive integer>

in the settings option.

2.2.2.4 Number of iterations to perform

To specify the number of iterations to perform enter

do = <positive integer>

in the settings option. Note that if the * option is present this value will be
ignored and iteration will continue until either a fixed point or the maximum
iteration count is reached. By default do is set to 5. (Note that do can be set
to a greater number than max; max applies only to \iter*.)

2.2.2.5 Number of iterations to view

To specify the number of final iteations to view enter

see = <positive integer>

in the settings option. By default see is set to 4. Always it is the last see iter-
ations that are displayed. If see is set to a greater value than do, all iterations
are shown. If the star option is used the see value is ignored.

2.2.2.6 Form of result saved by \reuse

By entering

reuse = <integer>

in the settings option of the iter command it is possible to specify the form of
result that is saved when using \nmcReuse. (This setting has no effect when the
star option is used with \nmcIterate. In that case only the numerical result of
the fixed point calculation – if successful – is saved.) The possibilities are:

• int=0 (or any integer 6= 1, 2) saves the display resulting from the \iter
command (the default);

• int=1 saves a comma-separated list of pairs of the form:
{k, value-of-k-th-iterate};

• int=2 saves a comma-separated list of iterate values.

Note that the number and content of the items in the lists are those resulting
from the see setting (the number of iterations to view).

\iter[reuse=1,do=12,see=4]
{\[kx(1-x) \]}[k=3.5,x=0.5]

\reuse[logistic]

17

=⇒
kx(1− x) = 0.875, (k = 3.5, x = 0.5)

. . . final 4 of 12:
↪→ 0.874997
↪→ 0.38282
↪→ 0.826941
↪→ 0.500884

whence \logistic =⇒ 9,0.874997,10,0.38282,11,0.826941,12,0.500884. As you
can see the control sequence \logistic displays as a comma-separated list
of numbers, alternating between the ordinal of the iterate, and the iterate
value. In fact these values are grouped as braced pairs separated by commas in
\logistic, as can be seen by using TEX’s \meaning command:

\meaning\logistic =⇒
macro:->{9,0.874997},{10,0.38282},{11,0.826941},{12,0.500884}

2.2.3 Changing default values

Table 2.2: Defaults for \nmcIterate

key default

iter-extra-rounding 0
iter-max-iterations 100
iter-do 5
iter-see-last 4
iter-reuse 0

If you wish to change the de-
fault values of the various set-
tings for \nmcIterate this can be
done by entering new values in a
configuration file numerica.cfg as
described in the chapter on set-
tings in the associated document
numerica-basics.pdf. The relevant
keys are listed in Table 2.2, corre-
sponding to the +, max, do, see and
reuse settings of the \iter com-
mand. (Obviously it makes no sense
to have a default setting for the iteration variable. That will change from case
to case.)

2.3 Errors
By errors I refer to numerica errors rather than LATEX errors. We have already
met one in the discussion of fixed points:

\iter*{kx(1-x)}[k=3.5,x=0.5] =⇒
!!! No fixed point attained after 100 iterations of: formula. !!!

For a function to be iterated indefinitely, its range must lie within or be equal to
its domain. If even part of the range of a function lies outside its domain, then
on repeated iteration there is a chance that a value will eventually be calculated
which lies in this ‘outside’ region. Iteration cannot continue beyond this point

18

and an error message is generated. As an example consider the inverse cosine,
\arccos. This can be iterated only so far as the iterated values lie between
±1 inclusive. If we try to iterate \arccos at 0 for example, since cos 1

2π = 0,
arccos 0 = 1.5708 (which is 1

2π) so only a first iterate is possible. But we could
choose an initial value more carefully; 37 iterations of the cosine at 1

2π led to
a fixed point 0.739085, so let’s choose 0.739085 as initial point and perform 37
iterations:

\iter[do=37,see=4]{\[\arccos x \]}[x=0.739085] =⇒

arccosx = 0.739085, (x = 0.739085)
. . . final 4 of 37:
↪→ 0.644659
↪→ 0.870219
↪→ 0.515149
↪→ 1.029615

The result of the 37th iteration is greater than 1. Thus increasing the number
of iterations to 38 should generate an error message:

\iter[do=38,see=4]{\[\arccos x \]}[x=0.739085]
=⇒!!! l3fp error ‘Invalid operation’ in: formula. !!!

l3fp objects when asked to find the inverse cosine of a number greater than 1.

19

Chapter 3

Finding zeros and extrema:
\nmcSolve

numerica provides a command \nmcSolve (short-name form \solve) for finding
a zero of a function, should it have one. In the following example,

\solve[p]{\[e^{ax}-bx^2 \]}[a=2,b=3,{x}=0] =⇒

eax − bx2 = −0.000002, (a = 2, b = 3)→ x = −0.390647,

I have sought and found a solution x to the equation eax/2−bx2 = 0 when a = 2
and b = 3, starting with a trial value x = 0, entered as the rightmost variable in
the vv-list (and em-braced since I don’t want this trial value displaying in the
presentation of the result). Although x has been found to the default six-figure
accuracy, it is evident that the function vanishes only to five figures. Let’s check:

\eval{$ bx^2 $}[b=3,x=x=-0.390647] =⇒
bx2 = 0.457815, (b = 3, x = −0.390647),

\eval{$ e^{ax} $}[a=2,x=-0.390646] =⇒
eax = 0.457813, (a = 2, x = −0.390647);

the values agree save in the final digit.
This discrepancy in the final decimal place or places is a general feature of

solutions found by \solve. It is the value of x, not the value of f(x), that is
being found (in this case) to six figures. If the graph of a function crosses the
x-axis steeply then the x value (the zero) may be located to a higher precision
than the function value. Conversely, if the graph of a function crosses the x-
axis gently (at a shallow angle) then the function value will vanish to a greater
number of decimal places than the zero (the x value) is located.

