mismath
 Miscellaneous mathematical macros*

Antoine Missier
antoine.missier@ac-toulouse.fr

December 19, 2023

Contents

1 Introduction 1
2 Usage 2
2.1 Mathematical constants 2
2.2 Vectors (and tensors) 4
2.3 Standard operator names 6
2.4 A few useful aliases 7
2.5 Improved spacing in mathematical formulas 9
2.6 Environments for systems of equations and small matrices 11
2.7 Displaymath in double columns 12
2.8 Old commands 13
3 Implementation 13

1 Introduction

According to the International Standards ISO 31-0:1992 to ISO 31-13:1992, superseded by ISO 80000-2:2009, mathematical constants e, i, π should be typeset in roman (upright shape) and not in italic (sloping shape) like variables (see [1] [2] [3] [4]). This package provides some tools to achieve this automatically.

Even though it is recommended to typeset vectors names in bold italic style [2] [4], they are often represented with arrows (especially in school documents or in physics). To draw visually appealing arrows above vectors, we use the esvect package by Eddie Saudrais [5]. Additionally we provide a few more macros related to vectors with

[^0]arrows，particularly to enhance the typesetting of the norm：$\|\overrightarrow{A B}\|$ instead of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ version $\|\overrightarrow{A B}\|$ which is not vertically adjusted，or worse $\|\overrightarrow{A B}\|$ ．

The package also offers other macros for：
－tensors，
－some common operator names，
－a few useful aliases，
－enhancing spacing in mathematical formulas，
－systems of equations and small matrices，
－displaymath in double columns for lengthy calculations．
To avoid compatibility issues，most of our macros will only be defined if there isn＇t already a command with the same name in the packages loaded before mismath．If a macro is already defined，a warning message will be displayed and the mismath definition will be ignored．If you wish to keep the existing command or the mismath command，you can use \backslash let $\backslash\langle$ command $\rangle \backslash$ relax，before loading mismath，or after． If the other command is defined with \backslash AtBeginDocument，you should do the same for \backslash let \backslash 〈command $\rangle \backslash$ relax and for loading mismath．
［〈options〉］The mismath package loads the amsmath package without any options．If you want to use amsmath with specific options（refer to［6］），you can include these options when calling mismath，or you can load amsmath with the desired options before loading mismath．

In addition mismath loads the mathtools package by Morten Høgholm and Lars Madsen［7］．This package offers numerous helpful macros and improvements of the amsmath package．

A recommendation，although rarely followed，is to typeset uppercase Greek letters in italic shape，similar to other variables［4］．This can be automatically achieved with packages such as fixmath by Walter Schmidt［8］，isomath by Günter Milde［9］ or pm－isomath by Claudio Beccari［10］and optionally with many others（such as mathpazo or mathptmx with the option slantedGreek）．However this feature is not implemented here due to a conflicting rule in France，where all capital letters in mathematics are required to be typeset in upright shape ${ }^{1}$ ．The decision to load any of these packages is left to the user＇s discretion．

2 Usage

2．1 Mathematical constants

\backslash mathup As for classic functions identifiers，predefined mathematical constants should be type－

[^1]set in upright shape (typically in roman family), even though this practice is not very common and can be tedious to adhere to. A first solution is to use the \mathup macro, which is superior to \backslash mat hrm^{2}, for setting any math text in upright shape. For example you can use \mathup $\{e\}$ to get the Euler's number.
 merous formulas can become tiresome. To alleviate this, the package proposes a powerful solution with the macro \backslash MathUp\{ \langle char $\rangle\}$. For example, when \backslash MathUp $\{e\}$ is called, any subsequent occurrence of e will automatically be set in roman (upright shape), without the need to type \e explicitly. The effect of this macro can be either global or local, depending on whether it is used outside or inside an environment or braces. Furthermore, you can call this macro in the preamble to apply the change from the beginning of the document. This powerful feature allows you to bring a document up to the standards effortlessly. In fact, \MathUp can be applied to any valid single character, offering flexibility for various use cases (another use of it with probability will be presented in section 2.3).
\MathIt
When there are other occurrences of e, i or j as variables, you can still obtain italicized e, i or j using ETEX commands \backslash mathit or \mathnormal, which are use- $^{\text {a }}$ ful for a single use. However, you also have the option to use the inverse switch \backslash MathIt $\{\langle c h a r\rangle\}$, which has a global effect when used outside environments or braces, or a local effect when used inside them. Similar to \MathUp, \MathIt can be applied to any single character.

To avoid cluttering a document that contains many occurrences of Euler's number (e) or imaginary numbers (i) with \backslash mathup $\{e\}$ or \backslash mathup $\{i\}$, the package provides the \e command for Euler's number and $\backslash i$ or $\backslash j$ for imaginary numbers. Let us notice that \i and $\backslash j$ already exist in LaTeX. In LR (left-to-right) mode, they produce ' 1 , J' without the dot, allowing you to place accents on them. However, in mathematical mode, they produce the warning "LaTeX Warning: Command \i invalid in math mode on input line 〈line〉". With the new definition provided by the package, \i and $\backslash j$ will be redefined specifically for mathematical mode.

Indeed, typing a lot of backslashes for constants like e, i, or j in a document with nuThese macros enable you to set upright or normal (italic) typesetting for multiple letters in a single command. For instance, \MathNumbers $\{e, i\}$ is equivalent to \backslash MathUp\{e\} \MathUp\{i\}. In \MathNumbers, the comma separator between letters can be modified or removed as needed. In fact, this macro only affects the letters e, i, or \mathfrak{j}; it has no effect on other characters. On the other hand, \backslash MathNormal can be utilized for probability as well (refer to section 2.3), and it accepts any commaseparated list of arguments. This means you can apply the normal italic math mode typesetting to various letters at once using \MathNormal.

The mathematical constant π should also be typeset in upright shape (see [1], [2], [4]), which is different from italicized π. However, this recommendation is

[^2]even less commonly followed compared to the one concerning e and i [1]. Several packages enable the typesetting of mathematical Greek letters in upright shape. Notably, let us mention upgreek [11], mathdesign [12] (used in the present document), kpfonts [14], fourier [15], libertinust1math, pxgreeks, txgreeks, libgreek, etc. A special mention goes to Igrmath of Jean-François Burnol [16] which allows the use of any Greek LGR-encoded font in math mode. These packages provide commands like \uppi (upgreek), \piup (mathdesign, kpfonts, lgrmath), \otherpi (fourier), etc. ${ }^{3}$ To preserve default italic style for lowercase Greek letters, with the exception of pi, and to avoid the need to type a lot of \uppi or \piup, we offer the macro \backslash pinumber[\langle command \rangle]. This macro redefines $\backslash \mathrm{pi}$ to match the optional command name provided (without a backslash), such as piup, assuming that the appropriate package has been loaded beforehand.

