
numerica-tables

Andrew Parsloe
(ajparsloe@gmail.com)

December 11, 2021

ajparsloe@gmail.com

Abstract

The numerica-tables package defines a command which enables the creation
of (possibly multi-column) mathematical tables of function values. Key=value
settings allow presentation in a wide variety of table styles within the ‘formal
table’ framework of the booktabs package.

Note:
• This document applies to version 2.0.0 of numerica-tables.

• A version of numerica from or later than 2021/12/07 is required;
(numerica requires amsmath, mathtools and the LATEX3 bundles
l3kernel and l3packages).

• The booktabs package is required.

• I refer many times in this document to Handbook of Mathematical Func-
tions, edited by Milton Abramowitz and Irene A. Segun, Dover, 1965.
This is abbreviated to HMF , often followed by a reference to a specific
table like Table 1.2.

• Version 2 of numerica-tables

– is the first stand-alone version (in v.1 of numerica the \nmcTabulate
command was available with the tables package option);

– restricts the third item in rspec to rows only (rstop is no longer
accepted there);

– restricts the third item in cspec to cols only (cstop is no longer
accepted there);

– allows an additional row, if wanted, between table title and the col-
umn header row;

– removes the DEL column function;
– amends documentation.

Contents

1 Introduction 1
1.1 Table structure . 1
1.2 Shared syntax . 2

1.2.1 Settings inherited from numerica 3

2 \nmcTabulate settings 4
2.1 Row-variable settings . 4

2.1.1 Row-variable column formatting 6
2.1.1.1 Rounding: rround 7
2.1.1.2 Alignment: ralign 7
2.1.1.3 Font: rfont . 7
2.1.1.4 Row-variable header: rhead 7
2.1.1.5 Nudging the header: rhnudge 9
2.1.1.6 Position in the table: rpos 9
2.1.1.7 rvar’, rhead’, rhnudge’ 10

2.1.2 Adjoined multi-function tables 10
2.2 Column-variable settings . 11

2.2.1 Column header formatting 12
2.2.1.1 Header style: single-column case 12
2.2.1.2 Header style: multi-column case 13
2.2.1.3 User-defined header: chead 15
2.2.1.4 Alignment: calign 15
2.2.1.5 Nudging the headers: chnudge 16
2.2.1.6 Rounding: chround 17

2.3 Multiple functions in a single table 17
2.4 Whole-of-table formatting . 19

2.4.1 Title for function-value columns: ctitle 19
2.4.2 Inter-header/title row: cmidrow 21
2.4.3 Horizontal rules: rules 22
2.4.4 Footer row: foot setting 24

2.4.4.1 Footer functions 24
2.4.5 Second row-variable column: rpos=4 25
2.4.6 Separating blocks of rows: rbloc 26

2.4.6.1 Adjusting the extra space rblocsep 27

2

2.5 Formatting function values . 28
2.5.1 Trailing optional argument 28

2.5.1.1 The t option . 29
2.5.2 Padding the exponent: (pad) 29
2.5.3 Accommodating signs: signs 30
2.5.4 Differences: diffs . 32
2.5.5 Formatting special values: Q? and A! 33

2.6 Star option: \nmcTabulate* . 34
2.6.1 Errors . 35
2.6.2 Scientific notation . 35
2.6.3 Nesting . 36

2.6.3.1 Nesting of \nmcTabulate 36
2.6.3.2 Nesting within \nmcTabulate 37

2.7 Table placement . 38
2.7.1 Vertical alignment . 38

2.8 The reuse setting . 39

3 Reference summary 42
3.1 Commands defined in numerica-tables 42
3.2 Settings for \nmcTabulate . 42

3

Chapter 1

Introduction

Entering

\usepackage{numerica-tables}

in the preamble of a document gives access to a command \nmcTabulate for cre-
ating tables of function values in a wide variety of styles. (Since numerica-tables
requires – and loads – the numerica package, all commands of that package are
also available.) All tables are ‘formal tables’ in the sense of the booktabs pack-
age, which is loaded automatically. Such tables have no vertical rules and few
horizontal rules.

1.1 Table structure
I take as my source of models of mathematical tables those presented in Hand-
book of Mathematical Functions, edited by Milton Abramowitz and Irene A.
Segun, Dover, 1965, not because the typesetting is elegant (it often isn’t) but
because HMF displays a wide variety of table styles. The editors of that volume
were faced with a host of different problems requiring a host of different solu-
tions. The \nmcTabulate command aims to reproduce most of those different
solutions, within booktabs elegance.

To create a table we need to specify a function to tabulate. The values this
function takes will generally depend on a primary parameter and, possibly, a
number of secondary parameters (which is where much of the complexity comes
from). Mathematical tables are structured in columns. We (nearly always) read
down a column as the primary parameter is incremented, generally in regular
steps. We need to decide on the range of values the primary parameter will take
and how fine-grained the tabulation will be – what the step size of its increments
will be. Assigning different values to a second parameter generates a second,
third,. . . column. Sometimes rather than a second parameter, a second, third,
. . . function of the first parameter is tabulated in the successive columns.

1

In this document the first parameter is called the row variable – its value
determines which row we are in; the second parameter, if present, is called the
column variable – its value determines which column we are in. A table generally
(but not always) presents the values of the row variable in the first column, the
row-variable column, sometimes in distinctive type (e.g. bolded). The values
of the column variable are presented in a header row above the table body of
function values. Above the header row there may be a title row and perhaps
a subtitle row where other explanatory material can be displayed. Sometimes
there is a footer row beneath the table body. Vertical rules are absent, horizontal
rules used sparingly – for example, at the top and bottom of the table, or under
the header row, but not in the body of the table.

1.2 Shared syntax
The \nmcTabulate command (short-name form \tabulate) shares the syntax
of \nmcEvaluate (see numerica.pdf). When all options are used the command
looks like

\nmcTabulate*[settings]{expr.}[vv-list][num. format]

1. * optional switch; if present ensures a single number output with no for-
matting, or an appropriate error message if the single number cannot be
produced; see §2.6;

2. [settings] comma-separated list of key=value settings, at the heart of
creating a table of function values; see Chapter 2;

3. {expr.} mandatory argument specifying the mathematical expression or
expressions in LATEX form to be tabulated;

4. [vv-list] comma-separated list of variable=value items, in particular
containing the initial value of the row variable (and column variable if one
is used);

5. [num. format] optional format specification for presentation of the nu-
merical results (rounding, padding with zeros, scientific notation); see
§2.5.1.

Unlike \nmcEvaluate (from numerica), for \nmcTabulate

• math delimiters are irrelevant – it makes no difference to the display of the
result whether the command wraps around math delimiters, is wrapped
within math delimters, or if there are no math delimiters involved what-
ever;

• the two apparently optional arguments straddling the main argument
(settings and vv-list) are essential. Although both are delimited by
square brackets, that is in order to draw on the code from numerica for
\nmcEvaluate. Each argument contains items necessary for the construc-
tion of any table of function values.

2

1.2.1 Settings inherited from numerica

Most of the settings available to the command \nmcEvaluate from numerica
are also available to \nmcTabulate. To save switching between documents I
reproduce the table of relevant options found in numerica.pdf (only the punc-
tuation p setting is missing), although for discussion of the options you will need
to refer to that document. (Note that the setting vvmode of v.1 of numerica
is still available; it is equivalent to the vv@ setting.) The dbg (and view) keys
have been disabled for \nmcTabulate at present (but might be enabled in the
future).

Table 1.1: Settings options inherited from \nmcEvaluate

key type meaning default

dbg int debug ‘magic’ integer 0
view equivalent to dbg=1
^ char exponent mark for sci.

notation input
e

xx int (0/1) multi-token variable switch 1
() int (0/1/2) trig. function arg. parsing 0
o degree switch for trig.

functions
log num base of logarithms for \log 10
vv@ int (0/1) vv-list calculation mode 0
vvd tokens vv-list display-style spec. {,}\mskip 12mu plus 6mu

minus 9mu(vv)
vvi tokens vv-list text-style spec. {,}\mskip 36mu minus

24mu(vv)
* suppress equation

numbering if \\ in vvd
S+ int extra rounding for stopping

criterion for sums
2

S? int ≥ 0 stopping criterion query
terms for sums

0

P+ int extra rounding for stopping
criterion for products

2

P? int ≥ 0 stopping criterion query
terms for products

0

3

Chapter 2

\nmcTabulate settings

In addition to the shared settings, \nmcTabulate has many settings specific to
it. They are discussed in groups in subsequent sections, some in more than one
place. For the main discussion of row-variable settings, see §2.1; for column-
variable settings see §2.2; for whole-of-table formatting see §2.4; for formatting
the function values in table cells see §2.5.

2.1 Row-variable settings
Deciding on a function to tabulate (entered in the main or mandatory argument
of \nmcTabulate) will inevitably also mean deciding on the tabulation variable,
the row variable, rvar, what value to start tabulating from (which is specified
in the vv-list), what value to tabulate to, rstop, and how fine-grained the
tabulation is to be, the step size rstep.

The two tables in the first example below tabulate sin x and cos x between 0
and 1 in increments of 0.2. Note that the start value of the tabulation variable
is entered in the vv-list. The reason for placing it there is that for more com-
plicated functions other parameters in the function and therefore in the vv-list
may depend on the row variable. Although it will often be the first entry in the

Table 2.1: Row-variable specification

key type meaning comment

rvar token(s) row-variable
rstep real num. step size
rstop real num. stop value use only one of

rstop or rowsrows int number of rows
rspec comma list {rvar, step, rows} short form spec.

4

vv-list, it does not need to be. The initial value of the row variable may depend
on other quantities which must necessarily precede it – lie to the right of it – in
the list.

In the vv-list, the start value of the row variable may be a LATEX expression.
Both rstep and rstop can also be LATEX expressions. However, they are evalu-
ated after the vv-list is evaluated and so may depend on the values of variables
in the vv-list, including the initial value of the row variable.