A second example, which we can check with values tabulated in HMF, is

\solve{$ \tan x - \lambda x $}[\lambda=-1/0.8,{x}=1][5] =⇒
tan x− λx = −0.00002, (λ = −1/0.8)→ x = 1.95857.

20

Table 4.19 of HMF lists values of x against λ and this is the value tabulated
there.

3.1 Extrema
A function may not have a zero or for the given initial trial value and initial
step in the search for a zero there may be a local extremum in the way. In that
case numerica may well locate the local extremum (maximum or minimum but
not a saddle point). For example for the quadratic (2x−1)2 +3x+1 the \solve
command gives the result

\solve[vvi=]{$ (2x-1)^2+3x+1 $}[x=2]
=⇒(2x− 1)2 + 3x+ 1 = 1.9375→ x = 0.124999.

Since (2x−1)2+3x+1 6= 0 for any (real number) x, we deduce that the quadratic
takes a minimum value 1.9375 at x = 0.125 – easily confirmed analytically. This
particular minimum is a global minimum but in general any extremum found
is only local. The function may well take larger or smaller values (or vanish for
that matter) further afield.

It is also worth noting in this example the vvi= in the settings option which
suppresses display of the vv-list. (The only member of the vv-list is the trial
value x=2 which we do not want to display.)

Note that the function for which a zero is being sought is not equated to
zero when entered in the \solve command. It is \solve{ f(x) }, not
\solve{ f(x)=0 }. This is precisely because it may be an extremum that
is found rather than a zero (if extremum or zero is found at all – think ex). The
display of the result makes clear which is which, equating f(x) to its value, zero
or extremum depending on what has been found, as you can see in the preceding
examples.

3.1.1 The search strategy
If you have some sense of where a function has a zero, then choose a trial
value in that vicinity. \solve uses a bisection method to home in on the zero.
It therefore needs two initial values. For the first it uses the trial value you
specify, call it a and for the second, by default, it uses a+ 1. (The default value
1 for the initial step from the trial value can be changed in the settings option;
see §3.3.) If f(a) and f(a+ 1) have opposite signs then that is good. Bisection
of the interval [a, a+1] can begin immediately in order to home in on the precise
point where f vanishes. Write b = a+ 1.

• Let c = 1
2 (a+ b); if f(c) = 0 the zero is found; otherwise either f(a), f(c)

are of opposite signs or f(c), f(b) are of opposite signs. In the former case
write a1 = a, b1 = c; in the latter case write a1 = c, b1 = b and then

21

redefine c = 1
2 (a1 + b1). Continue the bisection process, either until an

exact zero c of f is reached (f(c) = 0) or a value c is reached where the
difference between an+1 and bn+1 is zero at the specified rounding value.
(But note, f(c) may not vanish at that rounding value – the zero might
be elsewhere in the interval and f might cross the axis at a steep slope.)

However f(a) and f(b) = f(a + 1) may not have opposite signs. If we graph
the function y = f(x) and suppose f(a), f(b) are distinct but of the same sign,
then the line through the points (a, f(a)), (b, f(b)) will intersect the x-axis to
the left of a or the right of b depending on its slope. We search always towards
the x-axis in steps of b− a (= 1 with default values).

• If the line intersects the axis to the left of a then c = a − (b − a) and
we set a1 = c, b1 = a; if the line intersects the axis to the right of b then
c = b + (b − a) and we set b1 = c, a1 = b. The hope is that by always
taking steps in the direction towards the x-axis that eventually f(c) will
be found to lie on the opposite side of the axis from f(an) or f(bn), at
which point the bisection process begins.

• Of course this may not happen. At some point c may lie to the left of an
but |f(c)| > |f(an)|, or c may lie to the right of bn but |f(c)| > |f(bn)|.
The slope has reversed. In that case we halve the step value to 1

2 (b − a)
and try again in the same direction as before from the same point as before
(an or bn as the case may be).

• Should we find at some point that f(an) = f(bn) then the previous strat-
egy does not apply. In this case we choose an+1 and bn+1 at the quarter
and three-quarter marks between an and bn. Either f(an+1) and f(bn+1)
will differ and the previous search strategy can start again or we are on
the way to finding an extremum of f .

As already noted it is also possible that our function has neither zeros nor
extrema. To prevent the search continuing indefinitely, numerica uses a cut-off
value for the maximum number of steps pursued – by default set at 100.

3.1.1.1 Elusive extrema

The strategy ‘search always towards the x-axis’ has a consequence: it means
that a local maximum above the x-axis will almost certainly not be found, since
‘towards the x-axis’ pulls the search away from the maximum. Similarly a local
minimum below the x-axis will also not be found since ‘towards the x-axis’ pulls
the search away from the minimum.

One way of countering this elusiveness is to add a constant value (possibly
negative) to the function whose zeros and extrema are being sought. The zeros
of the function will change but the abscissae (x values) of the extrema remain
unchanged. If the constant is big enough it will push a local minimum above the
axis where it can be found or, for a negative constant, push a local maximum
below the axis where it can be found.