By using the preliminary code \MathNumbers\{ei\}\pinumber[piup] (assuming the mathdesign package is loaded) you can achieve the following result:

$$
\$ e^{\wedge}\{i \backslash p i\}=-1 \$ \quad \text { which yields } \quad e^{i \pi}=-1
$$

When you call \pinumber without any argument, it defines \backslash pi using the default LGR font encoding for Greek letters, resulting in the character π. In this case the appropriate option LGR for the fontenc package will be automatically loaded if the \backslash pinumber command is called in the preamble (at least the first time it is used). The pi character obtained with this setting will look the same as the one provided by Günter Milde's textalpha package [13]. This π character is particularly well-suited for use with the default Computer Modern or Latin Modern font family ${ }^{4}$.
\itpi When you activate \backslash pinumber, the original italic π is still accessible using \itpi. \backslash pinormal In fact \pinumber acts as a switch, enabling the upright π. Additionally, there is an inverse switch, \pinormal, which you can call anywhere to revert to the original behavior of the \pi command (italic π).

2.2 Vectors (and tensors)

\vect By default, the \vect command ${ }^{5}$, produces vectors with arrows (thanks to the esvect package by Eddie Saudrais ${ }^{6}$) which are more elegant than those produced by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$'s \overrightarrow command. The esvect package has an optional argument (a single letter between a and h) to define the desired type of arrow (see [5]). In mismath, esvect is loaded with the option $\mathrm{b}: \backslash \operatorname{vect}\{\mathrm{AB}\}$ gives $\overrightarrow{A B}$. If you wish to use a different type of arrow, you must call esvect with the appropriate option before loading

[^3]mismath. For example, using ackage[d]\{esvect\}willprovidethearrowsproducedbydefaultin[5].\boldvectThe\vectmacroallowsvectornamestobetypesetusingbolditalicfont,asrecommendedbyISO[2][3],insteadofusingarrows.Byusingthe\boldvectcommand,youcanmodifythebehaviorof\vectlocallyorglobally,dependingonitsplacementinthedocument(insideoroutsideagrouporanenvironment):\[\boldvect\vect\{v\}\boldvectcommandBydefault\backslashboldvectusesthe\backslashboldsymbolcommand7fromtheamsbsypackage,whichisautomaticallyloadedbyamsmath.However,youmaypreferotherpackagesthatproducebolditalicfonts,suchasfixmathwiththe\mathboldcommand,isomathwith\backslashmathbfitorbmwiththe$\backslash\mathrm{bm}$command.Touseanalternativecommand,redefine\boldvectcommand,forinstanceafterloadingfixmath:\backslashrenewcommand\backslashboldvectcommand$\{\backslash$mathbold$\}$.AccordingtoISOrules,symbolsformatricesarealsoinbolditalic.Thereforeyoucanusethesame\backslashboldvectcommandorcreateanotheralias.undefined

At any moment, you can revert to the default behavior using the inverse switch \arrowvect. These switches can be placed anywhere, whether inside mathematical mode or within an environment (with a local effect) or outside (with a global effect).
\hvect When vectors with arrows are typeset side by side, the arrows can be set up slightly higher using \hvect (which places a vertical phantom box containing " t ") to avoid inelegant effects. For example, writing

- $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$, obtained with \hvect $\{u\}$, is better than $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$;
- $\vec{a} \cdot \vec{b}=0$, obtained with \backslash hvect $\{a\}$, is better thant $\vec{a} \cdot \vec{b}=0$.

This adjustment ensures a more visually pleasing appearance when vectors with arrows are combined in an equation. The \boldvect and \arrowvect switches have the same effect on \hvect as they do on \vect.
\hvec In a similar way, \hvec raises the little arrow produced by the $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ command \vec, to the height of the letter " t " (but \boldvect have no effect here):

- $\mathscr{P}=\vec{f} \cdot \vec{v}$, obtained with \hvec\{v\}, is better than $\mathscr{P}=\vec{f} \cdot \vec{v}$.
- $\vec{f}=m \vec{a}$, obtained with \backslash hvec $\{\mathrm{a}\}$, is better than $\vec{f}=m \vec{a}$.
\norm
The norm of a vector is conventionally represented using the delimiters \IVert and $\backslash r$ Vert (or $\backslash \mid$ unless a plus (+) or minus (-) sign follows the opening delimiter) or \backslash left \backslash Vert and \backslash right \backslash Vert for adaptive delimiters. Unfortunately, these delimiters are always vertically centered, relatively to the middle of the base line, whereas vectors with arrows are asymmetric objects. The code $\$ \backslash$ norm $\{\backslash$ vec $\{\mathrm{h}\}\} \$$ raises a smaller double bar to produce $\|\vec{h}\|$ instead of $\|\vec{h}\|$. Let's notice that the height of the

[^4]bars don't adjust to content, but however to context: main text, subscripts or exponents, e.g. $\mathrm{e}^{\|\vec{h}\|}$. This macro is useful only for arguments of special height, such as \vec{h} or $\overrightarrow{A B}$ and may give bad results in other situations.
\mathbfsfit \tensor

For tensors symbols, ISO rules recommend using sans serif bold italic, but there is no such math alphabet in the default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ mathematical style. However, the mismath package defines this alphabet (assuming the font encoding and package you use permits it) and provides the macro \mathbfsfit or its alias \tensor. By using \tensor\{T\} you can produce \boldsymbol{T}.

2.3 Standard operator names

\di The differential operator should be typeset in upright shape, not in italics, to distinguish it from variables (as mentioned in [1] [2] [4] [26]). To achieve this, we provide the \di command. Take a look at the following examples (notice the thin spaces before the d, just like with classic function's names):

$$
\begin{aligned}
& \text { \[\iint } x y \backslash d i \quad x \backslash d i \quad y ~
$$

\& \backslash[m \backslash f r a c\{\backslash d i \sim 2 x\}\{\backslash d i \quad t \sim 2\}

\& +h \backslash f r a c\{\backslash d i x\}\{\backslash d i t\}+k x=0 \backslash]

\& \iint x y \mathrm{~d} x \mathrm{~d} y

\& m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+h \frac{\mathrm{~d} x}{\mathrm{~d} t}+k x=0
\end{aligned}
\]

This command can also represent distance (hence its name):

$$
\lambda \mathrm{d}(A, \mathscr{F})+\mu \mathrm{d}(B, \mathscr{H})
$$

To refer to probability ${ }^{8}$ and expectation the proper use is to typeset the capital letters P, E in roman just like any standard function identifier. This can be achieved with $\backslash P$ and $\backslash E$ commands.

The $\backslash P$ command already existed to refer to the end of paragraph symbol $\boldsymbol{\top}$ and has been redefined, but this symbol can still be obtained with \Par.

Variance is generally denoted by var or Var (see table below), but some authors prefer to use V, which can be produced using \V.

In the same way as for e, i or j , you can use \backslash MathUp $\{P\}$, \backslash MathUp $\{E\}$ or
\backslash MathProba
\backslash MathNormal \backslash MathUp $\{V\}$ to avoid typing many $\backslash P, \backslash E$ or $\backslash V$. However you can also achieve this in a single command with \MathProba, for example \backslash MathProba\{P, E\}. We get the inverse switch with \MathIt for any individual letter or \MathNormal for a list.

Some authors use "blackboard bold" font to represent probability, expectation and variance: $\mathbb{P}, \mathbb{E}, \mathbb{V}$. The \probastyle macro sets the appearance of $\backslash P, \backslash E$ and $\backslash V$. For instance }^{9}\) brings the previous "openwork" letters. The \mathbb command comes from amsfonts package (loaded by amssymb but also available standalone) which needs to be called in the preamble.

