
Non-Decimal Units for LATEX
Mikkel Eide Eriksen

mikkel.eriksen@gmail.com

October 10, 2023

1 Preface
Many historical unit systems were non-decimal. For example, the Danish rigs-
daler1 — where 1 rigsdaler consists of 16 mark, each again consisting of 16 skilling
for a total of 96 skilling per rigsdaler — was used from 1625 to 1875, when cur-
rency was decimalised to the current system of 1 krone = 100 øre.

Units for such measures as length, area, weight, and so on were also often
non-decimal, and in fact remain so in the few places of the world that have not
made the change to the metric system.

The non-decimal numbers were chosen due to their larger number of division
factors, which simplified mental arithmetic — eg. when sharing an amount of
money or dividing goods.

This package enables creation and configuration of such units to facilitate
their presentation in textual and tabular contexts, as well as simple arithmetic.

In order to do this, values are divided into segments, which are separated by
decimal points: for example, the historical Danish monetary value 1 Rdl. 2 � 3 �
is entered as 1.2.3, which the code then formats appropriately.

Issues can be reported at https://github.com/mikkelee/latex-units/
issues.

1https://en.wikipedia.org/wiki/Danish_rigsdaler

1

mailto:mikkel.eriksen@gmail.com
https://github.com/mikkelee/latex-units/issues
https://github.com/mikkelee/latex-units/issues
https://en.wikipedia.org/wiki/Danish_rigsdaler


2 Configuration
The package is configured in the following manner:

\usepackage[〈options〉]{non-decimal-units}

Where 〈options〉 may contain one or more of the following unit sys-
tems. See page 15 for details.

british Currencies
danish Currencies, areas, and weights
german Currencies

Alternately, one may configure new units via
\nduNewBaseUnitÕ P. 13 and \nduNewUnitGroupÕ P. 13.

\nduKeys{〈options〉}

Can be used to set options globally (in the preamble) or locally (in
a group). See further documentation for possible keys/values.

2



3 Usage
3.1 Formatting Values
The central macro is \nduValue. It formats values for display and is configurable
in a number of ways.

\nduValue{〈unit group〉}[〈options〉]{〈value〉}

Formats 〈value〉 according to the setup configured for the 〈unit
group〉, as well as any provided 〈options〉.
If no special configuration is made, the number of decimal points
and the values between them determine how many and which units
are displayed. For example, empty values are skipped unless the
replace nil withÕ P. 5 key is set.

Example usage: \nduValue macro

\nduValue{danish rigsdaler}{1.2.3}\\
\nduValue{danish rigsdaler}{1}\\
\nduValue{danish rigsdaler}{.2}\\
\nduValue{danish rigsdaler}{..3}\\

1 Rdl. 2 � 3 �

1 Rdl.
2 �

3 �

3



3.1.1 Options

display=values only

display=formatted (initially formatted)
display=symbols only

display=numprint

Changes which information is included in the expansion.
Because only present values will be included, display=symbols
only can be used to list the segment units (though it may be prefer-
able to use \nduHeaderÕ P. 9 or \nduSymbolÕ P. 12).

\nduValue{danish hartkorn}
[display=symbols only]
{0.0.0.0.0}

\nduValue{danish hartkorn}
[display=values only]
{0.0...}

Td. Sk. Fj. Alb. ₰
0 0

Finally, it is possible to use the numprint package to format num-
bers, especially useful for larger values. Note that this may be
counter to the formatting of some units (eg. British pounds), in
which case one may prefer the use numprint key instead.

\nduValue{danish rigsdaler}
[display=numprint]
{1000}

1,000 Rdl.

format={〈...〉} (initially \VALUE\nobreakspace\SYMBOL)

Sets how a given base unit should be formatted for display.
The placeholders \VALUE and \SYMBOL will be substituted when the
value is typeset.

