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Abstract

The numerica package defines a command to wrap around a mathematical
expression in its LaTeX form and, once values are assigned to variables, numer-
ically evaluate it. The intent is to avoid the need to modify the LaTeX form of
the expression being evaluated. For programs with a preview facility like LyX,
or compile-as-you-go systems, interactive back-of-envelope calculations and nu-
merical exploration are possible within the document being worked on. The
package requires the bundles l3kernel and l3packages, and the amsmath and
mathtools packages. Additional modules define commands to iterate and find
fixed points of functions of a single variable, to find the zeros or extrema of such
functions, to calculate the terms of recurrence relations, and to create multi-
column tables of function values (which requires the booktabs package).

Note:
• This document applies to version 1.0.0 of numerica.sty.

• Reasonably recent versions of the LATEX3 bundles l3kernel and
l3packages are required.

• The package requires amsmath and mathtools.

• I refer many times in this document (especially §3.4) to Handbook of Math-
ematical Functions, edited by Milton Abramowitz and Irene A. Segun,
Dover, 1965. This is abbreviated to HMF , often followed by a number
like 1.2.3 to locate the actual expression referenced.
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Chapter 1

Introduction

numerica is a LATEX package offering the ability to numerically evaluate math-
ematical expressions in the LATEX form in which they are typeset.1

There are a number of packages which can do calculations in LATEX,2 but
those I am aware of all require the mathematical expressions they operate on
to be changed to an appropriate syntax. Of these packages xfp comes closest
to my objective with numerica. For instance, given a formula

\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}

(in a math environment), this can be evaluated using xfp by transforming the
expression to sin(3.5)/2 + 2e-3 and wrapping this in the command \fpeval.
In numerica you don’t need to transform the formula, just wrap it in an \eval
command (for the acutal calculation see §1.1.2):

\eval{ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3} }.

numerica, like xfp and a number of other packages, uses l3fp (the LATEX3
floating point module in l3kernel) as its calculational engine. To some extent
the main command, \nmcEvaluate, short-name form \eval, is a pre-processor
to l3fp, converting mathematical expressions written in the LATEX form in
which they will be typeset into an ‘fp-ified’ form that is digestible by l3fp. The
aim is to make the command act as a wrapper around such formulas. Ideally,
one should not have to make any adjustment to them, although any text on
Fourier series suggests that hope in full generality is delusional. Surprisingly

1numerica evolved from the author’s calculyx package that was designed for use with the
document processor LYX and available for download from a link on the LYX wiki website (but
not from CTAN).

2A simple search finds the venerable calc in the LATEX base, calculator (including an
associated calculus package), fltpoint, fp (fixed rather than floating point), spreadtab
(using either fp or l3fp as its calculational engine) if you want simple spreadsheeting with
your calculations, the elaborate xint, pst-calculate (a limited interface to l3fp), l3fp in the
LATEX3 kernel, and xfp, the LATEX3 interface to l3fp. Other packages include a calculational
element but are restricted in their scope. (longdivision for instance is elegant, but limited
only to long division.)
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often however it is possible. We will see shortly that even complicated formulas
like

cos mn π − (1− 4 sin2 m
3nπ)

sin 1
nπ sin m−1

n π

2 sin2 m
3nπ

,

and (1− 4 sin2 m
3nπ

2 sin2 m
3nπ

)
sin 2m−3

3n π sin m−3
3n π,

can be evaluated ‘as is’ (see below, §1.1.5). There is no need to shift the position
of the superscript 2 on the sines, no need to parenthesize the arguments of
sin and cos, no need to insert asterisks to indicate multiplication, no need to
change the \frac and \tfrac-s to slashes, /, no need to delete the \left
and \right that qualify the big parentheses (in the underlying LATEX) in the
second expression. Of course, if there are variables in an expression, as in
these examples, they will need to be assigned values. And how the result of
the evaluation is presented also requires specifying, but the aim is always: to
evaluate mathematical expressions in LATEX with as little adjustment as possible
to the form in which they are typeset.

numerica is written in expl3, the programming language of the LATEX3
project. It uses the LATEX3 module l3fp (part of l3kernel) as its calculational
engine. This enables floating point operations to 16 significant figures, with
exponents ranging between −10000 and +10000. Many functions and opera-
tions are built-in to l3fp – arithmetic operations, trigonometric, exponential
and logarithm functions, factorials, absolute value, max and min. Others have
been constructed for numerica from l3fp ingredients – binomial coefficients,
hyperbolic functions, sums and products – but to the user there should be no
discernible difference.

Associated modules provide for additional operations: iteration, finding ze-
ros, recurrence relations, mathematical table building. Further modules are
planned (e.g. calculus).

1.1 How to use numerica

The package is invoked in the usual way:3 put

\usepackage[<options>]{numerica}

in the LATEX preamble. numerica requires the amsmath and mathtools packages
and loads these automatically. numerica will also accept use of some relational
symbols from the amssymb package provided that package is loaded; see §2.3.4.

3I use the angle-bracket notation to indicate optional user input. Of course what is input
does not include the angle brackets.
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1.1.1 Packages and package options
Version 1.0.0 of numerica has three package options.

plus By calling numerica with the plus package option,
\usepackage[plus]{numerica}

the file numerica-plus.def is loaded where a number of additional com-
mands: \nmcIterate, \nmcSolve, \nmcRecur are defined. These enable
the iteration of functions of a single variable4, including finding fixed
points; the solving of equations of the form f(x) = 0 (or the location
of local maxima or minima); and the calculation of terms in recurrence
relations (like the Fibonacci series or othogonal polynomials). See the
associated document numerica-plus.pdf.

tables By calling numerica with the tables package option
\usepackage[tables]{numerica}

the file numerica-tables.def is loaded with with the command \nmcTabulate
enabling the creation of multi-column tables of function values with a wide
variety of formatting options (most of those employed in HMF in fact).
See the associated document numerica-tables.pdf.

lyx By calling numerica with the lyx package option,
\usepackage[lyx]{numerica}

the file numerica-lyx.def is loaded with code enabling the full use of the
\nmcReuse command in the document processor LYX (along with all other
commands of the numerica package). Use of numerica in LYX exploits
the mini-LATEX runs of the instant preview facility of that program to give
immediate feedback on calculations without requiring the whole document
to be compiled. See Chapter 7.

More than one option can be used at a time by separating the options with
a comma; e.g. \usepackage[plus,tables]{numerica}. However, apart from
Chapter 7, the present document focuses on numerica when called with no
options: \usepackage{numerica}.

1.1.2 Simple examples of use
A simple example of use is provided by the document

\documentclass{minimal}
\usepackage{numerica}
\begin{document}

\eval{$ mc^2 $}[m=70,c=299 792 458][8x]

\end{document}

4At this stage!
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We have a formula between math delimiters: $ mc^2 $. We have wrapped a
command \eval around the lot, added an optional argument in parentheses
specifying numericaal values for the quantities m and c, and concluded it all
with a trailing optional argument specifying that the result should be presented
to 8 places of decimals and in scientific notation (the x). Running pdflatex on
this document generates a pdf displaying

mc2 = 6.29128625× 1018, (m = 70, c = 299792458)

where the formula (mc2) is equated to the numerical value resulting from substi-
tuting the given values of m and c. Those values are displayed in a list following
the result. The calculation is presented to 8 decimal places in scientific notation.
(According to Einstein’s famous equation E = mc2 this is the enormous energy
content, in joules, of what was once considered an average adult Caucasian male.
Only a minute fraction is ever available.)

A second example is provided by the formula in earlier remarks:

\documentclass{minimal}
\usepackage{numerica}
\begin{document}

\eval{\[ \frac{\sin(3.5)}{2} + 2\cdot 10^{-3} \]}

\end{document}

Running pdflatex on this document produces the result

sin(3.5)
2 + 2 · 10−3 = −0.173392

The \eval command used in these examples is the main command of the
numerica package. It is discussed in full in the next chapter, but first some
preliminaries.

1.1.3 Display of the result
In what follows I shall write things like (but generally more complicated than)

$ \eval{ 1+1 } $ =⇒ 2

to mean: run pdflatex on a document containing \eval{1+1} in the document
body to generate a pdf containing the calculated result (2 in this instance). In
this case the \eval command is used within a math environment (delimited by
the dollar signs). It is not limited to this behaviour. The command can also
wrap around the math delimiters (as we saw in the previous examples):

\eval{$ 1+1 $} =⇒ 1 + 1 = 2.
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As you can see, the display that results is different.

• When the \eval command is used within a math environment, only the
result, followed possibly by the variable = value list (see §2.2) is displayed.

Environments may include the various AMS environments as well as the stan-
dard LATEX inline ( $ $ ), equation ( \[ \] ) and eqnarray environments. For
an example of \eval within an align* environment see §1.1.4 below.

• When the \eval command is wrapped around a math environment, the
result is displayed in the form, formula = result (followed possibly by the
variable = value list) within that environment,

– If the formula is long or contains many variables then it may be
desirable to split the display over two lines; see §2.2.3.3 and §3.1.10,

the whole presented as an inline expression if $ delimiters are used, or as a
display-style expression otherwise. (See the mc2 example for an illustration.)

It is not clear to me that wrapping \eval around the AMS environments,
except for multline, makes much sense, although it can be done. Here is an
example of \eval wrapped around a multline* environment (the phantom is
there so that the hanging + sign spaces correctly),

\eval{ \begin{multline*}
1+2+3+4+5+6+7+8+9+10+\phantom{0}\\

11+12+13+14+15+16+17+18+19
\end{multline*} }

=⇒
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 = 190

• It is also possible to dispense with math delimiters entirely, neither wrapped
within nor wrapped around the \eval command, but in that case numerica
acts as if \eval had been used within \[ and \] and displays the result
accordingly.

1.1.4 Exploring
When working on numerica’s predecessor package, I constantly tested it against
known results to check for coding errors. One test was to ensure that(

1 + 1
n

)n
did indeed converge to the number e as n increased. Let’s do that here. Try
first n = 10:

\eval{$ e-(1+1/n)^n $}[n=10][x] =⇒
e− (1 + 1/n)n = 1.245394× 10−1, (n = 10).
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(The default number of decimal places displayed is 6.) The difference between
e and (1 + 1/n)n is about an eighth (0.125) when n = 10, which is encouraging
but hardly decisive. The obvious thing to do is increase the value of n. I’ll use
an align* environment to ‘prettify’ the presentation of the results:

\begin{align*}
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^5][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^6][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^7][*x],\\
e-(1+1/n)^{n} & =\eval{e-(1+1/n)^n}[n=1\times10^8][*x].

\end{align*}

(most of which was written using copy and paste) which produces

e− (1 + 1/n)n = 1.359128× 10−5, (n = 1× 105),
e− (1 + 1/n)n = 1.359140× 10−6, (n = 1× 106),
e− (1 + 1/n)n = 1.359141× 10−7, (n = 1× 107),
e− (1 + 1/n)n = 1.359141× 10−8, (n = 1× 108).

Clearly (1+1/n)n converges to e, the difference between them being of order 1/n,
but that is not what catches the eye. There is an unanticipated regularity here.
1.35914? Double the number: $\eval{2\times 1.35914}[5]$ =⇒ 2.71828
which is close enough to e to suggest a relationship, namely,

lim
n→∞

n

(
e−

(
1 + 1

n

)n)
= 1

2e.

This was new to me. Is it true? From the familiar expansion of the logarithm

ln
(

1 + 1
n

)n
= n ln

(
1 + 1

n

)
= n

(
1
n
− 1

2
1
n2 + 1

3
1
n3 − . . .

)
= 1− 1

2n

(
1− 2

3
1
n

+ 2
4

1
n2−

)
≡ 1− 1

2nEn,

say. Since En is an alternating series and the magnitudes of the terms of the
series tend to 0 monotonically, 1 > En > 1−2/3n. From this and the inequalities
1/(1− x) > ex > 1 + x when x < 1 it proved a straightforward matter to verify
the proposed limit.
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1.1.5 Reassurance
In the course of some hobbyist investigations in plane hyperbolic geometry I
derived the formula

Φ1(m,n) = cos mn π − (1− 4 sin2 m
3nπ)

sin 1
nπ sin m−1

n π

2 sin2 m
3nπ

,

for m = 2, 3, . . . and integral n ≥ 2m + 1. A key concern was: when is Φ1
positive? After an embarrassingly laborious struggle, I managed to work this
expression into the form

Φ2(m,n) =
(1− 4 sin2 m

3nπ

2 sin2 m
3nπ

)
sin 2m−3

3n π sin m−3
3n π,

in which the conditions for positivity are clear: with n ≥ 2m + 1, so that
mπ/3n < π/6, the first factor is always positive, the second is positive for
m ≥ 2, and the third is positive for m ≥ 4. All well and good, but given the
struggle to derive Φ2, was I confident that Φ1 and Φ2 really are equal? It felt
all too likely that I had made a mistake.

The simplest way to check was to see if the two expressions gave the same nu-
mericaal answers for a number of m, n values. I wrote \eval{\[ \]}[m=2,n=5]
twice and between the delimiters pasted the already composed expressions for
Φ1 and Φ2, namely:

\eval{\[
\cos\tfrac{m}{n}\pi-(1-4\sin^{2}\tfrac{m}{3n}\pi)
\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\]}[m=2,n=5]
\eval{\[

\left(
\frac{1-4\sin^{2}\tfrac{m}{3n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi

\]}[m=2,n=5]

I have added some formatting – indenting, line breaks – to make the formulas
more readable for the present document but otherwise left them unaltered. The
\eval command can be used for even quite complicated expressions without
needing to tinker with their LATEX form, but you may wish – as here – to adjust
white space to clarify the component parts of the formula. Running pdflatex
on these expressions, the results were

cos mn π − (1− 4 sin2 m
3nπ)

sin 1
nπ sin m−1

n π

2 sin2 m
3nπ

= −0.044193, (m = 2, n = 5)
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(1− 4 sin2 m
3nπ

2 sin2 m
3nπ

)
sin 2m−3

3n π sin m−3
3n π = −0.044193, (m = 2, n = 5)

which was reassuring. Doing it again but with different values of m and n, again
the results coincided:

cos mn π − (1− 4 sin2 m
3nπ)

sin 1
nπ sin m−1

n π

2 sin2 m
3nπ

= 0.107546, (m = 5, n = 13)

(1− 4 sin2 m
3nπ

2 sin2 m
3nπ

)
sin 2m−3

3n π sin m−3
3n π = 0.107546, (m = 5, n = 13)

Thus reassured that there was not an error in my laborious derivation of Φ2 from
Φ1, it was not difficult to work back from Φ2 to Φ1 then reverse the argument
to find a straightforward derivation.
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Chapter 2

\nmcEvaluate (\eval)

The main calculational command in numerica is \nmcEvaluate. Unlike some
other commands which are loaded optionally, \nmcEvaluate is always loaded,
and therefore always available. Because \nmcEvaluate would be tiresome to
write too frequently, particularly for back-of-envelope calculations, there is an
equivalent short-name form, \eval, used almost exclusively in the following.
But note: wherever you see the command \eval, you can substitute \nmcEvaluate
and obtain the same result.

\eval (like other short-name forms of other commands in the numerica
suite) is defined using \ProvideDocumentCommand from the xparse package.
Hence if \eval has already been defined in some other package already loaded,
it will not be redefined by numerica. It will retain its meaning in the other pack-
age. Its consequent absence from numerica may be an irritant, but only that;
\nmcEvaluate is defined using xparse’s \DeclareDocumentCommand which would
override any (freakishly unlikely) previous definition of \nmcEvaluate in another
package and would therefore still be available.

2.1 Syntax of \nmcEvaluate (\eval)

There are five arguments to the \nmcEvaluate (or \eval) command, of which
only one, the third, is mandatory. All others are optional. If all are deployed
the command looks like

\eval*[settings]{expr.}[vv-list][num. format]

I discuss the various arguments in the referenced sections.

1. * optional switch; if present ensures display of only the numerical result
(suppresses display of the formula and vv-list); see §2.2.3.1

2. [settings] optional comma-separated list of key=value settings for this
particular calculation; see §3.1
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3. {expr.} the only mandatory argument; the mathematical expression/formula
in LATEX form that is to be evaluated

4. [vv-list] optional comma-separated list of variable=value items; see §2.2

5. [num. format] optional format specification for presentation of the nu-
merical result (rounding, padding with zeros, scientific notation, boolean
output); see §2.3

Note that arguments 4 and 5 are both square-bracket delimited optional argu-
ments. Should only one such argument be used, numerica determines which
is intended by looking for an equals sign within the argument. Its presence
indicates the argument is the vv-list; its absence indicates the argument is the
number format specification.

The vv-list and number-format specification are trailing optional arguments.
There is a possibility that the \eval command could be followed by a square-
bracketed mathematical expression which numerica might therefore confuse
with one of its trailing arguments. Experience using numerica suggests that
this will be a (very) rare occurrence and is easily prevented by inserting an
empty brace pair ({}) before the offending square-bracketed expression. Allow-
ing spaces between the arguments enables complicated expressions and large
vv-lists to be formatted, in the interests of clarity, with new lines and white
space – without requiring the insertion of comment characters (%).

Recommended practice is to minimise the number of optional arguments
used in LATEX commands by consolidating such arguments into a single key=value
list. Although numerica uses such an argument, the vv-list does not fit natu-
rally into that scheme. And practice suggests that separating out the elements
of the number format specification (rounding value, padding with zeros, scien-
tific notation, boolean output) and placing them in a trailing argument feels
natural for the kind of back-of-envelope calculations envisaged for numerica.

2.2 The variable=value list
To evaluate algebraic, trigonometric and other formulas that involve variables
we need to give those variables values. This is done in the variable=value list – or
vv-list for short. This is the fourth argument of the \nmcEvaluate command and
is a square-bracket delimited optional argument (optional because an expression
may depend only on constants and numbers).
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I was sorely tempted to use parentheses to delimit this argument, since then
both the placement and delimiters of the vv-list would anticipate the way it is
displayed in the evaluated result (see the mc2 example in §1.1.2 above). But
there is good reason not to. Parentheses will often occur in expressions in the
vv-list. With parentheses nested within parentheses it is all too easy to get a
pairing wrong, which would cause a LATEX error and halt compilation. As it
is, using the standard square bracket delimiters, unbalanced parentheses cause
a numerica error (see §2.5.1), which does not halt compilation. (Of course
unbalanced square brackets now will cause a LATEX error, but such brackets are
used less often in mathematical expressions and are rarely nested within other
square-bracketed expressions.)

2.2.1 Variable names
In mathematical practice, variable names are generally single letters of the
Roman or Greek alphabets, sometimes also from other alphabets, in a va-
riety of fonts, and often with subscripts or primes or other decorations. In
numerica a variable name is what lies to the left of the equals sign in an item
of the vv-list. Thus variables can be multi-token affairs: x′, x′′, xiv, xn, x′n, x′′mn,
kCn, var, var, F red,Fred,FRED . . .Although variable names start and end with
non-space tokens, a variable name may contain spaces – for instance x x should
not cause a numerica error, but such names are not part of mathematical
practice. Usually, for the kind of back-of-envelope calculations envisaged for
numerica, and for ease of typing, most variables will be single letters from the
Roman or Greek alphabets.

Because equals signs and commas give structure to the vv-list, it should also
be clear that a variable name should not contain a naked equals sign or a naked
comma. They can be incorporated in a variable name but only when decently
wrapped in braces, like R_{=} displaying as R= or X_{,i} displaying as X,i.

Note that x and x will be treated by numerica as different variables since,
in the underlying LATEX, one is x and the other \mathrm{x}. Even names that
look identical in the pdf may well be distinct in LATEX. This is true particularly
of superscripts and subscripts: x_0 and x_{0} appear identical in the pdf but in
the underlying LATEX they are distinct, and will be treated as distinct variables
by numerica.

Although multi-token variables are perfectly acceptable, internally numerica
expects variables to be single tokens. Hence a necessary initial step for the pack-
age is to convert all multi-token variable names in the vv-list and the formula
to single tokens. numerica does this by turning the multi-token variable names
into control sequences with names in the sequence \_nmca, \_nmcb, \_nmcc,
etc., then searches through the vv-list and the formula for every occurrence of
the multi-token names and replaces them with the relevant control sequences.
It does this in order of decreasing size of name, working from the names that
contain most tokens down to names containing only two tokens.
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The conversion process uses computer resources. Even if there are no multi-
token variables present, numerica still needs to check that this is so – un-
less the user alerts the program to the fact. This can be done by making
a brief entry xx=0 in the settings option (the second optional argument of
\nmcEvaluate); see §3.1.4. If the user never (or hardly ever) uses multi-token
variables, then a more permanent solution is to create a file numerica.cfg with
the line multitoken-variables = false; see §3.3 for this.

2.2.2 The vv-list and its use
A vv-list is a comma-separated list where each item is of the form variable=value.
It might be something simple like

[g=9.81,t=2]

or something more complicated like

[V_S=\tfrac43\pi r^3,V_C=2\pi r^2h,h=3/2,r=2].