The difference in appearance of the two tables below results from padding
with zeros in the second (the asterisk in the trailing optional argument has the
same effect in \nmcTabulate as in \nmcEvaluate). As you can see, padding
applies not only to the values of the function but also to the values of the row
variable – and makes an obvious improvement to the table’s appearance.

\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]\qquad

\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \cos x }[x=0][*]

=⇒

x sin x

0 0
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356

1 0.841471

x cos x

0.0 1.000000
0.2 0.980067
0.4 0.921061
0.6 0.825336
0.8 0.696707
1.0 0.540302

Sometimes (perhaps often) it may prove more convenient to specify the num-
ber of rows, rows, explicitly rather than a stop value. Only one of rows and
rstop should be given, but if both (inadvertently) are present, it is the value of
rows that prevails. The first of the following three tables shows an example of
use.

The second and third tables use an abbreviated form of the row-variable
specification, rspec. This is a three-element comma list, {rvar,rstep,rows}.
The second table gives a straightforward example of use. In the third table
a LATEX expression has been inserted for rows in the rspec comma list. Like
rstep and rstop, rows can be a LATEX expression, but it is evaluated before
the vv-list and therefore, unlike rstep and rstop, cannot depend on quantites
specified there like the row variable.

\tabulate[rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \qquad

\tabulate[rspec={x,0.2,6}]
{ \tan x }[x=0][*] \qquad

\tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]

5

=⇒

x sin x/ cos x

0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

x tan x

0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

x
√

sec2 x − 1
0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

In version 1 of numerica (when \nmcTabulate became available with the pack-
age option tables), the third item in rspec was not restricted to rows but
could also be rstop; parentheses placed around the third item assigned it to
rows rather than rstop. On reflection, this now seems obscure and open to er-
ror. In v.2 of numerica-tables (in fact its first version as a separate package)
the third item of rspec is restricted to rows only, which no longer needs to be
parenthesized.

2.1.1 Row-variable column formatting
The padding option (*) of the trailing optional argument is one way of format-
ting the row-variable column, but to how many decimal places? Aligned left or
right or centred? Under what heading – the example tables so far have simply
used the row variable for the header? And should the row variable column be
at the left of the table, or the right – or both? These and related questions are
answered by assigning values to the keys listed in Table 2.2.

Table 2.2: Formatting the row-variable column

key type meaning default

rround int rounding 1
ralign char (r/c/l) horizontal alignment r
rfont chars font (\math<chars>)
rhead tokens header rvar
rhnudge int nudge header <int> mu 0
rpos int (0. . . 4) column position(s) 1
rvar’ tokens 2nd row-variable col. spec. rvar
rhead’ tokens header of 2nd rv col. (if it

exists)
rvar’

rhnudge’ int nudge 2nd rv col. header
<int> mu

0

6

2.1.1.1 Rounding: rround

After studying the previous tables, we might decide to adjust the step size, say
from 0.2 to 0.25. But changing rstep to the new value gives a disconcerting
result (the first table below). numerica-tables uses a default rounding value
of 1 for the row variable and has rounded 0.25 down to 0.2 and 0.75 up to 0.8
accordingly. The second table corrects matters by adjusting the row-variable
rounding (rround) to 2.

\tabulate[rvar=x,rstep=0.25,rstop=1]
{ \sin x }[x=0][*] (Eh???) \quad

\tabulate[rvar=x,rstep=0.25,rstop=1,rround=2]
{ \sin x }[x=0][*]

=⇒

x sin x

0.0 0.000000
0.2 0.247404
0.5 0.479426
0.8 0.681639
1.0 0.841471

(Eh???)

x sin x

0.00 0.000000
0.25 0.247404
0.50 0.479426
0.75 0.681639
1.00 0.841471

2.1.1.2 Alignment: ralign

By default, the alignment of all columns is to the right, as in the previous
examples. This lends itself to neat output when padding with zeros is activated
(the * in the trailing argument) and when some values are negative – minus signs
can interfere with neat output in left or centred alignments. But in a case like
the second table in the last example, you might prefer to centre the headers for
both the row and function-value columns. These alignments are independently
set. For the row-variable column the default alignment is to the right ralign=r;
ralign=l (lowercase L) aligns entries in the row-variable column to the left, and
ralign=c centres entries in the row-variable column. The tables of the next
example use a c alignment to centre the row-variable column header. The third
of those tables shows how minus signs spoil the effect.

2.1.1.3 Font: rfont

In the second table below bolding by means of the setting rfont=bf has been
applied to emphasize the distinction between the row-variable values and the
function values. Possible values for this key are those characters that can be
adjoined to \math to give a meaningful result. Thus other valid values are it
(italic), sf (sans serif), tt (typewriter); frak (Fraktur); also rm (roman) is
available, but that is the default.

2.1.1.4 Row-variable header: rhead

In the second and third tables, the header for the row-variable column has
also been bolded. The default header is the row-variable symbol. That can be

7

replaced by giving a value to the key rhead. I have used rhead=\boldsymbol{x}
(rather than \mathbf{x}) in order to get an italicized bold symbol. Note that
you do not need to include math delimiters in the specification. It is assumed
that rhead will sit between $ $ delimiters which are inserted automatically by
numerica-tables.

\tabulate
[rvar=x,rstep=0.25,rstop=1,

rround=2,ralign=c]
{ \sin x }[x=0][*]\qquad

\tabulate
[rvar=x,rstep=0.25,rstop=1,rround=2,

ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=0][*]\qquad

\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,

ralign=c,rfont=bf,rhead=\boldsymbol{x}]
{ \sin x }[x=-0.5][*]

=⇒

x sin x

0.00 0.000000
0.25 0.247404
0.50 0.479426
0.75 0.681639
1.00 0.841471

x sin x

0.00 0.000000
0.25 0.247404
0.50 0.479426
0.75 0.681639
1.00 0.841471

x sin x

−0.50 −0.479426
−0.25 −0.247404
0.00 0.000000
0.25 0.247404
0.50 0.479426

In these tables the row-variable column has been given a centred alignment.
The third table shows what goes wrong when some values in the row-variable
column are negative. Better then is to use padding, a right alignment (the
default), and to use a phantom in the header. The first table below does this.
The second table incorporates kerning into the header to achieve the same effect:

\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,

rfont=bf,rhead=\boldsymbol{x}\hphantom{0}]
{ \sin x }[x=-0.5][*]\qquad

\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,

rfont=bf,rhead=\boldsymbol{x}\mkern 9 mu]
{ \sin x }[x=-0.5][*]

=⇒

x sin x

−0.50 −0.479426
−0.25 −0.247404

0.00 0.000000
0.25 0.247404
0.50 0.479426

x sin x

−0.50 −0.479426
−0.25 −0.247404

0.00 0.000000
0.25 0.247404
0.50 0.479426

8

(To my eye, aligning the x above the first column of digits after the decimal
point gives a better result than truly centring it in the column; compare these
examples with the first two tables of the previous example.)

2.1.1.5 Nudging the header: rhnudge

However, you might prefer to avoid inserting positioning commands into the
actual row-variable header, obscuring its true content. You can avoid doing this
by setting the key rhnudge.

The first table below reverts to the default right alignment, avoids any posi-
tioning commands in the row-variable header, but instead nudges it into position
with the setting rhnudge=9. For positive nudge values, nudging works in the
opposite sense to the alignment. The units for nudging are mu (math units, 18
to a quad), but only a number – generally an integer – should be specified; the
‘mu’ is supplied by numerica-tables.

In the second table below the row variable takes single digit integer values,
while the row-variable name now occupies more than one character. With a
right alignment the header would protrude out to the left. By giving rhnudge
a negative value (rhnudge=-12 in the example) it is brought back to a centred
position in the row-variable column.

\tabulate
[rvar=x,rstep=0.25,rstop=0.5,rround=2,

rfont=bf,rhead=\boldsymbol{x},rhnudge=9]
{ \sin x }[x=-0.5][4*]\qquad

\tabulate
[rvar=x_{\text{int}},rstep=1,rstop=4,

rround=0,rfont=bf,rhnudge=-12,
rhead=\boldsymbol{x_{\text{int}}}]

{ \sin x_{\text{int}} }[x_{\text{int}}=0][4*]

=⇒

x sin x

−0.50 −0.4794
−0.25 −0.2474

0.00 0.0000
0.25 0.2474
0.50 0.4794

xint sin xint

0 0.0000
1 0.8415
2 0.9093
3 0.1411
4 −0.7568

2.1.1.6 Position in the table: rpos

By default, the row-variable column is the first column of the table. Its position
is determined by the value of the key rpos:

• rpos=0, suppressed (no row-variable column);

• rpos=1, first column (the default);

• rpos=2, last column;

9

• rpos=3, first and last columns;

• rpos=4, first and last columns, with the values in the last column a user-
defined function of the first; see §2.4.5;

• Any other integer acts like rpos=1.

An example with rpos=3 is given shortly below, §2.3.

2.1.1.7 rvar’, rhead’, rhnudge’

These settings become relevant only when rpos=4; see §2.4.5.

2.1.2 Adjoined multi-function tables
How might one tabulate multiple functions simultaneously? HMF has many,
many examples where multiple functions (like the trigonometric or the hyper-
bolic functions) are tabulated in separate columns of the same table.

With the settings described so far, one way is to adjoin single column tables.
In the tables below, which display as a single multi-columned table, I have used
three different rpos settings (rpos=1 is implicit in the first). This is one way to
build a table that displays as multi-column. If you use this method, note that
the % comment characters are essential at the end of the last argument of the
\tabulate commands if you want the tables to abut exactly. Omitting them
results in a space between the tables.