The following standard operator names are defined in mismath:

[^5]| $\backslash \mathrm{adj}$ | adj | \erf | erf | $\backslash \mathrm{Re}$ | Re |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \backslash Aut | Aut | $\backslash \mathrm{grad}$ | $\overrightarrow{\text { grad }}$ | \backslash rot | $\overrightarrow{\mathrm{rot}}$ |
| \backslash codim | codim | \id | id | \sgn | sgn |
| \Conv | Conv | \Id | Id | \backslash Sinc | sinc |
| \cov | cov | \im | im | \spa | span |
| $\backslash \mathrm{Cov}$ | Cov | $\backslash \mathrm{Im}$ | Im | \tr | tr |
| \curl | $\overrightarrow{\text { curl }}$ | \lb | lb | \var | var |
| \divg | div | $\backslash 1 \mathrm{~cm}$ | lcm | \backslash Var | Var |
| \End | End | \rank | rank | $\backslash \mathrm{Zu}$ | Z |

By default, operators returning vectors, \grad and \curl (or its synonym \rot rather used in Europe), are written with an arrow on the top. When \boldvect is activated, they are typeset in bold style: grad, curl, rot. For the variance, the covariance and the identity function, two notations are proposed, with or without a first capital letter, because both are very common. On the other hand, 'im' stands for the image of a linear transformation (like 'ker' for the kernel) whereas 'Im' is the imaginary part of a complex number. Please note that \div already exists (\div) and \span is a TEX primitive (used in \multicolumn); they haven't been redefined. Therefore the provided macros are called \divg (divergence) and \spa (span of a set of vectors). Furthermore $\backslash Z$ is used to denote the set of integers (see 2.4), which is why we used $\backslash \mathrm{Zu}$, to designate the center of a group: $\mathrm{Z}(G)$ (from German Zentrum).
\oldRe
\oldIm
\big0
\bigo \lito

The \backslash Re and $\backslash I m$ macros already existed to refer to real and imaginary part of a complex number, producing outdated symbols \Re and \mathfrak{I}. However, they have been redefined according to current usage, as mentioned in the above table. Nevertheless, it is still possible to obtain the old symbols with \oldRe and \oldIm.

The package mismath also provides some (inverse) circular or hyperbolic functions, that are missing in $\mathrm{ETEX}_{\mathrm{E}} \mathrm{X}$

\arccot	arccot	\arsinh	arsinh	\arcoth
\sech	sech	\arcosh	arcosh	\arsech
arsech				
\csch	csch	\artanh artanh	\arcsch arcsch	

Asymptotic comparison operators (in Landau notation) are obtained with $\backslash \mathrm{big} 0$ or \bigo and \lito commands:

$$
n^{2}+\mathscr{O}(n \log n) \quad \text { or } \quad n^{2}+\mathrm{O}(n \log n) \quad \text { and } \quad \mathrm{e}^{x}=1+x+\mathrm{o}\left(x^{2}\right)
$$

2.4 A few useful aliases

In the tradition of Bourbaki and D. Knuth, proper use requires that classic sets of numbers are typeset in bold roman: $\mathbf{R}, \mathbf{C}, \mathbf{Z}, \mathbf{N}, \mathbf{Q}$, whereas "openwork" letters $(\mathbb{R}, \mathbb{Z}, \ldots)$ are reserved for writing at the blackboard [26]. Similarly, to designate a field we use \mathbf{F} or \mathbf{K} (Körper in German). We get obtain these symbols with the following macros:

$$
\backslash R, \backslash C, \backslash Z, \backslash N, \backslash Q, \backslash F, \backslash K .
$$

\backslash mathset
The \mathset command enables you to change the behavior of all these macros in a global way. By default, \mathset is an alias for \backslash mathbf, but if you prefer openwork letters, you can simply place } where you want, for instance in the preamble after loading the amsfonts package (which provides the "blackboard bold" typeface, also loaded by amssymb).

\onlymathC

\dlim
\dsum
\dprod
\dcup
\backslash dcap
\lbar

\backslash hlbar

\eqdef

\eqdef*

$$
\begin{array}{ll}
\$ \backslash \mathrm{e}^{\wedge}\{\backslash i \backslash \text { theta }\} \backslash \text { eqdef } & \\
& \backslash \cos \backslash \text { theta }+\backslash i \backslash \sin \backslash \text { theta } \$ \\
\$ \backslash \mathrm{e}^{\wedge}\{\backslash \mathrm{i} \backslash \text { theta }\} \backslash \text { eqdef } * & \\
& \backslash \cos \backslash \text { theta }+\backslash i \backslash \sin \backslash \text { theta } \$ \\
\cos \theta+\mathrm{i} \sin \theta \\
& \mathrm{e}^{\mathrm{i} \theta} \triangleq \cos \theta+\mathrm{i} \sin \theta
\end{array}
$$

\unbr \unbr is an alias for \underbrace ${ }^{10}$, making source code more compact.

[^6]\[

$$
\begin{aligned}
& \$(Q A P) \wedge n=\backslash u n b r\{Q A P \backslash \operatorname{mul} Q A P \backslash \text { mul } \\
& \quad \text { cdots } \backslash \text { mul } Q A P\}_{_}\{n \backslash \text { text }\{\text { times }\}\}
\end{aligned}
$$ \$ \quad(Q A P)^{n}=\underbrace{Q A P \times Q A P \times \cdots \times Q A P}_{n times}
\]

\iif $\backslash i i f$ is an alias for "if and only if", to be used in text mode.

2.5 Improved spacing in mathematical formulas

\then
\txt
$\backslash m u l$
p he same way, when typesetting an exponent after a closing big parenthesis produced by $\backslash r i g h t)$, the exponent appears to be a little to far from the parenthesis. To address this issue, the \backslash pow $\{\langle\operatorname{expr}\rangle\}\{\langle p o w\rangle\}$ command is provided, which sets \langle expr〉 between parentheses and adjusts the positioning of the exponent $\langle p o w\rangle$ slightly closer to the right parenthesis ${ }^{11}$. Compare:

$$
\mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n} \quad \text { which may be better than } \mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n}
$$

\abs
The correct typesetting of absolute value (or modular for a complex number) is achieved using \lvert ... \rvert, rather than |, as the latter doesn't maintain proper

[^7]spacing in some situations (when a sign follows the open delimiter). For bars whose height has to adapt to the content, we can use \left\vert ... \right \vert or, more simply, the \backslash abs $\{\ldots\}$ command, which is equivalent ${ }^{12}$.
\lfrac
The \lfrac macro behaves like \frac but with thicker spaces around the arguments, making the corresponding fraction bar slightly longer:
$\backslash[\backslash \operatorname{lbar}\{Z\}=$
$\left.\backslash l f r a c\left\{\backslash l \operatorname{bar}\left\{z_{-} 1-z_{-} 2\right\}\right\}\left\{\backslash l \operatorname{bar}\left\{z_{-} 1+z_{-} 2\right\}\right\} \quad \backslash\right] \quad \bar{Z}=\frac{\overline{z_{1}-z_{2}}}{\overline{z_{1}+z_{2}}}$
[ibrackets]
Open intervals are commonly represented with parenthesis, e.g. $(0,+\infty)$, but sometimes square brackets are used, especially in French mathematics: $] 0,+\infty$ [. In that specific case, the space around the square brackets is often inappropriate, as in the expression $x \in] 0,+\infty[$. To address this issue, we have redefined the brackets in the ibrackets package [25] which can be optionally ${ }^{13}$ loaded by mismath using the ibrackets package option. Thus $\$ \mathrm{x} \backslash \mathrm{in}$]-\pi, 0 [\cup $] 2 \backslash p i, 3 \backslash p i[\$$
yields $x \in]-\pi, 0[\cup] 2 \pi, 3 \pi[$ with ibrackets, instead of $x \in]-\pi, 0[\cup] 2 \pi, 3 \pi[$ without ibrackets.

