Non-Decimal Units for ETEX

Mikkel Eide Eriksen
mikkel.eriksen@gmail.com

October 10, 2023

1 Preface

Many historical unit systems were non-decimal. For example, the Danish rigsdaler ${ }^{1}$ - where 1 rigsdaler consists of 16 mark, each again consisting of 16 skilling for a total of 96 skilling per rigsdaler - was used from 1625 to 1875 , when currency was decimalised to the current system of 1 krone $=100 ø$ re.

Units for such measures as length, area, weight, and so on were also often non-decimal, and in fact remain so in the few places of the world that have not made the change to the metric system.

The non-decimal numbers were chosen due to their larger number of division factors, which simplified mental arithmetic - eg. when sharing an amount of money or dividing goods.

This package enables creation and configuration of such units to facilitate their presentation in textual and tabular contexts, as well as simple arithmetic.

In order to do this, values are divided into segments, which are separated by decimal points: for example, the historical Danish monetary value 1 Rdl. 2 \& 3ρ is entered as 1.2 .3 , which the code then formats appropriately.

Issues can be reported at https://github.com/mikkelee/latex-units/ issues.

[^0]
2 Configuration

The package is configured in the following manner:

```
\usepackage[\langleoptions\rangle]{non-decimal-units}
```

Where \langle options \rangle may contain one or more of the following unit systems. See page 15 for details.

```
british Currencies
    danish Currencies, areas, and weights
    german Currencies
```

Alternately, one may configure new units via \backslash nduNewBaseUnit \rightarrow P. 13 and \backslash nduNewUnitGroup \rightarrow P. 13.

\nduKeys\{〈options \rangle \}

Can be used to set options globally (in the preamble) or locally (in a group). See further documentation for possible keys/values.

3 Usage

3.1 Formatting Values

The central macro is \nduValue. It formats values for display and is configurable in a number of ways.

```
\nduValue{\langleunit group\rangle}[\langleoptions\rangle]{\langlevalue\rangle}
```

Formats $\langle v a l u e\rangle$ according to the setup configured for the 〈unit group \rangle, as well as any provided \langle options \rangle.
If no special configuration is made, the number of decimal points and the values between them determine how many and which units are displayed. For example, empty values are skipped unless the replace nil with ${ }^{\text {P. } 5 \text { key is set. }}$

Example usage: \nduValue macro

\nduValue\{danish rigsdaler\}\{1.2.3\}

\nduValue\{danish rigsdaler\}\{1\}

\nduValue\{danish rigsdaler\}\{.2\}

\nduValue\{danish rigsdaler\}\{..3\}

1 Rdl. $2 \not \& 3 \beta$
1 Rdl.
2 *
3 ß

3.1.1 Options

```
display=values only
display=formatted
(initially formatted)
display=symbols only
display=numprint
```

Changes which information is included in the expansion.
Because only present values will be included, display=symbols only can be used to list the segment units (though it may be preferable to use \backslash nduHeader \rightarrow P. 9 or \backslash nduSymbol \rightarrow P. 12).

```
\nduValue{danish hartkorn}
    [display=symbols only]
    {0.0.0.0.0}
\nduValue{danish hartkorn}
    [display=values only]
    {0.0...}
```

Td. Sk. Fj. Alb. ϑ
00

Finally, it is possible to use the numprint package to format numbers, especially useful for larger values. Note that this may be counter to the formatting of some units (eg. British pounds), in which case one may prefer the use numprint key instead.

```
\nduValue{danish rigsdaler}
    [display=numprint]
    {1000}
```

$1,000 \mathrm{Rdl}$
format $=\{\langle\ldots\rangle\}$
Sets how a given base unit should be formatted for display.
The placeholders \VALUE and \SYMBOL will be substituted when the value is typeset.

```
replace nil with=\langle...\rangle
```

(no default, initially empty)
treat zero as nil

The key replace nil with replaces nil（empty）segments with a custom string．
The key treat zero as nil replaces 0 with nothing，which in turn means that setting both will replace both zero and nil with the custom string．

```
unit depth=\langleunit name\rangle
```