\tabulate
[rspec={x,0.2,6}]
{ \sin x }[x=0][*]%

\tabulate
[rpos=0,rspec={x,0.2,6}]
{ \cos x }[x=0][*]%

\tabulate
[rpos=2,rspec={x,0.2,6}]
{ \tan x }[x=0][*]

=⇒

x sin x

0.0 0.000000
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356
1.0 0.841471

cos x

1.000000
0.980067
0.921061
0.825336
0.696707
0.540302

tan x x

0.000000 0.0
0.202710 0.2
0.422793 0.4
0.684137 0.6
1.029639 0.8
1.557408 1.0

However, tabulating more than one function at a time is too common a need
to have to resort to a fudge like adjoining tables. numerica-tables offers a
systematic way of doing this; see §2.3.

10

Table 2.3: Column-variable specification

key type meaning default

cvar token(s) column-variable
cstep real num. step size
cstop real num. stop value either cstop
cols int number of columns or cols
cspec comma list {cvar,cstep,cols} short form spec.

2.2 Column-variable settings
When a function of two variables is being tabulated, we generally think of one
variable as the primary variable and the other as a parameter. To tabulate such
a function, one way to proceed, is to create and adjoin separate tables, one per
parameter value, but that is clumsy. A more systematic procedure is to specify,
in addition to the row variable, a column variable and its start, step and stop
values.

In the following example cvar=k is the column variable. I have chosen a
step size cstep=2 and a stop value cstop=9. As with the row variable, the start
value (k=3) of the column variable is specified in the vv-list. Although in the
example these values are numbers, all three values could be LATEX expressions
that evaluate to numbers. In particular, the expressions for step and stop values
may include the row and column variables (in the example x and k) which are
assigned their initial vv-list values. Note also the setting for rhead which shows
the reader of the table that the numerical values displayed in the column headers
are values of k. This usage occurs throughout HMF.

\tabulate
[rspec={x,0.2,6},rhead=x\backslash k,

cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0][*]

=⇒

x\k 3 5 7 9
0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450 0.973848
0.4 0.932039 0.909297 0.334988 −0.442520
0.6 0.973848 0.141120 −0.871576 −0.772764
0.8 0.675463 −0.756802 −0.631267 0.793668
1.0 0.141120 −0.958924 0.656987 0.412118

Again, as with the row variable, rather than using an explicit stop value
cstop, you might prefer to specify the number of columns, cols, explicitly. I
could have replaced cstop=9 with cols=4 to get the same result. Note that the

11

number of columns specified here is the number of function-value columns; the
row-variable column is ignored for this count.

It is worth pointing out explicitly that if cols is specified, then it is possible
to have a zero step size, cstep=0. An example where this is useful is presented
in §2.4.4.1. (A similar comment applies to rows and rstep.)

And again, as with the row variable, it is possible to condense the specifi-
cation into a comma list with the key cspec. This is a 3-element comma list
of the form {cvar,cstep,cols}.1 Thus, for the preceding table I could have
written

\tabulate
[rspec={x,0.2,6},rhead=x\backslash k,

cvar=k,cstep=2,cols=4]
{ \sin kx }[k=3,x=0][*]

or

\tabulate
[rspec={x,0.2,6},rhead=x\backslash k,

cspec={k,2,4}]
{ \sin kx }[k=3,x=0][*]

and produced the same table.
cstep, cstop and cols can all be LATEX expressions. The first two are

evaluated after the vv-list; cols is evaluated before the vv-list. Hence cstep
and cstop may depend on the row and column variables, which are given their
initial values in the vv-list.

2.2.1 Column header formatting
There are four built-in style settings for the header to the column-variable (or
function-value) columns (the ‘ch’ prefix evoking ‘column header’). If these don’t
meet your needs or otherwise satisfy, then it is possible to define your own header
to the function value columns using the key chead. First I discuss the built-in
styles.

2.2.1.1 Header style: single-column case

When there is only one column of function values, the function being tabulated
is by default set as the header to the column. This corresponds to setting
ctitle=* (see §2.4.1 below). You may want some other header. Then give
ctitle some other value (although note that giving it the value ** will set both
the function and the vv-list as the header; again see §2.4.1). Whatever value
you set, it will be typeset between math delimiters ($ signs) and can be nudged
(see §2.2.1.5) left or right to fine-tune its position in the column. (If you want

1This is a change from v.1 of numerica; see the boxed comment at the end of §2.1.

12

Table 2.4: Formatting the column-variable header

key type meaning default

chstyle int (0. . . 4) header style 0
ctitle tokens single col. alternative

header
chead tokens user-defined header
calign char (r/c/l) column alignment r
chnudge int nudge header int mu 0
chround int column header rounding 0

an asterisk as the header, you will need to place it between two pairs of braces,
ctitle={{*}}, to prevent it being misinterpreted as the default setting.)

If you want some more complicated header, perhaps not constrained by the
$ delimiters, then give chead a value. This key I discuss below in §2.2.1.3.
chead is entirely up to the user to specify, including any math environment and
positioning.

If both ctitle and chead are given, the chead value prevails.

2.2.1.2 Header style: multi-column case

chstyle=0 which is the default gives a header of the form displayed in the last
example, with only the column-variable value at the head of each column. This
style generally requires the row-variable header to indicate what the values
denote, as in the example above where rhead=x\backslash k, the backslash
separating row from column variable. HMF contains a multitude of instances
of this style; see Tables 9.7, 17.5, 21.1, 24.3, 27.4, etc. for examples.

chstyle=1 changes the header of the first function value column to the form
variable=value – in the example below, to k = 3. This may be an appropriate
choice when a small rounding value is being used and the resulting columns
are narrow. I can find only one real instance in HMF, Table 26.7. Note that
the row-variable setting rhead no longer needs the \backslash k part since
the column variable is now explicitly indicated. (The first table in the example
below.)

chstyle=2 changes the header of all function-value columns to the form
variable=value. In HMF examples are Tables 7.4, 7.9, 10.10, 16.6, etc. Again,
the row-variable setting rhead no longer needs the \backslash k part since the
column variable is now explicitly indicated (the second table in the example).

\tabulate
[rspec={x,0.2,6},

cspec={k,2,3},chstyle=1]
{ \sin kx }[k=3,x=0][3*]\quad

13

\tabulate
[rspec={x,0.2,6},

cspec={k,2,3},chstyle=2]
{ \sin kx }[k=3,x=0][3*]

=⇒

x k = 3 5 7
0.0 0.000 0.000 0.000
0.2 0.565 0.841 0.985
0.4 0.932 0.909 0.335
0.6 0.974 0.141 −0.872
0.8 0.675 −0.757 −0.631
1.0 0.141 −0.959 0.657

x k = 3 k = 5 k = 7
0.0 0.000 0.000 0.000
0.2 0.565 0.841 0.985
0.4 0.932 0.909 0.335
0.6 0.974 0.141 −0.872
0.8 0.675 −0.757 −0.631
1.0 0.141 −0.959 0.657

chstyle=3 fills each column-variable header with the expression being tab-
ulated but with the column variable replaced by its respective values. See HMF
Tables 5.4, 8.1, 9.1, 19.1, etc. for examples. Note that if the column-variable
value is 1, the 1 will be displayed:

\tabulate
[rspec={x,0.2,6},

cspec={k,2,3},chstyle=3]
{ \sin kx }[k=1,x=0][4*]

=⇒

x sin 1x sin 3x sin 5x

0.0 0.0000 0.0000 0.0000
0.2 0.1987 0.5646 0.8415
0.4 0.3894 0.9320 0.9093
0.6 0.5646 0.9738 0.1411
0.8 0.7174 0.6755 −0.7568
1.0 0.8415 0.1411 −0.9589

In this last example you may not want the 1 displayed. To achieve that
result put chstyle=4. This results in a header as for chstyle=3 but if the
column variable takes the value 1, it has an empty replacement:

\tabulate
[rspec={x,0.2,6},

cspec={k,2,3},chstyle=4]
{ \sin kx }[k=1,x=0][4*]

=⇒

x sin x sin 3x sin 5x

0.0 0.0000 0.0000 0.0000
0.2 0.1987 0.5646 0.8415
0.4 0.3894 0.9320 0.9093
0.6 0.5646 0.9738 0.1411
0.8 0.7174 0.6755 −0.7568
1.0 0.8415 0.1411 −0.9589

14

2.2.1.3 User-defined header: chead

If the function in the last example were, for instance, k + sin kx, then neither
replacing k by 1 nor an empty replacement would be appropriate. In that case
the only recourse is to use the chead key. Users can assign whatever value
they like to chead. The assignment must contain the correct number of tab
characters (&) for the column-variable columns only. It is a header only to the
function-value columns. The user will need to insert $ signs or other math
delimiters as appropriate. This differs from the practice for rhead, but chead
is potentially far more complicated. Thus for k + sin kx,

\tabulate
[rspec={x,0.2,6},

cspec={k,2,3},
chead=$1+\sin x$&$3+\sin3x$&$5+\sin 5x$]

{ k+\sin kx }[k=1,x=0][4*]

=⇒

x 1 + sin x 3 + sin 3x 5 + sin 5x

0.0 1.0000 3.0000 5.0000
0.2 1.1987 3.5646 5.8415
0.4 1.3894 3.9320 5.9093
0.6 1.5646 3.9738 5.1411
0.8 1.7174 3.6755 4.2432
1.0 1.8415 3.1411 4.0411

Non-empty content for the chead key overrides any chstyle setting and, in the
case of a table with only a single function-value column, overrides any ctitle
setting.

2.2.1.4 Alignment: calign

The function-value columns are aligned right, calign=r, by default. Also avail-
able are calign=c for centred alignment and calign=l (lowercase L) for left
alignment. Using centred alignment with chstyle=2 in a previous example
table gives

\tabulate
[rspec={x,0.2,6},ralign=c,

cspec={k,2,3},chstyle=2,calign=c]
{ \sin kx }[k=3,x=0][*]

=⇒

x k = 3 k = 5 k = 7
0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450
0.4 0.932039 0.909297 0.334988
0.6 0.973848 0.141120 −0.871576
0.8 0.675463 −0.756802 −0.631267
1.0 0.141120 −0.958924 0.656987

15

The first column of function values looks better, but the minus signs spoil the
effect in the others. Handling signs in tables is discussed below; see §2.5.3.