Spaces around the equals signs or the commas are stripped away during pro-
cessing so that

[g=9.81,t=2] and [ g = 9.81 , t = 2]

are the same variable=value list.

2.2.2.1 Evaluation from right to left

In these examples, with variables depending on other variables, there is an
implication: that the list is evaluated from the right. Recall how a function of
a function is evaluated, say y = f(g(h(x))). To evaluate y, first x is assigned
a value then h(x) is calculated, then g(h(x)) then f(g(h(x))) = y. We work
from right to left, from the innermost to the outermost element. Or consider an
example like calculating the area of a triangle by means of the formula

A =
√
s(s− a)(s− b)(s− c).

First we write the formula; then we state how s depends on a, b, c, namely
s = 1

2 (a+ b+ c), then we give values to a, b, c. In numerica this is mirrored in
the layout of the \eval command:

\eval{$ \sqrt{s(s-a)(s-b)(s-c)} $}
[s=\tfrac12(a+b+c),a=3,b=4,c=5]

The formula in a sense is the leftmost extension of the vv-list. The entire
evaluation occurs from right to left.

This means that the rightmost variable in the vv-list can depend only on
(mathematical) constants and numbers – although it may be a complicated
expression of those elements. Other variables in the vv-list can depend on
variables to their right but not to their left.
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2.2.2.2 Expressions in the variable=value list

Suppose our expression is 4
3πr

3, the volume VS of a sphere in terms of its radius
r, and we want to calculate the volume for different values of r to get a sense
of how rapidly volume increases with radius.

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1] $ =⇒ VS = 4.18879, (r = 1).

Having set up this calculation it is now an easy matter to change the value of r
in the vv-list:

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1.5] $ =⇒ VS = 14.137167, (r = 1.5).
$ V_S=\eval{ \tfrac43\pi r^3 }[r=2] $ =⇒ VS = 33.510322, (r = 2).

To compute the volume VC = πr2h of a cylinder, we have two variables to assign
values to:

$ V_C=\eval{ \pi r^2h }[h=4/3,r=1] $ =⇒
VC = 4.18879, (h = 4/3, r = 1).

Although values in the vv-list are generally either numbers or simple expressions
(like 4/3), that is not essential. A little more complicated is

$ V_C=\eval{ hA_C }[A_C=\pi r^2,h=4/3,r=1] $ =⇒
VC = 4.18879, (AC = πr2, h = 4/3, r = 1).

where calculation of the volume of the cylinder has been split into two: first
calculate the area AC of its circular base and then, once that has been effected,
calculate the volume.

A second example is provided by Brahmagupta’s formula for the area of a
triangle in terms of its semi-perimeter. In a triangle ABC, the sides are a = 3,
b = 4 and c = 5. (Of course we know this is a right-angled triangle with area
1
2ab = 6.) The semi-perimeter s = 1

2 (a+ b+ c) and the area of ABC is

\eval{$ \sqrt{s(s-a)(s-b)(s-c) $}
[s=\tfrac12(a+b+c),a=3,b=4,c=5]

=⇒
√
s(s− a)(s− b)(s− c) = 6, (s = 1

2 (a+ b+ c), a = 3, b = 4, c = 5).

2.2.2.3 Constants

There are five constants built-in to numerica: \pi, the ratio of circumference
to diameter of a circle, e, the base of natural logarithms, \gamma, the limit of(∑N

1 1/n
)
− lnN as N →∞, \phi, the golden ratio, equal to 1

2 (1 +
√

5), and
the utilitarian constant \deg, the number of radians in a degree.

\eval{$ \pi $} =⇒ π = 3.141593,
\eval{$ e $} =⇒ e = 2.718282,
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\eval{$ \gamma $} =⇒ γ = 0.577216,
\eval{$ \phi $} =⇒ φ = 1.618034,

\eval{$ \deg $} =⇒ deg = 0.017453,

so that \eval{$ 180\deg $} =⇒ 180 deg = 3.141593 (as it should).
Let’s combine two of these in a formula:

\eval{$ e^\pi-\pi^e $} =⇒ eπ − πe = 0.681535,

which is close-ish to 1
4e: \eval{$ \tfrac14e $} =⇒ 1

4e = 0.67957.

2.2.2.4 Use of \pi, e, \gamma, \phi as variables

In some contexts it may feel natural to use any or all of \pi, e, \gamma and
\phi as variables by assigning values to them in the vv-list. numerica does
not object. The values assigned in this way override the constants’ values. For
example, if the triangle we labelled ABC previously was instead labelled CDE
then it has sides c = 3, d = 4 and (note!) e = 5. It’s area therefore is

\eval{$ \sqrt{s(s-c)(s-d)(s-e)} $}
[s=\tfrac12(c+d+e),c=3,d=4,e=5]

=⇒√
s(s− c)(s− d)(s− e) = 6, (s = 1

2 (c+ d+ e), c = 3, d = 4, e = 5).

Since this is the correct area we see that e has been treated as a variable with
the assigned value 5, not as the constant. But if e (or \pi or \gamma or \phi)
is not assigned a value in the vv-list then it has, by default, the value of the
constant.

In the case of e, if you wish to use it as a variable, the constant is always
available as \exp(1). There is no similar alternative available for \pi, \gamma or
\phi although you can always do something like [\pi=<new value>,\pi_0=\pi]
in the vv-list, so that \pi_0 now has the constant’s value.

2.2.3 Display of the vv-list
By default, the vv-list is displayed with (in fact following) the numerical result.
That and the format of the display can both be changed.

2.2.3.1 Star option: suppressing display of the vv-list

If display of the vv-list is not wanted at all, only the numerical result, it suffices
to attach an asterisk (star) to the \eval command:

$ V_C=\eval*{ hA_C }[A_C=\pi r^2,h=4/3,r=1] $ =⇒ VC = 4.18879,

or simply the naked result:

\eval*{$ hA_C $}[A_C=\pi r^2,h=4/3,r=1] =⇒ 4.18879.
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In the latter case, note that a negative result will display with a hyphen for
the minus sign unless you, the user, explicitly write math delimiters around the
\eval* command:

\eval*{$ y $}[y=ax+b,x=2,a=-2,b=2] =⇒ -2

The $ signs that \eval* wraps around are ignored. The star option delivers a
number, pure and simple, with no accompaniments.

2.2.3.2 Suppressing display of items

You may wish to retain some variables in the vv-list display, but not all. For
those variables you wish omitted from the display, wrap each variable (but not
the equals sign or value) in braces. When calculating the volume of a cylinder
in the previous examples, the base area AC has a different status from the
‘fundamental’ variables r and h. It is an intermediate value, one that we pass
through on the way to the final result. To suppress it from display enclose the
variable in braces:

$ V_C=\eval{ hA_C }[{A_C}=\pi r^2,h=4/3,r=1] $ =⇒
VC = 4.18879, (h = 4/3, r = 1).

As you can see, AC no longer appears in the displayed vv-list. Of course the
name and its value are still recorded ‘behind the scenes’ and can still be used
in calculations.

2.2.3.3 Changing the display format

In two examples above, we have calculated the area of a triangle using Brah-
magupta’s formula. Display of the result is crowded. Two remedies have just
been suggested, but a third one and preferable in this case would be to force
display of the vv-list and result to a new line. This can be done through the set-
tings option to the \eval command, discussed in §3.1.10. However, if \eval is
wrapped around an appropriate environment (like multline, but not equation)
it can also be done simply by including \\ at the end of the formula.

In the following example I use Brahmagupta’s formula for calculating the
area of a cyclic quadrilateral (of which his formula for a triangle is a special
case). The cyclic quadrilateral in the example is formed by a 45-45-90 triangle
of hypotenuse 2 joined along the hypotenuse to a 30-60-90 triangle. The sides are
therefore

√
2,
√

2,
√

3, 1. Adding the areas of the two triangles, the area of the
quadrilateral is A = 1+ 1

2
√

3, or in decimal form, $\eval{1+\tfrac12\surd3}$
=⇒ 1.866025. Let’s check with Brahmagupta’s formula:

\eval{
\begin{multline*}

\sqrt{(s-a)(s-b)(s-c)(s-d)}\\
\end{multline*}

}[s=\tfrac12(a+b+c+d),
a=\surd2,b=\surd2,c=\surd3,d=1]
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=⇒√
(s− a)(s− b)(s− c)(s− d)

= 1.866025, (s = 1
2 (a+ b+ c+ d), a =

√
2, b =

√
2, c =

√
3, d = 1)

2.3 Formatting the numerical result
A result of a calculation is displayed, by default, to 6 decimal places. All
our results so far have been rounded to this figure, although not all digits are
displayed, for instance if the sixth one is 0, or the result is an integer. Like other
elements of the display, both rounding value and the (dis)appearance of trailing
zeros can be customized, in this case by means of an optional argument following
the vv-list (or the formula if there is no vv-list). This optional argument may
contain up to four juxtaposed items from seven possibilities:

• a question mark ?, which gives boolean output, or

• an integer, the rounding value, positive, negative or zero, specifying how
many decimal places to display the result to, or

• an asterisk *, which pads the result with zeros should it not have as many
decimal places as the rounding value specifies, or

• the character x (lower case!) which presents the result in ‘proper’ scientific
notation (a form like 1.234× 105 for 123450), or

• the character t (lower case!) which presents the result in a bastardized
form of scientific notation useful in tables (a form like (5)1.234 for 123450),
or

• a character other than ?, *, x, t or a digit, usually (but not necessarily)
one of the letters e d E D, which presents the result in scientific notation
using that character as the exponent mark (a form like 1.234e5 for 123450),
or

• a prime

– attached to the character specifying scientific notation, which extends
that notation to numbers in the interval [1,10), or

– attached to a question mark, which changes the format of boolean
output.

If you use ? in the same specification as some other text character, the ?
prevails; if you use x in the same specification as some other text character
except for ?, the x prevails; if you use t in the same specification as some other
text character except for ? or x, the t prevails.
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2.3.1 Rounding value
The rounding value specifies the number of decimal places displayed:

$ \eval{ 1/3 }[4] $ =⇒ 0.3333

The default rounding value is 6:

$ \eval{ 35/3 } $ =⇒ 11.666667

Following the default behaviour in l3fp, ‘ties’ are rounded to the nearest even
digit. Thus a number ending 55 has a ‘choice’ of rounding to 5 or 6 and rounds
up to the even digit 6, and a number ending 65 with a ‘choice’ of rounding to 6
or 7 rounds down to the even digit 6:

$ \eval{ 0.1234555 } $ =⇒ 0.123456
$ \eval{ 0.1234565 } $ =⇒ 0.123456

The calculational engine which numerica uses, l3fp, works to 16 significant
figures and never displays more than that number (and often less).

• In the first of the following although I have specified a rounding value of
19 only 16 decimal places are displayed, with the final digit rounded up
to 7;

• in the second I have added 10 zeros after the decimal point, meaning that
all 19 decimal places specified by the rounding value can be displayed since
the 10 initial zeros do not contribute to the significant figures;

• in the third I have changed the figure before the decimal point to 1 so that
the 10 added zeros are now included among the significant figures;

• and in the fourth, I have added 9 digits before the decimal point:

$ \eval{ 0.1234567890123456789 }[19] $ =⇒ 0.1234567890123457
$ \eval{ 0.00000000001234567890123456789 }[19] $ =⇒

0.0000000000123456789
$ \eval{ 1.00000000001234567890123456789 }[19] $ =⇒

1.000000000012346
$ \eval{ 987654321.1234567890123456789 }[19] $ =⇒

987654321.1234568

In all cases, no more than 16 significant figures are displayed, although the
number of decimal places displayed may exceed 16 as in the second example.

It is possible to use negative rounding values. Such a value zeroes the spec-
ified number of digits before the decimal point.

$ \eval{ 987654321.123456789 }[-4] $ =⇒ 987650000

A rounding value of 0 rounds to the nearest integer:
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$ \eval{ 987654321.123456789 }[0] $ =⇒ 987654321

If you wish to change the default rounding value from 6 to some other value,
this can be done by creating or editing a file numerica.cfg in a text editor; see
§3.3.

2.3.2 Padding with zeros
A result may contain fewer decimal places than the rounding value specifies, the
trailing zeros being suppressed by default (this is how l3fp does it). Sometimes,
perhaps for reasons of presentation like aligning columns of figures, it may be
desirable to pad results with zeros. This is achieved by inserting an asterisk, *,
into the final optional argument of the \eval command:

$ \eval{ 1/4 }[4] $ =⇒ 0.25,
$ \eval{ 1/4 }[4*] $ =⇒ 0.2500.

2.3.3 Scientific notation
The l3fp package can output numbers in scientific notation. For example,
1234 is rendered as 1.234e3, denoting 1.234× 103 , and 0.008 as 8e-3, denoting
8 × 10−3. The ‘e’ here, the exponent mark, separates the significand (1.234)
from the exponent (3). To switch on output in scientific notation in numerica
enter e in the trailing optional argument:

$ \eval{ 123456789 }[e] $ =⇒ 1.234568e8.

The default rounding value 6 is in play here. In numerica, when scientific
notation is selected rounding takes a different meaning: it is the significand
which is rounded (not the number as a whole). One digit precedes the decimal
point, at most 15 follow it.

Negative rounding values are pointless for scientific notation. A zero might
on occasion be relevant:

$ \eval{ 987654321 }[0e] $ =⇒ 1e9.

Sometimes letters other than ‘e’ are used to indicate scientific notation, like ‘E’
or ‘d’ or ‘D’. With a few exceptions, numerica allows any letter or text character
to be used as the exponent marker:

\eval{$ 1/23456789 $}[4d] =⇒ 1/23456789 = 4.2632d-8.

But when x is inserted in the trailing optional argument, the output is in the
form d0.d1 . . . dm × 10n (except when n = 0), where each di denotes a digit.

\eval{$ 1/23456789 $}[4x] =⇒ 1/23456789 = 4.2632× 10−8 .

The requirements of tables leads to another form of scientific notation. Placing
t in the trailing argument turns on this table-ready form of notation:
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\eval{$ 1/23456789 $}[4t] =⇒ 1/23456789 = (−8) 4.2632.

This is discussed more fully in the associated document numerica-tables.pdf.
In the next example three options are used in the trailing argument. The

order in which the items are entered does not matter:

\eval{$ 1/125 $}[*e4] =⇒ 1/125 = 8.0000e-3.

Finally, to illustrate that ‘any’ text character1 save for x or t can be used to
distinguish the exponent, I use an @ character:

\eval{$ 1/123 $}[@4] =⇒ 1/123 = 8.1301@-3.

2.3.3.1 Numbers in [1,10)

Usually when scientific notation is being used, numbers with magnitude in the
interval [1, 10) are rendered in their normal decimal form, 3.14159 and the like.
Occasionally it may be desired to present numbers in this range in scientific
notation (this can be the case in tables where the alignment of a column of figures
might be affected). numerica offers a means of extending scientific notation to
numbers in this range by adding a prime to the letter chosen as the exponent
mark in the trailing optional argument.

\eval{$ \pi $}[4t'] =⇒ π = (0) 3.1416

2.3.3.2 \eval* and scientific notation

Scientific notation can be used for the numerical result output by \eval*:

\eval*{$ \pi $}[e'] =⇒ 3.141593e0

There is one catch: if you substitute x for e here, LATEX will complain about a
missing $. An x in the number-format option produces a \times in the output
which requires a math environment. It is up to you, as the user, to provide
the necessary delimiters outside the \eval* command. (This applies even when
\eval* wraps around math delimiters.)

(Because of the way numerica parses the number-format option, entering a
prime with neither exponent character nor question mark specified will result
in scientific output using e as the exponent mark. The last example could have
been written \eval*{$ \pi $}['].)

2.3.4 Boolean output
l3fp can evaluate comparisons, outputting 0 if the comparison is false, 1 if it
is true. By entering a question mark, ?, in the trailing optional argument, you
can force numerica to do the same depending as the result of a calculation is

1Be sensible! An equals sign for instance might confuse numerica into thinking the number-
format option is the vv-list, and will certainly confuse the reader.
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zero or not. The expression being evaluated does not need to be a comparison,
$ \eval{\pi}[?] $ =⇒ 1, but comparisons are what this is designed for.

Possible comparison relations are =, <, >, \ne, \neq, \ge, \geq, \le, \leq.
Although programming languages use combinations like <= or >=, numerica
does not accept these (they are not part of standard mathematical usage) and
will generate an error. An example where the relation is equality exhibits a
numerological curiosity:2

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[5?] =⇒

1
0.0123456789 = 81→ 1.

Notice the 5 alongside the question mark in the trailing argument. That is
critical. Change the 5 to a 6 (or omit it since the default rounding value is 6)
and the outcome is different:

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[6?] =⇒

1
0.0123456789 = 81→ 0.

Now the relation is false. Evaluating the fraction to more than 6 places, say to
9, we can see what is going on:

\eval{$ 1/0.0123456789 $}[9] =⇒ 1/0.0123456789 = 81.000000737.

2.3.4.1 Outputting T or F

To my eye, outputting 0 or 1 in response to a ‘question’ like 1/0.0123456789 =
81 is confusing. It is easy to change the boolean output from 0, 1 to a more
appropriate F, T , or F,T by adding a prime or two primes respectively to the
question mark in the number-format option.

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]}[6?''] =⇒

1
0.0123456789 = 81→ F.

The default boolean output format is chosen to be 0, 1 in case an \eval* com-
mand is used within another \eval command (‘nesting’– see Chapter 4 ). The
inner command needs to output a numerical answer.

2.3.4.2 Rounding error tolerance

If at least one of the terms in a comparison is the result of a calculation, then
it’s value is likely to contain rounding errors. What level of rounding error can

2The [p=.] of this and the next example ensures a full stop appears in the correct place;
see §3.1.11.
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we tolerate before such errors interfere with the comparison being made? l3fp
tolerates none. It decides the truth or falsity of a comparison to all 16 significant
figures: 1.000 0000 0000 0000 and 1.000 0000 0000 0001 are not equal in l3fp.
But for most purposes this will be far too severe a criterion.

Suppose our comparison relation is %, denoting one of =, <, >, \le, etc.
If X % Y then X − Y % Y − Y , i.e. X − Y % 0. This is what numerica does.
It takes the right-hand side of the relation from the left-hand side and then
compares the rounded difference under % to 0. The rounding value used is the
number specified with the question mark in the trailing argument of the \eval
command or, if no number is present, the default rounding value (‘out of the
box’ this is 6). Thus, in a recent example, 1/0.0123456789−81 when rounded to
5 decimal places is .0.00000, indistinguishable from zero at this rounding value;
hence the equality 1/0.0123456789 = 81 is true. But when rounded to 6 places
it is 0.000001 which is distinguishable from zero and so the equality is false.
Truth or falsity depends on the rounding value.

When dealing with numbers generated purely mathematically, rounding val-
ues of 5 or 6 are likely to be too small. More useful would be rounding values
closer to l3fp’s 16 – perhaps 14? – depending on how severe the calculations
are that generate the numbers. However if the numbers we are dealing with
come from outside mathematics, from practical experiments perhaps, then even
a rounding value of 5 or 6 may be too large.

2.3.4.3 Rationale

Mathematically, the claim that X = Y at a rounding value n is the claim that

|X − Y | ≤ 5× 10−(n+1).

since this rounds down to zero at n places of decimals. This gives a more accurate
test of equality than doing things in the opposite order – rounding each number
first and then taking the difference. One might, for instance, have numbers like
X = 0.12345, Y = 0.12335. Rounding to n = 4 places, both round to 0.1234 and
yet the difference between them is 0.0001 – they are distinguishable numbers to
4 places of decimals. This is why numerica forms the difference before doing
the rounding.

2.3.4.4 And, Or, Not

For logical And LATEX provides the symbols \wedge and \land, both displaying
as ∧ , but numerica adds thin spaces ( \, ) around the symbol for \land
(copying the package gn-logic14.sty). For logical Or LATEX provides the
symbols \vee and \lor, both displaying as ∨ , but again numerica adds thin
spaces around the symbol for \lor.

\eval{$ 1<2 \wedge 2<3 $}[?''] =⇒ 1 < 2 ∧ 2 < 3→ T,
\eval{$ 1<2 \land 2<3 $}[?''] =⇒ 1 < 2 ∧ 2 < 3→ T.
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To my eye the second of these with its smidgen more space around the wedge
symbol displays the meaning of the overall expression better than the first.
Both And and Or have equal precedence; in cases of ambiguity the user needs
to parenthesize as necessary to clarify what is intended.

LATEX provides two commands for logical Not, \neg and \lnot, both dis-
playing as ¬ . Not binds tightly to its argument:

\eval{$ \lnot A \land B $}[A=0,B=0] =⇒ ¬A ∧ B = 0, (A = 0, B = 0).

