mismath
 Miscellaneous mathematical macros*

Antoine Missier
antoine.missier@ac-toulouse.fr

October 17, 2022

Contents

1 Introduction 1
2 Usage 2
2.1 Mathematical constants 2
2.2 Vectors 3
2.3 Standard operator names 4
2.4 A few useful aliases 6
2.5 Improving some spacing in mathematical formulas 7
2.6 Environments for systems of equations and small matrices 8
2.7 Displaymath in double columns 9
3 Implementation 10

1 Introduction

According to the International Standards ISO 31-0:1992 to ISO 31-13:1992, superseded by ISO 80000-2:2009, mathematical constants e, i, π should be typeset in upright shape and not in italic (sloping shape) like variables (see [1] [2] [3] [4]). This package provides some tools to achieve this (automatically).

Even if it is recommended to typeset vectors names in bold italic style [2] [3], they are often represented with arrows (particularly in school documents or in physics). To draw pretty arrows above vectors, we use the esvect package by Eddie Saudrais [7] and we provide a few more macros related to vectors with

[^0]arrows, in particular to improve the typesetting of the norm: $\|\overrightarrow{A B}\|$ instead of ${ }^{\text {EAT }} \mathrm{E} X$ version $\|\overrightarrow{A B}\|$ which is not vertically adjusted, or worse $\|\overrightarrow{A B}\|$.

The package also provides other macros for:

- some standard operator names,
- a few useful aliases,
- improving some spacing in mathematical formulas,
- systems of equations and small matrices,
- displaymath in double columns for long calculation.

To avoid incompatibility, a large majority of our macros will be defined only if there is not another command with the same name in the packages loaded before mismath. If a macro is already defined, compilation will produce a warning message and mismath definition will simply be ignored. To keep mismath command, either load mismath before the other package with which it is in conflict for the name of that command (assuming the other package supports it), or use \let $\backslash\langle c o m m a n d\rangle \backslash$ relax before loading mismath.

The amsmath package is loaded by mismath without option. For using amsmath with options (see [5]), these options can be added when calling mismath, or amsmath has to be loaded with the required options before mismath.

Another package, mathtools by Morten Høgholm and Lars Madsen [6] is also loaded. It provides many useful macros.

A recommendation, seldom observed, is to typeset uppercase Greek letters in italic shape like other variables [3]. This is automatically done with the fixmath package by Walter Schmidt [9], but this feature is not implemented in mismath because this rule is conflicting to the one used for instance in France where all mathematics capitals have to be typeset in upright shape ${ }^{1}$. The choice of loading or not one of these packages remains thus to the user.

2 Usage

2.1 Mathematical constants

\backslash mathup As for classic functions identifiers, predefined mathematical constants should be typeset in upright shape (generally in roman family), even if this practice is \i not really common and tedious to respect. To avoid to stuff a document with $\backslash j \backslash$ mathrm\{e\} or \backslash mathrm\{i\} (or better $\backslash \operatorname{mathup}\{e\}$ and \backslash mathup $\{i\}^{2}$), the package provides \e command for the base of the natural logarithm and \i or $\backslash j$

[^1]for imaginary numbers. Let's notice that $\backslash i$ and $\backslash j$ already exist in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$: using in LR mode, they produce " $1, \mathrm{~J}$ " without the point so you can place accents on them, and in mathematical mode they produce "LaTeX Warning: Command \i invalid in math mode on input line \langle line \rangle ". Redefining \i and $\backslash \mathrm{j}$ concerns only mathematical mode ${ }^{3}$.
\enumber
\inumber
\jnumber
\pinumber[\langle font \rangle]
]
(see [3] and [4]), which differs from italicized π. This recommendation is even less observed than the one concerning e and i [1]. The upgreek package by Walter Schmidt [8] makes it possible to typeset Greek letters in upright font by using commands such as \upalpha, \upbeta, ... To avoid typing a lot of \uppi, we provide the \backslash pinumber macro, which has to be put in the preamble. This command loads the upgreek package with an optional \langle font \rangle argument: Symbol (by default), Euler or Symbolsmallscale (see [8]). It also redefines the \pi command to typeset all \backslash pi in the selected upright font.

By activating \enumer, \inumber and \pinumber in the preamble, you can get for instance:

$$
\$ e^{\wedge}\{i \backslash p i\}=-1 \$ \quad e^{i \pi}=-1
$$

\itpi When \pinumber is activated, the original italic π is still available with \itpi.