2.2.1.5 Nudging the headers: chnudge

In left or right alignment it is possible to nudge the headers in the opposite
direction by giving a numerical value to the the key chnudge. The header is
moved by the specified number of mu (math units; 18 to a quad). Note that
the ‘mu’ does not need to be written. numerica-tables provides that. In the
next example I have chosen chnudge=12 to nudge the column headers to the
left to give a centred effect to the header but leaving the function values with
their (potentially) awkward minus signs right aligned.

\tabulate
[rspec={x,0.2,6},ralign=c,

cspec={k,2,3},chstyle=2,chnudge=12]
{ \sin kx }[k=3,x=0][*]

=⇒

x k = 3 k = 5 k = 7
0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.841471 0.985450
0.4 0.932039 0.909297 0.334988
0.6 0.973848 0.141120 −0.871576
0.8 0.675463 −0.756802 −0.631267
1.0 0.141120 −0.958924 0.656987

The chnudge value does not need to be positive. Negative nudges can be
useful when a column header is longer than the rounded function values. In the
second example below, I’ve reduced the rounding value for function values to 3,
and chosen an initial k value of 100 to ensure this circumstance. To centre the
column headers I have used chnudge=-9.

\tabulate
[rspec={x,0.2,6},ralign=c,

cspec={k,2,3},chstyle=2,chnudge=-9]
{ \sin kx }[k=100,x=0][3*]

=⇒

x k = 100 k = 102 k = 104
0.0 0.000 0.000 0.000
0.2 0.913 1.000 0.929
0.4 0.745 0.041 −0.688
0.6 −0.305 −0.998 −0.419
0.8 −0.994 −0.081 0.999
1.0 −0.506 0.995 −0.322

16

2.2.1.6 Rounding: chround

In the examples so far, the column variable has incremented in integer steps.
The default rounding value for the column variable is 0 (for the row variable it is
1), so if it increments by some non-integer amount, the result will be confusing
– if k incremented by, say, 0.25, starting from k = 3, then the next column
would also have a header k = 3 (since 3.25 with a rounding value 0 rounds to
3). The appropriate key to remedy this state of affairs is chround. For a step
size of 0.25 the appropriate setting is chround=2.

\tabulate
[rspec={x,0.2,6},ralign=c,

cspec={k,0.25,3},chstyle=2,chround=2]
{ \sin kx }[k=3,x=0][*]

=⇒

x k = 3.00 k = 3.25 k = 3.50
0.0 0.000000 0.000000 0.000000
0.2 0.564642 0.605186 0.644218
0.4 0.932039 0.963558 0.985450
0.6 0.973848 0.928960 0.863209
0.8 0.675463 0.515501 0.334988
1.0 0.141120 −0.108195 −0.350783

2.3 Multiple functions in a single table
As already noted in §2.1.2, tabulating more than one function at a time is too
common a need to have to resort to a fudge like adjoining tables. There is a
systematic way of handling this task available in numerica-tables. In v.1 of
numerica, it sufficed to enter the functions in the main argument separated by
commas, and to precede the first function with a comma, which was the signal
numerica needed to make the internal adjustments for a multi-function table.
In v.2 of numerica-tables this option is still available, but rather than use a
‘trick’ like preceding the first function with a comma, the preferred option now
is to use a new (with v.2) setting, multifn.

The first table below uses the old ‘trick’ of starting the main argument with
a comma; the second table uses the multifn setting (and note in both the o
setting indicating that the arguments of sin and cos are in degrees):

\tabulate[o, rround=0,
rvar=\theta,rstep=10,rstop=90]

{ ,\sin \theta,\cos \theta }[\theta=0][*]
\quad
\tabulate[o,multifn,rpos=2,rround=0,

rvar=\theta,rstep=10,rstop=90]
{ \sin \theta,\cos \theta }[\theta=0][*]

17

=⇒

θ sin θ cos θ

0 0.000000 1.000000
10 0.173648 0.984808
20 0.342020 0.939693
30 0.500000 0.866025
40 0.642788 0.766044
50 0.766044 0.642788
60 0.866025 0.500000
70 0.939693 0.342020
80 0.984808 0.173648
90 1.000000 0.000000

sin θ cos θ θ

0.000000 1.000000 0
0.173648 0.984808 10
0.342020 0.939693 20
0.500000 0.866025 30
0.642788 0.766044 40
0.766044 0.642788 50
0.866025 0.500000 60
0.939693 0.342020 70
0.984808 0.173648 80
1.000000 0.000000 90

These tables suggest a space saving possibility: since sin and cos are com-
plementary functions (cos θ = sin(90 − θ)), the values in the bottom half of the
table duplicate values in the top half, only with the columns reversed. This is
the reason for the space saving rpos=4 setting (§2.4.5) which enables comple-
mentary functions to be tabulated in ‘half tables’ (for examples see HMF Tables
4.10–4.12 for the trigonometric functions).

A comma may not always be a convenient separator – it may occur in one of
the functions being tabulated (perhaps in \max or \min). By assigning a value
to the setting multifn,

multifn=<char>

the assisgned character can be used to separate the functions. In the following
example, a semicolon is used. Further, the row-variable column is duplicated on
the right by using the rpos=3 setting, and the table gives another illustration
of the use of chead:

\tabulate[o,multifn=;,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90,
chead=max\hphantom{00} & min\hphantom{00}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }

[\theta=0][*]

=⇒

θ max min θ

0 1.000000 0.000000 0
10 0.984808 0.173648 10
20 0.939693 0.342020 20
30 0.866025 0.500000 30
40 0.766044 0.642788 40
50 0.766044 0.642788 50
60 0.866025 0.500000 60
70 0.939693 0.342020 70
80 0.984808 0.173648 80
90 1.000000 0.000000 90

18

The glaring omission in the table is any explicit statement of what the func-
tions are that are being tabulated. Maximum and minimum, yes, but of what?
That is (potentially) remedied with the ctitle setting discussed next; see §2.4.1.

2.4 Whole-of-table formatting
There are a number of settings pertaining to the appearance of the table as
a whole, things like the position of the row-variable column, division of the
function values into blocks to aid readability, the presence of horizontal rules or
of a collective column title or of a footer row. I discuss these here.

Table 2.5: Table formatting

key type meaning default

ctitle token(s) collective title for
function-value columns

cmidrow token(s) inter-header/title row for
function-value columns

rules char(s) horizontal rules template ThB
foot token(s) content of footer line
rpos int (0. . . 4) row-variable column

position(s)
1

rbloc comma list division of rows into blocks
rblocsep length extra spacing between

blocks of rows
1 ex

2.4.1 Title for function-value columns: ctitle

The function-value columns have individual headers, formatted in the various
ways provided by the settings discussed in previous sections, but it can also be
helpful to have a collective title for these columns. We saw the need in the last
example. The need is met with the ctitle key. This can be set to whatever
you like (e.g. ctitle=\text{Fred}) but, to more purpose, I use the setting to
clarify the last example:

\tabulate[o,multifn=;,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90,
ctitle=\sin\theta{,}\,\cos\theta,
chead=max\hphantom{00} & min\hphantom{00}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }

[\theta=0][*]

19

=⇒

sin θ, cos θ
θ max min θ

0 1.000000 0.000000 0
10 0.984808 0.173648 10
20 0.939693 0.342020 20
30 0.866025 0.500000 30
40 0.766044 0.642788 40
50 0.766044 0.642788 50
60 0.866025 0.500000 60
70 0.939693 0.342020 70
80 0.984808 0.173648 80
90 1.000000 0.000000 90

Now it is clearer what is being tabulated, although the reader is still being asked
to interpret rather than read what the table is showing.

There are two in-built settings for ctitle: ctitle=*, which makes the
formula the title, and ctitle=**, which makes a title of the formula and vv-
list. Surely, ctitle=* is what we want:

\tabulate[o,multifn=;,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90,
ctitle=*,
chead=max\hphantom{00} & min\hphantom{00}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }

[\theta=0][*]

=⇒

max(sin θ, cos θ); min(sin θ, cos θ)
θ max min θ

0 1.000000 0.000000 0
10 0.984808 0.173648 10
20 0.939693 0.342020 20
30 0.866025 0.500000 30
40 0.766044 0.642788 40
50 0.766044 0.642788 50
60 0.866025 0.500000 60
70 0.939693 0.342020 70
80 0.984808 0.173648 80
90 1.000000 0.000000 90

Well, that is clear but the length of the title distorts the table. This is where the
cmidrow key can help (see below) but we can also use an aligned environment
within ctitle:

\tabulate[o,multifn=;,rpos=3,rround=0,
rvar=\theta,rstep=10,rstop=90,

20

ctitle={\begin{aligned}
\max(\sin\theta,\cos\theta)\\[-0.7ex]
\min(\sin\theta,\cos\theta)

\end{aligned}},
chead=max\hphantom{00} & min\hphantom{00}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }

[\theta=0][*]

=⇒

max(sin θ, cos θ)
min(sin θ, cos θ)

θ max min θ

0 1.000000 0.000000 0
10 0.984808 0.173648 10
20 0.939693 0.342020 20
30 0.866025 0.500000 30
40 0.766044 0.642788 40
50 0.766044 0.642788 50
60 0.866025 0.500000 60
70 0.939693 0.342020 70
80 0.984808 0.173648 80
90 1.000000 0.000000 90

The table is no longer distorted in width. Note the \\[-0.7ex] within the
aligned environment. This shrinks the vertical space between the two lines of
the title. Without it, the lines are too far apart.