4

https://ctan.org/pkg/numprint


replace nil with=〈...〉 (no default, initially empty)
treat zero as nil (initially not set)

The key replace nil with replaces nil (empty) segments with a
custom string.
The key treat zero as nil replaces 0 with nothing, which in turn
means that setting both will replace both zero and nil with the
custom string.

unit depth=〈unit name〉 (initially no restriction)

When calculating or displaying a value, only the segments up to and
including 〈unit name〉 will be considered.
In this document, the depth has been globally set to skilling,
but older historical sub-units can be included by locally setting the
depth to eg. hvid (or indeed not restricting it globally).
If the 〈unit name〉 is not present in the current unit group, it has
no effect.

\nduValue{danish rigsdaler}
[unit depth=skilling]
{1.2.3.4.5}

\nduValue{danish rigsdaler}
[unit depth=penning]
{1.2.3.4.5}

1 Rdl. 2 � 3 �

1 Rdl. 2 � 3 � 4 Hv. 5 ₰

unit separator=〈...〉 (initially \nobreakspace)

When displaying a value, this string will be inserted between each
segment.

\nduValue{danish hartkorn}[
display=values only,
unit separator=.

]
{1.2.3.4}

\nduValue{danish rigsdaler}
[unit separator={---}]
{1.2.3}

1.2.3.4
1 Rdl.—2 �—3 �

5



use numprint (not set initially)

When displaying a value, use the numprint package, including when
using the format key. You can of course also configure the numprint
settings, either in a group or locally.

\begingroup
\selectlanguage{ngerman}
\nduValue{danish rigsdaler}

[use numprint]
{1000.0}

\endgroup

1 000 Rdl. 0 �

6

https://ctan.org/pkg/numprint


4 Arithmetical Operations
Basic arithmetic functions can be used to build a result for display. This is done
by converting the value to an internal representation and storing it in a global
variable. The first time a variable is used, it is assumed that the value is 0.

Results can be gathered in two ways, either manually via the \nduMath
macro, or automatically via the add to variable and subtract from variable
keys, the latter two being especially suitable in tabular contexts.

\nduMath{〈unit name〉}[〈options〉]{〈variable〉}{〈operator〉}{〈value〉}

The first arguments of \nduMath are identical to those of the
\nduValueÕ P. 3 macro. In addition, it has 〈variable〉 and 〈operator〉
(one of + - * /) arguments. The command does not expand to any
output.
Note that mixing unit groups in the same variable is not currently
supported, and will likely give incorrect results.

Example usage: \nduMath macro

\nduMath{danish rigsdaler}{example 1}{+}{0.0.10}
\nduMath{danish rigsdaler}{example 1}{+}{..8}
\nduMath{danish rigsdaler}{example 1}{+}{0.2}
\nduMath{danish rigsdaler}{example 1}{+}{0.5.1}
% there is no output, the result 1.2.3
% will be seen in the following example.

\nduResult{〈unit name〉}[〈options〉]{〈variable〉}

The \nduResult macro takes a stored 〈variable〉 and formats it via
〈options〉 for display in the same way as \nduValueÕ P. 3.

Example usage: \nduResult macro

\nduResult{danish rigsdaler}{example 1} % = 1.2.3

And let's add an additional 15 skilling:
\nduMath{danish rigsdaler}{example 1}{+}{0.0.15}
\nduResult{danish rigsdaler}{example 1} % = 1.3.2

1 Rdl. 2 � 3 �

And let’s add an additional 15 skilling: 1 Rdl. 3 � 2 �

7



4.1 Options for Arithmetical Operations

add to variable=〈...〉
subtract from variable=〈...〉

Setting either of these keys will cause all uses of \nduValue in the
current group to be added to or subtracted from the variable with
the given name. It can of course also be set on individual invocations
of the command.