2.2 Vectors

Ivect By default, the \vect command ${ }^{4}$, produces vectors with arrows (thanks to the esvect package by Eddie Saudrais ${ }^{5}$) which are much more elegant than those produced by $\mathrm{LAT}_{E} X$ \overrightarrow command (giving $\overrightarrow{A B}$). The esvect package has an optional argument (one letter between a and h) defining the required type of arrow (see [7]). In mismath, esvect is loaded with the option b: \vect\{AB\} gives

[^2](\overrightarrow{AB}\).Tochooseanothertypeofarrow,esvectmustbecalledwiththerequiredoptionbeforemismath,forinstance\usepackage[d]\{esvect\}willgivethearrowsproducedbydefaultin[7].\boldvect\boldvectcommand\hvect\vectmakesalsopossibletotypesetvector'snamesusingbolditalic(accordingtoISOrecommendation[4])ratherthanarrows.Forthis,calling\boldvectwillmodifythebehaviorof\vect:\[\backslashboldvect\vect\{v\}$=\backslash$lambda\backslashvect$\{e\}_x+\backslash$mu\backslashvect$\left.\{e\}_y.\backslash\right]\quadv=\lambdae_{x}+\mue_{y}$.Bydefault\boldvectusesthe\boldsymbolcommand6fromamsbsypackage,loadedbyamsmath.Butotherpackagesproducingbolditaliccanbepreferred,e.g.\bmfrombmpackageor\mathboldfromfixmathpackageor\mathbfitfromisomath.Forthat,redefine\boldvectcommand:forinstance\backslashrenewcommand\backslashboldvectcommand$\{\backslash$mathbold$\}$.undefined

By setting \boldvectcommand to \mathbf, \vect produces vectors in bold upright shape, which tends to be used instead of bold italic (but probably for bad reasons).

At any moment, you can get back to the default behavior with the inverse switch \arrowvect. These switches can be placed anywhere: inside mathematical mode or inside an environment (with local effect) or outside (with global effect).

When vectors with arrows are typeset side by side, arrows can be set up a bit higher (with a vertical phantom box containing h) to avoid inelegant effects:

- $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$ is less than $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$, obtained with \hvect $\{u\}$;
- $\vec{a} \cdot \vec{b}=0$ is less than $\vec{a} \cdot \vec{b}=0$, obtained with \hvect $\{\mathrm{a}\}$.

The \boldvect switch has no effect on the \hvect macro which always typesets arrows on vectors (with the \vv command from the esvect package).
\hvec
In a similar way, \hvec raises the little arrow produced by the ${ }^{[A T} T_{E} X$ command \vec (but only from height of t letter):

- $\mathcal{P}=\vec{f} \cdot \vec{v}$ is less than $\mathcal{P}=\vec{f} \cdot \vec{v}$, obtained with \backslash hvec $\{v\} ;$
- $\vec{f}=m \vec{a}$ is less than $\vec{f}=m \vec{a}$, obtained with \hvec $\{\mathrm{a}\}$.

The norm of a vector is classically produced by the delimiters \IVert and \backslash rVert (rather than $\backslash \mid$) or \backslash left \backslash Vert and \backslash right \backslash Vert for delimiters adapting to the content. Unfortunately, these delimiters are always vertically centered, relatively to the middle of the base line, whereas vectors with arrows are asymmetric objects, the height above the middle of the base line being superior to the depth under it. The code $\$ \backslash \operatorname{norm}\{\backslash v e c\{h\}\} \$$ raises the double bar to produce $\|\vec{h}\|$. Let's notice that the height of the bars don't adjust to content, but however to context: main text, subscripts or exponents.

[^3]
2.3 Standard operator names

\di The differential operator should be typeset in upright shape and not in italic, to make it different from variables (as mentioned in [1] [2] [3] [15]). For this, we provide the \di command. See the following examples (notice the thin spaces before the d, as for classic function's names):

```
\[ \iint xy\di x\di y \]
\[m\frac{\di^2x}{\di t^2}
    +h\frac{\di x}{\di t} + kx = 0\]
```

$$
\begin{gathered}
\iint x y \mathrm{~d} x \mathrm{~d} y \\
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+h \frac{\mathrm{~d} x}{\mathrm{~d} t}+k x=0
\end{gathered}
$$

This command can also stand for distance (hence its name):

$$
\lambda \mathrm{d}(A, \mathcal{F})+\mu \mathrm{d}(B, \mathcal{H})
$$

To refer to probability ${ }^{7}$ and expectation the proper use is to typeset capital let-

The $\backslash P$ command already existed to refer to the end of paragraph symbol \mathbb{I} and has been redefined, but this symbol can still be obtained with \Par.

Some authors use "blackboard bold" font to represent probability, expectation and variance: $\mathbb{P}, \mathbb{E}, \mathbb{V}$. The \probastyle macro sets the appearance of $\backslash P, \backslash E$ and $\backslash \mathrm{V}$: for instance \backslash renewcommand \backslash probastyle $\left\{\backslash\right.$ mathbb ${ }^{8}$ brings the previous "openwork" letters. \mathbb comes from amsfonts package (loaded by amssymb but also available standalone) which has to be called in the preamble.