In our code, the symbols [and] are set as 'active' characters, behaving like ordinary characters and not as delimiters in most cases. Therefore, a line break could occur between the two brackets, but it is always possible to transform them into delimiters using \left and \right.

However, when a bracket is immediately followed by a + or - character, it becomes an open delimiter. Therefore, when the left bound contains an operator sign, you don't have to leave a space between the first bracket and the sign, otherwise, the spaces surrounding the operator will be too large. For example if you write $\$ \mathrm{x}$ \in] - \infty, 0]\$, it yields $x \in]-\infty, 0$] instead of $x \in]-\infty, 0]$. Conversely, when dealing with algebraic expressions involving intervals, you must leave a blank space between the second bracket and the $+/$ - operation. For instance \$ [a, b] + [c, d] \$ yields [a, b] + [c, d] but \$ [a, b] + [c, d] \$ yields [a, b]+[c,d].

Besides, there are other approaches, for example the \interval macro from the interval package [17], or \DeclarePairedDelimiters from the mathtools package [7] (but the latter is incompatible with ibrackets for managing brackets).

In many countries, except notably in Anglo-Saxon countries, the comma is used as a decimal separator for numbers. However, in the math mode of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, the comma is always, by default, treated as a punctuation symbol and therefore is followed by a space. This is appropriate in intervals: $\$[\mathrm{a}, \mathrm{b}] \$$ results in $[a, b]$, but is not appropriate for numbers where the comma represents the decimal separator. For example, $\$ 12,5 \$$ is displayed as 12,5 instead of 12,5 .

Two very convenient packages allow handling the decimal comma in math mode: icomma by Walter Schmidt [18] and ncccomma by Alexander I. Rozhenko [19]. The

[^8]second package takes a more generic approach, however it poses several compatibility issues, in particular when compiling with LuaETEX, using unicode-math and calling \setmathfont. Therefore we propose the decimalcomma package [20], functionally identical to that of ncccomma but with lighter code and without the aforementioned incompatibility. It can be loaded by mismath using the decimalcomma package option ${ }^{14}$.

2.6 Environments for systems of equations and small matrices

system The system environment, defined in the mismath package, is used to represent a system of equations:

```
$\begin{system}
    x=1+2t \\ y=2-t \\ z=-3-t
\end{system}$
\[
\left\{\begin{array}{l}
x=1+2 t \\
y=2-t \\
z=-3-t
\end{array}\right.
\]
```

\systemsep
system[〈coldef $\rangle]$ left aligned. However the system environment has an optional argument that allows to create systems with multiple columns, specifying their alignment using the same syntax as the array environment in ETEX. For instance, using \begin\{system\} [cl] } will produce a two-column system, with the first column centered and the second column left-aligned, as shown in the following example:

```
$\begin{system} [cl]
    y & =\dfrac{1}{2}x-2 \\[1ex]
    (x,y) & \neq (0,-2)
\end{system}$
```

$$
\left\{\begin{array}{r}
y=\frac{1}{2} x-2 \\
(x, y) \neq(0,-2)
\end{array}\right.
$$

The default spacing between the lines of a system environment has been slightly enlarged compared to the one used in array environments (using a factor of 1.2). This can be adjusted by using \{〈stretch \rangle \}, where \langle stretch \rangle is the desired value for the spacing. You can place this command inside the current mathematical environment for a local change, or outside for a global change. The default value for is 1.2 . Furthermore you can also use the end of the line with a spacing option, as demonstrated above with $\backslash \backslash[1 \mathrm{ex}]$, to control the spacing between specific lines in the system.

[^9]Another example with \backslash begin\{system $\left[\right.$ rl@\{\quad\}l] ${ }^{15}$:

$$
\left\{\begin{array} { r l }
{ x + 3 y + 5 z = 0 } & { R _ { 1 } } \\
{ 2 x + 2 y - z = 3 } & { R _ { 2 } } \\
{ 3 x - y + z = 2 } & { R _ { 3 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
x+3 y+5 z=0 & R_{1} \\
4 y+11 z=3 & R_{2} \leftarrow 2 R_{1}-R_{2} \\
5 y+7 z=-1 & R_{3} \leftarrow \frac{1}{2}\left(3 R_{1}-R_{3}\right)
\end{array}\right.\right.
$$

Let's also mention the systeme package [21] which provides a lighter syntax and automatic alignments for linear systems. Additionally, there is the spalign package [22], which offers a convenient and easy syntax for systems and matrices with visually appealing alignments.
spmatrix
The amsmath package offers several environments to typeset matrices : For example, the pmatrix environment surrounds the matrix with parenthesis, and the smallmatrix environment creates a smaller matrix suitable for insertion within a text line. We provide a combination of the these both functionalities with the spmatrix environment: $\$ \backslash$ vec $\{u\} \backslash$ begin\{spmatrix\}-1 $\backslash \backslash 2 \backslash$ end\{spmatrix\} $\$$ yielding $\vec{u}\binom{-1}{2}$.

The mathtools package enhances the amsmath matrix environments and also provides a small matrix environment with parenthesis: psmallmatrix. Moreover, with the starred version \begin\{psmallmatrix*\}[〈col }] , you can choose the alignment inside the columns ($c, 1$ or r). However, the space before the left parenthesis is unfortunately too narrow compared to the space inside the parenthesis. To illustrate this, consider the following comparison: $\vec{u}\binom{-1}{2}$ (using mismath's spmatrix) vs. $\vec{u}\binom{-1}{2}$ (using mathtools psmallmatrix).

For typesetting various kinds of matrices, let's mention the excellent nicematrix package by François Pantigny [23].