When calculating or displaying a value，only the segments up to and including $\langle u n i t$ name〉 will be considered．
In this document，the depth has been globally set to skilling， but older historical sub－units can be included by locally setting the depth to eg．hvid（or indeed not restricting it globally）．
If the 〈unit name〉 is not present in the current unit group，it has no effect．

```
\nduValue{danish rigsdaler}
    [unit depth=skilling]
    {1.2.3.4.5}
\nduValue{danish rigsdaler}
    [unit depth=penning]
    {1.2.3.4.5}
```

1 Rdl. 2 \& 3 ß
1 Rdl. 2 \& $3 \beta 4 \mathrm{Hv} .5$ \&

When displaying a value，this string will be inserted between each segment．

```
\nduValue{danish hartkorn}[
    display=values only,
    unit separator=.
    ]
    {1.2.3.4}
\nduValue{danish rigsdaler}
    [unit separator={---}]
    {1.2.3}
1.2.3.4
1 Rdl.-2 &-3 \beta
```

When displaying a value, use the numprint package, including when using the format key. You can of course also configure the numprint settings, either in a group or locally.

```
\begingroup
\selectlanguage{ngerman}
\nduValue{danish rigsdaler}
    [use numprint]
    {1000.0}
\endgroup
1000 Rdl. 0 & 
```


4 Arithmetical Operations

Basic arithmetic functions can be used to build a result for display. This is done by converting the value to an internal representation and storing it in a global variable. The first time a variable is used, it is assumed that the value is 0 .

Results can be gathered in two ways, either manually via the \nduMath macro, or automatically via the add to variable and subtract from variable keys, the latter two being especially suitable in tabular contexts.

```
\nduMath{\langleunit name\rangle}[\langleoptions\rangle]{\langlevariable\rangle}{\langleoperator\rangle}{\langlevalue\rangle}
```

The first arguments of \nduMath are identical to those of the \backslash nduValue \rightarrow P. 3 macro. In addition, it has \langle variable \rangle and \langle operator \rangle (one of + - */) arguments. The command does not expand to any output.
Note that mixing unit groups in the same variable is not currently supported, and will likely give incorrect results.

Example usage: \nduMath macro

\nduMath\{danish rigsdaler\}\{example 1\}\{+\}\{0.0.10\}
\nduMath\{danish rigsdaler\}\{example 1\}\{+\}\{..8\}
\nduMath\{danish rigsdaler\}\{example 1\}\{+\}\{0.2\}
\nduMath\{danish rigsdaler\}\{example 1\}\{+\}\{0.5.1\}
\% there is no output, the result 1.2.3
\% will be seen in the following example

\nduResult\{ \langle unit name $\rangle\}[\langle$ options $\rangle]\{\langle$ variable $\rangle\}$

The \nduResult macro takes a stored \langle variable \rangle and formats it via $\langle o p t i o n s\rangle$ for display in the same way as \nduValue \rightarrow P. 3 .

Example usage: \nduResult macro

```
\nduResult{danish rigsdaler}{example 1} % = 1.2.3
```

And let's add an additional 15 skilling:
\nduMath\{danish rigsdaler\}\{example 1\}\{+\}\{0.0.15\}
\nduResult\{danish rigsdaler\}\{example 1\} \% = 1.3.2

1 Rdl. 2 \& 3 ß
And let's add an additional 15 skilling: 1 Rdl. $3 \not \& 2 \beta$

4.1 Options for Arithmetical Operations

```
add to variable=\langle...\rangle
subtract from variable=\langle...\rangle
```

Setting either of these keys will cause all uses of \nduValue in the current group to be added to or subtracted from the variable with the given name. It can of course also be set on individual invocations of the command.

```
Example usage: add to variable key
\begingroup
\nduKeys{
    replace nil with=---,
    add to variable=example 2
}
\begin{tabular}{r r}
    \toprule
    & \nduHeader{danish rigsdaler} \\
    \midrule
    a & \nduValue{danish rigsdaler}{1.2.3} \\
    b & \nduValue{danish rigsdaler}{100.1.} \\
    \midrule
    total & \nduResult{danish rigsdaler}{example 2} \\ % = 101.3.3
    \bottomrule
\end{tabular}
\endgroup
\begin{tabular}{rrrr}
\hline & Rdl. & \& & \(\beta\) \\
\hline a & 1 & 2 & 3 \\
b & 100 & 1 & - \\
\hline total & 101 & 3 & 3 \\
\hline
\end{tabular}
```

Reformats an amount, which is useful for quick conversions.

```
Example usage: normalize key
```

100 skilling equal
\nduValue\{danish rigsdaler\}[normalize]\{..100\} \% 1.0.4
100 skilling equal 1 Rdl. 0 \& 4β

5 Tabular Data

There are a couple of ways to display values in tabular context, centered around explicitly or implicitly setting the aligned key, which causes \nduValue to wrap each segment in a cell of configurable width.