Here \lnot acts only on the A; if it had acted on A ∧ B as a whole the result
would have been 1.

For a little flourish, I evaluate a more complicated logical statement:3

\eval{$(A\lor\lnot C)\land(C\lor B)\land
(\lnot A\lor\lnot B)$}[A=1,B=0,C=1][?'']

=⇒ (A ∨ ¬C) ∧ (C ∨ B) ∧ (¬A ∨ ¬B)→ T, (A = 1, B = 0, C = 1)

2.3.4.5 Chains of comparisons

numerica can handle chains of comparisons like 1 < 2 < 1 + 2 < 5− 1. ‘Behind
the scenes’ it inserts logical And-s into the chain, 1 < 2∧ 2 < 1+2∧ 1+2 < 5−1,
and evaluates the modified expression:

\eval{$ 1<2<1+2<5-1 $}[?''] =⇒ 1 < 2 < 1 + 2 < 5− 1→ T.

2.3.4.6 amssymb comparison symbols

numerica accepts some alternative symbols for the basic comparison relations
from the amssymb package provided that package is loaded, i.e. the preamble
of your document includes the statement

\usepackage{amssymb}

The variants from this package are: \leqq ( 5 ), \leqslant ( 6 ), \geqq ( = ),
and \geqslant ( > ).4 There are also negations: \nless ( ≮ ), \nleq ( � ),
\nleqq ( � ), \nleqslant ( 
 ), \ngtr ( ≯ ), \ngeq ( � ), \ngeqq ( � ),
\ngeqslant ( � ).

3Quoting from an article in Quanta Magazine (August 2020) by Kevin Hartnett: ‘Let’s
say you and two friends are planning a party. The three of you are trying to put together
the guest list, but you have somewhat competing interests. Maybe you want to either invite
Avery or exclude Kemba. One of your co-planners wants to invite Kemba or Brad or both of
them. Your other co-planner, with an ax to grind, wants to leave off Avery or Brad or both
of them. Given these constraints, you could ask: Is there a guest list that satisfies all three
party planners?’ I have written C for Kemba, A and B for Avery and Brad.

4No, that is not eggplant.
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2.4 Calculational details
2.4.1 Arithmetic
Addition, subtraction, multiplication, division, square roots, n-th roots, and
exponentiating (raising to a power) are all available.

Multiplication can be rendered explicitly with an asterisk,

\eval{$ 9*9 $} =⇒ 9 ∗ 9 = 81,

but that’s ugly. More elegant is to use \times:

\eval{$ 9\times9 $} =⇒ 9× 9 = 81.

\cdot is also available and in many cases juxtaposition alone suffices:

\eval{$ \surd2\surd2 $} =⇒
√

2
√

2 = 2,
\eval{$ ab $}[a=123,b=1/123] =⇒ ab = 1, (a = 123, b = 1/123).

Division can be rendered in multiple ways too:

\eval{$ 42/6 $} =⇒ 42/6 = 7,
\eval{$ 42\div6 $} =⇒ 42÷ 6 = 7,

or by using \frac or \tfrac or \dfrac as in

\eval{$ \frac{42}6 $} =⇒ 42
6 = 7.

But note that since juxtaposition means multiplication, it is also true that 42 1
6

evaluates to 7 inside an \eval command rather than denoting ‘forty two and a
sixth’. Hence if you want to use ‘two and a half’ and similar values in numerica,
they need to be entered as improper fractions like 5

2 or in decimal form, 2.5
(as one does automatically in mathematical expressions anyway because of the
ambiguity in a form like 2 1

2 ).

2.4.1.1 Square roots and n-th roots

Let us check that 3, 4, 5 and 5, 12, 13 really are Pythagorean triples (I use
\sqrt in the first, \surd in the second):

\eval{$ \sqrt{3^2+4^2} $} =⇒
√

32 + 42 = 5,
\eval{$ \surd(5^2+12^2) $} =⇒

√
(52 + 122) = 13.

The \sqrt command has an optional argument which can be used for extracting
n-th roots of a number. This notation is generally used when n is a small
positive integer like 3 or 4. This practice is followed in numerica: n must be a
(not necessarily small) positive integer :

\eval{$ \sqrt[4]{81} $} =⇒ 4
√

81 = 3,
\eval{$ \sqrt[n]{125} $}[n=\floor{\pi}] =⇒ n

√
125 = 5, (n = bπc).
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If n should not be a positive integer, an error message is generated; see §2.5.
For display-style expressions, the \sqrt command grows to accommodate

the extra vertical height; the surd doesn’t. Here is an example which anticipates
a number of matters not discussed yet. It shows \eval wrapping around a
square root containing various formatting commands (negative spaces, \left
and \right nested within \bigg commands), all digested without complaint
(see §2.4.4; and see §3.1.11 for the [p=.]):

\eval[p=.]
{\[

\sqrt[3]
{\!\biggl(\!\left.\frac AD\right/\!\frac BC\biggr)}

\]}[A=729,B=81,C=9,D=3]

=⇒
3

√(
A

D

/
B

C

)
= 3, (A = 729, B = 81, C = 9, D = 3).

As implemented in numerica, n-th roots found using \sqrt[n] are n=<integer>
roots. This raises an interesting question: if the ‘n’ of an n-th root is the result
of a calculation, what happens with rounding errors? The calculation may not
produce an exact integer. (This problem also arises with factorials; see §2.4.12.)
The solution employed in numerica is to make what is considered an integer
depend on a rounding value. Most calculations will produce rounding errors in
distant decimal places. For ‘int-ifying’ calculations, numerica uses a rounding
value of 14: a calculation produces an integer if, when rounded to 14 figures, the
result is an integer. Since l3fp works to 16 significant figures, a rounding value
of 14 allows ample ‘elbowroom’ for rounding errors to be accommodated when
judging what is an integer and what is not. As a practical matter problems
should not arise.

2.4.1.2 n-th roots of negative numbers

Odd (in the sense of ‘not even’) integral roots of negative numbers are available
with \sqrt,

\eval{$ \sqrt[3]{-125} $} =⇒ 3
√
−125 = −5,

\eval{$ \sqrt[3]{-1.25} $} =⇒ 3
√
−0.125 = −0.5.

2.4.1.3 Inverse integer powers

Of course to find an n-th root we can also raise to the inverse power,

\eval{$ 81^{1/4} $} =⇒ 811/4 = 3.

However, raising a negative number to an inverse power generates an error even
when, mathematically, it should not. This matter is discussed below in §2.5.4.
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2.4.2 Precedence, parentheses
The usual precedence rules apply: multiplication and division bind equally
strongly and more strongly than addition and subtraction which bind equally
stongly. Exponentiating binds most strongly. Evaluation occurs from the left.

\eval{$ 4+5\times6+3 $} =⇒ 4 + 5× 6 + 3 = 37,
\eval{$ 6\times10^3/2\times10^2 $} =⇒ 6× 103/2× 102 = 300000,

which may not be what was intended. Parentheses (or brackets or braces)
retrieve the situation:

\eval{$ (4+5)(6+3) $} =⇒ (4 + 5)(6 + 3) = 81,
\eval{$ (6\times10^3)/(2\times10^2) $} =⇒ (6× 103)/(2× 102) = 30.

Because exponentiating binds most strongly, negative values must be parenthe-
sized when raised to a power. If not,

\eval{$ -4^2 $} =⇒ −42 = −16,
which is clearly not (−4)2. But

\eval{$ (-4)^2 $} =⇒ (−4)2 = 16.

2.4.2.1 Command-form brackets

Note that brackets of all three kinds are available also in command form:
\lparen \rparen (from mathtools) for ( ), \lbrack \rbrack for [ ], and
\lbrace \rbrace for \{ \}.

2.4.3 Modifiers (\left \right, etc.)
The \left and \right modifiers and also the series of \big... modifiers
(\bigl \bigr, \Bigl \Bigr, \biggl \biggr, \Biggl \Biggr) are available
for use with all brackets (parentheses, square brackets, braces):

\eval[p=.]{\[ \exp\left(
\dfrac{\ln2}{4}+\dfrac{\ln8}{4}

\right) \]}

=⇒
exp

(
ln 2
4 + ln 8

4

)
= 2.

numerica also accepts their use with . (dot) and with / (as noted earlier,
the [p] and [p=.] are explained at §3.1.11):

\eval[p]{\[ \left.\dfrac{3+4}{2+1}\right/\!\dfrac{1+2}{4+5} \]}
=⇒

3 + 4
2 + 1

/
1 + 2
4 + 5 = 7.

They can be nested.
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2.4.4 Other formatting commands
There are many formatting commands which change the layout of a formula on
the page but do not alter its content. These include various spacing commands
like \!, \quad, etc., phantoms (\phantom etc.), \mathstrut from TEX and its
mathtools cousin \xmathstrut.

Consider the same package’s \splitfrac and \splitdfrac. The mathtools
documentation gives an example to illustrate the use of these last two. I’ve
mangled it to produce a ridiculous illustration of their use, and of the modifiers
\left \right, and of the command-form alternatives to parentheses \lparen \rparen;
also the use of \dfrac. A little mental arithmetic will convince that we are eval-
uating the square root of (9× 7)2 which indeed is what we get:5

\eval[p=.,vvd=]{\[
\sqrt{\left\lparen

\frac{ \splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}

}
{ \dfrac z7}

\right\rparen \left\lparen
\frac{ \splitdfrac{xy + xy + xy + xy + xy}

{+ xy + xy + xy + xy}
}
{\dfrac z7}\right\rparen}

\]}[x=2,y=5,z=10]

=⇒√√√√√√√
 xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7



xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7

 = 63.

numerica essentially ignores formatting commands (the ones it knows of). They
do not alter the mathematical content of a formula, only how it looks. But
there will undoubtedly be formatting commands it does not recognize which
will probably trigger an ‘Unknown token’ message. Please contact the author
in that case.6

2.4.5 Trigonometric & hyperbolic functions
LATEX provides all six trignometric functions, \sin, \cos, \tan, \csc, \sec,
\cot and the three principal inverses \arcsin, \arccos, \arctan. It also pro-
vides four of the six hyperbolic functions: \sinh, \cosh, \tanh, \coth, and

5For the [p=.,vvd=] see §3.1.11 and §3.1.9. The first puts the concluding full stop in the
right place; the second suppresses the vv-list.

6ajparsloe@gmail.com
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no inverses. numerica provides the missing hyperbolic functions, \csch and
\sech, and all missing inverses, the three trigonometric and all six hyperbolic:
\arccsc, \arcsec, \arccot, and \asinh, \acosh, \atanh, \acsch, \asech,
\acoth. (HMF writes arcsinh, arccosh, etc. and ISO recommends arsinh,
arcosh, etc. The first seems ill-advised, the second not widely adopted. At
present neither is catered for in numerica.)

\eval{$ \arctan1/1\deg $} =⇒ arctan 1/1 deg = 45 ,
\eval{$ \atanh\tanh3 $} =⇒ atanh tanh 3 = 3 .

Inverses can also be constructed using the ‘−1’ superscript notation. Thus

\eval{$ \sin^{-1}(1/\surd2)/1\deg $} =⇒ sin−1(1/
√

2)/1 deg = 45 ,
\eval{$ \tanh\tanh^{-1}0.5 $} =⇒ tanh tanh−1 0.5 = 0.5 .

Hyperbolic functions

Please note that l3fp does not (as yet) provide any hyperbolic functions na-
tively. The values numerica provides for these functions are calculated values
using familiar formulas involving exponentials (for the direct functions) and nat-
ural logarithms and square roots for the inverses. Rounding errors mean the
values calculated may not have 16-figure accuracy. The worst ‘offenders’ are
likely to be the least used, \acsch and \asech. For instance,

acsch x = ln
[

1
x

+
(

1
x2 + 1

)1/2
]
,

\eval{$ \csch \acsch 7 $}[16] =⇒ csch acsch 7 = 6.999999999999983.

2.4.6 Logarithms
The natural logarithm \ln, base 10 logarithm \lg, and binary or base 2 loga-
rithm \lb are all recognized, as is \log, preferably with a subscripted base:

\eval{$ \log_{12}1728 $} =⇒ log12 1728 = 3

If there is no base indicated, base 10 is assumed. (The notations \ln, \lg,
and \lb follow ISO 80000-2 recommendation, which frowns upon the use of the
unsubscripted \log although only \ln appears widely used.) The base need not
be explicitly entered as a number. It could be entered as an expression or be
specified in the vv-list:

\eval*{$ \log_b c $}[b=2,c=1024] =⇒ 10,

the log to base 2 in this case. It is possible to use the unadorned \log with a
base different from 10; if you wish to do this only for a particular calculation
see §3.1.7, or see §3.3 if you want to make this default behaviour.
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2.4.7 Other unary functions
Other unary functions supported are the exponential function \exp and signa-
ture function \sgn (equal to −1, 0, or 1 depending as its argument is < 0, = 0,
or > 0).

2.4.8 Squaring, cubing, . . . unary functions
numerica has no difficulty reading a familiar but ‘incorrectly formed’ expression
like

sin2 1.234 + cos2 1.234.

You do not have to render it (sin 1.234)2 + (cos 1.234)2 or (heaven forbid)
(sin(1.234))2 + (cos(1.234))2. The everyday usage is fine:

\eval{$ \sin^2\theta+\cos^2\theta $}[\theta=1.234] =⇒
sin2 θ + cos2 θ = 1, (θ = 1.234) .

Equally numerica has no difficulty reading the ‘correct’ but pedantic form

\eval{$ (\sin(\theta))^2+(\cos(\theta))^2 $}[\theta=1.234] =⇒
(sin(θ))2 + (cos(θ))2 = 1, (θ = 1.234) .

A hyperbolic identity is confirmed in this example:

\eval{$ \sinh 3x $}[x=1] =⇒ sinh 3x = 10.017875, (x = 1),

\eval{$ 3\sinh x+4\sinh^3x $}[x=1] =⇒
3 sinh x+ 4 sinh3 x = 10.017875, (x = 1).

In fact all named unary functions in numerica can be squared, cubed, etc., in
this ‘incorrect’ but familiar way, although the practice outside the trigonometric
and hyperbolic context seems (vanishingly?) rare.

When the argument of the function is parenthesized and raised to a power
– like sin(π)2 – it is read by numerica as the ‘sine of the square of pi’, sin(π2),
and not as the ‘square of the sine of pi’, (sin π)2:

\eval{$ \sin(\pi)^2 $} =⇒ sin(π)2 = −0.430301 .

Things are done like this in numerica above all to handle the logarithm in a
natural way. Surely ln xn = n ln x = ln(xn) rather than (ln x)n? And if we
wish to write (as we do) ln(1 + 1/n)n = n ln(1 + 1/n) = 1− 1/2n+ 1/3n2 − . . .
to study the limiting behaviour of (1 + 1/n)n, then we cannot avoid ln(x)n =
n ln(x) = ln(xn).

2.4.9 n-ary functions
The functions of more than one variable (n-ary functions) that numerica sup-
ports are \max, \min and \gcd, greatest common divisor. The comma list of
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arguments to \max, \min or \gcd can be of arbitrary length. The arguments
themselves can be expressions or numbers. For \gcd, non-integer arguments are
truncated to integers. Hence both y and 3y are independently truncated in the
following example – to 81 and 243 respectively:

\eval{$ \gcd(12,10x^2,3y,y,63) $}[y=1/0.0123456789,x=3] =⇒
gcd(12, 10x2, 3y, y, 63) = 3, (y = 1/0.0123456789, x = 3) .

(The truncation occurs in the argument of \gcd, not in the vv-list.)
For n-ary functions, squaring, cubing, etc. follows a different pattern from

that for unary functions. For \max, \min, \gcd the argument of the function
is a comma list. Squaring the argument makes no sense. We understand the
superscript as applying to the function as a whole. (Consistency is not the point
here; it is what mathematicians do that numerica tries to accommodate.)

\eval{$ \gcd(3x,x,\arcsin 1/\deg)^2 $}[x=24] =⇒
gcd(3x, x, arcsin 1/ deg)2 = 36, (x = 24) .

2.4.10 Delimiting arguments with brackets & modifiers
Arguments of unary and n-ary functions can be delimited not only with paren-
theses, but also with square brackets and braces, both in explicit character form
and also in the command form of §2.4.2.1. The brackets, of whatever kind, can
be qualified with \left \right, \bigl \bigr, etc.7

\eval[p=.]{\[ \sin\left\lbrack \dfrac\pi{1+2+3}\right\rbrack \]}
=⇒

sin
[

π

1 + 2 + 3

]
= 0.5.

2.4.11 Absolute value, floor & ceiling functions
It is tempting to use the | key on the keyboard for inserting an absolute value
sign. numerica accepts this usage, but it is deprecated. The spacing is incorrect
– compare | − l| using | against |−l| using \lvert \rvert. Also, the identity
of the left and right delimiters makes nested absolute values difficult to parse.
numerica does not attempt to do so. Placing an absolute value constructed with
| within another absolute value constructed in the same way is likely to produce
a compilation error or a spurious result. \lvert \rvert are better in every way
except ease of writing. To aid such ease numerica provides the \abs function
(using the \DeclarePairedDelimiter command of the mathtools package).
This takes a mutually exclusive star (asterisk) or square bracketed optional
argument, and a mandatory braced argument. The starred form expands to
\left\lvert #1 \right\rvert where #1 is the mandatory argument:

7See §3.1.11 for the [p=.] (which ensures the concluding full stop appears in the correct
place.
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\eval[p=.]{\[ 3\abs*{\frac{\abs{n}}{21}-1} \]}[n=-7] =⇒

3
∣∣∣∣ |n|21 − 1

∣∣∣∣ = 2, (n = −7).

The optional argument provides access to the \big... modifiers:

\eval[p=.]{\[
\abs[\Big]{\abs{a-c}-\abs[\big]{A-C}}

\]}[A=12,a=-10,C=7,c=-5]

=⇒ ∣∣∣|a− c| − ∣∣A− C∣∣∣∣∣ = 0, (A = 12, a = −10, C = 7, c = −5).

The form without either star or square bracket option dispenses with the
modifiers altogether:

\eval{$ \tfrac12(x+y)+\tfrac12\abs{x-y} $}[x=-3,y=7]. =⇒
1
2 (x+ y) + 1

2 |x− y| = 7, (x = −3, y = 7).

As noted, the star and square bracketed option are mutually exclusive argu-
ments.

numerica also provides the functions \floor and \ceil, defined in the same
way, taking a mutually exclusive star or square bracketed optional argument
and for the starred forms expanding to \left\lfloor #1 \right\rfloor and
\left\lceil #1 \right\rceil where #1 is the mandatory argument, and for
the square bracket option forms replacing the \left and \right with the cor-
responding \big commands. The form without star or square-bracket option
dispenses with any modifier at all.

\eval{$ \floor{-\pi} $} =⇒ b−πc = −4,
\eval{$ \ceil{\pi} $} =⇒ dπe = 4.

The floor function, bxc, is the greatest integer ≤ x; the ceiling function, dxe is
the smallest integer ≥ x. Like the absolute value, the floor and ceiling functions,
can be nested:

\eval{$ \floor{-\pi+\ceil{e}} $} =⇒ b−π + deec = −1.

2.4.11.1 Squaring, cubing, . . . absolute values, etc.

These three functions can be raised to a power without extra parentheses:

\eval{$ \ceil{e}^2 $}, =⇒ dee2 = 9,
\eval{$ \abs{-4}^2 $}. =⇒ |−4|2 = 16.
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2.4.12 Factorials, binomial coefficients
Factorials use the familiar trailing ! notation:

\eval{$ 7! $} =⇒ 7! = 5040,
\eval{$ (\alpha+\beta)!-\alpha!-\beta! $}[\alpha=2,\beta=3] =⇒

(α+ β)!− α!− β! = 112, (α = 2, β = 3).

The examples illustrate how numerica interprets the argument of the factorial
symbol: it ‘digests’

1. a preceding (possibly multi-digit) integer, or

2. a preceding variable token, or

3. a bracketed expression, or

4. a bracket-like expression – an absolute value, floor or ceiling function,

since they delimit arguments in a bracket-like way:

\eval{$ \abs{-4}!+\floor{\pi}!+\ceil{e}! $} =⇒
|−4|! + bπc! + dee! = 36.

The result of feeding the factorial an expression different in kind from one of
these four cases may give an error message or an unexpected result. Use paren-
theses around such an expression; for example write (32)!, rather than 32!.

Nesting of brackets for factorials is accepted:

\eval{$ ((5-2)!+1)! $} =⇒ ((5− 2)! + 1)! = 5040.

The factorials of negative integers or of non-integers are not defined in numerica.
Again there is the problem met in relation to n-th roots of what happens if the
argument of a factorial is the result of a calculation and rounding errors mean it
is not an exact integer. This problem is unlikely to be of practical concern since
numerica rounds the result of such a calculation by default to 14 significant
figures before offering it to the factorial. Since l3fp works to 16 significant
figures, there is ample ‘elbowroom’ to accommodate rounding errors before the
result of a calculation ceases to round to an integer.