The following operator names are also defined in mismath:

\adj	adj	\erf	erf	$\backslash \mathrm{rank}$	rank
\backslash Aut	Aut	$\backslash \mathrm{grad}$	$\xrightarrow[\text { grad }]{ }$	$\backslash \mathrm{Re}$	Re
$\backslash \mathrm{Conv}$	Conv	\id	id	\rot	$\overrightarrow{\mathrm{rot}}$
\cov	cov	$\backslash I d$	Id	\sgn	sgn
$\backslash \mathrm{Cov}$	Cov	\im	im	\backslash spa	span
\curl	$\xrightarrow[\text { curl }]{ }$	\Im	Im	\tr	tr
\divg	div	\lb	lb	\Var	Var
\backslash End	End	$\backslash \mathrm{lcm}$	lcm	$\backslash \mathrm{Zu}$	Z

By default, operators returning vectors, \grad and \curl (or its synonym \rot rather used in Europe), are written with an arrow on the top. When \boldvect is activated, they are typeset in bold style: grad, curl, rot. For the covariance and the identity function, two notations are proposed, with or without a first capital letter, because they are both very common. On the other hand, "im" stands for the image of a linear transformation (like "ker" for the kernel) but "Im" is the

[^4]imaginary part of a complex number. Notice that \div and \span already exist and haven't been redefined, therefore the \divg and \spa macros; $\backslash \mathrm{Z}$ is used otherwise (see further), therefore $\backslash \mathrm{Zu}$, to designate the center of a group: $\mathrm{Z}(G)$ (from German Zentrum).
\oldRe
\oldIm保 of a complex number, producing outdated symbols \Re and \Im. They have been redefined according to actual use, as mentioned in the above table, but it's still possible to get the old symbols with \oldRe and \oldIm.

Some (inverse) circular or hyperbolic functions, missing in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, are also provided by mismath:

\arccot	arccot	\arsinh	arsinh	\arcoth	arcoth
\sech	sech	\arcosh	arcosh	\arsech	arsech
\csch	csch	\artanh	artanh	\arcsch	arcsch

Asymptotic comparison operators (in Landau notation) are obtained with
\backslash bigo
\backslash bigo
\lito big0 or \bigo and \lito commands:

$$
n^{2}+\mathcal{O}(n \log n) \quad \text { or } \quad n^{2}+\mathrm{O}(n \log n) \quad \text { and } \quad \mathrm{e}^{x}=1+x+\mathrm{o}\left(x^{2}\right) .
$$

2.4 A few useful aliases

In the tradition of Bourbaki and D. Knuth, proper use requires that classic sets of numbers are typeset in bold roman: $\mathbf{R}, \mathbf{C}, \mathbf{Z}, \mathbf{N}, \mathbf{Q}$, whereas "openwork" letters $(\mathbb{R}, \mathbb{Z}, \ldots)$ are reserved for writing at blackboard [15]; and likewise to designate a field: \mathbf{F} or \mathbf{K} (Körper in German). We get these symbols with the macros:

$$
\backslash \mathrm{R}, \backslash \mathrm{C}, \backslash \mathrm{Z}, \backslash \mathrm{~N}, \backslash \mathrm{Q}, \backslash \mathrm{~F}, \backslash \mathrm{~K} .
$$

The \mathset command enables to change the behavior of all these macros in a global way: by default, \mathset is an alias for \mathbf, but if you prefer openwork letters, just place }\) in the preamble, after loading amsfonts package (which provides the "blackboard bold" typeface, also loaded by amssymb).

The \displaystyle command being very common, alias \ds is provided. Not only it eases typing but also it makes source code more readable.

Symbols with limits behave differently for in-line formulas or for displayed equations. In the latter case, "limits" are put under or above whereas for in-line math mode, they are placed on the right, as subscript or exponent. Compare: $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ with

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

With in-line math mode, displaymath behavior can be forced with \displaystyle or its alias \ds, but then, all the rest of the current mathematical environment will be set in displaymath mode too (in the previous example, the fraction will
\dlim
\dsum
\dprod
\dcup \dcap
\lbar

2.5 Improving some spacing in mathematical formulas

addition or subtraction operators, whereas division obtained with / is closer to its arguments. This actually hides the priority of the multiplication on + and - . This is why we provide the \mul macro, behaving like / (ordinary symbol) and leaving less space around than \backslash times:

$$
\lambda+\alpha \times b-\beta \times c \text { is less than } \lambda+\alpha \times b-\beta \times c, \text { obtained with } \backslash \text { mul. }
$$