2.4.2 Inter-header/title row: cmidrow

Some tables need to fit more header material or title material into their rows
than can be comfortably accommodated there. For examples, see HMF Tables
7.9 (error function for complex arguments), 17.7 (Jacobian zeta function), 21.1
(eigenvalues of spheroidal wave functions), and 26.7 (probability integrals). One
way of handling this problem is to resort to more complicated environments in
header and title rows. Another, more direct way, is to insert a row between the
header row and title row.

I have chosen cmidrow for the key name, in the sense of a row ‘mid header
and title rows’. The initial ‘c’ emphasizes that it is constrained to the span of
the column-variable (or function-value) columns only (like chead and ctitle).
The entire content is the responsibility of the user,

cmidrow=<tokens>

including insertion of the necessary number of tab characters, &, and any math
delimiters required.

\tabulate[o,multifn=;,rpos=3,rround=0,

21

rvar=\theta,rstep=10,rstop=90,
ctitle=\max(\sin\theta{,}\cos\theta),
cmidrow=\multicolumn{2}{c}

{$\min(\sin\theta,\cos\theta)$},
chead=max\hphantom{00} & min\hphantom{00}]

{ \max(\sin \theta,\cos \theta);
\min(\sin \theta,\cos \theta) }

[\theta=0][*]

=⇒

max(sin θ, cos θ)
min(sin θ, cos θ)

θ max min θ

0 1.000000 0.000000 0
10 0.984808 0.173648 10
20 0.939693 0.342020 20
30 0.866025 0.500000 30
40 0.766044 0.642788 40
50 0.766044 0.642788 50
60 0.866025 0.500000 60
70 0.939693 0.342020 70
80 0.984808 0.173648 80
90 1.000000 0.000000 90

The display looks the same as in the previous example but was obtained perhaps
more straightforwardly.

2.4.3 Horizontal rules: rules

The booktabs package which numerica uses is most emphatic that one should
‘1. Never, ever use vertical rules. 2. Never use double rules.’ Most of the tables
proper in HMF lack rules of any kind although closer inspection shows smaller
tables within the text generally are delimited by horizontal rules (often also
with vertical rules).2 I have used horizontal rules in the various examples in
the present document because these too are tables within text. Some form of
delineation seems necessary.

The rules key enables precisely which rules are used to be specified. The
value of the key is a ‘word’ – a sequence of letters – where the characters have the
significance and default thicknesses (from booktabs) shown in Table 2.6. The
default setting is rules=ThB. To insert a rule beneath the title, for example,
change this to rules=TthB. If in addition you are using a footer row and want a
rule above it, then the specification is rules=TthfB and if you are using a row
between header and title rows (a ‘midrow’) and want a rule beneath that too,

2The tables in HMF are often inelegantly typeset, and sometimes ugly. For all that, I have
used it as a valuable source for the variety of structures that the editors found necessary, or
at least useful, for presenting a multitude of different kinds of numerical data.

22

Table 2.6: Rules. (In the ‘span’ column, ‘f-v’=function-value; ‘r-v’=row-variable;
‘< table’ indicates that the rule spans the table but is trimmed at each end.)

char rule position span default rule thickness

T top above table table \heavyrulewidth=.08em
t title below title f-v cols \cmidrulewidth =.03em
m midrow below midrow f-v cols (if 1 r-v col.)

< table (if 2 r-v cols)
\cmidrulewidth =.03em

h header below header table \lightrulewidth=.05em
f footer above footer table \cmidrulewidth =.03em
B bottom below table table \heavyrulewidth=.08em

then the spec. is rules=TtmhfB. To my eye that is too many rules; at most only
one of title and midrow rules should be used.

The midrow rule changes its behaviour depending on whether there are two
row-variable columns – on the left and right of the table – or not. If there is
only one row-variable column then, like the title rule, the midrow rule spans
only the function-value columns. If there are two row-variable columns then the
midrow rule spans the table but is trimmed by 0.5 em at each end. That degree
of trim is the booktabs default but can be changed by giving a different value
to \cmidrulekern in the preamble, e.g. \cmidrulekern=1em. Note that the
changed trim will also apply to the title rule.

If you wish to change the thickness of a rule from its default, then enter new
values for any or all of \heavyrulewidth, \lightrulewidth, \cmidrulewidth in the
preamble. The values listed in Table 2.6 are the default values in the booktabs
package (except for the midrow and footer rules, which booktabs does not cover;
in numerica-tables these rules are assigned a thickness of \cmidrulewidth).

In the example table below, a rule for the column title has been specified
(the t in the setting rules=TthB). Also note the use of ctitle=**. The fornula
contains an extra parameter a, assigned a value in the vv-list. It now makes
sense to display the vv-list in the column title (but note the braces around k
and x in the vv-list so that they don’t display).

\tabulate
[rspec={x,0.25,5},rround=2,rhnudge=9,

cspec={k,0.25,3},chstyle=2,chround=2,
ctitle=**,rules=TthB]

{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]

23

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

2.4.4 Footer row: foot setting
Some tables have a footer row and numerica-tables allows such a row to be
inserted, but its entire content, with one exception, is the responsibility of the
user, including insertion of the necessary number of tab characters &. This will
be 1 less than the total number of columns (including row-variable columns) in
the table – or some adjustment thereof if you use \multicolumn. You can put
into the footer what you wish:

foot=<tokens>

(HMF uses the footer mainly for cryptic descriptions of the accuracy and needs
of interpolation methods.)

The one exception is when foot=*. This will fill the footer with the header,
but reversed. This is useful for tabulating complementary functions like the sine
and cosine or, more generally, f(x) and g(x) where g(x) = f(k − x) for some
constant k. Values for the complementary function are read from the bottom up
and require a reversed row-variable column on the right of the table; see §2.4.5.

2.4.4.1 Footer functions

It is also possible to use the footer for displaying the values of certain column
functions. numerica-tables provides four of these. They can be used in the
footer (and only in the footer): SUM, AVE (average), MAX and MIN. These functions
act on the function values of the column they are in. They do not combine
mathematically: entering MAX-MIN in the footer of a given column will produce
a footer entry containing two values (those of MAX and MIN) separated by a
minus sign. The numerical output from each function is automatically wrapped
in math delimiters ($) so that minus signs display correctly.

In v.1 of numerica, tables supported five footer functions. The fifth was
DEL=MAX-MIN. It is no longer supported. First, the name was unclear and in
any case, it is easy to calculate from MAX and MIN.

In the following example, I have chosen a column variable step size of zero.
This is possible because in the column spec., I have also specified the exact
number of columns. Zeroing the step size means the same set of figures can be
used for the four footer functions to act on.

24

\tabulate
[rspec={x,0.25,(5)},rround=2,rhnudge=9,

cspec={k,0,4},ctitle=**,
chead=SUM\;&AVE\;&MAX\;&MIN\;,
rules=TthfB,
foot=&SUM&AVE&MAX&MIN]

{ a\sin kx }[a=2/\pi,k=3.5,{x}=0][*]

=⇒

a sin kx, (a = 2/π, k = 3.5)
x SUM AVE MAX MIN

0.00 0.000000 0.000000 0.000000 0.000000
0.25 0.488633 0.488633 0.488633 0.488633
0.50 0.626425 0.626425 0.626425 0.626425
0.75 0.314439 0.314439 0.314439 0.314439
1.00 −0.223316 −0.223316 −0.223316 −0.223316

1.206181 0.241236 0.626425 −0.223316

2.4.5 Second row-variable column: rpos=4

In §2.1.1.6 I discussed the settings rpos=0,1,2 and in §2.3 gave an example of
using rpos=3 where repeating the row-variable column on the right is helpful.
There is another value available for this key, rpos=4. Like rpos=3 this adds the
row-variable column to both left and right sides of the table, but for the right
column the values are a function of those in the left column (rpos=3 corresponds
to the function being the identity). The value given to the key rvar' determines
the function used and the value given to the key rhead' determines the header
for the right-hand row-variable column. If rhead' is omitted it defaults to a
blank header, unless the rvar' setting is also omitted, when rpos=4 behaves
like rpos=3.

For example, the sine and cosine are complementary functions; when working
in degrees, cos θ = sin(90 − θ). We can exploit this fact to halve the table size
needed to tabulate the two functions. The example also gives an illustration of
the use of an expression in the third element of rspec.

\tabulate[o,multifn,rpos=4,
rspec={\theta,5,1+45/5},rround=0,

chnudge=14,rvar'=90-\theta,
rules=ThfB,foot=*]

{ \sin\theta,\cos\theta }[\theta=0][*]

25

=⇒

θ sin θ cos θ

0 0.000000 1.000000 90
5 0.087156 0.996195 85

10 0.173648 0.984808 80
15 0.258819 0.965926 75
20 0.342020 0.939693 70
25 0.422618 0.906308 65
30 0.500000 0.866025 60
35 0.573576 0.819152 55
40 0.642788 0.766044 50
45 0.707107 0.707107 45

cos θ sin θ θ

The values of sines from 0 to 45 degrees are read downwards from the first
column of function values, and from 45 to 90 degrees are read upwards from the
second column of function values. For cosines it is downwards from the second
column and upwards from the first column. The reversed footer line indicates
the change of columns to use. In the example note

• the setting of rvar' to a function (90-\theta) of the row variable (\theta);

• the blank header for the rvar' column (since no value was set for rhead');

• the footer setting foot=* to obtain the reversed header in the footer;

• the rule above the footer row specified by the f added to the rules setting,
rules=ThfB.

Note also the degree setting o in the settings option.
Although there is a significant space saving with tables like this (see HMF

Tables 4.10, 4.11, 4.12), they are not ‘kind to the reader’. They require a certain
concentration to read and in my view should be avoided unless space is seriously
constrained. HMF Tables 6.1 and 6.2 are tables of the gamma function and
its relatives where y = x − 1 is used in the row-variable column on the right
(stemming from y! = Γ(x−1)); HMF Table 6.5 in effect uses ⟨1/x⟩ (the nearest
integer to 1/x) for the row variable on the right.