22

For example f(x) = x3−x has roots at −1, 0, 1, a local maximum at − 1√
3 and

a local minimum at 1√
3 . To locate the minimum, I have added an unnecessarily

large constant k to f(x). (k = 1 would have sufficed, but note, k = 0 fails.)

\solve{$ x^3-x+k $}[k=5,{x}=0.5] =⇒
x3 − x+ k = 4.6151, (k = 5)→ x = 0.577351.

Checking, \eval{$\tfrac1{\surd 3}$} =⇒ 1√
3 = 0.57735. There is a dis-

crepancy in the 6th decimal place which can be eliminated by using the extra
rounding setting; see §3.3.2.3.

3.2 Star (*) option
A starred form of the \nmcSolve command suppresses all elements of display
of the result apart from the numerical value. When nesting a \solve command
within another command this is the form to use. Thus with the ‘elusive’ ex-
tremum example above, we can find the actual value of the minimum by nesting
the starred \solve command within the vv-list of an \eval command:

\eval{$ x^3-x $}[x={\solve*{y^3-y+k}[k=5,y=0.5]}] =⇒
x3 − x = −0.3849, (x = 0.577351).

(Note the braces around the \solve* and arguments to hide its square-bracketed
vv-list from the parsing of the vv-list of the \eval command.) The result is to
be compared with $\eval*{x^3-x}[x=\tfrac1{\surd3}]$ =⇒ −0.3849.

3.3 Settings option
The settings option is a comma-separated list of items of the form key = value.

3.3.1 Inherited settings
The keys discussed in the settings option for \nmcEvaluate are also available
for \nmcSolve. The very first example in this chapter used the punctuation
option p (\solve[p]{\[...) inherited from the \eval command to ensure a
comma after the display-style presentation of the result. We also saw in the
quadratic example illustrating extrema the use of vvi with no value to suppress
display of the vv-list: \solve[vvi=]{$

Putting dbg=1 produces a familiar kind of display. Using the function

ct−
√
a2 + b2 − 2ab cos(β + ωt)

from the rotating disk problem,

\solve[dbg=1,var=t,p=.,vvd={,}\\(vv)\\,*]
{$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)}
$}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]

23

=⇒

vv-list: t=1, \omega =0.1, \beta =1, b=20, a=10, c=30
formula: ct-\sqrt {a^{2}+b^{2}-2ab\cos (\beta +\omega t)}
stored: t=0.580963134765625, \omega =0.1, \beta =1, b=20, a=10, c=30

fp-form: (30)(0.580963134765625)-sqrt((10)^(2)+(20)^(2)-
2(10)(20)cos(((1)+(0.1)(0.580963134765625))))

result: 0.5809

3.3.1.1 Multi-line display of the result

By default the result is presented on a single line. Unless the star option is being
used, this can be of the form function = function value, (vv-list) → result. It
takes only a slightly complicated formula and only a few variables in the vv-list
before this becomes a crowded line, likely to exceed the line width and extend
into the margin. To split the display over two lines choose a vvd specification in
the vv-list like, for instance, vvd={,}\\(vv). The \\ is a trigger for numerica
to replace whatever environment the \eval command is wrapped around with
a multline environment. An asterisk in the vv-list replaces multline with
multline* so that no equation number is used:

\solve[p=.,vvd={,}\\(vv),*]
{$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)}
$}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]

=⇒

ct−
√
a2 + b2 − 2ab cos(β + ωt) = −0.0015,

(c = 30, a = 10, b = 20, β = 1, ω = 0.1)→ t = 0.5809.

You could introduce a third line if you wished to display the result on a line of
its own by using the spec. vvd={,}\\(vv)\\:

\solve[p=.,vvd={,}\\(vv)\\,*]
{$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)}
$}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]

=⇒

ct−
√
a2 + b2 − 2ab cos(β + ωt) = −0.0015,

(c = 30, a = 10, b = 20, β = 1, ω = 0.1)
→ t = 0.5809.

24

Table 3.1: Settings for \nmcSolve

key type meaning default

var token(s) equation variable
dvar real 6= 0 initial step size 1
+ int extra rounding 0
max int > 0 max. number of steps before cut off 100
reuse int (0/1) form of result saved with \reuse 0

The function evaluates to −0.0015. Is this a zero that has been found or
an extremum? To find out, the calculation needs to be carried out to a higher
rounding value which is the reason why \nmcSolve has an extra rounding set-
ting; see §3.3.2.3 below.

3.3.2 \solve-specific settings
In addition there are some settings peculiar to \nmcSolve. These are listed in
Table 3.1.

3.3.2.1 Equation variable

By default the equation variable is the rightmost variable in the vv-list. This
may not always be convenient. A different equation variable can be specified by
entereing

var = <variable name>

in the vv-list. <variable name> will generally be a single character or token –
x, t, α, ω – but is not necessarily of this kind. Multi-token names are perfectly
acceptable (with the default xx=1 multi-token setting).

3.3.2.2 Initial step size

The vv-list must contain the equation variable set to some trial value. But
\solve needs two initial values to begin its search for a zero or extremum; see
§3.1.1. If the equation variable is set to a trial value a then by default the second
value is a+ 1. The ‘+1’ here can be changed by entering in the settings option

dvar = <non-zero real number>

For instance, dvar=-1, or dvar=\pi are two valid specifications of initial step
size.