When using \mul before an operator name or a \left... \right structure, additional spacing occur on the right side of $\backslash \mathrm{mul}$. A solution to get the same amount of space on the two sides of $\backslash \mathrm{mul}$, is to enclose the operator name (or the structure) with brackets:

Compare $x \times \sin x$ with $x \times \sin x$ obtained with $\mathrm{x} \backslash \operatorname{mul}\{\backslash \sin \mathrm{x}\}$.
The \backslash then macro produces the symbol \Longrightarrow surrounded by large spaces as the standard macro \backslash iff does it with \Longleftrightarrow. In a similar way, \backslash txt based on the \backslash text macro (from the amstext package, automatically loaded by amsmath), leaves em quad spaces (\backslash quad) around the text. See the following example:
\ln $\mathrm{x}=\mathrm{a}$ \then $\mathrm{x}=\backslash \mathrm{e}^{\wedge} \mathrm{a}$ \txt\{rather than\} $\backslash \ln \mathrm{x}=\mathrm{a} \backslash$ Longrightarrow $\mathrm{x}=\backslash \mathrm{e}^{\wedge} \mathrm{a}$

$$
\ln x=a \Longrightarrow x=\mathrm{e}^{a} \quad \text { rather than } \quad \ln x=a \Longrightarrow x=\mathrm{e}^{a}
$$

\paren Spaces around parenthesis produced by \backslash left (. . . right) may be too large, for example after a function name or a point name with coordinates. A solution is to add a thin negative space \backslash ! before the opening (or after the closing) parenthesis, or to enclose the \left(... \right) structure by brackets, or to use the \paren macro:

$$
\begin{gathered}
\sin \left(\frac{\pi}{3}\right) \times 2 \text { is less than } \sin \left(\frac{\pi}{3}\right) \times 2 \text { obtained with } \\
\backslash \sin \backslash \text { paren }\{\backslash \text { frac }\{\backslash \text { pi }\}\{3\}\} \backslash \text { mul } 2 .
\end{gathered}
$$

\pow \right), the exponent is little to far from the parenthesis. The command \backslash pow $\{\langle$ expr $\rangle\}\{\langle p o w\rangle\}$ sets \langle expr \rangle between parentheses and puts the exponent $\langle p o w\rangle$ slightly closer to the right parenthesis ${ }^{10}$. Compare:

$$
\mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n} \quad \text { and } \quad \mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n} .
$$

Absolute value (or modular for a complex number) should be typeset with \lvert ... \rvert rather than | which doesn't respect correct spaces for delimiters; for bars whose height has to adapt to content, we use \left\vert $\ldots \backslash$ right \backslash vert or, more simply, the \backslash abs $\{\ldots\}$ command which is equivalent ${ }^{11}$.

This macro behaves like \frac but with thick spaces around the arguments, so the corresponding fraction bar is perceptibly a little bit longer:

$$
\begin{array}{ll}
\backslash\left[\begin{array}{l}
\text { lbar }\{Z\}= \\
\\
\quad \text { lfrac }\left\{\backslash l \operatorname{bar}\left\{z_{-} 1-z_{-} 2\right\}\right\}\left\{\backslash l \operatorname{bar}\left\{z_{-} 1+z_{-} 2\right\}\right\}
\end{array}\right]
\end{array} \quad \bar{Z}=\frac{\overline{z_{1}-z_{2}}}{\overline{z_{1}+z_{2}}}
$$

[]
Brackets symbols [and] have been redefined for mathematical mode because, in standard LATEX $_{E}$, the space before them can be unsuitable ${ }^{12}$:

$$
\text { \$x in }] 0, \backslash \mathrm{pi}[\text { \cup }] 2 \backslash \mathrm{pi}, 3 \backslash \mathrm{pi}\left[\$ ~ \left\{\begin{array}{ll}
x \in] 0, \pi[\cup] 2 \pi, 3 \pi[& \text { without mismath } \\
x \in] 0, \pi[\cup] 2 \pi, 3 \pi[& \text { with mismath }
\end{array}\right.\right.
$$

In our code, [and] symbols are not defined anymore as delimiters. Thereby a line break could occur between the two, but it is always possible to transform them into delimiters with $\backslash l e f t$ and $\backslash r i g h t ~{ }^{13}$. And consider that these symbols are most of the time preceded or followed by relational, binary or punctuation symbols and therefore spaces are correct without a delimiter definition.

2.6 Environments for systems of equations and small matrices

```
$\begin{system}
    x=1+2t \\ y=2-t \\ z=-3-t
\end{system}$
```

$$
\left\{\begin{array}{l}
x=1+2 t \\
y=2-t \\
z=-3-t
\end{array}\right.
$$

\systemsep
 amsmath package, although cases places mathematical expressions closer to the bracket (which makes sense considering it's use). \systemsep enables to set the gap between the bracket and the expressions, set by default to \medspace. This gap may be reduced, for instance: \{\thinspace\}, or enlarged with \thickspace (and with }\{\} we get back to what cases do).