2.7 Displaymath in double columns

mathcols The mathcols environment allows you to arrange "long" calculations in double columns, separated with a central rule, as shown in the following example. However, to use this feature, the multicol package must be loaded in the preamble. The mathcols environment activates mathematical mode in display style and with an aligned environment.

$$
\begin{aligned}
& \frac{1}{2 \times\left(\frac{1}{4}\right)^{n}+1} \geq 0.999 \\
& \Longleftrightarrow 4^{n} \geq 1998 \\
\Longleftrightarrow 1 \geq 1.998\left(\frac{1}{4}\right)^{n}+0.999 & \\
\Longleftrightarrow 0.001 \geq \frac{1.998}{4^{n}} & \\
& \Longleftrightarrow n \geq \frac{\ln 4 \geq \ln (1998)}{\ln 4} \approx 5.4 \\
& \Longleftrightarrow n \geq 6
\end{aligned}
$$

The \changecol macro is used to switch to the next column, and an alignment

[^10]within the column is done using the classic delimiters \& to separate entries and $\backslash \backslash$ to start a new row.

```
\begin{mathcols}
    & \frac{1}{2 \mul {\pow{\frac{1}{4}}{n}} + 1} \geq 0.999 \\
    \iff\ & 1 \geq 1.998 \pow{\frac{1}{4}}{n} + 0.999 \\
    \iff\ & 0.001 \geq \frac{1.998}{4^n} \\
\changecol
    & \iff 4^n \geq 1998 \\
    & \iff n \ln 4 \geq \ln(1998) \\
    & \iff n \geq \frac{\ln(1998)}{\ln 4} \approx 5.4 \\
    & \iff n \geq 6
\end{mathcols}
```


2.8 Old commands

Here is a summary table of old commands that were used until version 2.2. These commands are still functional and will be maintained for the time being, but a warning message indicates the new alternative. They used to work only in the preamble, affecting the entire document globally, and lacked an inverse switch. These old commands can now be replaced by the more versatile and powerful \backslash MathUp macro, which can be used anywhere in the document or preamble and has an inverse switch \MathIt.

Old command	New alternative
\enumber	\backslash MathUp\{e\}
\inumber	\backslash MathUp\{i\}
\jnumber	\backslash MathUp\{j\}
\backslash PEupright	\backslash MathUp\{P\}\MathUp\{E\}

You can also utilize \backslash MathNumbers instead of \backslash MathUp with an argument containing all the constants you want to be typeset in roman (among 'e, i, j '). Additionally \backslash MathProba\{P,E\} can be used instead of \backslash MathUp\{P\} \backslash MathUp\{E\}, and you can include V in its argument to refer to variance.

In version 2.3 we attempted to replace these old commands with package options based on keyval. However, we found that this method was less efficient and have decided to abandon it. As a result, the command \mismathset is now obsolete. Additionally, the command, \paren, which was used before version 2.0, is no longer supported.

3 Implementation

```
1 \newif\ifmm@ibrackets % initialized to false
2\newif\ifmm@decimalcomma
3 \DeclareOption{ibrackets}{\mm@ibracketstrue}
```

```
4\DeclareOption{decimalcomma}{\mm@decimalcommatrue}
5\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{amsmath}}
6\ProcessOptions \relax
7\@ifpackageloaded{amsmath}{}{\RequirePackage{amsmath}}
8\@ifpackageloaded{mathtools}{}{\RequirePackage{mathtools}}
9\@ifpackageloaded{esvect}{}{\RequirePackage[b] {esvect}}
10\RequirePackage{ifthen}
11 \RequirePackage{xparse} % for \NewDocumentCommand
2\RequirePackage{xspace}
13\RequirePackage{iftex}
4\ifmm@ibrackets\RequirePackage{ibrackets}\fi
5\ifmm@decimalcomma\RequirePackage{decimalcomma}\fi
16
```

We have load certain packages conditionally to avoid 'option clash' errors in cases where these packages have been previously loaded with other options.
\bslash
The \bslash macro originates from Frank Mittelbach's doc.sty package. It can be employed in other documents as an alternative to \, especially in situations where \ does not work correctly, such as inside warning messages.
$17\{\backslash$ catcode' $\backslash \mid=\backslash z @ \backslash$ catcode' $\backslash \backslash=12$ |gdef|bslash\{
$\} \% \bslash command }$ 18
\mm@warning
$\backslash m m @ m a c r o$ $\backslash m m @ o p e r a t o r$

The next three internal macros serve as meta commands for conditionally defining macros while providing a warning message if the macro already exists. These macros can be useful in other packages as well.

```
\newcommand\mm@warning[1] {
    \PackageWarningNoLine{mismath}{
        Command \bslash #1 already exist and will not be redefined}
}
\newcommand\mm@macro[2]{
    \@ifundefined{#1}{
        \expandafter\def\csname #1\endcsname{#2}
    }{\mm@warning{#1}}
27}
8\NewDocumentCommand\mm@operator{0{#3}mm}{%
    \@ifundefined{#1}{
        \DeclareMathOperator{#2}{#3}
    }{\mm@warning{#1}}
32}
```

33

To produce the correct upright shape font when working with the beamer package, you don't have to use \mathrm but rather \mathup (based on \operatorfont from the amsopn package). This command also works fine with other sans serif fonts like cmbright.

Moreover for beamer, which changes the default font family (sans serif) \e, \i, \j have no effect without \backslash AtBeginDocument.
\backslash AtBeginDocument is also necessary to redefine $\backslash i$ when calling the hyperref package which overwrites the \i definition.

```
34\providecommand{\mathup}[1]{{\operatorfont #1}} % also in kpfonts
5\mm@macro{e}{\mathup{e}}
\\AtBeginDocument{\let\oldi\i\let\oldj\j
    \renewcommand{\i}{\TextOrMath{\oldi}{\mathup{i}}}
    \renewcommand{\j}{\TextOrMath{\oldj}{\mathup{j}}} }
```

The following macros are switches that transform any chosen letter in math mode to roman or italic style. These switches can be used anywhere in the document or preamble. To obtain a letter in roman style instead of italic, we need to change the mathcode digit that represents the font family: 1 to 0 .

For example, except for LuaET $\mathrm{E} X$, mathcode of the ' e ' letter is: ' $\mathrm{e}=$ " 7165 (decimal 29029), with the second digit ' 1 ' indicating "italic" style. To get a roman ' e ', we need to change its mathcode to "7065.

When used in the preamble, it is necessary to call \backslash AtBeginDocument for using with the beamer package. In the preamble, \math@family\{\#1\}\{0\} is equivalent to \DeclareMathSymbol\{\#1\}\{\mathalpha\}\{operators\}\{‘\#1\}.

```
\ \newcount \mm@charcode
41 \newcount \mm@charclass
42 \newcount \mm@charfam
3 \newcount\mm@charslot
4 4
5\newcommand*\math@family[2] {%
    \mm@charfam=#2
    \ifluatex
            \mm@charclass=\Umathcharclass`#1
            %\mm@charfam=\Umathcharfam'#1
            \mm@charslot=\Umathcharslot`#1
            \Umathcode`#1= \mm@charclass \mm@charfam \mm@charslot
        \else
            \mm@charcode=\mathcode`#1
            % extract charclass
            \@tempcnta=\mm@charcode
            \divide\@tempenta by "1000
            \multiply\@tempcnta by "1000 % charclass
            \mm@charclass=\@tempcnta
            % extract charslot
            \@tempcnta=\mm@charcode
            \@tempcntb=\mm@charcode
            \divide\@tempenta by "100
            \multiply\@tempenta by "100 % charclass + charfam
            \advance\@tempcntb by -\@tempcnta % charslot
            \mm@charslot=\@tempcntb
            % construct charcode
            \mm@charcode=\mm@charclass
            \multiply\mm@charfam by "100
            \advance\mm@charcode by \mm@charfam
```

```
        \advance\mm@charcode by \mm@charslot
        \mathcode`#1=\mm@charcode
    \fi
3}
\newcommand*\MathFamily [2] {%
        \ifx\@onlypreamble\@notprerr
            \math@family{#1}{#2}
        \else % before \begin{document}
            \AtBeginDocument{\math@family{#1}{#2}}
        \fi
81}
83 \newcommand*\MathUp [1]{\MathFamily{#1}{0}}
84 \newcommand*\MathIt[1]{\MathFamily{#1}{1}}
```

82
85

With a similar approach we could also create additional macros to set any letter in bold or sans serif. However, there is no default family number associated with these typefaces. The family number depends on the font package being loaded and may vary depending on specific \DeclareSymbolFont used. Therefore, setting letters in bold or sans serif requires additional consideration and may not have a straightforward solution.