Additionally, all segments will be included in headers and cells, whether they contain a value or not (provided unit depth allows it). If no value is provided for the segment, and no nil replacement is specified with the replace nil with \rightarrow P. 5 key, the cell will be empty.
\nduHeader\{ \langle unit name \rangle \}[〈options \rangle]
Convenient header showing the unit symbols. See page 13 for configuration of symbols.

5.1 Options for Tabular Data

```
aligned (initially not set)
```

Causes each value to be wrapped in right-aligned cells of configurable width.

Changes the width of each cell. One may supply a bracketed commaseparated list of widths. If the list is shorter than the number of base units in the group, the last width will be repeated. See page 10 for example.

```
set aligned for environment=\langlename\rangle
tabularray column type=\langleletter\rangle
(initially not set)
```

The set aligned for environment key can be set to an environment name, causing aligned to automatically be set for those enviroments, using \backslash AtBeginEnvironment. It can be set multiple times, once for each required environment. See page 10 for example.
The tabularray column type key can be used to create a column type, which automatically wraps the column contents in \nduValue. The column type takes two arguments, a unit group and a set of key values for further configuration. Additionally, the special values HEADER, RESULT, and SKIP will respectively use \nduHeader, \backslash nduResult, and skip the cell. See page 11 for example. ${ }^{a}$

[^1]
Example of tabular data using set aligned for environment

```
\begingroup
\nduKeys{
% has been set in this document's preamble:
% set aligned for environment=tabular,
    treat zero as nil,
    replace nil with=---,
}
\begin{tabular}{r r}
    \toprule
    & \nduHeader{danish rigsdaler} \\
    \midrule
    a & \nduValue{danish rigsdaler}{1.2.3} \\
    b & \nduValue{danish rigsdaler}{100.0.0} \\
    c & \nduValue{danish rigsdaler}{.1.} \\
    \bottomrule
\end{tabular}
\endgroup
```

	Rdl.	\&	β
a	1	2	3
b	100	-	-
c	-	1	-

Example usage: cell widths key

```
\begingroup
\nduKeys{
    cell widths={5em, 1.5em},
}
\begin{tabular}{r r}
    \toprule
    & \nduHeader{danish rigsdaler} \\
    \midrule
    a & \nduValue{danish rigsdaler}{1.2.3} \\
    b & \nduValue{danish rigsdaler}{100..} \\
    c & \nduValue{danish rigsdaler}{.1.} \\
    \bottomrule
\end{tabular}
\endgroup
\begin{tabular}{rrrr} 
& Rdl. & \& & \(\beta\) \\
\hline a & 1 & 2 & 3 \\
b & 100 & & \\
c & & 1 & \\
\hline
\end{tabular}
```


Example of tabular data using tabularray column type

```
\begingroup
% has been set in this document's preamble:
% tabularray column type=U
\begin{tblr}{
    r
    U{danish rigsdaler}{add to variable=table result 1}|
    U{danish rigsdaler}{add to variable=table result 2}
}
    \toprule
    & HEADER & HEADER\\
    \midrule
    a & 1.2.3 & .. }15\
    b & 100.0.0 & .. 10 \\
    c & .1. & .. }2\mathrm{ \\
    \midrule
    total & RESULT & RESULT \\
    \bottomrule
\end{tblr}
\endgroup
```

	Rdl.	\&	β	Rdl.	\&	β
a	1	2	3			15
b	100	0	0			10
c		1				2
total	101	3	3	0	1	11

6 Accessing Information About Units

```
\nduSymbol{\langleunit name\rangle}
Expands to the symbol of the given base unit. Set by units/ \(\langle\) unit name \(\rangle /\) symbol \(\rightarrow\) P. 14 .
```

```
\nduFactor{\langleunit name\rangle}{\langleunit name\rangle}
```