By default, a system is written like an array environment with only one column, left aligned. The environment has an optional argument to create several columns, specifying their alignment, with the same syntax than the array environment of LATEX: \begin\{system\} [cl] produces a two-column system, the first } one being centered, the second being left aligned, such as in the following example:

```
$\begin{system}[cl]
    y & =\dfrac{1}{2}x-2 \\\[1ex]
        (x,y) & \neq (0,-2)
\end{system}$
```

$$
\left\{\begin{aligned}
y & =\frac{1}{2} x-2 \\
(x, y) & \neq(0,-2)
\end{aligned}\right.
$$

Default spacing between the lines of a system environment has been slightly enlarged compared to the one from array environments (from 1.2 factor). This spacing may be changed by typing }\{\langle\) stretch $\rangle\}$, inside the current mathematical environment (for a local change) or outside (for a global change). By default, stretch's value is 1.2. In addition we can use the end of line with a spacing option such as it has been done above with $\backslash \backslash[1 \mathrm{ex}]$.

Another example with \begin\{system\}[rl@\{\quad\}l] } { } ^ { 1 4 } :

$$
\left\{\begin{array} { r l }
{ x + 3 y + 5 z = 0 } & { R _ { 1 } } \\
{ 2 x + 2 y - z = 3 } & { R _ { 2 } } \\
{ 3 x - y + z = 2 } & { R _ { 3 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
x+3 y+5 z=0 & R_{1} \\
4 y+11 z=3 & R_{2} \leftarrow 2 R_{1}-R_{2} \\
5 y+7 z=-1 & R_{3} \leftarrow \frac{1}{2}\left(3 R_{1}-R_{3}\right)
\end{array}\right.\right.
$$

Let's mention the systeme package [12] which deals with linear systems with a lighter syntax and automatic alignments on,,$+-=$, and also the spalign package [13] which moreover produces nice alignments for matrices (with spaces and semicolons as delimiters).

The amsmath package provides various environments to typeset matrices: for instance pmatrix surrounds the matrix with parenthesis or smallmatrix typesets a small matrix that can even be inserted in a text line. We provide a combination of the two with spmatrix:
\$\vec\{u\}\begin\{spmatrix\}-1
2\end\{spmatrix\}\$ yielding } \vec { u } ($$
\begin{array} { c } { - 1 } \\ { 2 } \end{array}
$$) .

[^5]The mathtools package enhance amsmath matrices environments and provides also a small matrix environment with parenthesis. Furthermore, with starred version \begin\{psmallmatrix*\}[} \langle \operatorname { c o l } \rangle] , you can choose the alignment inside the columns ($c, 1$ or r). But sadly, the space before the left parenthesis is too narrow regarding to the space inside the parenthesis. Compare previous $\vec{u}\binom{-1}{2}$ with $\vec{u}\binom{-1}{2}$.

2.7 Displaymath in double columns

mathcols The mathcols environment activates mathematical mode and enables to arrange "long"calculation in double columns, separated with a central rule, as shown in the following example. But you have to load the multicol package in the preamble.

$$
\begin{aligned}
& \frac{1}{2 \times\left(\frac{1}{4}\right)^{n}+1} \geq 0.999 \\
\Longleftrightarrow & 1 \geq 1.998\left(\frac{1}{4}\right)^{n}+0.999 \\
\Longleftrightarrow & 0.001 \geq \frac{1.998}{4^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow 4^{n} \geq 1998 \\
& \Longleftrightarrow n \ln 4 \geq \ln (1998) \\
& \Longleftrightarrow n \geq \frac{\ln (1998)}{\ln 4} \approx 5.4 \\
& \Longleftrightarrow n \geq 6
\end{aligned}
$$

The \changecol macro causes a change of column; alignment is produced using the classic delimiters \& and $\backslash \backslash$.

```
\begin{mathcols}
            & \frac{1}{2 \mul {\pow{\frac{1}{4}}{n}} + 1} \geq 0.999 \\
    \iff\ & 1 \geq 1.998 \pow{\frac{1}{4}}{n} + 0.999 \\
    \iff\ & 0.001 \geq \frac{1.998}{4^n} \\
\changecol
    & \iff 4^n \geq 1998 \\
    & \iff n \ln 4 \geq \ln(1998) \\
    & \iff n \geq \frac{\ln(1998)}{\ln 4} \approx 5.4 \\
    & \iff n \geq 6
\end{mathcols}
```


3 Implementation

```
1\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{amsmath}}
2 \ProcessOptions \relax
3\@ifpackageloaded{amsmath}{}{\RequirePackage{amsmath}}
4 \@ifpackageloaded{esvect}{}{\RequirePackage[b] {esvect}}
5\RequirePackage{ifthen}
6\RequirePackage{xspace}
7\RequirePackage{mathtools}
```

The above conditional packages loading avoids "option clash" errors if the packages have been previously loaded with (other) options.