The notation is prompted by the use of expressions like x+ dx in calculus.

25

An example where the default step value is too big and a smaller one needs
to be specified is provided by Planck’s radiation function (HMF Table 27.2),

f(x) = 1
x5(e1/x − 1)

.

From the (somewhat coarse-grained) table in HMF it is clear that there is a
maximum of about 21.2 when x is a little more than 0.2. This is a maximum
above the x-axis and hence ‘elusive’. To find it, substract 100 (say) from the
formula and again use the ability to nest commands to display the result. Note
the dvar=0.1 in the settings option of the \solve* command:

\eval[p=.]{\[\frac1{x^5(e^{1/x}-1)} \]}
[x={ \solve*[dvar=0.1]

{ \frac1{y^5(e^{1/y}-1)}-100 }[y=0.1]
}]

=⇒
1

x5(e1/x − 1)
= 21.201436, (x = 0.201405).

The maximum is indeed a little over 21.2 and the x value a little more than 0.2.
The default dvar=1 is too big for this problem. From the table in HMF,

f(0.1) = 4.540 and f(1.1) = 0.419. By subtracting 100 from f(x) the ‘to-
wards the x-axis’ search strategy leads to negative values of x, an artifact of the
subtraction.

3.3.2.3 Extra rounding

\solve determines that a zero or an extremum has been reached when the
difference between two successive bisection values or step values vanishes at the
specified rounding value (the value in the final trailing optional argument of the
\solve command; 6 by default). If our function is f(x) then |xn+1−xn| = 0 to
the specified rounding value and (assuming xn+1 > xn) there is a critical value
xc ∈ [xn, xn+1] such that f(xc) = 0 (to all 16 places of decimals that l3fp works
to). But in general the critical value xc will not coincide with xn or xn+1. If f(x)
crosses the x-axis at a steep angle it may well be that although f(xc) vanishes to
all 16 places of decimals, f(xn), f(xn+1) may well not vanish at the (generally
smaller) specified rounding value. For instance, suppose f(x) = 1000x− 3000.

\solve[vvi=]{$ 1000x-3000 $}[x=e][4*] =⇒
1000x− 3000 = −0.0409→ x = 3.0000.

In this example, although the difference between successive x values vanishes to
4 places of decimals, f(x) does not, not even to 2 places.

This suggests it would be helpful to be able to use two rounding values, one
to determine when a zero has been found and one for the visible display. This
is done through the extra rounding key in the settings option. Enter

26

+ = <integer>

in the settings option of the \solve command to add <integer> to the rounding
value determining the conclusion of the calculation. By default the setting is
+=0. The extra rounding setting leaves the display rounding unaffected.

With this option available it is easy to check that +=3 suffices to ensure that
both x and f(x) vanish to 4 places of decimals,

\solve[+=3]{$ 1000x-3000 $}[x=e][4*] =⇒
1000x− 3000 = 0.0000, (x = e)→ x = 3.0000,

and that +=2 does not, i.e., we need to locate the zero to 4 + 3 = 7 figures to
ensure the function vanishes to 4 figures.

There is no need for the <integer> to be positive. In fact negative values
can illuminate what is going on. In the first of the following, the display is to
10 places but the calculation is only to 10 − 4 = 6 places. In the second, the
display is again to 10 places, but the calculation is to 10− 3 = 7 places.

\solve[+=-4]{$ 1000x-3000 $}[x=e][10*] =⇒
1000x− 3000 = −0.0008711259, (x = e)→ x = 2.9999991289,

\solve[+=-3]{$ 1000x-3000 $}[x=e][10*] =⇒
1000x− 3000 = −0.0000366609, (x = e)→ x = 2.9999999633.

Only in the second does f(x) = 1000x− 3000 vanish when rounded to 4 figures.
Returning to an earlier example (§3.3.1.1) in which it was not entirely clear

whether a zero or an extremum had been found, we can now resolve the con-
fusion. Use the extra rounding setting (and pad with zeros to emphasize the
4-figure display by adding an asterisk in the trailing optional argument):

\solve[+=2,vvd={,}\\(vv),*]
{$

ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)}
$}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4*]

=⇒

ct−
√
a2 + b2 − 2ab cos(β + ωt) = 0.0000,

(c = 30, a = 10, b = 20, β = 1, ω = 0.1)→ t = 0.5810

3.3.2.4 Maximum number of steps before cut-off

Once two function values have been found of opposite sign, bisection is guaran-
teed to arrive at a result. The problem is the search for two such values. This
may not terminate – think of functions like exor 1/x which lack both zeros and
extrema. To prevent an infinite loop, \solve cuts off the search after 100 steps.
This cut-off value can be changed for a calculation by entering

27

max = <positive integer>

in the settings option.
To illustrate, we know that 1/x has neither zero nor extremum, but we do

not get an infinite loop; we get an error message if we attempt to ‘solve’ 1/x:

\solve{ 1/x }[x=1] =⇒
!!! No zero/extremum found after 100 steps for function: 1/x. !!!

3.3.2.5 Form of result saved by \reuse

As wth \eval and \iter it is possible to specify to some extent what is saved
to file when using \reuse after a \solve command. The form of entry in the
settings option is

reuse = <integer>

If the star option is used with the \solve command the numerical result is the
only thing saved, but in the absence of the star option,

• reuse=0 saves the form that is displayed. For example, if the display is of
the form function = function value, (vv-list) → result then that is what
is saved; this is the default behaviour;

• reuse=1 (or any non-zero integer) saves only the numerical result.