\nduFactor{\langleunit name\rangle}{\langleunit name\rangle}
Expands to the conversion between two base units.
Set by units $/\langle$ unit name $\rangle /$ factor \rightarrow P. 14 .
That is, 1 \nduSymbol\{rigsdaler\} consists of \nduFactor\{rigsdaler\}\{skilling\} \nduSymbol\{skilling\}.
That is, 1 Rdl. consists of 96β.

```

\section*{7 Creating New Units}

If the included units are not suitable, more can be created. Pull requests are also welcome at https://github.com/mikkelee/latex-units.
\nduNewBaseUnit \(\{\langle\) unit name \(\rangle\}\{\langle\) key \(/\) value pairs \(\rangle\}\)
Creates a new base unit. It must contain at least a symbol, but a factor is also required for the math functions (see below).
\nduNewUnitGroup \(\{\langle\) unit name \(\rangle\}[\langle k e y / v a l u e \quad\) pairs \(\rangle]\{\langle\) ordered base units \(\rangle\}[\langle\) control sequence \(\rangle]\)

In order for the math functions to work, every base unit in the group must have a conversion path to the right-most base unit, eg. if a unit group consists of base units A, B, C, there must be defined factors for \(\mathrm{B} \rightarrow \mathrm{C}\) and either \(\mathrm{A} \rightarrow \mathrm{C}\) or \(\mathrm{A} \rightarrow \mathrm{B}\); if only the latter is configured, an attempt to calculate and cache it will be made internally.
It is possible to create shortcut macros for commonly used unit groups with optional overriding options. These macros take the same arguments as the full \nduValue \(\rightarrow\) P. 3 macro, except without the first argument (ie. the name of the unit).
Including several sub units may make the math results awkward, as the algorithm is greedy.
```

\nduNewUnitGroup{my sletdaler}
[units/sletdaler/symbol={Sletd.}]
{sletdaler, ort, skilling}
[\mySldl]
\mySldl{1.2.3}

```
1 Sletd. 2 O. \(3 \beta\)

\subsection*{7.1 Options For Base Units}
```

units/\langleunit name\rangle/symbol=\langlesymbol\rangle

```

Configures a symbol displaying the unit. This is used in \nduValue, \nduHeader, and is also available via \SYMBOL when defining the units/ \(\left\langle\right.\) unit name〉/format (see also ?? \({ }^{\rightarrow \text { P. ?? }}\) ).

\section*{units/ \(\langle\) unit name \(\rangle /\) format \(=\{\langle\ldots\rangle\}\)}

Sets how a given base unit should be formatted for display. If none is given, the general top-level format key is used.
```

units/\langleunit name\rangle/factor=\langleinteger\rangle \langleunit name\rangle

```

The conversion factor of a unit is how many of an underlying unit the given unit consists of. This can be specified multiple times.
This is used by the math macros and keys to calculate the sums and products.
Can be accessed via \nduFactor \(\rightarrow\) P. 12 .

These keys can of course also be set temporarily in \nduValue \(\rightarrow\) P. 3
```

\nduValue{danish rigsdaler}
[units/mark/symbol=Mk.]
{.9.}
\nduValue{danish rigsdaler}
[units/rigsdaler/format={\VALUE~Rigsdaler og}]
{1.2.3}
\nduValue{danish rigsdaler}[
unit separator={---},
units/rigsdaler/format={(\VALUE)},
units/mark/format={[\VALUE]},
units/skilling/format={\{\VALUE\}},
]
{1.2.3}
9 Mk.
1 Rigsdaler og 2 \& 3 \beta
(1)-[2]-{3}

```

\section*{8 Included Units}

On the following pages are the units included with the package.
```