Example usage: add to variable key

\begingroup
\nduKeys{

replace nil with=---,
add to variable=example 2

}
\begin{tabular}{r r}

\toprule
& \nduHeader{danish rigsdaler} \\
\midrule
a & \nduValue{danish rigsdaler}{1.2.3} \\
b & \nduValue{danish rigsdaler}{100.1.} \\
\midrule
total & \nduResult{danish rigsdaler}{example 2} \\ % = 101.3.3
\bottomrule

\end{tabular}
\endgroup

Rdl. � �

a 1 2 3
b 100 1 —

total 101 3 3

normalize (initially not set)

Reformats an amount, which is useful for quick conversions.

Example usage: normalize key

100 skilling equal
\nduValue{danish rigsdaler}[normalize]{..100} % 1.0.4

100 skilling equal 1 Rdl. 0 � 4 �

8



5 Tabular Data
There are a couple of ways to display values in tabular context, centered around
explicitly or implicitly setting the aligned key, which causes \nduValue to wrap
each segment in a cell of configurable width.

Additionally, all segments will be included in headers and cells, whether
they contain a value or not (provided unit depth allows it). If no value is
provided for the segment, and no nil replacement is specified with the replace
nil withÕ P. 5 key, the cell will be empty.

\nduHeader{〈unit name〉}[〈options〉]

Convenient header showing the unit symbols. See page 13 for con-
figuration of symbols.

5.1 Options for Tabular Data

aligned (initially not set)

Causes each value to be wrapped in right-aligned cells of configurable
width.

cell widths=〈length〉 (initially 3em)

Changes the width of each cell. One may supply a bracketed comma-
separated list of widths. If the list is shorter than the number of
base units in the group, the last width will be repeated. See page
10 for example.

set aligned for environment=〈name〉 (initially not set)
tabularray column type=〈letter〉 (initially not set)

The set aligned for environment key can be set to an environ-
ment name, causing aligned to automatically be set for those envi-
roments, using \AtBeginEnvironment. It can be set multiple times,
once for each required environment. See page 10 for example.
The tabularray column type key can be used to create a column
type, which automatically wraps the column contents in \nduValue.
The column type takes two arguments, a unit group and a set of
key values for further configuration. Additionally, the special val-
ues HEADER, RESULT, and SKIP will respectively use \nduHeader,
\nduResult, and skip the cell. See page 11 for example.a

aThanks to Yukai Chou for help with tabularray integration.

9

https://github.com/lvjr/tabularray


Example of tabular data using set aligned for environment

\begingroup
\nduKeys{
% has been set in this document's preamble:
% set aligned for environment=tabular,

treat zero as nil,
replace nil with=---,

}
\begin{tabular}{r r}

\toprule
& \nduHeader{danish rigsdaler} \\
\midrule
a & \nduValue{danish rigsdaler}{1.2.3} \\
b & \nduValue{danish rigsdaler}{100.0.0} \\
c & \nduValue{danish rigsdaler}{.1.} \\
\bottomrule

\end{tabular}
\endgroup

Rdl. � �

a 1 2 3
b 100 — —
c — 1 —

Example usage: cell widths key

\begingroup
\nduKeys{

cell widths={5em, 1.5em},
}
\begin{tabular}{r r}

\toprule
& \nduHeader{danish rigsdaler} \\
\midrule
a & \nduValue{danish rigsdaler}{1.2.3} \\
b & \nduValue{danish rigsdaler}{100..} \\
c & \nduValue{danish rigsdaler}{.1.} \\
\bottomrule

\end{tabular}
\endgroup

Rdl. � �

a 1 2 3
b 100
c 1

10



Example of tabular data using tabularray column type

\begingroup
% has been set in this document's preamble:
% tabularray column type=U
\begin{tblr}{

r
U{danish rigsdaler}{add to variable=table result 1}|
U{danish rigsdaler}{add to variable=table result 2}

}
\toprule
& HEADER & HEADER\\
\midrule
a & 1.2.3 & ..15 \\
b & 100.0.0 & ..10 \\
c & .1. & ..2 \\
\midrule
total & RESULT & RESULT \\
\bottomrule

\end{tblr}
\endgroup

Rdl. � � Rdl. � �

a 1 2 3 15
b 100 0 0 10
c 1 2

total 101 3 3 0 1 11

11



6 Accessing Information About Units
\nduSymbol{〈unit name〉}

Expands to the symbol of the given base unit.
Set by units/〈unit name〉/symbolÕ P. 14.