3.3.3 Changing default values

Table 3.2: Defaults for \nmcSolve

key default

solve-first-step 1
solve-extra-rounding 0
solve-max-steps 100
solve-reuse 0

If you wish to change the de-
fault values of the various set-
tings for \nmcSolve this can be
done by entering new values in a
configuration file numerica.cfg as
described in the chapter on set-
tings in the associated document
numeric-basics.pdf. The relevant
keys are listed in Table 3.2, corre-
sponding to the dvar, +, max and
reuse settings of the \solve com-
mand. (Obviously it makes no sense
to have a default setting for the solution variable. That will change from case
to case.)

28

Chapter 4

Recurrence relations:
\nmcRecur

One of the simplest recurrence relations is that determining the Fibonacci num-
bers, fn+2 = fn+1 + fn, with initial values f0 = f1 = 1. The command
\nmcRecur, short-name form \recur, allows calculation of the terms of this
sequence:

$ \nmcRecur[do=8,see1=8,...]
{ f_{n+2}=f_{n+1}+f_{n} }

[f_{1}=1,f_{0}=1] $

=⇒ 1, 1, 2, 3, 5, 8, 13, 21, . . .
The recurrence relation is entered in the main argument (between braces),

the initial values in the vv-list trailing the main argument, and the display
specification is placed in the settings option: do=8 terms to be calculated, all 8
to be viewed (see1=8), and the display to be concluded by an ellipsis to indicate
that the sequence continues (but those are three dots/periods/full stops in the
settings option).

A more complicated recurrence relation determines the Legendre polynomi-
als:

(n+ 2)Pn+2(x)− (2n+ 3)xPn+1(x) + (n+ 1)Pn(x) = 0.

For the purposes of \recur we need Pn+2 expressed in terms of the lower order
terms:

Pn+2(x) = 1
n+ 2 ((2n+ 3)xPn+1(x)− (n+ 1)Pn(x)) .

It is this standard form – the term to be calculated on the left, equated to an
expression involving a fixed number of lower-order terms on the right – that
numerica works with. For P0(x) = 1, P1(x) = x and x = 0.5, the terms are
calculated thus:

\recur[p,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]

29

{\[P_{n+2}(x)=\frac{1}{n+2}
\Bigl((2n+3)xP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)

\]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5]

=⇒

Pn+2(x) = 1
n+ 2

(
(2n+ 3)xPn+1(x)− (n+ 1)Pn(x)

)
,

(P1(x) = x, P0(x) = 1, x = 0.5)
→ 1, 0.5, −0.125, −0.4375, . . . , −0.267899, −0.188229,

where P9(0.5) and P10(0.5) are the last two displayed values (and to 6-figures
are the values listed in HMF Table 8.1).

These examples also illustrate a common behaviour of the numerica com-
mands: when wrapped around math delimiters: the display is of the expres-
sion=result form, and when placed between math delimiters the display is sim-
ply of the result. When used without math delimiters, numerica treats the
command as if it had been placed between \[\].

4.1 Notational niceties
More than the other commands in numerica, \nmcRecur depends on getting
the notation into a standard form.

• The terms of the recurrence must be subscripted: fn, Pn(x) are examples.

• The recurrence relation is placed in the main (mandatory) argument of
\nmcRecur in the form: high-order term=function of lower-order terms.

• The initial-value terms in the vv-list must occur left-to-right in the order
high to low order.

• The recurrence variable changes by 1 between successive terms.

The example for Legendre polynomials in particular shows what is required.
The Fibonacci example is simpler, since the recurrence variable does not occur
independently in the recurrence relation as it does with the Legendre polyno-
mials. In both cases though the recurrence variable is absent from the vv-list.

4.1.1 Vv-list and recurrence variable
The recurrence variable is required in the vv-list only when an implicit mode
calculation is undertaken. Suppose we write A and B for the coefficients 2n+ 3
and n+1 respectively in the Legendre recurrence. A and B will now need entries
in the vv-list which means the recurrence variable will need a value assigned to
it there too, and we will need to add vvmode=1 to the settings option.

30

\recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
{\[P_{n+2}(x)=\frac{1}{n+2}

\Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
\]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5,A=2n+3,B=n+1,n=0]

=⇒

Pn+2(x) = 1
n+ 2

(
AxPn+1(x)−BPn(x)

)
,

(P1(x) = x, P0(x) = 1, x = 0.5, A = 2n+ 3, B = n+ 1, n = 0)
→ 1, 0.5, −0.125, −0.4375, . . . , −0.267899, −0.188229,

Since the vv-list is evaluated from the right, the left-to-right high-to-low
ordering of the initial-value terms means the value of the lowest order term
is read first. Although numerica depends on this order of occurrence of the
terms, they do not need to be consecutive as in the examples so far (although it
is natural to enter them in this way). numerica reads the value of the subscript
of only the right-most term (the lowest order term), increments it by 1 when
reading the next recurrence term to the left, and so on. The reading of the
subscript of the lowest order term in the vv-list provides the initial value of the
recurrence variable.

In the following example I have placed other items between P1(x) and P0(x)
in the vv-list (but maintained their left-to-right order) and given the recurrence
variable n a ridiculous initial value π2/12. (Because of the order in which things
get done ‘behind the scenes’, some value is necessary so that the n in ‘B = n+1’
does not generate an ‘unknown token’ message.) The result is unchanged.

\recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
{\[P_{n+2}(x)=\frac{1}{n+2}

\Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
\]}[A=2n+3,P_{1}(x)=x,B=n+1,n=\pi^2/12,P_{0}(x)=1,x=0.5]

=⇒

Pn+2(x) = 1
n+ 2

(
AxPn+1(x)−BPn(x)

)
,

(A = 2n+ 3, P1(x) = x,B = n+ 1, n = π2/12, P0(x) = 1, x = 0.5)
→ 1, 0.5, −0.125, −0.4375, . . . , −0.267899, −0.188229,

4.1.2 Form of the recurrence relation
As noted earler, the form of the recurrence must be entered in the main argument
in the form: highest order term = function of consecutive lower order terms.
The number of lower order terms is the order of the recurrence. The Fibonacci

31

and Legendre polynomial recurrences are both second order and presented in
the form: n + 2-th term = function of n + 1-th term and n-th term. We could
equally have done

\nmcRecur[p,do=8,see1=8,...]
{$ f_{n}=f_{n-1}+f_{n-2} $}

[f_{1}=1,f_{0}=1]

=⇒ fn = fn−1 + fn−2, (f1 = 1, f0 = 1) → 1, 1, 2, 3, 5, 8, 13, 21, . . . ,
where now the recurrence is of the form n-th term = function of n− 1-th term
and n−2-th term, or (adjusting the coefficients as well as the recurrence terms),

\recur[p=.,do=10,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
P_{n+1}(x)=\frac{1}{n+1}

\Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
\]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

=⇒

Pn+1(x) = 1
n+ 1

(
(2n+ 1)xPn(x)− nPn−1(x)

)
,

(P2(x) = −0.125, P1(x) = x, x = 0.5)
→ 0.5, −0.125, −0.4375, −0.289062, . . . , −0.267899, −0.188229.

The recurrence here is of the form n + 1-th term = function of n-th term and
n − 1-th term. This last example has one further ‘wrinkle’. I’ve made P1(x)
the lowest order term and decreased the number of terms to calculate by 1
accordingly.

4.1.3 First order recurrences (iteration)
The recurrence relations for both the Fibonacci sequence and Legendre polyno-
mials are second order. There is no reason why the recurrence should not be
of third or higher order or, indeed, lower. A first order recurrence provides an
alternative means of iterating functions. \recur therefore provides a means to
display the results of an iteration in a different form from \iter.

Iterating 1 + a/x in this way, 16 terms gives the sequence

\recur[do=16,see1=0,see2=3,...]{$
x_{n+1}=1+a/x_{n}

$}[x_{0}=1,a=1]

=⇒ xn+1 = 1 + a/xn, (x0 = 1, a = 1)→ 1.618037, 1.618033, 1.618034, . . .
to be compared with the example near the start of Chapter 2. (That effected
15 iterations; this uses 16 terms because of the extra x0 = 1 term.)

32

4.2 Star (*) option
When the star option is used with the \nmcRecur command, only a single term,
the last, is presented as the result. Repeating the last calculation, but with the
star option produces

\recur*[p=.,do=10]{\[
P_{n+1}(x)=\frac{1}{n+1}

\Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
\]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

=⇒ -0.188229
Although punctuation (a full stop) was specified in the settings, it has been

ignored in the display of the result. Other settings would also have been ignored
with the exception of the do key which is required to know exactly which term
to calculate. The star option produces a purely numerical answer without any
trimmings.

4.3 Settings
The settings option is a comma-separated list of items of the form key = value.

4.3.1 Inherited settings
Because recurrence terms are necessarily multi-token, the multi-token key is
hard-coded in \recur to xx=1.

4.3.1.1 Multi-line formatting of result

When the \recur command wraps around math delimiters, the vvd setting is
available to split display of the result over two or more lines. For example,
vvd={,}\\(vv)pushes the vv-list and sequence of calculated values to a second
line; or, vvd={,}\qquad(vv)\\ pushes only the sequence of calculated values
to a second line; or vvd={,}\\(vv)\\ pushes the vv-list, centred, to a second
line and the sequence of values, right aligned, to a third line. The * setting
is available to suppress equation numbering (by substituting multline* for
multline).

\nmcRecur[do=8,see1=8,...,vvd={,}\qquad(vv)\\,*]
{$ f_{n+2}=f_{n+1}+f_{n} $}

[f_{1}=1,f_{0}=1]

=⇒

fn+2 = fn+1 + fn, (f1 = 1, f0 = 1)
→ 1, 1, 2, 3, 5, 8, 13, 21, . . .

33

Table 4.1: Settings for \nmcRecur

key type meaning default

do int≥ 0 number of terms to calculate 7
see1 int≥ 0 number of initial terms to display 3
see2 int≥ 0 number of final terms to display 2
... chars follow display of values with an ellipsis
reuse int (0/1/2) form of result saved with \reuse 0

4.3.2 \recur-specific settings
4.3.2.1 Number of terms to calculate

By entering

do = <integer>

in the settings option you can specify how many terms of a recurrence to cal-
culate. The default is set to 7 (largely to show a sufficient number of terms
of the Fibonacci series to begin to be interesting). Note that <integer> will
generally not correspond to the subscript on the last term calculated since that
also depends on the value of the subscript of the lowest order term in the vv-list.