2.4.12.1 Double factorials

The double factorial, written n!!, is the product n(n−2)(n−4) . . .×4×2 when
n is even and the product n(n− 2)(n− 4) . . .× 3× 1 when n is odd.

\eval{$ 6!! $} =⇒ 6!! = 48,
\eval{$ n!! $}[n=\sqrt{49}] =⇒ n!! = 105, (n =

√
49),
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Since n! = n!!(n− 1)!! it follows that

n!! = n!
(n− 1)!! = (n+ 1)!

(n+ 1)!! .

Putting n = 0 in the outer equality shows that 0!! = 1. Now putting n = 0
in the left equality gives (−1)!! = 1. Double factorials therefore are defined for
integers ≥ −1.

2.4.12.2 Binomial coefficients

Binomial coefficients are entered in LATEX with the \binom command. It takes
two arguments and has a text-style version \tbinom and a display-style version
\dbinom. As implemented in numerica, these are generalised binomial coeffi-
cients: (

x

k

)
= x(x− 1) . . . (x− k + 1)

k(k − 1) . . . 1 , (x ∈ R, k ∈ N),

where x need not be a non-negative integer, and where
(
x
0
)

= 1 by definition.
Although the first (or upper) argument can be any real number, the lower
argument must be a non-negative integer. Thus, \eval{$ \tbinom53 $} =⇒(5

3
)

= 10, \eval{$ \tbinom70 $} =⇒
(7

0
)

= 1, \eval{$ \tbinom{4.2}3 $}
=⇒

(4.2
3
)

= 4.928, but if the second (or lower) argument of \binom is not a
non-negative integer, numerica displays a message; see §2.5.5.

2.4.13 Sums and products
numerica recognizes sums (\sum displaying as

∑
) and products (\prod dis-

playing as
∏
), and expects both symbols to have lower and upper summa-

tion/product limits specified. The lower limit must be given in the form sum/prod
variable = initial value; the upper limit requires only the final value to be speci-
fied (although it can also be given in the form sum/prod variable = final value).
The values may be expressions depending on other variables and values but must
evaluate to integers (or infinity – see §3.2). Evaluating to an integer means that
they round to an integer, using a rounding value that is set by default to 14;
(recall that l3fp works to 16 significant figures). If a limit evaluates to a non-
integer at this ‘int-ifying’ rounding value, an error message results. (To change
this ‘int-ifying’ rounding value, see §3.3.2.)

As an example of expressions in the limits, this example uses the floor and
ceiling functions to convert combinations of constants to integers (the [p] is
explained in §3.1.11),

\eval[p]{\[ \sum_{n=\floor{\pi/e}}^{\ceil{\pi e}}n \]} =⇒

dπee∑
n=bπ/ec

n = 45,
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(which is
∑9
n=1 n). If the upper limit is less than the lower limit the result is

zero. Notice that there is no vv-list. The summation variable does not need to
be included there unless there are other variables that depend on it. However,
in the case

\eval[p]{\[ \sum_{k=1}^N\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100),

the upper limit N is necessarily assigned a value in the vv-list.
To the author it seems natural to enter the lower limit first, immediately

after the \sum command (the sum is from something to something), but no
problem will accrue if the upper limit is placed first (after all, the appearance
of the formula in the pdf is the same):

\eval[p=.]{\[ \sum^N_{k=1}\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100).

Another example of a sum, using binomial coefficients this time, is

\eval[p]{\[ \sum_{m=0}^5\binom{5}{m}x^m y^{5-m} \]}[x=0.75,y=2.25]
=⇒

5∑
m=0

(
5
m

)
xmy5−m = 243, (x = 0.75, y = 2.25),

which is just \eval{$(x+y)^5$}[x=0.75,y=2.25] =⇒ (x + y)5 = 243, (x =
0.75, y = 2.25), or 35.

Now let’s calculate a product:

\eval[p]{\[
\prod_{k=1}^{100}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
100∏
k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1),

to be compared with \eval{$ \sinh 1 $}[3] =⇒ sinh 1 = 1.175. Obviously
more terms than 100 are required in the product to achieve 3-figure accuracy.
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2.4.13.1 Infinite sums and products

There is a strong urge to use ∞ in the upper limit of this product. Let’s do so:

\eval[p=.]{\[
\prod_{k=1}^{\infty}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
∞∏
k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1).

Disappointingly, we still get the same result, deficient by 1 in the third decimal
place. Obviously numerica has not multiplied an infinite number of terms and,
just as obviously, the finite number of terms it has multiplied are too few. How
numerica decides when to stop evaluating additional terms in an infinite sum
or product is discussed later, §3.2.

For this particular product the problem is that it converges slowly. Any
criterion for when to stop multiplying terms or, for an infinite sum adding
terms, seems bound to fail for some product or series. Presumably any stopping
criterion must measure smallness in some way. But terms of the divergent
harmonic series,

∑
(1/n) can always be found smaller than any value we care

to specify. It is not surprising that a sufficiently slowly converging product or
series falls foul of a given criterion.

The default criterion however can be changed. Because this involves values
assigned in the settings option of the \eval command, I discuss infinite sums
and products in the section discussing that optional argument; see §3.2.

Other infinite sums converge more rapidly, and the default settings work ad-
mirably. For example \eval{$ (1+0.1234)^{4.321} $} =⇒ (1+0.1234)4.321 =
1.653329. Using binomial coefficients we can express this as an infinite sum:

\eval[p=.]{\[
\sum_{n=0}^{\infty}\binom{\alpha}{n}x^{n}

\]}[\alpha=4.321,x=0.1234]

=⇒
∞∑
n=0

(
α

n

)
xn = 1.653329, (α = 4.321, x = 0.1234).

2.5 Error messages
There are two kinds of error in numerica: those in the underlying LATEX which
are reported in the LATEX log, shown on the terminal, and generally halt com-
pilation, and specifically numerica-related errors which do not halt compilation
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and produce messages displayed in the pdf where one would expect the result
of the calculation to be. The original reason for doing things this way was to
enable numerica to be used effectively with the instant preview facility of the
document processor LYX. More philosophically, one might view such errors as
similar to grammatical errors or spelling mistakes in text. It is not clear that
they should halt compilation. Hence strictly numerica-related errors leave brief
messages in the pdf at the offending places.

Before discussing specific error messages, note that there is a debug facility
(of a sort) discussed below in §3.1.1.

Error messages are in two parts: a what part and a where part.

2.5.1 Mismatched brackets
An unmatched left parenthesis or other left bracket (in this case a missing right
parenthesis) usually results in a numerica error:

$\eval{\sin(\pi/(1+x)}[x=1]$ =⇒ !!! Unmatched ( in: formula. !!!

For the same error in the vv-list, the what-part remains unchanged but the
where-part is altered:

$\eval{ 1+y }[x=1,y=\sin(\pi/(1+x)]$ =⇒
!!! Unmatched ( in: variable=value list. !!!

The what message is the same; the where is different.
An unmatched right parenthesis or other right bracket (in this case a missing

left parenthesis) usually results in a similar numerica error:

$\eval{2((x+y)/(y+z)))^2}[x=1,y=2,z=3]$ =⇒
!!! Unmatched ) in: formula. !!!

But note that an unmatched modifier like \left or \right is a LATEX error and
is caught by LATEX before numerica can respond and so results in a terminal
and logfile message.

2.5.2 Unknown tokens
An ‘Unknown token’ message can arise in a number of ways. If an expression
involves a number of variables, some of which depend on others, their order in
the vv-list matters:

$\eval{\tfrac12 vt}[t=2,v=gt,g=9.8]$ =⇒
!!! Unknown token t in: variable=value list. !!!

The vv-list is evaluated from the right so that in this example the variable
v depends on a quantity t that is not yet defined. Hence the message. The
remedy is to move t to the right of v in the vv-list.

Similarly, if we use a variable in the formula that has not been assigned a
value in the vv-list, we again get the ‘Unknown token’ message, but this time
the location is the formula:
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$\eval{\pi r^2h}[r=3]$ =⇒ !!! Unknown token h in: formula. !!!

The remedy obviously is to assign a value to h in the vv-list.
The same message will result if a mathematical operation or function is used

that has not been implemented in numerica:

$\eval{u \bmod v }[v=7,u=3]$ =⇒
!!! Unknown token \bmod in: formula. !!!

A missing comma in the vv-list will generally result in an unknown token mes-
sage:

$\eval{axy}[a=3 y=2,x=1]$ =⇒
!!! Unknown token y in: variable=value list. !!!

Because of the missing comma, numerica assumes a has the ‘value’ 3y=2 and
has no knowledge of y as a variable.

The presence of multi-token variables can also cause this error message if
the check for such variables is turned off; see §3.1.4.

2.5.3 Other vv-list errors
Other errors that can occur with the vv-list are overlooked value assignments
to variables, or missing commas. For the first, it is essential that we do actually
give a value to all variables occuring in the vv-list:

$\eval{axy}[a=3,y=,x=1]$ =⇒ !!! No value for y in: variable=value list. !!!

The remedy is obvious – assign a value to y.
Extra commas in the vv-list should cause no problems:

$\eval{axy}[,a=3,,y=2,x=1,]$ =⇒ 6, (a = 3, y = 2, x = 1)

2.5.4 Inverse powers of negative numbers
Inverse integer powers of positive numbers should always be possible, but raising
a negative number to an inverse power generates an error even when, mathe-
matically, it should not:

\eval{$ (-125)^{1/3} $} =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

This is a feature of floating point arithmetic. When a number is raised to a
rational power, say p/q where p and q are non-zero integers, then the result is
the p-th power of the q-th root of the number. Can a q-th root be taken? If
our floating point system used (for ease of illustration) only 4 significant digits,
p/q = 1/3 would be the fraction 3333/104, an odd numerator over an even
denominator. But a negative number does not possess an even (104-th) root.
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2.5.5 Integer argument errors
Some functions require integer arguments – factorials, the second argument of a
binomial coefficient, and (in numerica) n-th roots using the optional argument
of \sqrt; also summation and product variables. If integers are explicitly en-
tered for these arguments there is no problem, but if the value of the argument
is the result of a calculation, rounding errors require thinking about. What
accumulation of rounding errors is too much so that the result of the calcu-
lation cannot be considered an integer? numerica is generous: in the default
setup, if a calculation rounds to an integer at rounding value 14 the result of
the calculation is considered an integer (obviously, the integer resulting from
the rounding). Since l3fp works to 16 significant figures that gives ample room
for rounding errors to ‘get lost in’ and be ignored, while still ruling out such
things as (recall the example in §2.3.4),

\eval{\[ \sum_{n=1}^N n \]}[N=1/0.0123456789] =⇒
!!! Integer required in: sum limits. !!!

where N differs from 81 not until the seventh decimal place.
The default rounding value of 14 for ‘int-ifying’ calculations can be changed:

see §3.3.2.

2.5.6 Comparison errors
Should a user try to make a comparison using a combination like >= rather than
\geq, numerica admonishes like this:

$\eval{ \pi^e >= e^\pi }[?]$ =⇒
!!! Multi-token comparison in: formula. !!!

(The relation is false by the way.)

2.5.7 Invalid base for \log

ISO recommends using \log only with a subscripted base specified. Otherwise
how is one to know whether the base is e or 10 or 2 or whatever? Nonethe-
less numerica assumes that when \log is used unsubscripted, the base is 10.
Suppose you want to make 12 the base, but forget to put braces around the 12:

$\eval{ \log_12 1728 }$ =⇒
!!! Valid base required for \log in: formula. !!!

Here, numerica has taken 1 as the base (and 21728 as the argument) of the
logarithm and responds accordingly.
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2.5.8 l3fp errors
Some errors arising at the l3fp level are trapped and a message displayed.

• Dividing by zero

$\eval{1/\sin x}[x=0]$ =⇒ !!! l3fp error ‘Division by zero’ in: formula. !!!

Note however that $\eval{1/\sin x}[x=\pi]$ =⇒ 4193528956200936, (x =
π), because of rounding errors in distant decimal places. No doubt this is true
for other functions as well.

• Invalid operation

$\eval{\arccos x}[x=2]$ =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

In this case the inverse cosine has been fed a value of x outside its domain of
definition, the interval [−1, 1]. Trying to evaluate an expression that resolves to
0/0 also produces this message:

$\eval{\frac{1-y}{x-2}}[x=2,y=1]$=⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

• Overflow/underflow

The factorial (discussed in §2.4.12) provides an example of overflow:

$\eval{3249!}$ =⇒ !!! l3fp error ‘Overflow’ in: formula. !!!

This is hardly surprising since

$\eval{3248!}[x]$ =⇒ 1.973634× 109997.

There is a limit on the size of exponents that l3fp can handle. A number in the
form a× 10b must have −10001 ≤ b < 10000. If this is not the case an overflow
or underflow condition occurs. As the examples show, an overflow condition
generates a numerica error. For underflow, where the number is closer to 0
than 10−10001, l3fp assigns a zero value to the quantity. numerica accepts the
zero value.
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Chapter 3

Settings

A calculation is effected against a background of default values for various quan-
tities. For a particular calculation, these values may not be appropriate; or you
may have different preferences. The way to change settings for a particular
calculation is through the settings option of \nmcEvaluate discussed next. The
way to change a default setting is by creating a configuration file numerica.cfg
discussed in §3.3.

3.1 Settings option
The second argument of the \nmcEvaluate command is the settings option,
delimited by square brackets. This option is a key=value list, hence comma-
separated. Key=value lists tend to be wordy. For back-of-envelope calculations
one wants to be able to ‘dash off’ the calculation, hence the short, cryptic nsture
of the keys. Most settings are generic, applicable not only to \nmcEvaluate but
also to other commands that are available if numerica is loaded with the plus
option; see the associated document numerica-plus.pdf.

3.1.1 ‘Debug’ facility
It is rather grandiose to call this a debug facility, but if a calculation goes
wrong or produces a surprising result, numerica offers a means of examining
some intermediate stages on the way to the final result. To use the facility, enter

dbg = <integer>

into the settings option. (White space around the equals sign is optional.)

• dbg=0 turns off the debug function, displays the result or error message
(this is the default);

• dbg=1 equivalent to dbg=2*3*5*7;
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Table 3.1: Settings options

key type meaning default

dbg int debug ‘magic’ integer 0
reuse int form of result saved with

\nmcReuse
0

^ char exponent mark for sci.
notation input

e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. arg. parsing 0
o degree switch for trig.

funcions
log num base of logarithms for \log 10
vvmode int (0/1) vv-list calculation mode 0
vvd token(s) vv-list display-style spec. {,}\mskip 12mu plus 6mu

minus 9mu(vv)
vvi token(s) vv-list text-style spec. {,}\mskip 36mu minus

24mu(vv)
* suppress equation

numbering if \\ in vvd
p token(s) punctuation (esp. in

display-style)
,

The ‘magic’ integers are the following primes and their products:

• dbg=2 displays the vv-list after multi-token variables have been converted
to their single token form, \_nmca, \_nmcb, etc.;

• dbg=3 displays the formula after multi-token variables have been converted
to their single token form;

• dbg=5 displays the stored variables and their evaluated values (dbg=2 lists
the values as expressions; here they have been evaluated); note that any
saved values (Chapter 6) that have been loaded will also feature in this
list which might lead to a messy display depending on the nature of those
values;

• dbg=7 displays the formula after it has been fp-ified (but before it has
been fed to l3fp to evaluate);

– should the formula successfully evaluate, the result of the evaluation
is also displayed.
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Table 3.2: Magic integers

integer factors
6 2,3
10 2,5
14 2,7
15 3,5
21 3,7
30 2,3,5
35 5,7
42 2,3,7
70 2,5,7
105 3,5,7
210 2,3,5,7

To display two or more of these el-
ements simultaneously, use the prod-
uct of their debug numbers for the
magic integer. This can be entered
either as the multiplied-out prod-
uct, or as the ‘waiting to be evalu-
ated’ product with asterisks (stars)
between the factors. Thus dbg=6
or dbg=2*3 display both the vv-list
and formula after multi-token vari-
ables have been converted to sin-
gle token form; dbg=10 or dbg=2*5
display both the vv-list after multi-
token variables have been converted
to single token form and the recorded
variables with their evaluated values.
And similarly for the other magic in-
tegers listed. For other integers, if
they are divisible by 2 or 3 or 5 or 7, they will display the corresponding com-
ponent. Both dbg=210 and dbg=2*3*5*7 display all four elements, but rather
than remembering this product, it suffices to put dbg=1. This is equivalent and
displays all elements.

The debug option uses an aligned or align* environment to display its
wares, depending on the presence or absence of math delimiters around the
\eval command. In the next example I have used multi-token variables to
illustrate the different elements in the debug display, and a chain of comparisons
to show how numerica treats these (§2.3.4).

\eval[dbg=1]{ a_1<2a_2<3a_3<\pi+e }
[a_1=\pi,a_2=\phi,a_3=e\gamma][6?'']

=⇒

vv-list: \_nmcg =e\gamma , \_nmcf =\phi , \_nmce =\pi
formula: \_nmce <2\_nmcf <3\_nmcg <\pi +e
stored: \_nmcg =1.569034853003742, \_nmcf =1.618033988749895, \_nmce

=3.141592653589793
fp-form: round((3.141592653589793)-

(2(1.618033988749895)),6)<0&&round(2(1.618033988749895)-
(3(1.569034853003742)),6)<0&&round(3(1.569034853003742)-
((pi)+exp(1)),6)<0

result: T

Note that the four elements are displayed in temporal order: first comes
the vv-list after conversion of multi-token to single-token variables, then the
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formula in the single-token variables; these are created essentially at the same
time. The vv-list is presented in left-to-right order because that is the direction
of evaluation internally in numerica. Next the stored values of the variables are
displayed. These are the values after evaluation. The fourth element both in
the display and chronologically is the fp-ified formula; this is often a thicket of
parentheses. The final element of the display and chronologically is the result of
evaluating the formula. This is displayed only if 7 is a factor of the dbg integer,
and there is no error.

When interpreting the fp-form, one should be aware of differences between
numerica and l3fp. In particular be aware that in l3fp function calls bind most
tightly so that, for example, sin 2pi evaluates not to zero but to (sin 2) × π
and sin x^2 evaluates to (sin x)2. This should not be of any concern to the
user except as here in debug mode when interpreting fp-forms.

Finally, note that those mathematical operations that have no direct rep-
resentation in l3fp contribute only their value to the fp-form. This applies
to sums and products, double factorials and partly to binomial coefficients as
illustrated in the followng (ridiculous) example:

\eval[dbg=1]{\[
\sum_{n=1}^5 n + \binom{10}{m}

+ \prod_{n=2}^5 (1-1/n) + m!! \][m=6]

=⇒

vv-list: m=6
formula: \sum _{n=1}^5 n+\binom {10}{m} +\prod _{n=2}^5(1-1/n) +m!!
stored: m=6

fp-form: 15+(151200/720)+0.2+(48)
result: 273.2

The various contributions to the overall result are displayed simply as numbers
because l3fp does not (at least as yet) handle these elements natively.

3.1.1.1 Negative dbg values

Negative dbg values are possible: dbg=-2, dbg=-3, etc. (and dbg=-1 meaning
dbg=-210) have exactly the same effects as the corresponding positive values
except for some details of display. The display for positive dbg values is the
one evident in the examples above. Lines wrap, the left margin is not indented
and the display occupies the page width. For negative dbg values, lines do not
wrap, the left margin is indented and the display occupies the text width. An
example is presented in §4.2.1 below where the display for a nested \eval is
significantly improved with a negative dbg value.
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3.1.2 Reuse setting
This setting determines whether the entire display or only the numerical result
is saved to file with the \nmcReuse command. See below, Chapter 6, §6.3.2.

3.1.3 Inputting numbers in scientific notation
Outputting numbers in scientific notation is controlled by the final trailing ar-
gument of the \eval command. That is turned off by default and needs to be
explicitly ordered. Similarly, inputting numbers in scientific notation is turned
off by default and needs to be explicitly ordered. To turn it on, write

^ = <char>

in the settings option, where <char> is any single character, usually e or d or
their upper-casings, but not restricted to them: ^=@ for instance is perfectly
possible, and has the advantage over e or d that it doesn’t conflict with the use
of the character as a variable or constant.

$ \eval[^=@]{ 1.23@-1 } $ =⇒ 0.123.

With letters for the exponent mark – say d or e – the problem is interpreting
forms like 8d-3 or 2e-1. Does such a form denote a number in scientific notation
or an algebraic expression? In numerica, if the settings option shows ^=d, then
a form like 8d-3 is treated as a number in scientific notation. Similarly for e or
any other letter used as the exponent marker for the input of scientific numbers.
(But only one character can be so used at a time.) Note that the number must
start with a digit: e-1 for instance does not and will be treated as an algebraic
expression involving the exponential constant (unless e is assigned a different
value in the vv-list).