\nduFactor{〈unit name〉}{〈unit name〉}

Expands to the conversion between two base units.
Set by units/〈unit name〉/factorÕ P. 14.

That is, 1 \nduSymbol{rigsdaler} consists of
\nduFactor{rigsdaler}{skilling} \nduSymbol{skilling}.

That is, 1 Rdl. consists of 96 �.

12



7 Creating New Units
If the included units are not suitable, more can be created. Pull requests are
also welcome at https://github.com/mikkelee/latex-units.

\nduNewBaseUnit{〈unit name〉}{〈key/value pairs〉}

Creates a new base unit. It must contain at least a symbol, but a
factor is also required for the math functions (see below).

\nduNewUnitGroup{〈unit name〉}[〈key/value pairs〉]{〈ordered base
units〉}[〈control sequence〉]

In order for the math functions to work, every base unit in the group
must have a conversion path to the right-most base unit, eg. if a unit
group consists of base units A, B, C, there must be defined factors
for B→C and either A→C or A→B; if only the latter is configured, an
attempt to calculate and cache it will be made internally.
It is possible to create shortcut macros for commonly used unit
groups with optional overriding options. These macros take the
same arguments as the full \nduValueÕ P. 3 macro, except without
the first argument (ie. the name of the unit).
Including several sub units may make the math results awkward, as
the algorithm is greedy.

\nduNewUnitGroup{my sletdaler}
[units/sletdaler/symbol={Sletd.}]
{sletdaler, ort, skilling}
[\mySldl]

\mySldl{1.2.3}

1 Sletd. 2 O. 3 �

13

https://github.com/mikkelee/latex-units


7.1 Options For Base Units

units/〈unit name〉/symbol=〈symbol〉

Configures a symbol displaying the unit. This is used in \nduValue,
\nduHeader, and is also available via \SYMBOL when defining the
units/〈unit name〉/format (see also ??Õ P. ??).

units/〈unit name〉/format={〈...〉}

Sets how a given base unit should be formatted for display. If none
is given, the general top-level format key is used.

units/〈unit name〉/factor=〈integer〉 〈unit name〉

The conversion factor of a unit is how many of an underlying unit
the given unit consists of. This can be specified multiple times.
This is used by the math macros and keys to calculate the sums and
products.
Can be accessed via \nduFactorÕ P. 12.

These keys can of course also be set temporarily in \nduValueÕ P. 3

\nduValue{danish rigsdaler}
[units/mark/symbol=Mk.]
{.9.}

\nduValue{danish rigsdaler}
[units/rigsdaler/format={\VALUE~Rigsdaler og}]
{1.2.3}

\nduValue{danish rigsdaler}[
unit separator={---},
units/rigsdaler/format={(\VALUE)},
units/mark/format={[\VALUE]},
units/skilling/format={\{\VALUE\}},

]
{1.2.3}

9 Mk.
1 Rigsdaler og 2 � 3 �

(1)—[2]—{3}

14



8 Included Units
On the following pages are the units included with the package.

Listing of units loaded with the british option

%%% CURRENCY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% https://en.wikipedia.org/wiki/£sd

\nduNewBaseUnit { pound~sterling } {
symbol = { £ } ,
factor = { 20~shilling } ,
format = { \SYMBOL\VALUE } ,

}

\nduNewBaseUnit { shilling } {
symbol = { s } ,
factor = { 12~penny } ,
format = { \VALUE\SYMBOL } ,