2.4.6 Separating blocks of rows: rbloc

Readability of long columns of figures can be aided by breaking the columns
into blocks with extra white space between blocks of rows. This is achieved
with the rbloc key:

rbloc = <comma list of positive integers>

specifies how many rows belong to each block. For example, rbloc={5,5,6}
breaks the table into blocks of 5 rows, 5 rows, then 6 rows. If the number of

26

rows in the table is greater than the sum of the entries in the comma list, then
division into blocks continues as specified by the last entry in the comma list.
Thus rbloc=5 (strictly rbloc={5} but the braces can be omitted in this case
since no comma is enclosed) divides a table into blocks of 5 rows; rbloc={1,5}
divides a table into 1 row followed by blocks of 5 rows. A division of this kind
may be appropriate when, say, the row variable runs from 0 to 1 in increments
of 0.1 – there are 11 rows of which the first (when the row variable is zero) may
have distinctive values.

The pull of the nice round number

However, this is not how HMF sets out its tables. The dominant practice in
HMF is division into blocks of (generally) 5 rows, many of which start with
a zero value for the row variable. Rather than isolate this initial value, they
include it in the first block of 5, then continue with blocks of 5 until a single
isolated row is left at the bottom of the page or the table. There seems to be a
psychological need to finish a page or table with the row variable set to a nice
round number. Thus: tabulate from 0 to 10 rather than 0 to 9, from 0 to 1
rather than 0 to 0.9, and even from 0 to 30 or 0 to 2 rather than 0 to 29 or 0 to
1.9. Using blocks of 5 the consequence is that there is always an isolated line at
the end – a kind of punctuation mark to signal the end of the page or the table.

In the next example I have divided the columns into blocks of 5 rows by
means of the setting rbloc=5.

\tabulate[o,rspec={\theta,10,1+90/10},
rround=0,rbloc=5]

{ ,\sin\theta, \cos\theta }[\theta=0][*]

=⇒

θ sin θ cos θ

0 0.000000 1.000000
10 0.173648 0.984808
20 0.342020 0.939693
30 0.500000 0.866025
40 0.642788 0.766044
50 0.766044 0.642788
60 0.866025 0.500000
70 0.939693 0.342020
80 0.984808 0.173648
90 1.000000 0.000000

2.4.6.1 Adjusting the extra space rblocsep

By default numerica sets the extra space between blocks of rows at 1 ex. This
value can easily by changed with the setting rblocsep=<length>. The units
need to be included in the specification.

27

Table 2.7: Formatting function values

key type meaning default

(pad) int (t-notation) phantom
padding

signs int sign handling for
function-values

0

diffs int insert differences & pre-pad
with zeros

0

Q? tokens special cell conditional
A! tokens special cell formatting

2.5 Formatting function values
In the examples used so far, function values have been limited to a narrow
range, generally [−1, 1]. What happens when function values span orders of
magnitude?

2.5.1 Trailing optional argument
The primary tool for function-value formatting is the trailing optional argument
of the \tabulate command where the rounding value is specified, padding with
zeros is set or not (generally set), and scientific notation is set or not. Elegant
scientific notation, set with an x in the trailing optional argument, is generally
not appropriate for use in tables; see the first table below. Repeating the x
– xx – in the trailing optional argument (the second table) so that scientific
notation extends to numbers in the range [1, 10) helps, particularly with the
left alignment chosen for the function-value column, but the result is wasteful
of space and the repetition of the ‘×10’ is distracting and would be more so for
a larger table. The x specification should be used in tables, if at all, only for
small tables – a few function values at most.

\tabulate[rspec={x,1,2*3+1},rround=0]
{ e^x}[x=-5][*x]\qquad

\tabulate[rspec={x,1,2*3+1},rround=0,calign=l]
{ e^x}[x=-3][*xx]

28

=⇒

x ex

−3 4.978707 × 10−2

−2 1.353353 × 10−1

−1 3.678794 × 10−1

0 1.000000
1 2.718282
2 7.389056
3 2.008554 × 101

x ex

−3 4.978707 × 10−2

−2 1.353353 × 10−1

−1 3.678794 × 10−1

0 1.000000 × 100

1 2.718282 × 100

2 7.389056 × 100

3 2.008554 × 101

2.5.1.1 The t option

HMF uses a special notation for coping with function values spanning orders of
magnitude. This notation can be invoked by inserting t in the trailing optional
argument. Repeating the previous two tables, and adding a chnudge value,
gives a more compact and visually appealing result:

\tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*t]\qquad

\tabulate[rspec={x,1,2*3+1},rround=0,chnudge=24]
{ e^x}[x=-3][*tt]

=⇒

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 1.000000
1 2.718282
2 7.389056
3 (1) 2.008554

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 (0) 1.000000
1 (0) 2.718282
2 (0) 7.389056
3 (1) 2.008554

2.5.2 Padding the exponent: (pad)

In the second table of the last example some might quibble at the lack of align-
ment of the left parentheses. HMF tends to align these and numerica-tables
offers the setting

(pad) = <integer>

to achieve the effect. (The parentheses are part of the key – a reminder of the
t-form of scientific notation.) <integer> is the number of digits/characters to
pad to. Repeating the last two tables with the setting (pad)=2 produces the
following results:

\tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]

{ e^x}[x=-3][*t]\qquad

29

\tabulate[rspec={x,1,2*3+1},rround=0,
chnudge=24,(pad)=2]

{ e^x}[x=-3][*tt]

=⇒

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 1.000000
1 2.718282
2 7.389056
3 (1) 2.008554

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 (0) 1.000000
1 (0) 2.718282
2 (0) 7.389056
3 (1) 2.008554

Note that this setting is relevant only when the t option is used in the
trailing number-formatting argument of the \tabulate command. Examples in
HMF of the style exemplified by the first table are, among others, Tables 8.6,
9.2, 20.1, and of the style exemplified by the second table, among many, Tables
9.9, 10.5, 13.1, 14.1, 19.1.

2.5.3 Accommodating signs: signs

Instead of ex as the test function, use ex − 1. Now there are positive, zero
and negative function values to contend with. Recall that in the t-notation
the exponent is the parenthesized integer part of a number, the significand the
following decimal figures. numerica-tables offers the signs key to align (or
not) the exponents. The setting is

signs = <integer>

There are four effective values for <integer> and the do-nothing default (signs=0):

• signs=2 inserts a + sign between exponent and significand of every non-
negative number;

• signs=1 inserts a + sign between exponent and significand of every non-
negative number that immediately precedes or follows a negative number;

• signs=-1 inserts a + sign between exponent and significand of any non-
negative number that immediately precedes or follows a negative number,
and inserts a phantom + sign between exponent and significand of every
other non-negative number;

• signs=-2 inserts a phantom + sign between exponent and significand of
every non-negative number;

In the following examples with signs=-2, signs=-1 and signs=2, all give ac-
ceptable results.

30

\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=-2]

{ e^x-1}[x=-3][4*tt]\qquad
\tabulate[rspec={x,1,2*3+1},rround=0,

(pad)=2,signs=-1]
{ e^x-1}[x=-3][4*tt]\qquad

\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=2]

{ e^x-1}[x=-3][4*tt]

=⇒

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) 0.0000
1 (0) 1.7183
2 (0) 6.3891
3 (1) 1.9086

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) +0.0000
1 (0) 1.7183
2 (0) 6.3891
3 (1) 1.9086

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) +0.0000
1 (0) +1.7183
2 (0) +6.3891
3 (1) +1.9086

In HMF Table 23.2 illustrates signs=-2; Tables 10.1, 13.1, 14.1, 19.1 among
many others illustrate signs=-1; and Tables 9.4, 10.6, 20.2, 22.11 among others
illustrate signs=2.

signs=1, however, is an inappropriate setting for these function values in
the t-notation:

\tabulate[rspec={x,1,2*3+1},rround=0,
(pad)=2,signs=1]

{ e^x-1}[x=-3][4*tt] \qquad

=⇒

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) +0.0000
1 (0) 1.7183
2 (0) 6.3891
3 (1) 1.9086

But the signs key is not limited to the t-notation. In the following tables
where the notation is not used, positive values for the key, including signs=1,
give good results (I’ve included also the default setting – the third table):

\tabulate[rspec={x,0.1,9},(pad)=2,signs=2]
{ 10\sin 5x}[x=-0.4][*4]\qquad

\tabulate[rspec={x,0.1,9},(pad)=2,signs=1]
{ 10\sin 5x}[x=-0.4][*4]\qquad

\tabulate[rspec={x,0.1,9},(pad)=2]
{ 10\sin 5x}[x=-0.4][*4]

31

=⇒

x 10 sin 5x

−0.4 −9.0930
−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 +0.0000
0.1 +4.7943
0.2 +8.4147
0.3 +9.9749
0.4 +9.0930

x 10 sin 5x

−0.4 −9.0930
−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 +0.0000
0.1 4.7943
0.2 8.4147
0.3 9.9749
0.4 9.0930

x 10 sin 5x

−0.4 −9.0930
−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 0.0000
0.1 4.7943
0.2 8.4147
0.3 9.9749
0.4 9.0930

HMF seems to use signs=2 when the sign of the function values changes every
few entries and signs=1 when there are runs of entries of the same sign. Over
the range tabulated here for 10 sin 5x, they would use the middle table of the
three, signs=1.

2.5.4 Differences: diffs

In fine-grained tables where function values change only slowly from entry to
entry it can be helpful to include a difference entry between function-value
entries as an aid to interpolation (and a test of eyesight). By entering

diffs = <non-negative integer>

the \tabulate command will include differences in a table. The <non-negative
integer> is the maximum number of digits in a difference.

\tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=3]

{ \sinh x }[x=1][*4]

=⇒

x sinh x

1.00 1.1752
1.01 1.1907 155

1.02 1.2063 156

1.03 1.2220 157

1.04 1.2379 159

1.05 1.2539 160

I have deliberately chosen the function and settings here – particularly
diffs=3 – to give a good result. With the default right alignment of the
function-value columns, it is easy to get this wrong. The evidence will be either
in the misalignment of the first row of function values or unnecessary padding
of differences with leading zeros. It is a good idea to create your table first,
see how function values change between successive rows and judge how many
digits there will be in a difference. In the following examples I have deliberately

32

put diffs=2 and diffs=4 to show the effect of a misjudgement. In the first
table the first row of function values is misaligned by one character. (diffs=1
would have produced a two-character misalignment.) In the second table the
unnecessary fourth digit for the differences results in pre-padding with 0.

In the second table the function − sinh x is decreasing, showing how it is
the absolute value of the difference between successive function values that is
tabulated. A difference is always a non-negative value.

\tabulate[rspec={x,0.01,1+(1.05-1)/0.01},rround=2,
rhnudge=9,chnudge=21,diffs=2]

{ \sinh x }[x=1][*4]\qquad
\tabulate[rspec={x,0.01,1.05},rround=2,

rhnudge=9,chnudge=30,diffs=4]
{ -\sinh x }[x=1][*4]

=⇒

x sinh x

1.00 1.1752
1.01 1.1907 155

1.02 1.2063 156

1.03 1.2220 157

1.04 1.2379 159

1.05 1.2539 160

x − sinh x

1.00 −1.1752
1.01 −1.1907 0155

1.02 −1.2063 0156

1.03 −1.2220 0157

1.04 −1.2379 0159

1.05 −1.2539 0160

When the diffs setting is too small, function values in the first row are mis-
aligned, the amount depending on how much too small. (A left alignment of the
function value column is another way of tackling this issue.) When the diffs
setting is too big, alignment is fine but differences are padded with unnecessary
leading zeros, meaning the column header will need a bigger nudge to bring it
into alignment.

2.5.5 Formatting special values: Q? and A!

You may wish to highlight or display in some special way a particular func-
tion value or values. \nmcTabulate has two related settings that enable this:
Q?=<tokens> and A!=<tokens>. As the names suggest: Question? and Answer!

The question should be an expression that l3fp can digest and produce a
boolean answer to (1 for ‘true’ or 0 for ‘false’). This is not a LATEX expression;
this is an l3fp expression.3 numerica-tables uses @ to denote the current
function value, so queries like Q?=@<0 (Is the current function value negative?) or
Q?={@>=pi} (Is the current function value greater than or equal to π?) are valid
questions. (Note the braces in the second question, used to hide the equality
sign.) Other possible useful components of such questions are exp(1) for the
number e, || for logical Or, && for logical And, and ! for logical Not, as well as
the familiar arithmetic symbols, +, -, *, / and ^, relation symbols <, >, = and

3Documentation about l3fp can be found in interface3.pdf, which is part of the l3kernel
bundle.

33

their combinations like !=, >=, <= etc., and parentheses. In addition to these
components, numerica-tables offers MAX and MIN which are the maximum and
minimum function values tabulated, so that, e.g., Q?={@=MIN} (note the braces)
is the question: Is the current function value equal to the minimum function
value for the whole table?

The answer must be in the form of a LATEX 2ε formatting statement, again
using @ to denote the current function value. Thus A!=\mathbf{@} is a valid
answer; so is A!=\color{red}{@} (provided you have \usepackage{color} in
the preamble); and so is A!=(@). Another valid answer is A!= , meaning that
function values satisfying the Q? question are omitted from the output.

This can be useful to suppress ‘irrelevant’ values in a particular context. For
example, suppose we wish to focus on the values of cos(mπ/n) lying between 0
and 1

2 inclusive for certain values of m and n. Rather than cluttering the table
with values outside that interval, we suppress them (the two occurrences of
‘1e-14’ in the query are there to prevent rounding errors confusing the result):

\tabulate
[rspec={n,1,1+(15-4)},rround=0,rpos=2,rules=Tth,

cspec={m,1,1+(5-2)},ctitle=*,chstyle=2,
Q?={@<-1e-14||@>0.5+1e-14},A!=]

{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒

cos(mπ/n)
m = 2 m = 3 m = 4 m = 5 n

0.0000 4
0.3090 5
0.5000 0.0000 6

0.2225 7
0.3827 0.0000 8
0.5000 0.1736 9

0.3090 0.0000 10
0.4154 0.1423 11
0.5000 0.2588 12

0.3546 13
0.4339 14
0.5000 15

2.6 Star option: \nmcTabulate*

If the Q? question is satisfied by at least one function value then adding a
star (asterisk) to the \tabulate command will display the first such instance.
Like other starred commands in the numerica suite (\eval*, info*, \macros*,
\constants*, \iter*, \solve* and \recur*), \tabulate* outputs a single
number. Using the star means you do not need an answering A! to the query
Q? since no formatting of table values is involved.

34

\tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},

Q?={@<-1e-14||@>0.5+1e-14}]
{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒ 0.6235. Indeed, if you omit the Q? and A! settings from the previous table
so that all function values are visible then this is the value that follows 0.5000
in the m=2 column – the first function value encountered either less than 0 or
greater than 0.5.

2.6.1 Errors
If no function value satisfies the query then a message is generated:

\tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},

Q?=@>1]
{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒ !!! No table value satisfies query Q? in: settings. !!!
And if there is no query at all when the star option is chosen, another message

is shown:

\tabulate*
[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)}]
{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒ !!! \nmcTabulate* lacks a query Q? in: settings. !!!

2.6.2 Scientific notation
If you want the number output in scientific notation when the star option is
chosen, then enter the exponent mark in the trailing number-format option.
This is straightforward for a letter like the commonly used e, but remember that
if it is the x option that you enter, then you will need to place the \tabulate*
command between math delimiters, otherwise the \times symbol resulting from
the x option will generate a LATEX error (‘Missing $ inserted’):

$
\tabulate*

[rspec={n,1,1+(15-4)},cspec={m,1,1+(5-2)},
Q?={@<-1e-14||@>0.5+1e-14},A!=]

{ \cos(m\pi/n) }[n=4,m=2][*4x]
$

=⇒ 6.2349 × 10−1.

35

2.6.3 Nesting
A \tabulate command can be nested within other commands from the wider
numerica package, and those other commands can be nested within a \tabulate
command.

2.6.3.1 Nesting of \nmcTabulate

Occasionally one might want to extract a value – perhaps a maximum or mini-
mum – from a table to insert in another command. This can be done by nesting
a \tabulate* command with an appropriate Q? setting within the other com-
mand. In fact, from v.2 of numerica we can omit (or forget to include) the star.
All we require is that the Q? setting is satisfied by at least one function value.

\eval{$
(\tabulate

[rspec={n,1,15},cspec={m,1,5},
Q?={@=MAX}]

{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t +
(\tabulate

[rspec={n,1,15},cspec={m,1,5},
Q?={@=MIN}]

{ \sin(m\pi/n) }[n=4,m=2][*4])\cosh t
$}[t=2][4]

=⇒ (0.9397) sinh t + (−1.0000) cosh t = −0.3541, (t = 2).
Evaluating the tables

\tabulate
[rspec={n,1,15},rround=0,rpos=2,rules=Tth,

cspec={m,1,5},ctitle=*,chstyle=2]
{ \cos(m\pi/n) }[n=4,m=2][*4]

for the cosine and
\tabulate

[rspec={n,1,15},rround=0,rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]

{ \sin(m\pi/n) }[n=4,m=2][*4]

for the sine and checking the entries shows that indeed the maximum and min-
imum values are 0.9397 and −1.0000 respectively.

If the Q? setting is not satisfied by any function value an error message is
shown; e.g.,

\eval{$
(\tabulate

[rspec={n,1,15},cspec={m,1,5},
Q?=@>2]

{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t
$}[t=2][4]

36

=⇒ !!! No table value satisfies query Q? in: settings (1). !!!
Here, ‘settings (1)’ tells us that the message refers to the (or a) command at
the first level of nesting.

2.6.3.2 Nesting within \nmcTabulate

Perhaps a more likely situation is to want to nest other commands within a
\tabulate command, in particular those from the associated package numerica-
plus. In the documentation for that package, as an illustration of the use of
those commands, I describe how they can be used to numerically investigate
the timing of signals between points fixed on a rotating disk. and in particular
how to look for three-point circuits with the property that, despite the rotation,
signals take the same time traversing the circuit in one direction as the other.

I show a complicated expression below involving a \tabulate command
wrapped around a \solve command (from numerica-plus) wrapped around
four \iter* commands (also from numerica-plus). I also show the table re-
sulting from it all. On my High St laptop the table takes perhaps two minutes
to compile – I haven’t timed it exactly but it is well over a minute. Two min-
utes is the blink of an eye in a lifetime but an age sitting staring at a computer
screen. Hence I compiled the table separately, saved it to file using the \reuse
command (see the discussion below, §2.8) and pasted the saved result into this
document.

To explain the expression: suppose the three points on the disk have polar
coordinates (r, ±θ) and (a, 0) in a co-rotating coordinate system. In the un-
derlying inertial system, the signal speed is c and the angular velocity ω. The
cosine rule for solving triangles gives for the travel times t between the points

t = c−1
√

r2 + a2 − 2ra cos(θ ± ωt)

and
t = c−1r

√
2 − 2 cos(2θ ± ωt)

where the plus sign is for a signal in the direction of rotation and the minus
sign for a signal against the rotation. Thus the travel times are fixed points of
the expressions on the right. Fixed points are found with the \iter* command,
which is where those terms of the expression come from. The \solve command
is then used to find, for a given value of θ, a value of r for which the difference
of the travel times is zero for the circuit traversed in the two directions. Finally,
the \tabulate command creates a table of r values for different values of the
row-variable θ and column variable a.