$ \eval[^=e]{ x+e-1 }[x=2e-1] $ =⇒ 1.918282, (x = 2e− 1).

The problem here is that 2e-1 is treated as a number in scientific notation but
displays in the vv-list as if it were an algebraic expression. The solution is to
put 2e-1 into an \mbox or \text command in the vv-list:

$ \eval[^=e]{ x+e-1 }[x=\text{2e-1}] $ =⇒ 1.918282, (x = 2e-1).

If you use a particular character as the exponent marker for inputting numbers
in scientific notation, it is good practice not to use that character as a variable,
not because it will cause an error but because it makes expressions harder to
read.

3.1.4 Multi-token variables
Variables need not consist of a single character or token (like x or α). Multi-
token symbols like x′ or ti or var are perfectly acceptable. For its internal
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operations, numerica converts such multi-token names to single tokens (as dis-
cussed in §2.2.1). This conversion takes time. Even if there are no multi-token
variables used at all, numerica still needs to check that that is so. There is a
setting that allows a user to turn off or turn on the check for such variables by
entering

xx = <integer>

into the settings option. If <integer> is 0, the check for (and conversion of)
multi-token variables is turned off; if <integer> is 1 (or any other non-zero
integer), the check, and conversion if needed, goes ahead. By default, checking
for multi-token variables and converting them if found is turned on. (The name
for the key, xx, is chosen because x is the most familiar variable of all, introduced
in elementary algebra, and doubling it like this suggests multi-token-ness.)

If checking is turned off when a multi-token variable is present, an error
results. We don’t need to enter xx=1 in the first of the following examples
because the check for multi-token variables is on by default. Explicitly turning
it off in the second produces an error.

\eval{$ x_0^{\,2} $}[x_0=5] =⇒ x 2
0 = 25, (x0 = 5),

\eval[xx=0]{$ x_0^{\,2} $}[x_0=5] =⇒
!!! Unknown token x in: formula. !!!

3.1.5 Parsing arguments of trigonometric functions
This setting allows a wider range of arguments to trigonometric functions to be
used (think Fourier series) without needing to insert extra parentheses in order
for them to be read correctly by \eval; see §3.4.2.3.

3.1.6 Using degrees rather than radians
You may find it more convenient to use degrees rather than radians with trigono-
metric functions.This can be switched on simply by entering a lowercase o in
the settings option. (The author’s fond hope is that the charitable eye might
see a degree symbol in the o.) Thus

\eval[o]{$ \sin 30 $} =⇒ sin 30 = 0.5,
\eval[o]{$ \arcsin 0.5 $} =⇒ arcsin 0.5 = 30.

3.1.7 Specifying a logarithm base
If you wish to use \log without a subscripted base in a particular calculation,
then add an entry like

log = <positive number 6= 1>
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to the settings option of the \eval command. The <positive number> does
not need to be an integer. It could be e (if you object to writing \ln) but is
more likely to be 2 or another small integer; 10 is the default. If you want to
use this changed base not for one but most calculations, then add an entry with
your choice of base to a configuration file; see §3.3.

3.1.8 Calculation mode
A variable may change in the course of a calculation. This is certainly true of
sums and products. If a parameter in the vv-list depends on the variable then
that parameter will need to be recalculated, perhaps repeatedly, in the course
of a calculation. By entering

vvmode = <integer>

in the settings option it is possible to turn on or off the ability to repeatedly
evaluate the vv-list; <integer> here takes two possible values, 0 or 1. vvmode=0
means the vv-list is evaluated once at the start of the calculation; vvmode=1
means the vv-list is recalculated every time the relevant variable changes.

For example, it may be desirable to place the summand, or some part of it,
in the vv-list. Since the summation variable obviously changes during the course
of the calculation, we need to enter vvmode=1 in the settings option. Repeating
an earlier sum (the seting p=. is discussed in §3.1.11)

\eval[p=.,vvmode=1]{\[ \sum_{k=1}^N f(k) \]}
[N=100,f(k)=1/k^3,{k}=1][4]

=⇒
N∑
k=1

f(k) = 1.202, (N = 100, f(k) = 1/k3).

As you can see, the summand f(k) has been given explicit form in the vv-
list – equated to 1/k^3. That means we need to give a preceding value to k in
the vv-list; hence the rightmost entry. But we don’t want k=1 appearing in the
final display, so we wrap k in braces (see §2.2.3.2). Since the value k=1 applies
only to the first term in the sum, to ensure it is not used for all terms, we
enter vvmode=1 in the settings option. This turns vv-recalculation mode on and
ensures k=1 is overwritten by k=2, k=3 and so on, and the vv-list recalculated
each time. The final result is the same as before, although recalculating the
vv-list at each step is a more resource-hungry process. The difference may not
be marked for this example; with more complicated expressions it noticeably
takes longer.

Because it is necessary to activate this switch when using implicit notations
– like f(k) in the example – rather than the explicit form of the function in the
main argumet it seems natural to call vvmode=1 implicit mode and vvmode=0
(the default) explicit mode. Most calculations are explicit mode – the vv-list is
evaluated only once.
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3.1.9 Changing the vv-list display format
In previous formulas with variables the vv-list has been displayed following the
result. It is wrapped in parentheses following a comma followed by a space.
These formatting elements – comma, space, parentheses – can all be changed
with the settings option.

The default format specification is

{,}\mskip 12mu plus 6mu minus 9mu(vv)

for a text-style display (an inline formula) and

{,}\mskip 36mu minus 24mu(vv)

in a display-style context. The commas are wrapped in braces because these are
items in a comma-separated list. Both entries exhibit the elements: punctuation
(comma), preceding a variable space, preceding the parenthesized vv-list (the vv
placeholder). No full stop is inserted after the closing parentheses because the
\eval command may occur in the middle of a sentence (even in display style).
For inline use, the elasticity of the space becomes relevant when TEX is adjusting
individual lines to fit sentences into paragraphs and paragraphs into pages. The
largest spacing that can be stretched to is a quad, 18 mu (mu = math unit), and
the smallest that can be shrunk to is a thin space, 3 mu. In display style, the
largest spacing specified is the double quad, in line with the recommendation in
The TEX Book, Chapter 18, but this can shrink to a single quad, for instance
if the vv-list is heavily populated with variables so that the evaluated result is
pushed well to the left by the vv-list. (But see below, §3.1.10.)

If you want to change these defaults, enter in the settings option

vvi = <new specification>

to change the inline display and

vvd = <new specification>

to change the display-style display For example the settings

vvi = {,}\quad(vv)
vvd = {,}\qquad(vv)

would give a comma (in braces since the settings option is a comma-separated
list) and a fixed space (of one or two quads) between the result and the paren-
thesized vv-list.

The vv-list itself in the display specification is represented by the placeholder
vv. If the vv is omitted from the specification, then the vv-list will not appear
at all:

\eval[vvi=?!]{$ \pi $}[\pi=3] =⇒ π = 3?!
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More relevantly, it may well be the case that all variables in the vv-list are
suppressed (wrapped in braces). In that case the display would look something
like , (). To prevent this enter vvi= in the vv-list, in the inline case, or vvd=
in the display-style case, i.e. enter an empty value. (Alternatively, use the star
option of the \eval command.)

Another minor wrinkle occurs if you want to change parentheses around
the vv-list to square brackets. Because the settings option is a square-bracket
delimited argument, the square brackets in the specification will, like commas,
need to be hidden in braces, although you can get away with braces around the
whole spec.:

vvi={,\mskip 12mu plus 6mu minus 9mu [vv]}

3.1.10 Displaying the vv-list on a new line
Display of a long formula with many variables, hence a full vv-list, may not fit
comfortably on a line. In an earlier example I used Brahmagupta’s formula to
calculate the area of a triangle. It squeezed onto a line. I shall now use his
formula for the area of a cyclic quadrilateral:

A =
√

(s− a)(s− b)(s− c)(s− d).

The extra side (quadrilateral as against triangle) means there is a further vari-
able to accommodate, not only in the formula but also in the vv-list. In the
following example, the cyclic quadrilateral is formed by a 45-45-90 triangle of
hypotenuse 2 joined along the hypotenuse to a 30-60-90 triangle. The sides are
therefore

√
2,
√

2,
√

3, 1. Adding the areas of the two triangles, the area of the
quadrilateral is A = 1+ 1

2
√

3, or in decimal form, $\eval{1+\tfrac12\surd3}$
=⇒ 1.866025. Let’s check with Brahmagupta’s formula:

\eval[p=.,vvd={,}\\(vv),*]
{\[ \sqrt{(s-a)(s-b)(s-c)(s-d)} \]}

[s=\tfrac12(a+b+c+d),
a=\surd2,b=\surd2,c=\surd3,d=1]

=⇒√
(s− a)(s− b)(s− c)(s− d) = 1.866025,

(s = 1
2 (a+ b+ c+ d), a =

√
2, b =

√
2, c =

√
3, d = 1).

The values agree. The point to note here is the vvd={,}\\(vv) and the * in the
settings option. The \\ in a specification for vvd acts as a trigger for numerica
to replace whatever math delimiters are enclosed by the \eval command with
a multline environment. As you can see, the specification inserts a comma
after the formula and places the parenthesized vv-list on a new line. The star
* if present suppresses equation numbering by turning the multline into a
multline* environment.

Things to note in the use of \\ in a vvd specification are that
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• it applies only to the vvd specification, not the vvi spec.;

• it applies only when \eval wraps around a math environment of some
kind;

• it has no effect when the \eval command is used within a math envi-
ronment when the presentation of the result is of the form result, vv-list.
The formula is not displayed and so the pressure on space is less and the
‘ordinary’ vv-list specification is used.

3.1.11 Punctuation
The \eval command can be used within mathematical delimiters or it can be
wrapped around mathematical delimiters. The latter gives a formula=result
style of display automatically, which is convenient. One doesn’t need to write
the formula= part of the expression, but it causes a problem when \eval
wraps around a display-style or similar environment: how to display a follow-
ing punctuation mark? For an inline display we can simply follow the \eval
command with the appropriate punctuation, for instance: \eval{$ 1+1 $}.
=⇒ 1 + 1 = 2. But with \[ \] delimiters used within the \eval command –
\eval{\[ 1+1 \]}. – the fullstop slides off to the start of the next line, since
it is beyond the closing delimiter. We want it to display as if it were the last
element before the closing delimiter.

Explicitly putting it there – \eval{\[ 1+1. \]} – means the punctuation
mark becomes part of the formula. Potentially numerica then needs to check
not just for a fullstop but also other possible punctuation marks like comma,
semicolon, perhaps even exclamation and question marks. All these marks have
roles in mathematics or l3fp. Including them in the formula means distin-
guishing their punctuation role from their mathematical role and can only cause
difficulties (and code bloat).

Instead, numerica uses the setting

p = <char(s)>

to place the char(s) after the result but within the environment delimiters. The
default punctuation mark is the comma so that simply entering p will produce
a comma in the appropriate place. This saves having to write p={,} as would
otherwise be required, since the settings option is a comma-separated list.

Nor is one limited to a single punctuation mark:

\eval[p=\ (but no 8!)]{\[ \frac{1}{81} \]}[9] =⇒

1
81 = 0.012345679 (but no 8!)
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Table 3.3: Settings for infinite sums & products

key type meaning default

S+ int extra rounding for stopping
criterion

2

S? int ≥ 0 stopping criterion query
terms for sums

0

P+ int extra rounding for stopping
criterion

2

P? int ≥ 0 stopping criterion query
terms for products

0

3.2 Infinite sums and products
There are ways of tweaking various default settings to nudge infinite sums and
products to a correct limit. These tweaks are applied via the settings option of
the \eval command.

The normal convergence criterion used by numerica to determine when to
stop adding/multiplying terms in an infinite sum/product is when the next term
added/multiplied leaves the total unaltered when rounded to 2 more digits than
the specified rounding value. Suppose Tk is the sum/product after the inclusion
of k terms, and r is the rounding value. Denote Tk rounded to r figures by
(Tk)r. The infinite sum or product stops at the (k+ 1)-th term (and the value is
attained at the k-th term) when (Tk+1)r+2 = (Tk)r+2. The hope is that if this
is true at rounding value r + 2 then at rounding value r the series or product
will have attained a stable value at that level of rounding.

For a series of monotonic terms converging quickly to a limit, this stopping
criterion works well, less so if convergence is slower, as seen earlier with the
infinite product for sinh 1. The criterion can fail completely when terms behave
in a non-monotonic manner. Distant terms of a Fourier series, for example,
may take zero values; the criterion is necessarily satisfied but the series may
still be far from its limit. In a product the equivalent would be a distant term
taking unit value. Such series or products may also have initial ‘irregular’ terms
including zero/unit terms. A summation/product might stop after only one or
two additions/multiplications if the criterion were applied to them.

To cope with these possibilities, numerica offers two settings for sums, two
for products, summarized in Table 3.3. These are entered in the settings option
of the \eval command.

• S+=<integer> or P+=<integer> additional rounding on top of the speci-
fied (or default) rounding for the calculation; default = 2

– the larger the additional <integer> is, the more likely that sum or
product has attained a stable value at the specified rounding r
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• S?=<integer≥ 0> or P?=<integer≥ 0> the number of final terms to
query after the stopping criterion has been achieved to confirm that it
is not an ‘accident’ of particular values; default = 0

– a final few terms to be summed/multiplied and the rounded result
after each such operation to be compared with the rounded result
at the time the stopping criterion was achieved. Suppose the ad-
ditional rounding (S+ or P+) is n on top of the specified round-
ing r and let the number of final checking terms be m. Suppose
Tk0 is the first term at which the stopping criterion is achieved:
(Tk0)r+n = (Tk0+1)r+n. What we require of the final query terms
is that (Tk0)r+n = (Tk0+1+j)r+n for j = 0, 1, . . . ,m.

Previously we found that the infinite product for sinh 1 with the default settings
gave the wrong value, 0.174, deficient by 1 in the last digit. We now have the
means to tweak the stopping criterion by increasing the additional rounding:

\eval[p,P+=3]{\[
\prod_{k=1}^{\infty}
\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)

\]}[x=1][3] \nmcInfo{prod}.

=⇒
∞∏
k=1

(
x2

k2π2 + 1
)

= 1.175, (x = 1),

350 factors.
To obtain that last item of information (350 factors), I’ve anticipated a little
and used the command \nmcInfo with the argument prod; see Chapter 5. The
product now produces the correct three-figure value, but it takes 350 factors to
do so.

Knowing how many terms or factors have been needed helps assess how
trustworthy the result from an infinite sum or product is. For example, for the
exponential series,

\eval[p]{\[
\sum_{k=0}^\infty \frac1{k!}

\]}[9] \nmcInfo{sum}.

=⇒
∞∑
k=0

1
k! = 2.718281828,

15 terms.
To 9 places of decimals, using the default value S+=2, the exponential series

arrives at the right sum after only 15 terms. Convergence is rapid. We can
trust this result (and it is in fact the correct nine-figure value). By contrast,
if we didn’t know the value of sinh 1 beforehand, noting the number of factors
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required would make us justly cautious about accepting the result of the infinite
product calculation.

One way to gain confidence in a result is to choose a possibly unrealistic
rounding value – say, the default 6 for the infinite product then use negative
values for the extra rounding, S+=-5, S+=-4, . . . , so that the stopping criterion
applies at rounding values s of 6 + (−5) = 1, 6 + (−4) = 2, and so on, but
the result is always presented to 6 decimal places. One can then see how the
6-figure results behave relative to the number of terms it takes to meet the
stopping criterion. A little experimenting shows that for our infinite product
for sinh 1 the number of factors Ns at a stopping rounding value s increases
in geometric proportion with a scale factor of about 3: Ns+1/Ns ≈ 3. For the
exponential series on the other hand Ns = 4+s, the number of terms increasing
in direct proportion to the stopping rounding value.

A similar calculation for the sum of inverse fourth powers of the integers
ζ(4) =

∑∞
n=1

1
n4 , inverse third powers, ζ(3), and inverse squares, ζ(2), using

\nmcInfo to find how many terms are required at each stopping rounding value,
shows that at least over the rounding value range 1 to 8, for inverse fourth powers
Ns+1/Ns ≈ 1.7, for inverse third powers Ns+1/Ns & 2 and for inverse squares
Ns+1/Ns ≈ 3. All are geometric rather than arithmetic progressions, but for
inverse fourth powers the scale factor (≈ 1.7) is sufficiently small that for these
low values of s the number of terms required does not grow too quickly. It is a
standard result (Euler) that the series sums to π4/90: $ \eval{ \pi^4/90 } $
=⇒ 1.082323 to six places, and indeed, with the default S+=2,

\eval[p]{\[ \sum_{k=1}^\infty \frac1{k^4} \]} =⇒

∞∑
k=1

1
k4 = 1.082323,

there is complete agreement.
For inverse third powers, the number of terms required to reach the stopping

criterion grows rapidly for rounding values from 7 onwards (27 = 128, 28 = 256,
. . . ). This suggests trying for a five-figure result (with the default setting S+=2
the stopping rounding value is 7). Doing this gives a result 1.20205 to five
decimal places. HMF Table 23.3 has this quantity tabulated to 20 places and
shows our result is too small by 1 in the final figure.

For inverse second powers, the number of terms required to reach the stop-
ping criterion increase even more quickly: 34 = 81, 35 = 243, and so on. A
three figure answer (with the default setting S+=2 the stopping rounding value
is 5) seems the best we can hope for. Doing the evaluation gives 1.642 whereas
we know that ζ(2) = π2/6 (Euler’s famous result), evaluating to 1.645. Even
with S+=3, the sum is still too small, 1.644 after 1007 terms. Increasing the
additional rounding to 4, S+=4, does finally give the correct three-figure result,
1.645, but only after summing 3180 terms.
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3.2.1 Premature ending of infinite sums
All the series considered so far have been monotonic. Trigonometric series will
generally not be so, nor even single-signed.

Trigonometric sums are computationally intensive and so, for the following
example, I have specified a rounding value of 2. The series

∞∑
n=1

4
n2π2 (1− cosnπ) cos 2πnt

is the Fourier series for the triangular wave function /\/\/\/\ . . . of period 1,
symmetric about the origin where it takes its maximum value 1, crossing the
axis at t = 0.25 and descending to its minimum −1 at t = 0.5, before ascending
to a second maximum at t = 1 (and so on). In the interval [0, 0.5) the series
should sum to 1−4t. The problem is that the summand 4

n2π2 (1−cosnπ) cos 2πnt
vanishes both when n is even and when 4nt is an odd integer. If t = 0.1 then
4nt is never an odd integer so the summand vanishes only for n even, every
second term. We expect the result to be 1− 4× 0.1 = 0.6.

\eval[p]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2] \nmcInfo{sum}.

=⇒
∞∑
n=1

4
n2π2 (1− cosnπ) cos 2πnt = 0.66, (t = 0.1),

1 term.
Only one term? Of course – since the second term n is even; the term vanishes
and the stopping criterion is satisfied. The way around this problem is to query
terms beyond the one where the stopping criterion is achieved, i.e., to set S? to
a nonzero value. We try S?=1:

\eval[p,S?=1]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2] \nmcInfo{sum}.

=⇒
∞∑
n=1

4
n2π2 (1− cosnπ) cos 2πnt = 0.6, (t = 0.1),

65 terms.
Table 3.4 lists the results of evaluating the finite sums from n = 1 to N

for values of N around 65. Since we have specified a rounding value of 2 for
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the calculation, the stopping criterion applies at a rounding value of 2 more
than that, 4. Since N = 64 is even, the summand for the 64th term is zero
and the sum takes the same value as for N = 63. The 65th term is the query
term and the sum differs, so the summation continues. The 66th term vanishes,
so the stopping criterion is met. This time for the query term, the 67th, the
sum retains the same 4-figure value, and the summation stops. The result was
attained at the 65th term.

Table 3.4: Finite sums

N Σ
63 0.6001
64 0.6001
65 0.5999
66 0.5999
67 0.5999

Should we be confident in the re-
sult? Increase the number of query
terms to 3 (there is no point in in-
creasing S? to 2 because of the vanish-
ing of the even terms), the sum stops
after 113 terms, with the same 0.6 re-
sult. Indeed, increasing S? to 5, 7, . . .
makes no difference. It still takes 113
terms to reach the stable two-figure
result 0.6.

For a final example, consider the error function

erf z = 2√
π

∫ z

0
e−t

2
dt

which can also be rendered as an infinite sum (HMF 7.1.5):

erf z =
∞∑
n=0

(−1)n z2n+1

n!(2n+ 1) .

(\erf expanding to erf has been defined in the preamble to this document
using \DeclareMathOperator.) We calculate this sum for z = 2 to 10 places of
decimals. Although this is an alternating series, it is obvious that the summand
never vanishes when z 6= 0 as here. Hence there seems no need to change the
default value S?=0.