The three following internal commands are meta commands for a conditional macro definition with a warning message if the macro already exists. The \bslash macro used inside \@mwarning comes from doc.sty package by Frank Mittelbach. It can also be used in other documents instead of \ (which doesn't work here).

```
8{\catcode`\\=\z@ \catcode'\\=12 |gdef|bslash{\}} % the \bslash command
9\newcommand\@mwarning[1]{
    \PackageWarningNoLine{mismath}{
        Command \bslash #1 already exist and will not be redefined}
2}
\newcommand\@mmacro[2]{
        \@ifundefined{#1}{
            \expandafter\def\csname #1\endcsname{#2}
        }{\@mwarning{#1}}
7}
\newcommand\@moperator [3] []{% this macro is ugly, by default #1=#3
    \ifthenelse{\equal{#1}{}}{
            \@ifundefined{#3}{
                \DeclareMathOperator{#2}{#3}
            }{\@mwarning{#3}}
    }{
            \@ifundefined{#1}{
                \DeclareMathOperator{#2}{#3}
            }{\@mwarning{#1}}
        }
8
29
```

To produce the correct upright shape font even when working with the beamer package, we did not use \mathrm but \mathup (based on \operatorfont from the amsopn package). This command works also fine with other sans serif fonts like cmbright. Moreover for beamer, \enumber must be typeset in the family default font (sans serif), therefore the \backslash AtBeginDocument inside the macro (otherwise it has no effect). The same holds for \inumber and \jnumber.
\backslash AtBeginDocument is also necessary to redefine \i when calling the hyperref package which overwrites the \i definition.

```
30 \providecommand{\mathup}[1]{{\operatorfont #1}}
31 \@mmacro{e}{\mathup{e}}
32\AtBeginDocument{\let\oldi\i \let\oldj\j
    \renewcommand{\i}{\TextOrMath{\oldi}{\mathup{i}}}
    \renewcommand{\j}{\\TextOrMath{\oldj}{\mathup{j}}} }
\ \newcommand{\enumber}{
    \AtBeginDocument{\DeclareMathSymbol{e}\mathalpha{operators}{'e}} }
\\newcommand{\inumber}{
    \AtBeginDocument{\DeclareMathSymbol{i}\mathalpha{operators}{'i}} }
0 \newcommand{\jnumber}{
1\AtBeginDocument{\DeclareMathSymbol{j}\mathalpha{operators}{`j}} }
42 \newcommand*{\pinumber} [1] [Symbol] {
```

```
43\\@ifpackageloaded{upgreek}{}{\usepackage[#1]{upgreek}}
4 4 \ \ l e t \ i t p i \ p i
45 \renewcommand{\pi}{\uppi} }
4 6
47 \newboolean{arrowvect}
48 \setboolean{arrowvect}{true}
49 \newcommand{\arrowvect}{\setboolean{arrowvect}{true}}
50\newcommand{\boldvect}{\setboolean{arrowvect}{false}}
51 \newcommand{\boldvectcommand}{\boldsymbol} % needs bm package
5 2 \ @ m m a c r o \{ v e c t \} \{ \ i f t h e n e l s e \{ \ b o o l e a n \{ a r r o w v e c t \} \} \{ \ v v \} \{ \ b o l d v e c t c o m m a n d \} \}
53\newcommand*{\hvect}[1]{\vv{\vphantom{h}#1}}
54\newcommand*{\hvec}[1]{\vec{\vphantom{t}#1}}
5 5
56 \newcommand*{\@norm} [1]{
        \mbox{\raisebox{1.75pt}{$\bigl\Vert$}} #1
    \mbox{\raisebox{1.75pt}{$\bigr\Vert$}} }
59% works better than with relative length
60\newcommand*{\@@norm} [1]{