As noted earlier, it takes a long time to compile this expression on an ‘ordi-
nary’ laptop, and so I have compiled the expression separately and pasted the
result into this document:

\tabulate[rspec={\theta,0.2,5},chstyle=2,
cspec={a,5,3},ctitle=r_{\Delta t=0}]

37

{ \solve[var=r,vvi=,+=1]
{% circuit 1231

2\times\iter*[var=t,+=1]{
c^{-1}\sqrt{a^2+r^2-

2ar\cos(\theta-\omega t)} }[4]
+ \iter*[var=t,+=1]{

c^{-1}r\sqrt{2-2\cos(2\theta+\omega t)} }[4]
% circuit 1321
- 2\times\iter*[var=t,+=1]{

c^{-1}\sqrt{a^2+r^2-
2ar\cos(\theta+\omega t)} }[4]

- \iter*[var=t,+=1]{
c^{-1}r\sqrt{2-2\cos(2\theta-\omega t)} }[4]

}[3]
}[c=30,r=a+10,a=10,

\theta=0.2,\omega=0.2,t=1][3*]

=⇒

r∆t=0
θ a = 10 a = 15 a = 20

0.2 10.21 15.31 20.43
0.4 10.87 16.33 21.82
0.6 12.15 18.31 24.55
0.8 14.46 21.88 29.59
1.0 18.82 28.86 39.82

2.7 Table placement
There is only one setting in this category that is part of numerica-tables
as such, the tabular vertical alignment option; see §2.7.1. But LATEX allows
one to insert vertical space with its \bigskip, \medskip, \smallskip, usually
about one line space, a half line space, and a quarter line space (with stretch
and shrink), and booktabs provides \abovetopsep and \belowbottomsep, both
set by default to 0ex (or any other unit you care to use) and easily changed by
writing, e.g., \abovetopsep=1.25ex if you want to insert 1.25ex of space above
the table (perhaps to fit captions).

2.7.1 Vertical alignment
By writing

valign = <char>

where <char> is one of t, m or b the vertical alignment of the table can be set
relative to the text baseline. valign=t aligns the top of the table with the text

38

baseline, valign=b the bottom of the table with the text baseline, valign=m
aligns the middle of the table with the text baseline. By default valign=m is
set. Repeating an example from earlier (§2.1) I have added letters A, B, C to
show where the baseline is. In the first table the top of the table aligns with the
baseline; in the second table (default case) the middle of the table aligns with
the baseline; in the third table, the bottom of the table aligns with the baseline.

A \tabulate[valign=t,rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \qquad

B \tabulate[rspec={x,0.2,1+(1/0.2)}]
{ \tan x }[x=0][*] \qquad

C \tabulate[valign=b,rspec={x,0.2,(6)}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]

=⇒ A
x sin x/ cos x

0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

B

x tan x

0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

C

x
√

sec2 x − 1
0.0 0.000000
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

As explained in §2.1.2, tables can be adjoined to give the appearance of a
single larger table. If tables with different numbers of rows are adjoined in this
manner, then a middle alignment fails and a top alignment is necessary (so that
the header rows of the tables align).

2.8 The reuse setting
By entering

reuse = <non-negative integer>

it is possible to specify what is saved when the \tabulate command is followed
by a \reuse command.

• reuse=0 saves the table as displayed (the default);

• reuse=n saves the n-th column of function values

39

– if rpos is non-zero: in a comma-separated list of braced pairs {row-variable
value,function value};

– if rpos=0: in a comma-separated list of function values.

• reuse=-n saves the n-th row of function values in a comma-separated list
that includes the row-variable value in its appropriate position(s) if rpos
is non-zero.

In the following example the third row is saved to the control sequence \rowiii
by using the setting reuse=-3.

\tabulate
[rspec={x,0.25,5},rround=2,rhead=x,

ralign=r,rhnudge=9,
cspec={k,0.25,3},chstyle=2,
chround=2,calign=r,ctitle=**,
rules=TthB,reuse=-3]

{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]
\reuse{rowiii}

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

Now test the content of the control sequence

\rowiii =⇒ 0.50,0.635025,0.635685,0.626425

You can see that indeed the third row has been ‘captured for posterity’.
Alternatively, we could save the second column of function values in the

control sequence \colii:

\tabulate[rspec={x,0.25,5},rround=2,rhead=x,
ralign=r,rhnudge=9,
cspec={k,0.25,3},chstyle=2,
chround=2,calign=r,ctitle=**,
rules=TthB,reuse=2]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]

\reuse{colii}

40

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

Now to see what is saved in \colii I use TEX’s \meaning command to show
that it is indeed braced pairs:

\meaning \colii

=⇒ macro:->{0.00,0.000000},{0.25,0.462191},{0.50,0.635685},{0.75,0.412111},{1.00,-
0.068879}

Finally, let’s use the default reuse setting (reuse=0) by not entering an
explicit reuse setting at all. This should save the whole table:

\tabulate[rspec={x,0.25,5},rround=2,rhead=x,
ralign=r,rhnudge=9,
cspec={k,0.25,3},chstyle=2,
chround=2,calign=r,ctitle=**,
rules=TthB]
{ a\sin kx }[a=2/\pi,{k}=3,{x}=0][*]

\reuse{wholetable}

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

Now check that the whole table has been saved:

\wholetable =⇒

a sin kx, (vv)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

and, indeed it has.

41

Chapter 3

Reference summary

3.1 Commands defined in numerica-tables

\nmcTabulate, \tabulate

3.2 Settings for \nmcTabulate

Row-variable specification §2.1

key type meaning comment

rvar token(s) row-variable
rstep real num step size
rstop real num stop value either rstop or

rows, not bothrows int number of rows
rspec comma list {start, step, rows} short form spec.

Row-variable column formatting §2.1.1

key type meaning default

rround int rounding 1
ralign char (r/c/l) horizontal alignment r
rfont chars font (\math<chars>)
rhead tokens header rvar
rhnudge int nudge header rhnudge mu 0
rpos int (0. . . 4) column position(s) 1
rvar’ token(s) 2nd row-variable col. spec. rvar
rhead’ token(s) header of 2nd r-v col. (if it

exists)
rvar’

rhnudge’ int nudge 2nd r-v col. header
rhnudge' mu

0

42

Column-variable specification §2.2.

key type meaning default

cvar token(s) column-variable
cstep real num step size
cstop real num stop value either cstop
cols int number of columns or cols, not both
cspec comma list {cvar,cstep,cols} short form spec.

Column-variable header formatting §2.2.1.

key type meaning default

chstyle int (0. . . 4) header style 0
ctitle token(s) single col. alternative

header
chead token(s) user-defined header
calign char (r/c/l) column alignment r
chnudge int nudge header chnudge mu 0
chround int column header rounding 0

Function-value formatting §2.5.

key type meaning default

(pad) int (t-notation) phantom
padding

signs int sign handling for
function-values

0

diffs int insert differences & pre-pad
with zeros

0

Q? tokens special cell conditional
A! token(s) special cell formatting

43

Whole-of-table formatting §2.4.

key type meaning default

ctitle token(s) collective title for
function-value columns

cmidrow token(s) inter-header/title row
rules char(s) horizontal rules template ThB
foot token(s) content of footer line
rpos int (0. . . 4) row-variable column

position(s)
1

rbloc comma list division of rows into blocks
rblocsep length extra spacing between

blocks of rows
1 ex

Miscellaneous settings §2.3, 2.7.1.

key type meaning default

multifn char multi-function separator ,
valign char (t/m/b) vertical alignment m

44

	1 Introduction
	1.1 Table structure
	1.2 Shared syntax
	1.2.1 Settings inherited from numerica

	2 \nmcTabulate settings
	2.1 Row-variable settings
	2.1.1 Row-variable column formatting
	2.1.1.1 Rounding: rround
	2.1.1.2 Alignment: ralign
	2.1.1.3 Font: rfont
	2.1.1.4 Row-variable header: rhead
	2.1.1.5 Nudging the header: rhnudge
	2.1.1.6 Position in the table: rpos
	2.1.1.7 rvar', rhead', rhnudge'

	2.1.2 Adjoined multi-function tables

	2.2 Column-variable settings
	2.2.1 Column header formatting
	2.2.1.1 Header style: single-column case
	2.2.1.2 Header style: multi-column case
	2.2.1.3 User-defined header: chead
	2.2.1.4 Alignment: calign
	2.2.1.5 Nudging the headers: chnudge
	2.2.1.6 Rounding: chround

	2.3 Multiple functions in a single table
	2.4 Whole-of-table formatting
	2.4.1 Title for function-value columns: ctitle
	2.4.2 Inter-header/title row: cmidrow
	2.4.3 Horizontal rules: rules
	2.4.4 Footer row: foot setting
	2.4.4.1 Footer functions

	2.4.5 Second row-variable column: rpos=4
	2.4.6 Separating blocks of rows: rbloc
	2.4.6.1 Adjusting the extra space rblocsep

	2.5 Formatting function values
	2.5.1 Trailing optional argument
	2.5.1.1 The t option

	2.5.2 Padding the exponent: (pad)
	2.5.3 Accommodating signs: signs
	2.5.4 Differences: diffs
	2.5.5 Formatting special values: Q? and A!

	2.6 Star option: \nmcTabulate*
	2.6.1 Errors
	2.6.2 Scientific notation
	2.6.3 Nesting
	2.6.3.1 Nesting of \nmcTabulate
	2.6.3.2 Nesting within \nmcTabulate

	2.7 Table placement
	2.7.1 Vertical alignment

	2.8 The reuse setting

	3 Reference summary
	3.1 Commands defined in numerica-tables
	3.2 Settings for \nmcTabulate