Listing of units loaded with the british option
%%% CURRENCY %%
% https://en.wikipedia.org/wiki/\&sd
\nduNewBaseUnit { pound~sterling } {
symbol = { \& } ,
factor = { 20~shilling } ,
format = {\SYMBOL\VALUE } ,
}
\nduNewBaseUnit { shilling } {
symbol = { s } ,
factor = { 12~ penny } ,
format = { \VALUE\SYMBOL } ,
}
\nduNewBaseUnit { penny } {
symbol = { d } ,
format = { \VALUE\SYMBOL } ,
}
\nduNewUnitGroup { british~pound~sterling~lsd } [
unit~separator = {.~} ,
] {
pound~sterling ,
shilling ,
penny
}

```
```

Listing of units loaded with the danish option
%%% CURRENCY %%
\nduNewBaseUnit { rigsdaler } {
symbol = { Rdl. } ,
factor = { 6~mark } ,
}
\nduNewBaseUnit { rigsbankdaler } {
symbol = { Rbdl. } ,
symbol = { 96~skilling } ,
}
\nduNewBaseUnit { rigsdaler specie } {
symbol = { Rds. } ,
symbol = { 192~skilling } ,
}
\nduNewBaseUnit { speciedaler } {
symbol = { Spdl. } ,
factor = { 84~skilling } ,
}
\nduNewBaseUnit { sletdaler } {
symbol = { Sldl. } ,
factor = { 4~mark } ,
}
\nduNewBaseUnit { ort } {
symbol = { 0. } ,
factor = { 24~skilling } ,
}
\nduNewBaseUnit { mark } {
symbol = { Mk. } ,
factor = { 16~skilling } ,
}
\nduNewBaseUnit { skilling } {
symbol = { Sk. } ,
factor = { 3~hvid } ,
}
\nduNewBaseUnit { hvid } {
symbol = { Hv. } ,
factor = { 4~penning } ,
}
\nduNewBaseUnit { penning } {
symbol = { P. } ,
}

```
```

\nduNewUnitGroup { danish~rigsdaler } {
rigsdaler ,
mark ,
skilling ,
hvid ,
penning
} [\rdl]
\nduNewUnitGroup { danish~sletdaler } {
sletdaler ,
mark ,
skilling ,
hvid ,
penning
}[\sldl]
\nduNewUnitGroup { danish~rigsbankdaler } {
rigsbankdaler ,
skilling
}[\rbdl]
\nduNewUnitGroup { danish~speciedaler } {
speciedaler ,
skilling
} [\spdl]
%%%% AREA %%
\nduNewBaseUnit { tønde } {
symbol = { Td. } ,
factor = { 8~skæppe } ,
}
\nduNewBaseUnit { skæppe } {
symbol = { Sk. } ,
factor = { 4~fjerdingkar } ,
}
\nduNewBaseUnit { fjerdingkar } {
symbol = { Fj. } ,
factor = { 3~album } ,
}
\nduNewBaseUnit { album } {
symbol = { Alb. } ,
factor = { 4~penning } ,
}
\nduNewUnitGroup { danish~hartkorn } {
t
skæppe
fjerdingkar,

```
```

 album,
 penning
 } [\hartkorn]
%%%% WEIGHT %%
\nduNewBaseUnit { skippund } {
symbol = { Spd. } ,
factor = { 20~lispund } ,
}
\nduNewBaseUnit { lispund } {
symbol = { Lpd. } ,
factor = { 16~ skålpund } ,
}
\nduNewBaseUnit { skålpund } {
symbol = { Pd. }
}
\nduNewUnitGroup { danish~pund } {
skippund,
lispund,
skålpund
}

```

\section*{Listing of units loaded with the german option}
\%\%\% CURRENCY \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
\nduNewBaseUnit \{ reichsthaler \} \{
    symbol = \{ Rthl. \} ,
    factor \(=\) \{ 30~groschen \},
\(\}\)
\nduNewBaseUnit \{ groschen \} \{
    symbol = \{ Gr. \} ,
    factor = \{ 12~pfennig \} ,
\}
\nduNewBaseUnit \{ pfennig \} \{
    symbol \(=\{\) Pf. \(\}\),
\}
\nduNewUnitGroup \{ german~reichsthaler \} \{
    reichsthaler
    groschen ,
    pfennig
\}```


[^0]:    ${ }^{1}$ https://en.wikipedia.org/wiki/Danish_rigsdaler

[^1]:    ${ }^{a}$ Thanks to Yukai Chou for help with tabularray integration.