    \mbox{\footnotesize\raisebox{1pt}{$\Vert$}} #1
    \mbox{\footnotesize\raisebox{1pt}{$\Vert$}} }
\newcommand*{\@@@norm}[1]{
    \mbox{\tiny\raisebox{1pt}{$\Vert$}} #1
    \mbox{\tiny\raisebox{1pt}{$\Vert$}} }
    \@ifundefined{norm}{\providecommand*{\norm}[1]{
        \mathchoice{\@norm{#1}}{\@norm{#1}}{\@@norm{#1}}{\@@@norm{#1}} }}{
        \@mwarning{norm} }
    6
    0\@mmacro{di}{\mathop{}\!\mathup{d}}
    1 \newcommand\probastyle{}
    2 \let\Par\P % end of paragraph symbol
    3 \renewcommand{\P}{\operatorname{\probastyle{P}}}
    4\@mmacro{E}{\operatorname{\probastyle{E}}}
    \\@mmacro{V}{\operatorname{\probastyle{V}}}
    \newcommand{\PEupright}{
    \AtBeginDocument{% necessary for working with beamer
        \DeclareMathSymbol{P}\mathalpha{operators}{'P}
        \DeclareMathSymbol{E}\mathalpha{operators}{'E}
    }
1}
82
83\@moperator{\adj}{adj}
84\@moperator{\Aut}{Aut}
85\@moperator{\Conv}{Conv}
86 \@moperator{\cov}{cov}
87\@moperator{\Cov}{Cov}
88\@mmacro{curl}{\operatorname{\vect{\mathup{curl}}}}
89 \@moperator [divg]{\divg}{div}
90 \@moperator{\End}{End}
91
92\@moperator{\erf}{erf}
```

```
93\@mmacro{grad}{\operatorname{\vect{\mathup{grad}}}}
94\@moperator{\id}{id} % mathop or mathord ?
95\@moperator{\Id}{Id}
96 \@moperator{\im}{im}
97\let\oldIm\Im \renewcommand{\Im}{\operatorname{Im}}
98\@moperator{\lb}{lb}
99\@moperator{\lcm}{lcm}
100
101\@moperator{\rank}{rank}
102 \let\oldRe\Re \renewcommand{\Re}{\operatorname{Re}}
103\@mmacro{rot}{\operatorname{\vect{\mathup{rot}}}}
104 \@moperator{\sgn}{sgn}
105\@moperator [spa]{\spa}{span}
106\@moperator{\tr}{tr}
107\@moperator{\Var}{Var}
108 \@moperator [Zu]{\Zu}{Z}
1 0 9
110 \@moperator{\arccot}{arccot}
11 \@moperator{\sech}{sech}
2 \@moperator{\csch}{csch}
3\@moperator{\arsinh}{arsinh}
14\@moperator{\arcosh}{arcosh}
15\@moperator{\artanh}{artanh}
6\@moperator{\arcoth}{arcoth}
7\@moperator{\arsech}{arsech}
8\@moperator{\arcsch}{arcsch}
1 1 9
120 \@moperator[bigO]{\bigO}{\mathcal{0}}
\\@moperator[bigo]{\bigo}{0}
\@moperator[lito]{\lito}{o}
1 2 3
124 \@mmacro{mathset}{\mathbf}
\\@mmacro{R}{\ensuremath{\mathset{R}}\xspace}
26\@mmacro{C}{\ensuremath{\mathset{C}}\xspace}
7\@mmacro{N}{\\ensuremath{\mathset{N}}\xspace}
\\@mmacro{Z}{\ensuremath{\mathset{Z}}\xspace}
\@mmacro{Q}{\ensuremath{\mathset{Q}}\xspace}
\@mmacro{F}{\ensuremath{\mathset{F}}\xspace}
\@mmacro{K}{\ensuremath{\mathset{K}}\xspace}
132
133 \@mmacro{ds}{\displaystyle}
34\@mmacro{dlim}{\lim\limits}
35\@mmacro{dsum}{\sum\limits}
\\@mmacro{dprod}{\prod\limits}
\@mmacro{dcup}{\bigcup\limits}
\@mmacro{dcap}{\bigcap\limits}
1 3 9
140 \@mmacro{lbar}{\overline}
\1\@ifundefined{hlbar}{
142\\providecommand*{\hlbar}[1]{\overline{\vphantom{h}#1}}}{
```

```
143 \@mwarning{hlbar} }
144\@mmacro{eqdef}{\stackrel{\mathup{def}}{=}}
145 \@mmacro{unbr}{\underbrace}
146 \@mmacro{iif}{if and only if\xspace}
1 4 7
148 \@mmacro{mul}{\mathord{\times}}
149\@mmacro{then}{\\Longrightarrow \ \mbox{} }
```