In addition to \backslash MathUp and \backslash MathIt, we also offer the following two commands to set a group of letters in roman typeface: one for for mathematical constants, among 'e, i, j ', and the other for probability operators, among or 'P, E, V'.

```
6 \newcommand*\MathNumbers[1]{%
    \in@{e}{#1} \ifin@ \MathUp{e} \fi
    \in@{i}{#1} \ifin@ \MathUp{i} \fi
    \in@{j}{#1} \ifin@ \MathUp{j} \fi
9}
\newcommand*\MathProba[1] {%
    \in@{P}{#1} \ifin@ \MathUp{P} \fi
    \in@{E}{#1} \ifin@ \MathUp{E} \fi
    \in@{V}{#1} \ifin@ \MathUp{V} \fi
6}
97
```

91
\apply With the inverse global switch \MathNormal, you can apply the normal (italic) style on any comma-separated list of characters. This is achieved using the \apply macro, e.g. \apply\macro\{arg1, arg2\} expands to \macro\{arg1\}\macro\{arg2\}. Thus \apply $\backslash \operatorname{MathUp\{ e,i,j\} }$ is equivalent to $\backslash \operatorname{MathUp\{ e\} \backslash MathUp\{ i\} \backslash MathUp\{ j\} .~}$ I discovered this powerfull macro on iterate190.rssing.com by searching for "TeX How to iterate over a comma separated list?" The answer was posted under the pseudonym 'wipet' on 2021/02/26. Let its author, Petr Olšák, be thanked. This macro allows to accomplish tasks that usual loop instructions like \@f or or \foreach cannot achieve due to errors like "! Improper alphabetic constant". For instance, if you
try \backslash def \backslash letter $\{A\} \backslash$ MathUp $\{\backslash$ letter $\}$ it will fail because the control sequence \letter is not equivalent here to the single character ' A '.

```
8\def\apply#1#2{\apply@#1#2,\apply@,}
9\def\apply@#1#2,{\ifx\apply@#2\empty
    \else #1{#2}\afterfi@{\apply@#1}\fi}
\def\afterfi@#1#2\fi{\fi#1}
102
103\newcommand*\MathNormal [1]{% list argument
104\apply\MathIt{#1}
105}
106
```

The following commands were used until version 2.2 but still work. They were intended to set some letters in upright shape in math mode, but only worked in the preamble. This is now managed by the more powerful \MathUp command, and the old commands are maintained for compatibility reasons.

```
107\newcommand{\enumber}{%
    \PackageWarning{mismath}{0ld command \string\enumber\space
            is used. \MessageBreak
            It can be replaced by \bslash MathUp{e}}
        \MathUp{e}
12}
\newcommand{\inumber}{%
    \PackageWarning{mismath}{Old command \string\inumber\space
            is used. \MessageBreak
            It can be replaced by \bslash MathUp{i}}
    MathUp{i}
118}
\newcommand{\jnumber}{
    \PackageWarning{mismath}{0ld command \string\jnumber\space
                is used. \MessageBreak
                It can be replaced by \bslash MathUp{j}}
            \MathUp{j}
24}
\newcommand{\PEupright}{
    \PackageWarning{mismath}{0ld command \string\PEupright\space
                is used. \MessageBreak
                It can be replaced by \bslash MathUp{P}
                and \bslash MathUp{E}}
    \MathUp{P}\MathUp{E}
31}
132
```

The Greek letter pi must be handled differently. The switches are called \backslash pinumber and \pinormal. When given without an argument, \pinumber uses the LGR font encoding. A particularity of the fontenc package is that it can be loaded several times with different options without triggering an "option clash" error.

```
133 \newcommand*\pinumber [1] [] {
134\@ifundefined{itpi}{\let\itpi\pi}{}
```

```
\ifthenelse{\equal{#1}{}}{
    \ifx\@onlypreamble\@notprerr
                \@ifundefined{savedpi}{
                    \PackageWarning{mismath}{%
                        \bslash pinumber without argument\MessageBreak
                    must be used in the preamble first\MessageBreak
                    to load LGR fontenc for upright pi}
        }{\let\pi\savedpi}
    \else % in the preamble
        \RequirePackage[LGR,T1]{fontenc}
        \DeclareSymbolFont{UpGr}{LGR}{lmr}{m}{n}
        \et\pi\relax
        \DeclareMathSymbol{\pi}\mathalpha{UpGr}{"70}
        \let\savedpi\pi
    \fi
}{
    \@ifundefined{#1}{
            \PackageWarning{mismath}{%
                Value #1 must be a valid
                    command name\MessageBreak for pinumber,
                    but command \bslash #1\space
                    is undefined.\MessageBreak
                    Perhaps a missing package}
    }{\renewcommand{\pi}{%
            \csname #1\endcsname}
    }
}
164 \newcommand{\pinormal}{\@ifundefined{itpi}{}{\let\pi\itpi}}
```

162 \}
163
165

And now the commands for vectors (and tensors).

```
166 \newboolean{arrowvect}
167 \setboolean{arrowvect}{true}
\ newcommand{\arrowvect}{\setboolean{arrowvect}{true}}
\ \newcommand{\boldvect}{\setboolean{arrowvect}{false}}
70 \newcommand{\boldvectcommand}{\boldsymbol} % from amsbsy package
\mm@macro{vect}{\ifthenelse{\boolean{arrowvect}}{
    \vv}{\boldvectcommand}} % doesn't work well with \if... \fi
173\newcommand*{\hvect}[1]{\vect{\vphantom{t}#1}}
74 \newcommand*{\hvec}[1]{\vec{\vphantom{t}#1}}
175
176 \newcommand*{\@norm} [1] {
    \mbox{\raisebox{1.75pt}{\small$\bigl\Vert$}} #1
    \mbox{\raisebox{1.75pt}{\small$\bigr\Vert$}} }
79% works better than with relative length
\ \newcommand*{\@@norm} [1]{
    \mbox{\footnotesize\raisebox{1pt}{$\Vert$}} #1
    \mbox{\footnotesize\raisebox{1pt}{$\Vert$}} }
```

```
\newcommand*{\@@@norm}[1]{
        \mbox{\tiny\raisebox{1pt}{$\Vert$}} #1
        \mbox{\tiny\raisebox{1pt}{$\Vert$}} }
\@ifundefined{norm}{\providecommand*{\norm}[1]{
            \mathchoice{\@norm{#1}}{\@norm{#1}}{\@@norm{#1}}{\@@@norm{#1}}
            }
        }{\mm@warning{norm} } % bad result with libertinust1math
\DeclareMathAlphabet{\mathbfsfit}{\encodingdefault}{\sfdefault}{bx}{it}
\newcommand{\tensor}{\mathbfsfit} % isomath uses \mathsfbfit
```