\eval[p]{\[
\frac2{\sqrt{\pi}}

\sum_{n=0}^\infty(-1)^n
\frac{z^{2n+1}}{n!(2n+1)}

\]}[z=2][10*] \nmcInfo{sum}.

=⇒
2√
π

∞∑
n=0

(−1)n z2n+1

n!(2n+ 1) = 0.9953222650, (z = 2),

26 terms.
According to HMF Table 7.1, this calculated value of erf 2 is correct to all

10 places. But beyond z = 2 errors will begin to interfere with the result. Note
that 26 terms means n = 26 was the last value of n for which the summand was
evaluated. (The sum stops at the 26th term, n = 25, but the next term n = 26
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needs to be calculated for the stopping criterion.) Fortuitously, 22×26+1 = 253 is
the greatest power of 2 that can be exactly rendered to the 16 significant figures
that l3fp uses. But n! exceeds the 16-significant figure limit of l3fp when
n > 21, so despite the 10-figure result, errors have already begun to occur in the
denominator of the summand and accrue in the sum when z = 2. For larger z
values the errors can only get worse and at some point will render the calculated
value worthless at any meaningful rounding value. For example, when z = 7
the sum apparently ‘evaluates’ to over 929 whereas we know that

erf z < 2√
π

∫ ∞
0

e−t
2
dt = 1.

3.2.2 Double sums or products
Sums or products can be iterated. For instance, the exponential function can
be calculated this way:

\eval[p]{\[ \sum_{k=0}^{\infty}\prod_{m=1}^{k}\frac{x}{m} \]}[x=2]
=⇒

∞∑
k=0

k∏
m=1

x

m
= 7.389056, (x = 2),

which is \eval{$ e^2 $} =⇒ 7.389056.
A second example is afforded by Euler’s transformation of series (HMF

3.6.27). To calculate e−1 we use

\eval[p={,}\quad \mbox{\nmcInfo{sum}}.]
{\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!} \]}[3]

=⇒
∞∑
n=0

(−1)n

n! = 0.368, 9 terms.

(Note the placement of the information command as the value of the punc-
tuation key. This keeps it within the \[ \] delimiters.) Following Euler, this
series can be transformed to the form

\eval[p,S?=1]{\[
\sum_{k=0}^\infty \frac{(-1)^k}{2^{k+1}}
\sum_{n=0}^k(-1)^n\binom kn \frac1{(k-n)!}

\]}[3] \nmcInfo{sum}.

=⇒
∞∑
k=0

(−1)k

2k+1

k∑
n=0

(−1)n
(
k

n

)
1

(k − n)! = 0.368,
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16 terms.
Note the setting S?=1. Without it, the summation stops after 1 term, the k = 0
term, because the k = 1 term vanishes. With S?=1 it takes 16 terms of the
outer sum to reach the stopping criterion. Since that sum starts at 0, that
means that changing the upper limit from ∞ to 15 should give the same result
– which it does – but it takes 1

2 × 16 × 17 = 136 terms in total to get there,
to be compared with the 9 terms of the earlier simpler sum, and the terms are
more complicated. Obviously such double sums are computationally intensive.

3.3 Changing default values
The settings option enables various settings to be changed for an individual
calculation. You may find yourself wanting to make such changes sufficiently
often that a change of default value is a better plan than encumbering each
calculation with a list of settings.

Table 3.5: Default values, \eval command

key value

rounding 6
pad 0
output-sci-notation 0
output-exponent-char e
%
input-sci-notation 0
input-exponent-char e
multitoken-variables 1
logarithm-base 10
vv-display {,}\mskip 36mu minus 24mu(vv)
vv-inline {,}\mskip 12mu plus 6mu minus 9mu(vv)
%
intify-rounding 14
%
sum-extra-rounding 2
sum-query-terms 0
prod-extra-rounding 2
prod-query-terms 0

The way to do that is to create a configuration file with the name numerica.cfg
in a text editor. Its entries, one per line, are of the form key=value followed
by a comma, and for clarity preferably one entry per line (although this is not
essential).The key names are noticeably more verbose than the corresponding
keys of the settings option. The possible keys are listed in Table 3.5, together
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with their current default values.
Keys taking one of two possible values, 0 (for false/off) or 1 (for true/on),

are pad (the result with zeros), output-sci-notation, input-sci-notation,
and (check for) multitoken-variables.

The table is divided into four parts.

• The top four rows concern elements that can be changed for individual cal-
culations with the trailing optional argument of \eval: rounding, padding
with zeros, and outputting in scientific notation; see §2.3.

– Note that to output the result always in scientific notation requires
two settings, first setting output-sci-notation to 1, and then choos-
ing a character to act as the exponent marker. Because l3fp uses e
for this character, numerica has made e its default. But this option
is turned off by default (hence the 0 against this key).

• The next block of rows concern general elements that can be changed
for individual calculations with the settings option of \eval; see §3.1.
Obviously the key names are more expansive in the present context but
the effect is the same.

– But note that to input numbers in scientific notation requires two
settings, first setting input-sci-notation to 1, and then choosing a
character to act as the exponent marker. Because l3fp uses e for this
character, numerica has made e its default. The option is turned off
by default (hence the 0 against this key).

• The third block is a single row specifying at what rounding value a floating
point should be considered an integer; see §3.3.2 below.

• The last four rows concern default settings for infinite sums and products.
These correspond to the keys S+, S? and P+, P? of the settings option that
can be used to tweak the behaviour of the stopping criterion for such sums
or products; see §3.2.

If you are dissatisfied with any of the default values listed, then in a text editor
create a new file called numerica.cfg and assign your values to the relevant
keys. For instance, if you find yourself working to 4 figures, that rounding to 6
is too many, then make the entry rounding=4. If also you want results always
presented in proper scientific notation, d.d1d2d3d4 × 10n, then add a comma
after 4 and enter on a new line (recommended but not strictly necessary; the
comma is the crucial thing), output-sci-notation=1, (note the comma) and
on another new line, output-exponent-char=x.

Perhaps you also want a non-zero setting for the final query terms for infinite
sums and products. This makes sense if you are largely dealing with non-
monotonic series – like Fourier series. Even the Euler transformation of the
exponential series for e−1 discussed above required a non-zero S?. If you wish
to make this change then add a comma and on a new line add (for instance)
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sum-query-terms = 1, and again on a new line, prod-query-terms = 1. If
this is all you wish to change, then no comma is necessary after this final entry.
Your newly created file should look something like

rounding = 4,
output-sci-notation = 1,
output-exponent-char = x,
sum-query-terms = 1,
prod-query-terms = 1

The white spacing may be different; white space is ignored by numerica when
reading the file. Using it to align the equals signs helps us read the file. Note
that the last entry, because it is the last entry, lacks a comma. Now save the
file with the name numerica.cfg. This file will be read by numerica near the
end of its loading process. These settings will be numerica’s defaults for the
relevant keys.

3.3.1 Location of numerica.cfg

Save, yes, but where to? If the new settings are likely to apply only to your
current document, then the document’s directory is a sensible place to put it and
numerica will certainly find it there since it is part of LATEX3 file handling that
file searches are not limited to the TEX distribution (including your personal
texmf tree) but also include the current document directory. But what happens
when you start working on another document? Will you remember to copy
numerica.cfg to its new location? That is why your personal texmf tree is a
better place.

3.3.1.1 Personal texmf tree?

This is a directory for ‘waifs and strays’ of the TEX system that are not included
in the standard distributions like MiKTEX or TEXLive. Here you place personal
packages designed for your own particular circumstances. These may include
your own TEX or LATEX package, say mypackage.sty, achieving some small
or singular effect that doesn’t warrant wider distribution on CTAN. Here you
might place configuration files for other packages with your preferences (unless
the package requires some specific location). Here you can put your personal
bibliography files.

Your personal texmf tree is structured like the standard MiKTEX or TEXLive
hierarchy but placed in another location so that there is no chance of its being
overwritten when packages in MiKTEX or TEXLive are updated. But these
distributions need to be alerted to its existence.

For example, in the MiKTEX console, click on Settings, and then on the
Directories tab of the resulting dialog. Here you get to add your personal texmf
hierarchy to the list of paths that MiKTEX searches, by clicking on the + button,
browsing to your texmf folder and selecting it. By using the up and down arrow
keys that the MiKTEX console provides, ensure that it lies above the the entry
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for the main MiKTEX tree. That way, files in your personal texmf tree will
be found first and loaded. Now go to the Tasks menu and click on Refresh the
filename database. This will let MiKTEX know what is held in your personal
texmf tree. Files there can then be used like standard LATEX packages.

3.3.2 Rounding in ‘int-ifying’ calculations
Factorials, binomial coefficients, summation and product variables, and (in
numerica) n-th roots from the \sqrt command, all require integer arguments.
These integers may indeed be entered explicitly as integers, but they can also
be determined as the result of a calculation. Rounding errors may mean the
result is not an exact integer. How much leeway should be allowed before it is
clear that the calculation did not give an integer result? In the default setup,
numerica is generous. A number is considered an integer if it rounds to an in-
teger when the rounding value is 14. Since l3fp works to 16 significant figures
this provides more than enough ‘elbowroom’ for innocuous rounding errors to
be accommodated. If a calculation does not round to an integer at a rounding
value of 14 then it seems reasonable to conclude that it has really not given an
integer answer, not just that rounding errors have accumulated. If you want
to change this ‘int-ifying’ value for a particular calculation, then add a line to
numerica.cfg like

intify-rounding = <integer>

Since l3fp works to 16 significant figures, values of integer greater than 16
are pointless. Generally int-ifying rounding values will be less than but close to
16 (although when testing the code I used some ridiculous values like 3 or 4).
If other entries follow this one in the file, then conclude the line with a comma.

3.4 Parsing mathematical arguments
A main aim of the numerica package is to require minimal, preferably no, ad-
justment to the LATEX form in which an expression is typeset in order to evaluate
it. But mathematicians do not follow codified rules of the kind programming
languages insist on when writing formulas – like parenthesizing the arguments
of functions, or inserting explicit multiplication signs (*) between juxtaposed
terms. Hence the question of where the arguments of mathematical functions
end is acute. For a few functions LATEX delimits the argument: think of \sqrt,
\frac, \binom; also ^. But for functions like \sin or \tanh or \ln, unary
functions, this is not so. Nor is it for sums and products, and comparisons.

Before discussing the parsing rules for different groups of functions, I discuss
the means numerica provides to handle exceptions to those rules, when one does
need to make some adjustment to a formula.
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3.4.1 The cleave commands \q and \Q

The word cleave has two opposed meanings: to adhere or cling to, and to split
or sever. numerica defines two commands, \q and \Q to achieve these opposite
effects. When a mathematical argument is being parsed, the \q command joins
the next token to the argument (cleaves to); the \Q command severs the next
token from the argument (cleaves apart). Neither command is added to the
argument nor leaves a visible trace in the output.

Thus, without \q,

\eval{$ \sin(n+\tfrac12)(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n+ 1

2 )(x− t) = −1.102018, (n = 3, x = t+ π, t = 1.234),

which is (sin 7
2 )× π. With \q between the bracketed factors,

\eval{$ \sin(n+\tfrac12)\q(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n+ 1

2 )(x− t) = −1, (n = 3, x = t+ π, t = 1.234),

which is sin( 7
2π). Similarly, without \q,

\eval[p]{\[ \cos\frac{2\pi}{T}n(t+\tfrac12T) \]}[T=2,t=1,n=3] =⇒

cos 2π
T
n(t+ 1

2T ) = −6, (T = 2, t = 1, n = 3),

which is (cosπ) × 3 × (1 + 1
2 × 2). With \q used twice, once after the fraction

and once before the left parenthesis,

\eval[p]{\[ \cos\frac{2\pi}{T}\q n\q(t+\tfrac12T) \]}[T=2,t=1,n=3]
=⇒

cos 2π
T
n(t+ 1

2T ) = 1, (T = 2, t = 1, n = 3),

which is cos(π × 3× 2).
It should be noted that for trigonometric functions, because of their use

in Fourier series especially, there is another way of handling arguments with
parentheses (and fractions). This is discussed in §3.4.2.3 below.

For the \Q command which splits an argument we have, without it,

\eval{$ 1/2e $} =⇒ 1/2e = 0.18394,

which is the reciprocal of 2e, whereas with the \Q command inserted before e,

\eval{$ 1/2\Q e $} =⇒ 1/2e = 1.359141,

which is a half of e. Of course, the meaning in this example would be clearer if
1/2 were parenthesized or presented as a \tfrac.

63



3.4.1.1 Mnemonic

As mnemonic, best seen in sans serif for the Latin Modern fonts used in this
document, think of the letter q as a circle clinging to a vertical descender; think
of the letter Q as a circle cut by the diagonal stroke.

3.4.2 Parsing groups
The arguments of different groups of functions are handled in different ways.
The criterion used for deciding when an argument ends for one group will not be
that used for the others. Table §3.3.2 lists the different groups that numerica
takes account of. At the top are functions or operations that have the smallest
reach when determining where their arguments end; at the bottom are oper-
ations that have the greatest reach. The denominator of a slash fraction is
treated as a unary function and is assigned to group II. By default trigono-
metric functions are treated the same as other unary functions but there is a
setting which enables the direct (rather than inverse) trigonometric functions
to accept a wider range of arguments, as occurs in Fourier series. Hence they
are separated into their own group.

Table 3.6: Parsing groups

group function/operation

I surd, logical Not
II unary functions, /
III direct trig. functions
IV sums, products
V comparisons
VI logical And, logical Or

A formula is a sequence of tokens
and brace groups. All parsing oc-
curs from the left, LATEX argument
by LATEX argument, where argument
means either a token (an N-type ar-
gument in expl3-speak) or a brace
group (an n-type argument). To dis-
tinguish LATEX arguments from math-
ematical arguments I shall when nec-
essary refer to L-args and M-args. A
mathematical argument may end at
an L-arg, meaning immediately be-
fore the L-arg, or end with the L-arg,
meaning immediately after the L-arg.
Ending or not will in general depend on whether the argument is in first position
– the position immediately following a function token like \sin or \log – or in
general position – any later position (although for trigonometric functions we
will also need to consider second and even third position).

For counting position, we need to allow for formatting elements and multi-
token numbers – in both decimal and scientific formats. Formatting elements
do not change the position count. This applies to things like thin spaces or
phantoms (and their arguments) or modifiers like \left or \biggl. Multi-
token numbers (in decimal or scientific formats) are treated as single items;
they advance the position count by exactly one. LATEX functions – like \frac
– which take LATEX arguments again advance the position count only by one.
Mathematically, the fraction is viewed as a single unit.

I shall refer to a token or a token and its LATEX arguments – like \frac and
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its arguments – as an item. Similarly, a (possibly multi-token) number is an
item. Also it will help to distinguish tokens within brackets where both brackets
lie to the right of a function from those that do not. The former I call clothed;
the latter are naked. Thus the plus sign in (sin x + y) is naked relative to the
sine (one bracket to the left of the function), but is clothed in sin(x+ y) (both
brackets to the right of the function).

3.4.2.1 Parsing group I

The only functions in this category are the surd and logical Not.
Why distinguish the surd from other unary functions? Surely we all agree

that \sin2\pi, displaying as sin 2π, vanishes? The argument of the sine extends
beyond the 2 to include the π. But \surd2\pi, displaying as

√
2π, is understood

to be the product
√

2×π. The argument of the surd ends with the 2. The surd
binds more tightly to its argument than is true of unary functions generally.

For parsing group I

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket; otherwise

2. the argument ends with the item in first position and any L- or M-args
required by that item.

If the factorial sign ! preceded its argument, it too would belong to this parsing
state, for it also binds tightly like the surd. This means that an expression like√

4! is intrinsically ambiguous. Is it the square root of 24 or the factorial of 2?
In numerica it produces the (perhaps rather odd) error

\eval{$ \surd 4! $} =⇒ !!! Empty argument to fp-ify in: factorial. !!!

The surd has seized the argument; there is nothing for the factorial to operate
on. The same error arises if the 4 is parenthesized, but parenthesizing like either
(\surd 4)! or \surd(4!) repairs the situation. Because other unary functions
(like the sine or logarithm) do not bind as tightly, this ambiguity does not arise
for them.

Exponents cause no problem because taking square roots and raising to a
power are commutative operations – the result is the same whichever is per-
formed first.

\eval{$ \surd 3^4 $} =⇒
√

34 = 9.

3.4.2.2 Parsing group II: unary functions, slash fractions

In the default setup this category includes the trigonometric and hyperbolic
functions, their inverses, the various logarithms and the exponential functions,
the signum function \sgn, and the slash fraction / where the argument to be
determined is its denominator. Note however that there is a setting switch
which enables trigonometric functions to handle parentheses in arguments more
generally; see §3.4.2.3.
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• In parsing group II we wish to accommodate usages like ln zn = n ln z
(HMF 4.1.11), or gd z = 2 arctan ez − 1

2π (HMF 4.3.117), defining the
Gudermannian. The exponent is included in the argument. Considering
ln(1 + 1/n)n exponents must also be part of parenthesized arguments.

• An approximation to Stirling’s formula for the factorial is often written
lnN ! ≈ N lnN−N (widely used in texts on statistical mechanics). Hence
the factorial sign should also be considered part of the argument.

• ln xy = ln x + ln y means the argument must reach over a product of
variables. Identities like sin 2z = 2 sin z cos z mean the argument also
reaches over numbers, and expressions like sin 1

2πx (HMF 4.3.104) mean
that it further reaches over \tfrac-s and constants.

• Essentially anything can be in first position, and without parentheses; e.g.

– unary functions: ln ln z (HMF 4.1.52), ln tan z2 (HMF 4.3.116),

– fractions: ln z1

z2
(HMF 4.1.9), arcsin (2ax+ b)

(b2 − 4ac)1/2 (HMF 3.3.36),

ln tan z
z

(HMF 4.3.73),

– absolute values: ln
∣∣∣∣a+ x

a− x

∣∣∣∣ (HMF 3.3.25),

– square roots: arctan
√
ν1

ν2
F (HMF 26.6.8)

With these examples in mind, for parsing group II

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket and any attached exponent, or factorial or
double factorial sign; otherwise

2. the mathematical argument includes the item in first position and any L-
or M-args required by that item;

(a) if the item in first position is a number, variable, constant or \tfrac

i. the argument appends the next item if it is a number, variable,
constant or \tfrac, and so on recursively; or

ii. the argument appends the next item if it is an exponent, or
facorial or double factorial sign, and ends there; otherwise

iii. the argument ends.
(b) if the item in first position is not a number, variable, constant or

\tfrac

i. the argument appends the next item if it is an exponent, or
factorial or double factorial sign, and ends there; otherwise

ii. the argument ends.
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An argument may extend over (see 2(a)i) numbers, constants, variables and
\tfrac-s: sin 2pqπx exhibits all elements.

Illustrating 1, the exponent is included in the argument but not the following
variable:

\eval{$ \log_{10}(1+2+3+4)^3n $}[n=5] =⇒
log10(1 + 2 + 3 + 4)3n = 15, (n = 5).

For the sake of the reader, and as one naturally does in any case to avoid
ambiguity, the formula should be written with the variable n preceding the
logarithm: n log10(1+2+3+4)3. The way the example is written suggests that
the writer wished the n to be considered part of the argument. If that is the
case, an outer set of parentheses would make intentions clear, but it is possible
to leave the argument as written but insert a \q command before n:

\eval{$ \log_{10}(1+2+3+4)^3\q n $}[n=5] =⇒
log10(1 + 2 + 3 + 4)3n = 3.69897, (n = 5),

which is log10 5000.
Illustrating 2(a)ii, again the exponent is included in the argument but not

the following variable:

\eval{$ \log_{10}m^3n $}[m=10,n=5] =⇒
log10 m

3n = 15, (m = 10, n = 5).

Again, for the sake of the reader and as one naturally does to avoid ambiguity,
the variable n should precede the logarithm. If in fact one wants the n included
in the argument of the logarithm, the \q command is again available or, better
in this case, the n can be shifted to precede the m, which illustrates 2(a)i:

\eval{$ \log_{10}nm^3 $}[m=10,n=5] =⇒
log10 nm

3 = 3.69897, (m = 10, n = 5).

Is numerica being too strict when nm3 is included in the argument of the
logarithm, but m3n is not? Any criterion is going to miss some instances where
a different outcome might be desirable. Where an argument ends is affected by
visual appearance. It is simple and easy to remember if it is understood that
anything that breaks the visual appearance of juxtaposed numbers, variables,
constants and \tfrac-s ends the argument. An exponent does just that.

Illustrating 2(b)ii, the argument stops with the \dfrac and its arguments
and does not extend to the following constant:

\eval{$ \sin\dfrac12\pi $} =⇒ sin 1
2π = 1.50616.