4.3.2.2 Number of terms to display

By entering

see1 = <integer1>, see2=<integer2>

in the settings option, you can specify how many initial terms of the recurrence
and how many of the final terms calculated you want to view. If the sum of
these settings is less than the do setting, then the terms are displayed with an
intervening ellipsis. If the sum is greater than the do setting, then the values
are adjusted so that their sum equals the do setting and all terms are displayed.

The adjustment is preferentially to see1. Suppose do=7, see1=5, see2=4.
Then see2 is left unchanged but see1 is reduced to 7-4=3. If, say, do=7, see1=5,
see2=8, then see2 is reduced to 7 and see1 to -1 (rather than zero, for technical
reasons). The reason for preserving see2 over see1 is for the functioning of the
reuse setting (see above).

The default value for see1 is 3; the default value for see2 is 2.

4.3.2.3 Ellipsis

Including three dots in the settings option

...

34

ensures that a (proper) ellipsis is inserted after the final term is displayed. An
example is provided by the display of the Fibonacci sequence at the start of this
chapter. By default this option is turned off.

4.3.2.4 Form of result saved by \reuse

By entering

reuse = <integer>

it is possible to specify the form of result that is saved when using \nmcReuse.
(This setting has no effect when the star option is used with \nmcRecur. In
that case only the numerical result of the final term calculated is saved.) There
are three different outputs possible:

• int=0 (or any integer 6= 1, 2) saves the full display (the default);

• int=1 saves a comma-separated list of braced pairs of the form: {k,
value-of-term-k} for the last see2 terms calculated;

• int=2 saves a comma-separated list of the values of the last see2 terms
calculated.

As an example, using reuse=1,

\recur[reuse=1,p=.,vvmode=1,do=11,see1=4,see2=2,
vvd={,}\\(vv)\\,*]
{\[P_{n+2}(x)=\frac{1}{n+2}

\Bigl(kxP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)
\]}[k=2n+3,n=123,P_{1}(x)=x,P_{0}(x)=1,x=0.5]

\reuse[legendre]

=⇒

Pn+2(x) = 1
n+ 2

(
kxPn+1(x)− (n+ 1)Pn(x)

)
,

(k = 2n+ 3, n = 123, P1(x) = x, P0(x) = 1, x = 0.5)
→ 1, 0.5, −0.125, −0.4375, . . . , −0.267899, −0.188229.

Now check to see what has been saved:

\legendre =⇒ 11,−0.267899, 12,−0.188229.

As you can see, the final two (because of see2=2) of the 12 Legendre polynomials
calculated have been saved, each value preceded by its index value. If the setting
had been reuse=2, only the two values would have been saved. The \legendre
control sequence contains the values as comma-separated braced pairs, as can
be seen by using TEX’s \meaning command:

\meaning\legendre =⇒ macro:->{11,-0.267899},{12,-0.188229}

35

4.3.3 Changing default values

Table 4.2: Defaults for \nmcRecur

key default

recur-do 7
recur-see-first 3
recur-see-last 2
recur-reuse 0

If you wish to change the de-
fault values of the various set-
tings for \nmcRecur this can be
done by entering new values in a
configuration file numerica.cfg as
described in the chapter on set-
tings in the associated document
numerica-basics.pdf. The relevant
keys are listed in Table 4.2, corre-
sponding to the do, see1, see2 and
reuse settings of the \recur com-
mand.

4.3.4 Orthogonal polynomials
I’ve used Legendre polynomials in examples above, but orthogonal polynomials
generally lend themselves to the \recur treatment. Quoting from HMF 22.7,
orthogonal polynomials fn satisfy recurrence relations of the form

a1nfn+1(x) = (a2n + a3nx)fn(x)− a4nfn−1(x),

or in the standard form required by \recur,

fn+1(x) = a2n + a3nx

a1n
fn(x)− a4n

a1n
fn−1(x).

HMF 22.7 provides a listing of the coefficients ain for the polynomials of Ja-
cobi, Chebyshev, Legendre, Laguerre, Hermite and others, and tables for these
polynomials.

For example, Laguerre polynomials satisfy the recurrence

Ln+1(x) = 2n+ 1− x
n+ 1 Ln(x)− n

n+ 1Ln−1(x).

with initial values L0(x) = 1 and L1(x) = 1 − x. So let’s calculate the first 13
Laguerre polynomials for, say, x = 0.5:

\recur[do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-

\frac{n}{n+1}L_{n-1}(x)
\]}[L_{1}(x)=1-x,L_{0}(x)=1,x=0.5]

=⇒

Ln+1(x) = 2n+ 1− x
n+ 1 Ln(x)− n

n+ 1Ln−1(x),

(L1(x) = 1− x, L0(x) = 1, x = 0.5)
→ 1, 0.5, 0.125, −0.145833, . . . , −0.313907, −0.23165

36

and for x = 5:

\recur[p=.,do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-

\frac{n}{n+1}L_{n-1}(x)
\]}[L_{1}(x)=1-x,L_{0}(x)=1,x=5]

=⇒

Ln+1(x) = 2n+ 1− x
n+ 1 Ln(x)− n

n+ 1Ln−1(x),

(L1(x) = 1− x, L0(x) = 1, x = 5)
→ 1, −4, 3.5, 2.666667, . . . , 0.107544, −1.448604.

The results (reassuringly) coincide with those provided in HMF Table 22.11.