Classic identifiers are presented below.
94 mm@macro\{di\}\{\mathop\{\} \backslash ! \mathup $\{d\}\}$
5 \newcommand \probastyle\{\}
$6 \backslash$ let $\backslash \operatorname{Par} \backslash P$ \% end of paragraph symbol
$7 \backslash$ renewcommand $\{\backslash \mathrm{P}\}\{\backslash$ operatorname $\{\backslash$ probastyle $\{P\}\}\}$
$98 \backslash m m @ m a c r o\{E\}\{\backslash$ operatorname\{\probastyle\{E\}\}\}
9 \mm@macro\{V\}\{\operatorname\{\probastyle\{V\}\}\}
200
201 \mm@operator\{\adj\}\{adj\}
202 \mm@operator\{ \backslash Aut\}\{Aut\}
$203 \backslash$ mm@operator\{\codim\}\{codim\}
4 \mm@operator $\{\backslash$ Conv\} \{Conv\}
\mm@operator $\{\backslash c o v\}\{c o v\}$
06 \mm@operator\{\Cov\}\{Cov\}
7 \mm@macro\{curl\}\{\operatorname\{\vect\{\mathup\{curl\}\}\}\}
\mm@operator[divg] \{\divg\}\{div\}
$\backslash m m @ o p e r a t o r\{\backslash$ End $\}\{$ End $\}$
210
211 \mm@operator\{\erf\}\{erf\}
$212 \backslash$ mm@macro\{grad\}\{\operatorname\{\vect\{\mathup\{grad\}\}\}\}
$213 \backslash m m @ o p e r a t o r\{\backslash i d\}\{i d\} \%$ mathop or mathord ?
214 \mm@operator $\{\backslash I d\}\{I d\}$
$215 \backslash m m @ o p e r a t o r\{\backslash i m\}\{i m\}$
$6 \backslash$ let $\backslash o l d \operatorname{Im} \backslash \operatorname{Im}$ \{\operatorname\{Im\}\}
$7 \backslash$ mm@operator $\{\backslash \mathrm{lb}\}\{\mathrm{lb}\}$
\mm@operator $\{\backslash 1 \mathrm{~cm}\}\{1 \mathrm{~cm}\}$
219
$220 \backslash$ mm@operator $\{\backslash$ rank $\}$ \{rank $\}$
$221 \backslash$ let $\backslash o l d R e \backslash R e \backslash r e n e w c o m m a n d\{\backslash \operatorname{Re}\}\{\backslash$ operatorname $\{\operatorname{Re}\}\}$
$222 \backslash m m @ m a c r o\{r o t\}\{\backslash o p e r a t o r n a m e\{\backslash v e c t\{\backslash \operatorname{mathup}\{r o t\}\}\}\}$
$223 \backslash m m @ o p e r a t o r\{\backslash s g n\}\{s g n\}$
$224 \backslash$ mm@operator $\{\backslash$ sinc $\}\{$ sinc $\}$
$225 \backslash$ mm@operator [spa] \{\spa\} \{span\}
$226 \backslash$ mm@operator $\{\backslash \operatorname{tr}\}\{t r\}$
227 \mm@operator\{\var\}\{var\}
$228 \backslash$ mm@operator \{ \Var\}\{Var\}
$229 \backslash$ mm@operator [Zu] \{ $\backslash \mathrm{Zu}\}\{\mathrm{Z}\}$
230

```
231\mm@operator{\arccot}{arccot}
232\mm@operator{\sech}{sech}
233\mm@operator{\csch}{csch}
234\mm@operator{\arsinh}{arsinh}
235\mm@operator{\arcosh}{arcosh}
236 \mm@operator{\artanh}{artanh}
237\mm@operator{\arcoth}{arcoth}
238\mm@operator{\arsech}{arsech}
239\mm@operator{\arcsch}{arcsch}
240
241 \mm@operator[big0]{\big0}{\mathcal{0}}
242 \mm@operator[bigo]{\bigo}{0}
243\mm@operator[lito]{\lito}{o}
244
```

And finally we present the remaining macros.
With Cyrillic languages, the command $\backslash \mathrm{C}$ may already be defined (only for text mode). Thus, it will not be redefined by mismath. However, one may still want to use our $\backslash \mathrm{C}$ macro only for math mode without interfering the definition of the text $\backslash \mathrm{C}$, therefore the \onlymathC macro.

```
245\mm@macro{mathset}{\mathbf}
246\mm@macro{R}{\mathset{R}}
\mm@macro{C}{\mathset{C}}
\providecommand\onlymathC{\let\oldC\C
    \renewcommand{\C}{\TextOrMath{\oldC}{\mathset{C}}} }
50\mm@macro{N}{\mathset{N}}
\mm@macro{Z}{\mathset{Z}}
\mm@macro{Q}{\mathset{Q}}
\mm@macro{F}{\mathset{F}}
\mm@macro{K}{\mathset{K}}
2 5 5
256\mm@macro{ds}{\displaystyle}
257\mm@macro{dlim}{\lim\limits}
258\mm@macro{dsum}{\sum\limits}
259\mm@macro{dprod}{\prod\limits}
\mm@macro{dcup}{\bigcup\limits}
\mm@macro{dcap}{\bigcap\limits}
262
263\mm@macro{lbar}{\overline}
\@ifundefined{hlbar}{
    \providecommand*{\hlbar}[1]{\overline{\vphantom{t}#1}}}{
    \mm@warning{hlbar} }
\newcommand\@eqdef{\stackrel{\mathup{def}}{=}}
\newcommand\@@eqdef{\stackrel{\mathrm{\Delta}}{=}}
\mm@macro{eqdef}{\@ifstar{\@@eqdef}{\@eqdef}}
\mm@macro{unbr}{\underbrace}
\mm@macro{iif}{if and only if\xspace}
272
```

Above, we have used \backslash mathrm before \backslash Delta in case of defining capital Greek letters
in italics (for example with the fixmath package). The use of $\backslash \operatorname{mbox}\}$ ensures that the space produced by \backslash in the \backslash then macro is not suppressed in tables.

```
273\mm@macro{then}{\ \Longrightarrow \ \mbox{} }
274\@ifundefined{txt}{
275\providecommand*{\txt}[1]{\quad\text{#1}\quad} }{
276 \mm@warning{txt} }
277\mm@macro{mul}{\mathord{\times}}
278 \@ifundefined{pow}{
    \providecommand*{\pow}[2]{\left( #1 \right)~{\!#2}} }{
    \mm@warning{pow} }
    \@ifundefined{abs}{
    \providecommand*{\abs}[1]{\left\vert#1\right\vert} }{
    \mm@warning{abs} }
    \@ifundefined{lfrac}{
    \providecommand*{\lfrac}[2]{\frac{\;#1\;}{\;#2\;}} }{
    \mm@warning{lfrac} }
\newcommand{\systemstretch}{1.2}
    \newcommand{\systemsep}{\medspace}
    \newenvironment {system} [1] [1]{
    \renewcommand{\arraystretch}{\systemstretch}
    \setlength{\arraycolsep}{0.15em}
    \left\{\\begin{array}{@{\systemsep}#1@{}} %
}{\end{array}\right.}
295
296 \newenvironment{spmatrix}{
    \left(\begin{smallmatrix}
    }{\end{smallmatrix}\right)}
    \newenvironment{mathcols}{% needs multicol package
    \renewcommand{\columnseprule}{0.1pt}
    \begin{multicols}{2}
                \par\noindent\hfill
            \begin{math}\begin{aligned}\displaystyle
    }{%
            \end{aligned}\end{math} \hfill\mbox{}
    \end{multicols}
8}
309 \newcommand{\changecol}{%
    \end{aligned}\end{math} \hfill\mbox{}
    \par\noindent\hfill
    \begin{math}\begin{aligned}\displaystyle
313}
```