Obviously, someone writing an expression like this intends the π to be part of
the argument. In that case, a \tfrac should be used. The \dfrac breaks the
‘visual flow’ of an argument.
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Fractions
But why not a plain \frac? After all, for an inline expression it displays in
the same way as a \tfrac. I considered making the argument-behaviour of
\frac the same as \tfrac for text-style contexts, and the same as \dfrac
for display-style contexts, but that would have meant the same expres-
sion evaluating to different results depending on the context, text-style or
display-style, which ruled it out. Because \frac sometimes displays as
\dfrac, it necessarily is treated like \dfrac (but see §3.4.2.3, specifically
()=2).

Slash fractions
It is easy to write ambiguous expressions using the slash / to indicate
fractions or division. How should π/2n be interpreted? With from-the-left
evaluation and calculator precedence rules which give equal precedence to
* (multiplication) and / (division), this would be interpreted as (π/2)×n,
but most people will instinctively interpret it as π/(2n). By placing / in
parsing group II, this is what numerica does.
It treats the right-hand argument of the slash as if it were the argument of
a named function. This means that 1/2 sin(π/6) is parsed as (1/2) sin(π/6)
rather than as 1/(2 sin(π/6)). It also means that 1/2 exp(1) and 1/2e give
different results, which is acceptable since (in the author’s view) they
display differently and are not instinctively read in the same way.

3.4.2.3 Parsing group III

By default trigonometric functions are set to parsing group II. This accom-
modates many instances of how arguments are used with these functions, but
Fourier series in particular require more. For them we need to take account of
how parentheses are used in arguments. I find tan 1

2 (A + B) (HMF 4.3.148),
secπ( 1

4 + 1
2az) (HMF 19.3.3), cos(2m+ p)z (HMF 20.2.3), sin(2n+ 1)v (HMF

16.38.1). Looking through various texts discussing Fourier series it is easy to
find examples like

cos 2π
T
nt, cos 2π

T
n(t+ 1

2T ),

and
cos(N + 1

2 )2πτ
T

, sin 2π
(
x

λ
− t

T

)
.

In the last of these \left and \right have been used to enlarge the parentheses.
All these usages can be accommodated by adjusting a setting in the settings

option (§3.1) of the \eval command:

() = integer

where integer is one of 0, 1, 2. For convenience of statement in what follows
call parentheses, square brackets or braces brackets. If preceded by a \left or
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\right or \biggl or \biggr etc. modifier, call them Brackets, with an upper-
case ‘B’. Modifiers do not contribute to the position count, so that a left Bracket
in first position means the modifier and left bracket are both considered to be in
first position. When it is immaterial whether it is a bracket or a Bracket I write
b/Bracket. The rules that follow do not prescribe what mathematicians ought
to do but are intended to be descriptive of certain patterns of mathematical
practice as discerned in HMF and a number of texts (about half a dozen) on
Fourier series.

()=0 is the default setting; b/Brackets are included in the argument only if

• the left b/Bracket is in first position;
– if the first item beyond the matching right b/Bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, otherwise

– the argument ends with the right b/Bracket.

()=1 includes a b/Bracketed expression in the argument, provided

• the left Bracket is in first position;
– if the first item beyond the matching right Bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, otherwise

– the argument ends with the right Bracket.
• or the item in first position is a number, variable, constant or \tfrac

and the left bracket is in second position;
– if the first item beyond the matching right bracket is an expo-

nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, or

– if the first item beyond the matching right bracket is a number,
variable, constant, or \tfrac it is appended to the argument,
and so on recursively, until

∗ an exponent, or factorial or double factorial sign is met,
which is appended to the argument which ends there, or

∗ an item is met which is not an exponent, or factorial or dou-
ble factorial sign, or a number, variable, constant or \tfrac,
at which point the argument ends, or

∗ the end of the formula is reached.

()=2 includes a b/Bracketed expression in the argument provided

• the left b/Bracket is in first position, or the item in first position
is a number, variable, constant, \dfrac, \frac or \tfrac and the
left b/Bracket is in second position, or the items in first and sec-
ond positions are numbers, variables, constants, \dfrac-s, \frac-s
or \tfrac-s and the left b/Bracket is in third position;
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– if the first item beyond the matching right b/Bracket is an expo-
nent, or factorial or double factorial sign, it is appended to the
argument, which ends there, or

– if the first item beyond the matching right b/Bracket is a number,
variable, constant, \dfrac, \frac or \tfrac it is appended to
the argument, and so on recursively, until

∗ an exponent, or factorial or double factorial sign is met,
which is appended to the argument which ends there, or

∗ an item is met which is not an exponent, or factorial or dou-
ble factorial sign, or a number, variable, constant, \dfrac,
\frac or \tfrac, at which point the argument ends, or

∗ the end of the formula is reached.

The default setting is ()=0 which is parsing group II behaviour.
()=1 allows tan 1

2 (A+B) and secπ( 1
4 + 1

2az), and cos(2m+p)z and sin(2n+
1)v, and also items on both sides of the bracketed part like sin 1

2 (m+n)π provided
there is only one item between the function and the left bracket:

\eval[()=1]{$ \sin\tfrac16(m+n)\pi $}[m=1,n=2]. =⇒
sin 1

6 (m+ n)π = 1, (m = 1, n = 2).

Note that numerica does not check what is included between the brackets –
it could be anything. However inserting \left, \right modifiers before the
parentheses restricts the argument of the sine in this example to the \tfrac:

\eval[()=1]{$ \sin\tfrac16\left(m+n\right)\pi $}[m=1,n=2]. =⇒
sin 1

6 (m+ n)π = 1.563534, (m = 1, n = 2).

()=2 draws no distinction between brackets and Brackets. It allows all ()=1
possibilities but also two items (of a suitable kind) before the left b/Bracket; it
also allows \dfrac-s and \frac-s in addition to \tfrac-s.

The following examples are taken from different texts on Fourier series. The
first shows a \frac being included in the argument, the second shows two items
– including a \frac – preceding the left parenthesis, the third shows a \frac
to the right of the parentheses, and the fourth shows parentheses using \left-
\right modifiers with two items preceding them:

cos 2π
T
nt, cos 2π

T
n(t+ 1

2T ), sin(N + 1
2 )2πτ

T
and sin 2π

(
x

λ
− t

T

)
.

All these usages are accommodated by the ()=2 setting. For instance

\eval[p,()=2]
{

\[ \sin(N+\tfrac12)\frac{2\pi\tau}T \]
}[N=1,\tau=2,T=3]
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=⇒
sin(N + 1

2 )2πτ
T

= 0, (N = 1, τ = 2, T = 3),

which is the sine of ( 3
2 ) × ( 4

3π) = 2π (and not (sin 3
2 )( 4

3π) ), where a \frac
trailing the parentheses has been included in the argument. Or consider

\eval[p,()=2]
{\[

\sin2\pi\left(\frac{x}{\lambda}
-\frac{t}{T}\right)

\]}[x=1,\lambda=2,t=3,T=4]

=⇒
sin 2π

(
x

λ
− t

T

)
= −1, (x = 1, λ = 2, t = 3, T = 4),

which is the sine of 2π × (− 1
4 ) = − 1

2π (and not sin 2π times the parenthesised
expression) where there are two items before the parentheses which surround two
\frac-s and \left and \right modifiers have been used with the parentheses.

However a usage like sin(n + 1
2 )(x − t), noted in two different texts, is not

available without explicit use of the \q command between the parenthesized
groups.

3.4.2.4 Parsing group IV

The only members of this group are \sum and \prod.
For parsing group IV

1. the argument ends

(a) at the first naked plus or minus sign encountered, or
(b) at the first comparison sign or comparison command encountered, or
(c) at the first logical And or logical Or sign encountered, or
(d) at the end of the formula.

In practice this means mainly (a) and (d), and seems to be the instinctive
practice. HMF has multiple examples in multiple chapters of the argument to
a sum ending at a naked plus sign: 7.3.12 & 7.3.14, 9.1.11 & 9.1.77, 9.6.35 &
9.6.43, 11.1.9, . . . (at that point I stopped looking). They were all of the form∑

argument + . . .

A minus sign serving the same purpose was harder to find but HMF 10.4.65
& 10.4.67 are two instances. I considered whether a \times or slash fraction
sign / might end the argument of a sum, but surely we need to allow things like∑

1/n2 which rules out the slash and HMF 9.9.11 provides two of a number of
instances in HMF of sum arguments continuing past explicit \times signs (at
line breaks when a summand spills onto a second line).
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Because they are evaluated using the same code as sums I (unthinkingly)
placed products with sums but doubts later intruded. In HMF products occur
only occasionally and are almost all of the form∏

(argument)

where the argument is bracketed (often with \left \right modifiers) and the
multiplicand ends with the right bracket. At least twice (HMF 6.1.25 and
24.2.2.1) an exponent (−1) is attached to the right bracket and the argu-
ment ends there. Looking further afield, a text on number theory has exam-
ples where the argument of the product extends to three parenthesised factors,∏

(arg1) (arg2) (arg3) and a number of others where it extends to two. A text
on theory of functions has

∞∏
n=1

(
1 + z

n

)
ez/n

although HMF, for the same expression, encloses the two factors within (large)
square brackets, as if some ambiguity existed as to how far the reach of the
\prod extended.

Tentatively I retain products here in the same group as sums.

3.4.2.5 Parsing group V

Comparison symbols compose this group: =, <, >, \ne, \le, \ge, \leq, \geq, and
the various comparison commands from the amssymb package listed in §2.3.4.6.
Because of the way numerica handles comparisons, it is the argument on the
right-hand side of the relation that needs determining.

For parsing group V

1. the argument ends at

(a) the first logical And or logical Or encountered, or
(b) the first comparison sign or command encountered, or
(c) the end of the formula.

3.4.2.6 Parsing group VI

Logical And and logical Or are the sole members of this group. It is the right-
hand side of the And or Or command that needs determining.

For parsing group VI

1. the argument ends at

(a) the first logical And or logical Or encountered, or
(b) the end of the formula.
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3.4.2.7 Disclaimer

The parsing rules of the different groups are not normative; they are not state-
ments of how mathematical formulas should be written. Rather they are at-
tempts to discern regularities in how mathematicians often do write formulas.
It is how things look in the pdf, not LATEX, that is the guide. You are always
free to parenthesize as you see fit and to insert cleave commands (\q or \Q) to
force outcomes.

(But note that parenthesizing has its limits. For sums, writing∑
(< stuff >)< more− stuff >

does not necessarily end the summand at the right parenthesis: it ends at the
first naked + or − sign, or \Q command, encountered.)

The rule should always be to write expressions that are clear to the reader of
the pdf. An expression that is ambiguous to the reader, even if it fits within the
parsing rules, is to be deplored. The intent is that \eval can parse unambiguous
expressions correctly.
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Chapter 4

Nesting \eval commands

\eval commands can be used within \eval commands, both as part of the
formula being evaluated or as part of the vv-list or both. Only in special cir-
cumstances is this likely to be useful – perhaps when a calculation can be divided
into two or more parts where different settings are appropriate for the different
parts. One can imagine cases in which trigonometric functions are involved and
different () settings would be helpful in different parts of the formula. Nesting
of command within command becomes especially significant with the additional
commands available when numerica is loaded with the plus or tables options;
see the associated documents numerica-plus.pdf and numerica-tables.pdf.
Since those additional commands are not available in this document, I restrict
myself here to some ‘toy’ examples of \eval commands within \eval commands
to show how things work.

4.1 Star option for inner \eval

The \eval command ‘digests’ a LATEX formula to produce an l3fp-readable
formula. This is then fed to l3fp to be evaluated. The evaluated output is then
formatted in various ways to be displayed. If the inner \eval command produces
formatted output, it is that that the outer \eval command will attempt to digest
– and fail. Hence always use the star option for the inner \eval command. That
means the outer \eval is feeding on a number only:

\eval{$ \sin(\eval*{\sin x}[x=\pi/6]\pi) + 1 $} =⇒ sin(0.5π) + 1 = 2.

Also no math delimiters are used in the inner command. These are irrelevant
with the star option in any case, but in the present context would cause error
if included because they would be treated as part of the formula and thereby
produce an ‘unknown token’ error message. In the presentation of the overall
result that the inner \eval command is evaluated, showing as 0.5.
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4.2 Nesting in the vv-list
\eval{$ \sin k\pi + 1 $}[k=\eval*{\sin x},x=\pi/6] =⇒

sin kπ + 1 = 2, (k = 0.5, x = π/6).

When the inner \eval command is in the vv-list of the outer command and has
a vv-list of its own, then the entire inner command needs to be placed in braces:

\eval{$ \sin k\pi + z $}[k={\eval*{y\sin x}[x=\pi/4,y=1/\surd2]},z=1]
=⇒ sin kπ + z = 2, (k = 0.5, z = 1).

The vv-list of the inner \eval command contains both a comma and square
brackets. Both elements need to be hidden from the outer \eval in order that
its vv-list be parsed correctly. Hence braces surround the inner \eval and its
arguments. The same need arises if the inner \eval has a non-empty settings
option – another comma-separated square-bracketed option.

The values of variables used in an inner \eval command are restricted to
that command; they do not ‘leak’ into the outer calculation. But variables and
their values in the outer vv-list are available for use in the inner \eval command
(unless a value is explicitly changed in the inner vv-list).

4.2.1 Debugging
It is worth looking at the debug display when \eval commands are nested. For
the outer \eval command:

\eval[dbg=210]{$ \sin \eval*{\sin x}[x=\pi/6]\pi + 1 $} =⇒

vv-list:
formula: \sin \eval *{\sin x}[x=\pi /6]\pi + 1
stored:

fp-form: sin((0.5)(pi))+1
result: 2

and when the inner \eval is in the vv-list,

\eval[dbg=210]{$ \sin k\pi + 1 $}[k=\eval*{\sin x},x=\pi/6] =⇒

vv-list: x=\pi /6, k=\eval *{\sin x}
formula: \sin k\pi + 1
stored: x=0.5235987755982988, k=0.5

fp-form: sin((0.5)(pi))+1
result: 2
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For the inner \eval command debugging still works but in an idiosyncratic way.
To clarify exactly what is going on I have added a \left( \right) pair around
the entire inner \eval command. Note that I have also used a negative dbg
value. With a positive value, the right parenthesis is pressed toward the right
margin of the page. The negative value limits the display to the text width and
gives the much neater result shown.

\eval[()=2]{$
\sin\left(

\eval*[dbg=-210]{ \sin x }[x=\pi/6]
\right)\pi + 1 $}

=⇒ sin


vv-list: x=\pi /6

formula: \sin x
stored: x=0.5235987755982988

fp-form: sin((0.5235987755982988))
result: 0.5

π + 7 = 8

The debug display from the inner \eval command has been inserted into
the formula of the outer \eval in the position occupied by the inner \eval. I
did not deliberately code for this, but have decided to leave it as is, since there
can be no confusion about which \eval command is being ‘debugged’, despite
the potential for some rather odd displays. In this last example, in order to
both use \left(...\right) and have the calculation give the previous result I
have employed the setting ()=2 in the outer \eval; see §3.4.2.3.
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Chapter 5

\nmcInfo (\info)

Used after the evaluation of an ‘infinite’ process, the \nmcInfo command, or
its equivalent short-name form \info will tell you how many terms or factors
or iterations or steps were needed to arrive at the result. The syntax of the
\nmcInfo command is

\nmcInfo{<arg>}

where <arg> is restricted to one of two choices at present, either sum or prod.
If the package numerica-plus.def is loaded (see §1.1.1 and the associated
document numerica-plus.pdf) two further arguments are possible: iter and
solve.

There is a starred form of the command:

\nmcInfo*{<arg>}

(or \info*{<arg>}). As with the \eval command the star has the effect of
suppressing anything other than the numerical result from the display.

As an example, let’s test a standard identity, cosh2 x−sinh2 x = 1, ‘the hard
way’. We know that cosh x =

∑∞
n=0

x2n

(2n)! and sinh x = x
∏∞
k=1

(
1 + x2

k2π2

)
. The

difference of their squares should be 1:

\eval{\[
\left[\sum_{n=0}^{\infty}

\frac{x^{2n}}{(2n)!}
\right]^2-

\left[x\prod_{k=1}^{\infty}
\left(1+\frac{x^{2}}{k^{2}\pi^{2}}\right)

\right]^2
\]}[x=1][3] \info{sum}\quad \info{prod}

=⇒ [ ∞∑
n=0

x2n

(2n)!

]2

−

[
x

∞∏
k=1

(
1 + x2

k2π2

)]2

= 1.002, (x = 1)
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5 terms 119 factors.
Nearly right. Obviously the product converges only slowly which is where

the error comes from (see the discussion in §3.2, where we needed the extra
rounding setting P+=3 and 350 factors to get a correct 3-figure value). The
point of the example is to show the information command being used for both
sum and product in the one evaluation. One does not exclude the other.

The information command can also be placed in the settings option as the
value of the punctuation setting. An example of this has already been provided
earlier which I’ll repeat here:

\eval[p=\mbox{,\quad\nmcInfo{sum}.}]
{\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!} \]}[3]

=⇒
∞∑
n=0

(−1)n

n! = 0.368, 9 terms.

Because of the \[ \] delimiters, if the information command had been
placed after the \eval command, it would have slid down to the next line. As
it is, it resides inside the \[ \] delimiters, on the same line as the expression.
This may be significant for adjusting vertical spacing of subsequent elements of
the document.

5.1 Errors
Should the wrong argument be used in the \nmcInfo command, no harm is
done:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3], \ \info{prod}

=⇒
∑∞
k=0

(
α
k

)
xk = 3.375, (x = 1/2, α = 3), 119 factors.

119 factors? The information command is remembering a previous result,
the last time prod was used as its argument. Changing the argument from prod
to sum reveals the correct number of terms.

Should a non-existent argument be used, an error message is generated:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3], \\ \info{Fred}

=⇒
∑∞
k=0

(
α
k

)
xk = 3.375, (x = 1/2, α = 3),

!!! Unknown argument Fred in: info command. !!!
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Chapter 6

Saving and reusing results

You may want to use at some place in a document a result calculated earlier. It
would be good to be able to do so without having to do the calculation again at
the new location. numerica offers a command \nmcReuse which saves a result
to a control sequence which can be used elsewhere in the document, expanding
to the saved result. The control sequence and its content are also saved to file
for use on other occasions.

The syntax of \nmcReuse is simple. The command takes two optional argu-
ments, a star (asterisk) and a conventional square-bracket delimited argument.
If both are used it looks like

\nmcReuse*[csname]

where csname is the proposed name of what will become the control sequence
\csname containing the latest result from the \eval command. The name
should be composed of letters only.

As with \nmcEvaluate and \nmcInfo there is a short-name form, \reuse,
for \nmcReuse. If a conflict with another package arises, it should be possible
to fall back on \nmcReuse.

6.1 Use without optional argument: \nmcReuse

Suppose your document is mydoc.tex (so that the LATEX command \jobname
expands to mydoc). If \nmcReuse is used without optional arguments, then
numerica checks for the existence of a file mydoc.nmc in the current document
directory and if found loads and records the contents of mydoc.nmc. The con-
tents should be a comma separated list of control sequences and braced values
like \csname1 {value1},\csname2 {value2},... The control sequences can
then be used elsewhere in the document. In particular, control sequences con-
taining numerical values can be used in expressions within \eval commands
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and in vv-lists.1
Note that the control sequences are given LATEX definitions using xparse’s

\NewDocumentCommand (a little more general than LATEX2ε’s \newcommand) and
can be used at any later point in the document simply by entering the control
sequence (e.g., \csname1) there (but see §6.2.1). Should there already be a
control sequence with the same name, LATEX will generate an error and halt
compilation.

6.2 Use with optional name: \nmcReuse[csname]

If a name is supplied, say \nmcReuse[csname], then not only does numerica
first look for mydoc.nmc (assuming your document is called mydoc.tex) and load
the values stored in that file if they have not already been loaded, but it also
defines \csname to contain the latest result from the \eval command. Should
\csname already be present in mydoc.nmc and so have been loaded with the
other values from mydoc.nmc, the old value is overwritten with the new value
using xparse’s \RenewDocumentCommand and the new value is saved to the file
mydoc.nmc.

6.2.1 Group level
Control sequences like \csname defined by \nmcReuse are defined within the
current group level. A usage like

$ \eval{1+1}\reuse[two] $

confines the definition of \two to the environment delimited by the dollar signs.
A usage like

$ \eval{1+1} $ \reuse[two],
where the command has been moved outside the math delimiters, still confines
the definition of \two to whatever larger environment the \reuse command
might lie within. If in fact the definition occurs at document level then \two (in
the present example) is available for use throughout the document, otherwise it
is available only within the confines of the current environment.

This is likely to be not what is wanted. The remedy is simple: precede the
saved control sequence – \two in the present instance – with a ‘naked’ \reuse
command. This loads the value stored in mydoc.nmc. In the following exam-
ple, \reuse is used within a math environment which is followed by some text
(blah blah result:) then a ‘naked’ \reuse command and the control sequence
\two (between math delimiters, which are necessary for reasons explained in the
next section).