}

\nduNewBaseUnit { penny } {
symbol = { d } ,
format = { \VALUE\SYMBOL } ,

}

\nduNewUnitGroup { british~pound~sterling~lsd } [
unit~separator = {.~} ,

] {
pound~sterling ,
shilling ,
penny

}

15



Listing of units loaded with the danish option

%%% CURRENCY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\nduNewBaseUnit { rigsdaler } {
symbol = { Rdl. } ,
factor = { 6~mark } ,

}

\nduNewBaseUnit { rigsbankdaler } {
symbol = { Rbdl. } ,
symbol = { 96~skilling } ,

}

\nduNewBaseUnit { rigsdaler specie } {
symbol = { Rds. } ,
symbol = { 192~skilling } ,

}

\nduNewBaseUnit { speciedaler } {
symbol = { Spdl. } ,
factor = { 84~skilling } ,

}

\nduNewBaseUnit { sletdaler } {
symbol = { Sldl. } ,
factor = { 4~mark } ,

}

\nduNewBaseUnit { ort } {
symbol = { O. } ,
factor = { 24~skilling } ,

}

\nduNewBaseUnit { mark } {
symbol = { Mk. } ,
factor = { 16~skilling } ,

}

\nduNewBaseUnit { skilling } {
symbol = { Sk. } ,
factor = { 3~hvid } ,

}

\nduNewBaseUnit { hvid } {
symbol = { Hv. } ,
factor = { 4~penning } ,

}

\nduNewBaseUnit { penning } {
symbol = { P. } ,

}

16



\nduNewUnitGroup { danish~rigsdaler } {
rigsdaler ,
mark ,
skilling ,
hvid ,
penning

}[\rdl]

\nduNewUnitGroup { danish~sletdaler } {
sletdaler ,
mark ,
skilling ,
hvid ,
penning

}[\sldl]

\nduNewUnitGroup { danish~rigsbankdaler } {
rigsbankdaler ,
skilling

}[\rbdl]

\nduNewUnitGroup { danish~speciedaler } {
speciedaler ,
skilling

}[\spdl]

%%%% AREA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\nduNewBaseUnit { tønde } {
symbol = { Td. } ,
factor = { 8~skæppe } ,

}

\nduNewBaseUnit { skæppe } {
symbol = { Sk. } ,
factor = { 4~fjerdingkar } ,

}

\nduNewBaseUnit { fjerdingkar } {
symbol = { Fj. } ,
factor = { 3~album } ,

}

\nduNewBaseUnit { album } {
symbol = { Alb. } ,
factor = { 4~penning } ,

}

\nduNewUnitGroup { danish~hartkorn } {
tønde,
skæppe,
fjerdingkar,

17



album,
penning

}[\hartkorn]

%%%% WEIGHT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\nduNewBaseUnit { skippund } {
symbol = { Spd. } ,
factor = { 20~lispund } ,

}

\nduNewBaseUnit { lispund } {
symbol = { Lpd. } ,
factor = { 16~skålpund } ,

}

\nduNewBaseUnit { skålpund } {
symbol = { Pd. } ,

}

\nduNewUnitGroup { danish~pund } {
skippund,
lispund,
skålpund

}

Listing of units loaded with the german option

%%% CURRENCY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\nduNewBaseUnit { reichsthaler } {
symbol = { Rthl. } ,
factor = { 30~groschen } ,

}

\nduNewBaseUnit { groschen } {
symbol = { Gr. } ,
factor = { 12~pfennig } ,

}

\nduNewBaseUnit { pfennig } {
symbol = { Pf. } ,

}

\nduNewUnitGroup { german~reichsthaler } {
reichsthaler ,
groschen ,
pfennig

}

18


	Preface
	Configuration
	Usage
	Formatting Values
	Options


	Arithmetical Operations
	Options for Arithmetical Operations

	Tabular Data
	Options for Tabular Data

	Accessing Information About Units
	Creating New Units
	Options For Base Units

	Included Units