References

[1] Typesetting mathematics for science and technology according to ISO 31/XI, Claudio Beccari, TUGboat Volume 18 (1997), No. 1.
http://www.tug.org/TUGboat/tb18-1/tb54becc.pdf.
[2] Typefaces for Symbols in Scientific Manuscripts, https://www.physics.nist.gov/cuu/pdf/typefaces.pdf.
[3] Guide for the Use of the International System of Units (SI), NIST (National Institute of Standards and Technology), updated March 4, 2020 https://www.nist.gov/pml/special-publication-811.
[4] On the Use of Italic and up Fonts for Symbols in Scientific Text, I.M. Mills and W.V. Metanomski, ICTNS (Interdivisional Committee on Terminology, Nomenclature and Symbols), dec 1999, https: //old.iupac.org/standing/idcns/italic-roman_dec99.pdf.
[5] esvect - Typesetting vectors with beautiful arrow with ${ }_{E T} T_{E} X 2_{\mathcal{E}}$, Eddie Saudrais, CTAN, v1.3 2013/07/11.
[6] amsmath - $\mathcal{A} \mathcal{M S}$ mathmatical facilities for ${ }^{L} T_{E} X$, Frank Mittelbach, Rainer Schöpf, Michael Downes, Davis M. Jones, David Carlisle, CTAN, v2.17n 2022/04/08.
[7] The mathtools package, Morten Høgholm, Lars Madsen, CTAN, v1.29 2022/06/29.
[8] The fixmath package for $E_{E} X 2_{\varepsilon}$, Walter Schmidt, CTAN, v0.9 2000/04/11.
[9] isomath - Mathematical style for science and technology. Günter Milde, CTAN, v0.6.1 2012/09/04.
[10] PM-ISOmath, The Poor Man ISO math bundle, the pm-isomath package by Claudio Beccari, CTAN, v1.2.00 2021/08/04.
[11] The upgreek package for ${ }_{L_{E}} X 2_{\varepsilon}$, Walter Schmidt, CTAN, v2.0 2003/02/12.
[12] The mathdesign package, Paul Pichaureau, CTAN, v2.31 2013/08/29.
[13] The textalpha package (part of the greek-fontenc bundle), Günter Milde, CTAN, v2.1 14/06/2022.
[14] Kp-Fonts - The Johannes Kepler project, Christophe Caignaert, CTAN, v3.34 20/09/2022.
[15] Fourier-GUTenberg, Michel Bovani, CTAN, v1.3 30/01/2005.
[16] The Igrmath package, Jean-François B., CTAN, v1.0 2022/11/16.
[17] The interval package. Lars Madsen, CTAN, v0.4 2019/03/06.
[18] The icomma package for ${ }^{W} T_{E} X 2_{\varepsilon}$. Walter Schmidt, CTAN, v2.0 2002/03/10.
[19] The ncccomma package. Alexander I. Rozhenko, CTAN, v1.0 2005/02/10.
[20] The decimalcomma package. Antoine Missier, CTAN, v1.0 2023/12/06.
[21] L'extension pour $T_{E} X$ et ${ }_{E T} T_{E} X$ systeme, Christian Tellechea, CTAN v0. 32 2019/01/13.
[22] The spalign package, Joseph Rabinoff, CTAN, 2016/10/05.
[23] The package nicematrix, François Pantigny, CTAN, v6.14 2023/02/18.
[24] L'extension frenchmath, Antoine Missier, CTAN, v2.5 2023/02/24.
[25] Intelligent brackets - The ibrackets package Antoine Missier, CTAN, v1.1, 2022/12/26.
[26] The Not So Short Introduction to $E_{E} X 2_{\varepsilon}$, the Ishort package by Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, CTAN, v6.4 2021/04/09. http://tug.ctan.org/info/lshort/english/lshort.pdf.
[27] The $H_{E} X$ Companion, Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley, 2nd edition, Pearson Education, 2004.

[^0]: *This document corresponds to mismath v2.9, dated 2023/12/19. Thanks to François Bastouil for help in English translation.

[^1]: ${ }^{1}$ By using the frenchmath package［24］，you can ensure that the recommended French rule is followed in your document．

[^2]: ${ }^{2}$ The \mathup macro is based on \operatorfont, which comes from the amsopn package, automatically loaded by amsmath. In beamer, the default math font is sans serif, but \mathrm produces a font with serifs, which might not match the overall style of the presentation. Hence, using \mathup is indeed a better choice in beamer presentations to ensure that mathematical constants are typeset in upright shape and consistent with the default sans serif math font.

[^3]: ${ }^{3}$ They also have options to typeset all the Greek lowercase letters in upright shape by default, but this in not our goal here.
 ${ }^{4}$ This default π character may not always fit well with various text fonts, especially those that are bolder or different from the default Computer Modern font. The upgreek package [11] provides a better π character with the Symbol option, utilizing the Adobe Symbol font. This π character matches well with several text fonts, such as Times.
 ${ }^{5}$ The definition of most macros in this package, will only take effect if the macro has not been previously defined by another package. This ensures compatibility and avoids conflicts when using the mismath package with other $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ packages.
 ${ }^{6}$ esvect provides the \vv macro used by \vect.

[^4]: ${ }^{7} \backslash$ mathbf produces upright bold font, even when used in combination with \backslash mathit.

[^5]: ${ }^{8}{ }^{\text {ET }} \mathrm{E} \mathrm{X}$ provides also $\backslash \operatorname{Pr}$ which gives Pr.
 ${ }^{9}$ The effect of this redefinition is global or local to the container environment in which it is used.

[^6]: ${ }^{10}$ The mathtools package by Morten Høgholm and Lars Madsen [7] provides a new and improved version of the \underbrace command, along with many other usefull macros. It is loaded by mismath.

[^7]: ${ }^{11}$ This macro gives bad results with normal-sized parenthesis.

[^8]: ${ }^{12}$ Another solution is to define \abs using the \DeclarePairedDelimiter command from the mathtools package [7].
 ${ }^{13}$ This functionality is optional because it causes errors when using a command defined by ${ }^{13}$ This functionality is optional because it causes
 \DeclarePairedDelimiter [7] with square brackets.

[^9]: ${ }^{14}$ ibrackets and decimalcomma are the only options specific to the mismath package.

[^10]: ${ }^{15} @\{\ldots\}$ sets inter-column space.