Without $\backslash \operatorname{mbox}\}$, the space produced by \backslash would be suppressed in tables.

```
\@ifundefined{txt}{
    \providecommand*{\txt}[1]{\quad\text{#1}\quad} }{
    \@mwarning{txt} }
\@ifundefined{paren}{
        \providecommand*{\paren}[1]{\mathopen{\left(#1\right)}} }{
        \@mwarning{paren} }
\@ifundefined{pow}{
        \providecommand*{\pow}[2]{\left( #1 \right)^{\!#2}} }{
        \@mwarning{pow} }
\@ifundefined{abs}{
        \providecommand*{\abs}[1]{\left\vert#1\right\vert} }{
        \@mwarning{abs} }
\@ifundefined{lfrac}{
        \providecommand*{\lfrac}[2]{\frac{\;#1\;}{\;#2\;}} }{
        \@mwarning{lfrac} }
\DeclareMathSymbol{]}\mathord{operators}{093} % originally \mathclose
\DeclareMathSymbol{[}\mathord{operators}{091} % originally \mathopen
167
168 \newcommand{\systemstretch}{1.2}
\newcommand{\systemsep}{\medspace}
\newenvironment{system} [1] [1]{
        \renewcommand{\arraystretch}{\systemstretch}
        \setlength{\arraycolsep}{0.15em}
        \left\{\begin{array}{@{\systemsep}#1@{}} %
} }{\end{array}\right.}
175
6 \newenvironment{spmatrix}{
    \left(\begin{smallmatrix}
}{\end{smallmatrix}\right)}
179
180 \newenvironment{mathcols}{% needs multicol package
        \renewcommand{\columnseprule}{0.1pt}
        \begin{multicols}{2}
            \par\noindent\hfill
            \begin{math}\begin{aligned}\displaystyle
} {%
            \end{aligned}\end{math} \hfill\mbox{}
        \end{multicols}
188}
189 \newcommand{\changecol}{%
190 \end{aligned}\end{math} \hfill\mbox{}
```


References

[1] Typesetting mathematics for science and technology according to ISO 31/XI, Claudio Beccari, TUGboat Volume 18 (1997), No. 1.
[2] Typefaces for Symbols in Scientific Manuscripts. https://www.physics.nist.gov/cuu/pdf/typefaces.pdf.
[3] On the Use of Italic and up Fonts for Symbols in Scientific Text, I.M. Mills and W.V. Metanomski, ICTNS (Interdivisional Committee on Nomenclature and Symbols), dec 1999.
[4] ISO 80000-2. https://en.wikipedia.org/wiki/ISO_80000-2
[5] The amsmath package. Frank Mittelbach, Rainer Schöpf, Michael Downes, Davis M. Jones, David Carlisle, CTAN, v2.17b 2018/12/01.
[6] The mathtool package. Morten Høgholm, Lars Madsen, CTAN, v1.21 2018/01/08.
[7] Typesetting vectors with beautiful arrow with ${ } T_{E} X 2_{\varepsilon}$. esvect package by Eddie Saudrais, CTAN, v1.3 2013/07/11.
[8] The upgreek package for $\operatorname{LT}_{E} \mathrm{X} 2{ }_{\varepsilon}$, Walter Schmidt, CTAN, v2.0 2003/02/12.
[9] The fixmath package for ${ }^{L} T_{E} X 2_{\mathcal{E}}$, Walter Schmidt, CTAN, v0.9 2000/04/11.
[10] isomath. Mathematical style for science and technology. Günter Milde, CTAN, v0.6.1 2012/09/04.
[11] The interval package. Lars Madsen, CTAN, v0.3 2014/08/04.
[12] L'extension pour $T_{E} X$ et $L T T_{E} X$ systeme. Christian Tellechea, CTAN v0.32 2019/01/13.
[13] The spalign package. Joseph Rabinoff, CTAN, 2016/10/05.
[14] L'extension frenchmath. Antoine Missier, CTAN, v1.6 2022/10/16.
[15] The Not So Short Introduction to $E T T_{E} X 2_{\mathcal{\varepsilon}}$. Ishort package by Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, CTAN, v6.2 2018/02/28.
[16] The ${ }^{L T} T_{E} X$ Companion. Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley, 2nd edition, Pearson Education, 2004.

[^0]: *This document corresponds to mismath v1.9, dated 2022/10/17. Thanks to François Bastouil for help in English translation.

[^1]: ${ }^{1}$ The frenchmath package [14] takes this rule into account.
 ${ }^{2} \backslash$ mathup is based on \operatorfont (from amsopn package, automatically loaded by amsmath). The beamer package uses a default sans serif math font, but \mathrm produces a font with serif in beamer. This problem is solved by using \mathup instead of \mathrm.

[^2]: ${ }^{3}$ Due to this $\backslash i$ command redefinition, there is an incompatibility with beamer when using i with accents in beamer titles. A solution is to use the classic \^i command to produce î in beamer titles for example.
 ${ }^{4}$ As for many macros of this package, the definition will take effect only if this macro is not defined before by another package.
 ${ }^{5}$ esvect provides \vv macro used by \vect.

[^3]: ${ }^{6} \backslash$ mathbf gives upright bold font, even if used in combination with \backslash mathit.

[^4]: ${ }^{7} \mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ provides also $\backslash \mathrm{Pr}$ which gives Pr.
 ${ }^{8}$ As for \backslash boldvect and \arrowvect, effect is local to the container environment.

[^5]: ${ }^{14} @\{$. . \} sets inter-column space.