4.3.5 Nesting
It is possible to use the \recur* command (but only the starred form) in the
\eval, \iter, and \solve commands, and indeed in \recur itself, but with
this caveat: if \recur* is nested within another command, the initial terms
of the recurrence – e.g., f1 = 1, f0 = 1, for the Fibonacci series, or L1(x) =
1− x, L0(x) = 1 for the Laguerre polynomials – must be located in the vv-list of
that inner \recur* command. Other shared variables can often be shifted to
the vv-list of the outer command, but not these initial terms.

The terms of a recurrence relation are multi-token variables but numerica re-
quires single tokens for its calculations. The problem for \recur is that the
terms in the recurrence relation in the main (mandatory) argument differ from
the terms in the vv-list: for instance fn in the main argument, f0 in the vv-
list. If left like that, when numerica does its conversion from multi-token to
single token variables, fn would not be found since it differs from f0. Hence a
crucial first step for \recur is to reconcile the different forms, which it does by
converting the forms in the vv-list to the forms in the recurrence in the main
argument. To be available for this form change, they must reside in the inner
vv-list. In the outer vv-list they would be inaccessible to the inner command.

This suggests an alternative way of proceeding: write the inital values of the
recurrence terms in the same form in which they occur in the recurrence relation,
together with an initial value for the recurrence variable: fn+1 = 1, fn = 1, n =
0, say. This is not how mathematicians write the initial values in recurrence
relations, which is why I did not pursue it, but it neatly sidesteps what is
otherwise an initial awkwardness.

37

In the following example I multiply together (rather futilely) the third and
fourth members of the sequence of Laguerre polynomials for x = 5 (the an-
swer expected is $ \eval{3.5\times2.666667} $ =⇒ 9.333334). Note that
although it is tempting to shift the shared vv-lists of the inner \recur* com-
mands to the vv-list of the outer \eval command, in fact only the x=5 entry
has been transferred:

\eval[p=.]{$
\recur*[do=3]

{ L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
\frac{n}{n+1}L_{n-1}(x)}

[L_{1}(x)=1-x,L_{0}(x)=1]
\times
\recur*[do=4]

{ L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
\frac{n}{n+1}L_{n-1}(x)}

[L_{1}(x)=1-x,L_{0}(x)=1]
$}[x=5]

=⇒ 3.5× 2.666667 = 9.333334.

38

Chapter 5

Reference summary

5.1 Commands defined in numerica-plus

1. \nmcIterate, \iter

2. \nmcSolve, \solve

3. \nmcRecur, \recur

5.2 Settings for the three commands
5.2.1 Settings for \nmcIterate

Settings option of \nmcIterate:

key type meaning default

var token(s) iteration variable
+ int fixed point extra rounding 0
max int > 0 max. iteration count (fixed points) 100
do int > 0 number of iterations to perform 5
see int > 0 number of final iterations to view 4
reuse int (0/1/2) form of result saved with \reuse 0

Configuration settings for \nmcIterate:

key default

iter-extra-rounding 0
iter-max-iterations 100
iter-do 5
iter-see-last 4
iter-reuse 0

39

5.2.2 Settings for \nmcSolve

Settings option of \nmcSolve:

key type meaning default

var token(s) equation variable
dvar real 6= 0 initial step size 1
+ int extra rounding 0
max int > 0 max. number of steps before cut off 100
reuse int (0/1) form of result saved with \reuse 0

Configuration settings for \nmcSolve:

key default

solve-first-step 1
solve-extra-rounding 0
solve-max-steps 100
solve-reuse 0

5.2.3 Settings for \nmcRecur

Settings option of \nmcRecur:

key type meaning default

do int≥ 0 number of terms to calculate 7
see1 int≥ 0 number of initial terms to display 3
see2 int≥ 0 number of final terms to display 2
... chars follow display of values with an ellipsis
reuse int (0/1/2) form of result saved with \reuse 0

Configuration settings for \nmcRecur:

key default

recur-do 7
recur-see-first 3
recur-see-last 2
recur-reuse 0

40

	1 Introduction
	1.1 Example of use: the rotating disk
	1.1.1 Circuits

	1.2 Shared syntax of the new commands
	1.2.1 Settings
	1.2.2 Nesting

	2 Iterating functions: \nmcIterate
	2.1 Star (*) option: fixed points
	2.1.1 Use with \nmcInfo

	2.2 Settings option
	2.2.1 Inherited settings
	2.2.2 \iter-specific settings
	2.2.3 Changing default values

	2.3 Errors

	3 Finding zeros and extrema: \nmcSolve
	3.1 Extrema
	3.1.1 The search strategy

	3.2 Star (*) option
	3.3 Settings option
	3.3.1 Inherited settings
	3.3.2 \solve-specific settings
	3.3.3 Changing default values

	4 Recurrence relations: \nmcRecur
	4.1 Notational niceties
	4.1.1 Vv-list and recurrence variable
	4.1.2 Form of the recurrence relation
	4.1.3 First order recurrences (iteration)

	4.2 Star (*) option
	4.3 Settings
	4.3.1 Inherited settings
	4.3.2 \recur-specific settings
	4.3.3 Changing default values
	4.3.4 Orthogonal polynomials
	4.3.5 Nesting

	5 Reference summary
	5.1 Commands defined in numerica-plus
	5.2 Settings for the three commands
	5.2.1 Settings for \nmcIterate
	5.2.2 Settings for \nmcSolve
	5.2.3 Settings for \nmcRecur