$ \eval{1+1} \reuse[two] $, blah blah result: \reuse $\two$. =⇒
2, blah blah result: 2.

1The associated document numerica-plus.pdf describes how other quantities like tables
and sequences of numerical values (iterates, recurrences) can also be saved and reused.
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6.3 What is saved?
In the default configuration \nmcReuse saves the entirety of the display resulting
from the latest \eval-uation. This may include invisible formatting elements
meaning that what one expects to be only a number cannot be inserted into
text without causing a LATEX error; it requires a math environment to print –
see the last example.

The simplest way to avoid this awkwardness is to use \eval with the star
option. This produces a numerical result with no formatting. In the following
example, I calculate 11+11 with \eval* and store the value in the control se-
quence \twos. I then enter some text (Blah blah blah:) and insert the control
sequence \twos into the text without math delimiters. As you can see, \twos
has expanded to 22, the result of the calculation.

\eval*{$ 11+11 $}. \nmcReuse[twos] Blah blah blah: \twos =⇒ 22.
Blah blah blah: 22

6.3.1 Viewing what is saved: \reuse*

To view what is saved in the .nmc file append a star (asterisk) to the \reuse
command. (This makes particular sense when using numerica in a program like
LYX with a preview facility; see Chapter 7.)

\reuse* =⇒

Saved: \iandi {2},\two {2\mathchoice {}{}{}{}},\twos {22}

Particularly notable here is the invisible formatting \mathchoice{}{}{}{} ac-
companying 2 in the value of \two.

The two options of the\reuse command can be used together, in which case
the control sequence resulting from the name supplied in the square-bracketed
option will appear in the list resulting from the star option, i.e. the list contains
not just what has been saved earlier but also the current control sequence saved.

6.3.2 \eval’s reuse setting
The star option of the \eval command allows a purely numerical result to be
saved, but also only a number is displayed. By using the reuse setting of the
\eval command it is possible to have both a full display of an evaluation, vv-list
and all, and to save only a numerical result.

For the starred form of the \eval command it is always only the numerical
result that is saved, whatever the value of the reuse key in the settings option
of the \eval command.

For the unstarred form of the \eval command exactly what is saved with
\nmcReuse depends on the reuse setting:

81



reuse = <integer>

where <integer> can take one of two values,

• reuse=0 (the default) saves the form that is displayed including a for-
matting component. If the result is displayed in the form formula=result
(vv-list) then that is what is saved; if the display is of the form result (vv-
list) then that is what is saved; if the vv-list is empty, an empty formatting
component is still present in the saved result;

• reuse=1 (or, indeed, any non-zero integer) saves only the numerical result
with no other elements of the display (meaning no formatting component).

Thus, with the default setting (reuse=0) the full content of the display is saved:

\eval{$ x + y $}[x=1,y=1] \reuse[iandi] =⇒ x+ y = 2, (x = 1, y = 1) .

To check that this is the case, \reuse \iandi =⇒ x+ y = 2, (x = 1, y = 1).
On the other hand, with reuse=1 only the numerical value is saved:

\eval[reuse=1]{$ x + y $}[x=1,y=1] \reuse[iandi] =⇒
x+ y = 2, (x = 1, y = 1) ,

which we can check here: \reuse\iandi =⇒ 2.

6.3.2.1 \reuse in the preamble

To gain access from the outset to the control sequences stored in the file mydoc.nmc,
place \nmcReuse without an optional argument in the preamble (but after
\usepackage{numerica}).
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Chapter 7

Using numerica with LYX

The document processor LYX has a facility that enables snippets from a larger
document to be compiled separately and the results presented to the user with-
out having to compile the entire document. The present document was written
in LYX. The demonstration calculations were evaluated using this instant pre-
view facility.

To use numerica in LYX go to Document . Settings . LaTeX Preamble and
enter

\usepackage{numerica}

then click OK. However preview poses problems for the straightforward use
of the \nmcReuse command. If you wish to use this command in LYX then
numerica should be loaded with the lyx package option. Thus in Document .
Settings . LaTeX Preamble enter

\usepackage[lyx]{numerica}

then click OK, or you may wish to follow the above line in the preamble with
\nmcReuse,

\usepackage[lyx]{numerica}
\nmcReuse

and then click OK. The additional line ensures all saved values are available in
your document from the outset.

7.1 Instant preview
Preview performs localised mini-LATEX runs on selected parts of a document
(for instance, the mathematical parts) and displays the results in LYX while the
user continues to work on the surrounding document. numerica uses these
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local LATEX runs to do its evaluations and display their results. That means you
get feedback on your calculations almost immediately.

To use this facility first ensure that instant preview is turned on. This means
selecting Tools .Preferences . Look & Feel . Display and against Instant preview
selecting On, then clicking OK.

7.1.1 Conflict with hyperref support?
There may be a conflict in LYX between hyperref support and preview, not that
the previews do not form but that their formation takes a circuitous path that
noticeably slows their display.1 If this occurs on your system, go to Document
. Settings . PDF Properties and ensure the check box Use Hyperref Support is
cleared. By all means reset the check box when you come finally to compile
your document, but until then it should result in a noticeably brisker display of
previews if the checkbox is cleared.

7.2 Mathed
(Mathed = the LYX mathematics editor.) If you have instant preview on then
one way to use numerica in LYX is to enter an \eval command in mathed.
Clicking the cursor outside the editor with the mouse or moving it outside with
the arrow keys will then trigger formation of a preview of the editor’s contents
– a snippet of what will be shown in the pdf. This will be displayed in mathed’s
place after a generally short ‘pause for thought’ as the mini-LATEX run progresses
behind the scenes.

The original expression can be recovered by clicking on the preview. The
content of mathed is immediately displayed and can be edited.

7.2.1 LATEX braces { }
LYX does not support numerica’s \eval command ‘out of the box’ as it does,
say, \frac or \sqrt. To use the \eval command in mathed you will need to
supply the braces used to delimit its mandatory argument. (For \frac and
\sqrt by contrast, LYX supplies these automatically.) Unfortunately the { key2

does not insert a left brace into the document but rather an escaped left brace
\{ as you can see by looking at View . Code Preview Pane. Escaped braces like
this are used for grouping terms in mathematics; they are not the delimiters of
a LATEX argument.

The brace delimiters for LATEX arguments are entered in mathed by typing
a backslash \ then { (two separate key presses rather than a single combined
press). This enters a balanced pair of (unescaped) braces with the cursor sitting
between them waiting for input. Alternatively, if you have already written an
expression that you want to place between braces, select it, then type \ then {.

1At least there is on the author’s Windows 10 system, but I’m not sure that this is general.
2Shift+[ on my keyboard.
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7.3 Preview insets vs mathed
There are problems with using mathed for calculations.

• Expressions entered in mathed are necessarily of the form $ \eval... $
or more generally delimiter \eval... delimiter. But you may wish
to wrap the \eval command around the math delimiters to produce a
formula=result form of display. In mathed the only way to do that is to
write the formula= part yourself – which may involve no more than copy
and paste but is still additional mouse work/key pressing.

• Mathed does not accept carriage returns. If you want to format a com-
plicated expression for readability by breaking it into separate lines, you
can’t. The expression is jammed into the one line, along with the settings
option content and the vv-list.

For these reasons I have come to prefer not using mathed for calculations but
instead to use preview insets wrapped around TEX-code (ERT) insets. LYX uses
the shortcut Ctrl+L to insert an ERT inset. Since LYX now does no printing
itself, the shortcut Ctrl+P that was formerly used for printing is available for
other purposes. On my keyboard, the P key lies diagonally up and to the right
but adjacent to the L key. I suggest assigning Ctrl+P to inserting a preview
inset. Then typing Ctrl+P Ctrl+L – which means holding the Ctrl key down
and tapping two adjacent keys, P followed immediately by L – will insert an
ERT inset inside a preview inset with the cursor sitting inside the ERT inset
waiting for input. In the ERT inset you can enter carriage returns, and so
format complicated expressions. You can place the vv-list on a separate line or
onto consecutive lines. And when you have finished, clicking outside the preview
inset will trigger preview into doing its thing and present the result ‘before your
eyes’.

To assign the suggested shortcut, go to Tools . Preferences . Editing .
Shortcuts. Under Cursor, Mouse and Editing Functions in the main window on
the right, scroll down until you come to preview-insert, select it, then clickModify.
Now press Ctrl+P. The shortcut will magically appear in the greyed, depressed
key. Click OK and then OK in the Preferences window to close it. (Most of
the examples in this document have been evaluated in this way, using Ctrl+P
Ctrl+L.)

7.4 Errors
Instant preview will display numerica error messages in LYX just as it does
the results of calculations. Clicking on the message will show the underlying
expression which can then be edited. However LATEX errors will not produce a
preview; formation of the preview will stall. To find precisely what has gone
wrong, you will need to look at the LATEX log, but not the log of the overall
document; rather the preview log. Unfortunately this is tucked away in a tempo-
rary directory and is not immediately accessible in LYX (unlike the main LATEX
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log from Document . LATEX Log). When LYX is started, it sets up a temporary
directory in which to perform various tasks. On Windows systems this will be
located in C:\Users\<your name>\AppData\Local\Temp and will have a name
like lyx_tmpdir.XOsSGhBc1344.

One of the tasks LYX uses this temporary directory for is to create preview
images when a document is opened. If you look inside LYX’s temporary directory
when a document is first loaded, you will see a subdirectory created, with a
name like lyx_tmpbuf0. There may already be such directories there, in which
case the number on the end will be greater than 0 – it depends on whether
other documents are or have been open in the current instance of LYX. Inside
the appropriate lyx_tmpbufn folder will be the preview log with a name like
lyxpreviewZL1344.log. It will usually be accompanied by other files with
extensions like .dvi, .tex, and perhaps quite a number with the extension
.png, each one of which is a preview, or part of a preview. For a document just
loaded there will be only the one preview log, but if you have added preview
insets or math insets to your document in the current editing session there will
be a number of such logs and you will need to determine the relevant one by
the time stamp.

The log files are text files and can be opened in a text editor. The relevant
part of the log is towards the end (just before the final statistical summary)
where you will find a list of entries like Preview: Snippet 1 641947 163840
7864588. If there is an error, it will be noted here among these snippets and
will generally make clear what needs remedying.

7.4.1 CPU usage, LATEX processes
It is possible when a preview fails to resolve that the LATEX process associated
with the preview will continue to run, using CPU cycles, slowing overall com-
puter performance, and perhaps resulting in extra fan use giving a different
sound to the computer. In Windows 10, the Task Manager (Ctrl+Shift+esc)
under the Details tab shows the current executables running. The CPU column
will show which processes are preoccupying the CPU. Check whether one or
more of these processes looks LATEX-related (e.g. latex.exe or pdflatex.exe,
or miktex-pdftex.exe if using MiKTEX). Click the Name column to sort the
processes by name and look for the relevant name in the list, select it, and end
the process (click the End Task button).

I am not familiar with the corresponding situation on Linux or Mac.

7.5 Using \nmcReuse

As noted, LYX creates its previews in a temporary directory, not the docu-
ment directory. If you want to save values from your current document – say,
mydoc.lyx – to mydoc.nmc then you can do so without drama, but mydoc.nmc
will be located in the temporary directory, and when LYX is closed will be
deleted along with the temporary directory.
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Suppose first that at the end of a session you manually copy mydoc.nmc back
to the document directory. How can you ensure that the values saved in this
file are available the next time you open mydoc.lyx? As noted at the start of
this chapter entering

\usepackage[lyx]{numerica}
\nmcReuse

in the preamble ensures that these saved values are available for use from the
outset – available to the mini-LATEX runs creating previews in the temporary
directory.

That leaves the problem of saving new values from the current session, which
are stored in mydoc.nmc in the temporary directory, back to mydoc.nmc in the
document directory. When LYX is closed the temporary directory with all its
contents is deleted. As suggested already we could manually copy mydoc.nmc
from the temporary directory to the document directory but that means re-
membering to do so before closing LYX. Inevitably we will sometimes forget.

Fortunately LYX has a copying mechanism for getting files out of the tem-
porary directory. When a document is exported – say to pdf – it is possible
to specify a copier to automatically copy back to the document directory or
subdirectory various files in the temporary directory. We want the .nmc file
containing the saved values to be copied back. Go to Tools . Preferences .
File Handling . File Formats and find PDF (pdflatex) (assuming export to pdf
by this route) in the list of formats. In the Copier slot of the dialogue insert the
following line of code:

python -tt $$s/scripts/ext_copy.py -e nmc,pdf -d $$i $$o

ext_copy.py is a python script that is supplied with LYX. The -e nmc,pdf -d
part of the line tells ext_copy.py that on export to pdf by the pdflatex route
to copy any files with the extensions .nmc or .pdf from the temporary directory
where LYX does its work back to the document directory – the -d option (which
became available from LYX 2.3.0).

But if you have a complex document, it may take too much time to want to
export to pdf before closing LYX, particularly if there are a lot of evaluations
in the document. Much faster is to export to plain text, not because you want
a plain text version of your document but because it too can be used to trigger
the copier mechanism. Go to Tools . Preferences . File Handling . File Formats
and find Plain text in the list of formats. In the Copier slot enter

python -tt $$s/scripts/ext_copy.py -e nmc -d $$i $$o

The only difference from the previous copier command is the absence of pdf.3
This will copy mydoc.nmc with its saved values from the temporary directory

3I’m assuming that you don’t actually want the plain text version of the file copied back.
If you do, then change -e nmc to -e nmc,txt.
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back to the document directory. To effect the export, go to File . Export and
find Plain text in the list of formats and click on it.

A shortcut would be nice. For that go to Tools . Preferences . Editing .
Shortcuts, click on New, enter buffer-export text in the Function: slot, click
on the blank key against Shortcut: and type your shortcut. You may have to
try a number before you find one that hasn’t already been assigned. (I’m using
Ctrl+; for no particular reason beyond the fact that it fits under the fingers
easily and saving values to the document directory has a punctuation-like feel
to it, a pause in the process of writing.) It is now an easy matter to press the
shortcut at the end of a LYX session to copy all the values saved in mydoc.nmc
back to a file of the same name in the document directory. And it is brisk, not
least because plain text export ignores ERT insets (and hence preview insets
wrapped around ERT insets), nor does it evaluate \eval commands in math
insets.

7.5.1 A final tweak?
But one still needs to remember to press the shortcut. The thought arises:
can closing the current document trigger the copying process? LYX provides
a means of linking two commands and assigning a keyboard shortcut to them
with its command-sequence LYX function. I suggest assigning a shortcut to

command-sequence buffer-export text; view-close

Indeed, why not reassign the current shortcut for view-close, which is Ctrl+W
on my system, to this command sequence? (I use the cua key bindings – check
the Bind file: slot in Tools . Preferences . Editing . Shortcuts.)

Please note, however, that this will work as intended only from LYX 2.4.0.4
For LYX 2.3 and earlier, the command sequence will generally fail because
of ‘asynchronous’ processing – buffer-export and view-close use different
threads and the latter may well start before the former is complete. From LYX
2.4.0 this defect has been fixed. You press your shortcut, the export to plain
text occurs and the .nmc file is copied back to the document directory, then the
current view is closed.

7.6 Using LYX notes
The central fact about a LYX note is that it does not contribute to the pdf. But
instant preview still works there. This suggests a possibility: that a calculation
be performed within a LYX note and the result saved using \nmcReuse within the
same preview inset. The saved value is now available from file for use elsewhere
in the document. In this way, some selected content from a LyX note can find
its way into the pdf when the document is compiled.

4Due for release in the first half of 2021.
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Chapter 8

Reference summary

8.1 Commands defined in numerica

1. \nmcEvaluate, \eval

2. \nmcInfo, \info,

3. \nmcReuse, \reuse

4. \q, \Q (‘cleave’ commands)

Provided they have not already been defined when numerica is loaded, the fol-
lowing commands are defined in numerica using \DeclareMathOperator from
amsmath :

1. \arccsc, \arcsec, \arccot

2. \csch, \sech

3. \asinh, \acosh, \atanh, \acsch, \asech, \acoth

4. \sgn, \lb

Provided they have not already been defined, the following commands are de-
fined in numerica using \DeclarePairedDelimiter from mathtools:

\abs, \ceil, \floor

The following commands have been redefined in numerica to give more spacing
around the underlying \wedge and \vee symbols:

\land, \lor
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8.2 ‘Digestible’ content
numerica knows how to deal with the following content, meaning that any of
these elements occurring within an \eval command should not of itself cause a
numerica error. Not all formatting commands affect display of the output.

1. variable names (sequences of tokens given values in the variable = value
list)

2. digits, decimal point

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, .

3. constants

(a) e, \pi, \gamma, \phi, \deg, \infty (sometimes)

4. arithmetic operators

(a) +, -, *, /, ^, \times, \cdot, \div

5. logical operators

(a) \wedge, \land, \vee, \lor, \neg, \lnot

6. comparisons

(a) =, <, >, \ne, \neq, \le, \leq, \ge, \geq

(b) (if amssymb loaded) \nless, \ngtr, \geqq, \geqslant, \leqq,
\leqslant, \ngeq, \ngeqq, \ngeqslant, \nleq, \nleqq, \nleqslant

7. brackets, bracket-like elements, modifiers

(a) ( ), [ ], \{ \}

(b) \lparen \rparen (from mathtools), \lbrack \rbrack, \lbrace
\rbrace

(c) \lvert \rvert, \lfloor \rfloor, \lceil \rceil

(d) | | (no nesting, deprecated)
(e) \left \right, \bigl \bigr, \Bigl \Bigr, \biggl \biggr, \Biggl

\Biggr

(f) . / | (used with a modifier)
(g) \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{}, \ceil*{}

8. unary functions (in the mathematical sense)

(a) \sin, \cos, \tan, \csc, \sec, \cot

(b) \arcsin, \arccos, \arctan, arccsc, \arcsec, \arccot

(c) \sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}
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(d) \sinh, \cosh, \tanh, \csch, \sech, \coth

(e) \asinh, \acosh, \atanh, \csch, \sech, \acoth

(f) \sinh^{-1}, \cosh^{-1}, \tanh^{-1}, \csch^{-1}, \sech^{-1},
\acoth^{-1}

(g) \exp, \lb, \lg, \ln, \log, \log_{}, \sgn, \surd

(h) \sqrt{}, \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{},
\ceil*{}

(i) !, !! (prepended argument)

9. binary functions

(a) \tfrac{}{}, \frac{}{}, \dfrac{}{}

(b) \tbinom{}{}, \binom{}{}, \dbinom{}{}

(c) \sqrt[]{}

10. n-ary functions

(a) \min, \max, \gcd

11. sum, prod

(a) \sum_{}^, \prod_{}^

12. formatting commands

(a) , (comma, in n-ary functions)
(b) {}, \\, &, \to

(c) \dots, \ldots, \cdots,

(d) \ , \,, \;, \:, \!, \>

(e) \thinspace, \quad, \qquad , \hfill, \hfil

(f) \phantom{}, \vphantom{}, \hphantom{}

(g) \xmathstrut[]{} , \splitfrac{}{}, \splitdfrac{}{} (from mathtools),
\mathstrut

(h) \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle

(i) \label{}, \ensuremath{}, \text{}, \mbox{}

(j) \begin{}, \end{}

13. font commands

(a) \mathrm{}, \mathit{}, \mathcal{}, \mathtt{}, \mathbf{}, \mathbb{},
\mathsf{}, \mathfrak{}, \mathscr{}, \mathnormal{}, \boldsymbol{}
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8.3 Settings
8.3.1 Available \nmcEvaluate settings

key type meaning default

dbg int debug ‘magic’ integer 0
^ char exponent mark for sci.

notation input
e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. function arg. parsing 0
o degree switch for trig.

funcions
log num base of logarithms for \log 10
vvmode int (0/1) vv-list calculation mode 0
vvd token(s) vv-list display-style spec. {,}\mskip 12mu plus 6mu

minus 9mu(vv)
vvi token(s) vv-list text-style spec. {,}\mskip 36mu minus

24mu(vv)
* switch to suppress equation

numbering (if \\ in vvd)
p char(s) punctuation (esp. in

display-style)
,

S+ int extra rounding for stopping
criterion, sums

2

S? int ≥ 0 query stopping with these
final terms, sums

0

P+ int extra rounding for stopping
criterion, products

2

P? int ≥ 0 query stopping with these
final terms, products

0

reuse int form of result saved with
\nmcReuse

0
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8.3.2 Available configuration file settings

key default
rounding 6
pad 0
output-sci-notation 0
output-exponent-char e
input-sci-notation 0
input-exponent-char e
multitoken-variables 1
logarithm-base 10
intify-rounding 14
vv-display {,}\mskip 36mu minus 24mu(vv)
vv-inline {,}\mskip 12mu plus 6mu minus 9mu(vv)
sum-extra-rounding 2
sum-query-terms 0
prod-extra-rounding 2
prod-query-terms 0
eval-reuse 0
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