
The messagepassing package∗

Martin Vassor
bromind+ctan@gresille.org

March 9, 2022

Contents

1 Introduction 1

2 Usage 1
2.1 Loading the package . 1
2.2 Basic usage . 2

2.2.1 Creating a diagram. 2
2.2.2 Populating the run. 3
2.2.3 Combined commands . 6

2.3 Advanced usage . 6
2.3.1 Customising colours . 6
2.3.2 Coordinates . 6

3 Implementation 7

1 Introduction

This package provides an environment and associated macros to easily draw mes-
sage passing diagrams. For instance, Execution. 1 shows the capabilities offered
by the package.

2 Usage

2.1 Loading the package

The package accepts two options: vertical and annotatevertical. If the former
is set, executions will be drawn with time going from top to bottom, instead of
from left to right. Doing so, almost all labels1 are rotated as well. If, in addition,

∗This document corresponds to messagepassing v1.0, dated 2022/02/18.
1Annotations are not rotated, unless explicitly asked.

1

Protocol

time
0 1 2 3 4 5 6 7 8

p

q

r

c0p

c0q

c0r

c1p

si0p

si0q

si0r

si1q si2q m

si1p

mcopy

si0r
restart

1 + 1 = 2

Execution 1: An example of message passing

annotatevertical is set, then annotations (including named of colouredboxes)
are rotated as well.

2.2 Basic usage

2.2.1 Creating a diagram.

A diagram can easily be created using the messagepassing environment. The syn-messagepassing

tax is: \begin{messagepassing} [〈tikz 〉] [〈caption〉] [〈placement〉] [〈label〉].
The first optional argument (tikz) contains arguments that are passed to the un-
derlying tikz environment. The second argument (caption) has two effect: if set,
it turns the diagram into a floating figure, and the content of the argument is the
caption of the floating figure. The third argument (placement) is the placement
option of the figure, the default is p. Finally, the fourth option (label) is the label
used to reference the figure.

For instance, the diagram in Figure 1 is created with the following commands:

\begin{messagepassing}[][An example of message passing][h][mp:ex1]

% ...

\end{messagepassing}

Setting up the diagram. When created, the diagram is empty. Before actually
writing the message exchanges, we have to set up a few things: set whether we
want a timeline (and if it is the case, of which length), and set the number of
processes with their names, etc.

Creating a new process. Each process is characterised by its name. The\newprocess

simplest macro to create a new process is then \newprocess {〈name〉}, where
{〈name〉} is the name of the process (resp. p, q, and r in Figure 1).

In addition, we often draw a horizontal2 line that represent the running process.

2By default, the line is vertical if the option vertical is used.

2

Although this line can be manually added3, we also provide a simple macro that
performs both actions: \newprocesswithlength{〈name〉}{〈length〉}.\newprocesswithlength

An other alternative is to name the state in which the process starts (in Fig 1,
we call those states si as state intervals). Again, this can be achieved using individ-
ual commands, but we also provide \newprocesswithstateinterval{〈name〉}{〈state\newprocesswithstateinterval

name〉}.
Finally, an other way to create a process is to create a process that (eventually)

fails, which is represented by the process’ line terminating early with a cross. For
that, we provide \newprocesswithcrash{〈name〉}{〈length〉}{〈crash coordinate\newprocesswithcrash

name〉}. The first two arguments are similar to \newprocesswithlength, and
the latter one is used to provide a name for the coordinate where the crash occurs.
This name can later be used to place nodes.

Of course, we can imagine other combinations (e.g. a process with a length and
a state interval). We do not provide individual commands for each combination,
but the can be easily achieved using separate commands.

As an example, the processes of Fig. 1 are created as follows.

\newprocesswithlength{p}{9}

\newprocesswithlength{q}{9}

\newprocesswithlength{r}{5}

Setting up a timeline. An other setup action consists in setting up (if
wanted) the timeline. Notice that this can be done at any place in the diagram.
To do so, simply use the command \drawtimeline{〈length〉}, where length is the\drawtimeline

length of the desired timeline.

2.2.2 Populating the run.

Now that we have some processes, we have to populate the diagram with some
actions.

Basic message. The most basic action is to send a message. For that, we
provide the command \send{〈sender〉}{〈send time〉}{〈receiver〉}{〈receive time〉}.\send

The sender and receiver are identified with their names, and the sending and
receiving times are given according to their timestamp4.

In addition, we can label the arrow with the message that is sent with
\sendwithname{〈sender〉}{〈send time〉}{〈receiver〉}{〈receive time〉}{〈label〉}. For\sendwithname

instance, in Figure 1, we use \send{p}{1}{q}{2}.
Finally, we sometimes distinguish out-of-band messages, e.g. messages that

do not carry informations, but that are for instance used for metadata, etc.. We
provide the macro \sendoutofband{〈sender〉}{〈send time〉}{〈receiver〉}{〈receive\sendoutofband

time〉}{〈label〉}, which behaves similarly to \sendwithname, but prints the mes-
sage in an other colour.

3processlength{〈process〉}{〈length〉} creates a line of length length for process process.
4Notice that nothing prevents sending messages in the past, simply set a receiving time before

the sending time.

3

p

q

msg

\begin{messagepass ing }
\ newprocesswith length {p}{4}
\ newprocesswith length {q}{4}
\ send{p}{1}{q}{2}
\ sendwithname{p}{2}{q}{3}{msg}

\end{messagepass ing }

Figure 1: A very simple protocol with a single message exchanged.

p

q

\begin{messagepass ing }
\ newprocesswith length {p}{4}
\ newprocesswith length {q}{2}
\ send{p}{1}{q}{2}
\ crash {q}{2}{ crash }
\ r e s t a r t {q}{3}{1}
\end{messagepass ing }

Figure 2: A protocol with a crashed process.

Process crash and restore. The crash of a process can be represented using
\crash{〈process name〉}{〈time〉}{〈crash name〉}. The argument process name is\crash

the name of the process that crashes, and crash name is used to give a name
to the crash. Naming the crash is useful for coordinates (see below). Finally,
time specifies when the crash occurs. Notice that this does not modify the
timeline: it simply adds a crash token at the specified coordinate. This means
that (i) then timeline has to stop at the crash’s time; and (ii) it has to be
restarted after. To stop the timeline, simply take the crash into account when
setting the initial timeline. To restart the timeline, we provide the command
\restart{〈name〉}{〈date〉}{〈duration〉}. name specifies which process is to be\restart

restarted; date specifies when the process should be restarted, and duration spec-
ifies how long the process shoud be alive (i.e. what is the length of the timeline)
after the restart.

Tokens on the run The package also proposes two kinds of tokens that can
be added on protocols’ lines. The first one is a checkpoint (i.e. a state that is
saved somewhere) and the second is used to denote the begining of a state interval
(a state interval denotes a period in which a process only performs deterministic
events). The former are denoted with a small black rectangle, while the later is
denoted with a vertical line. Although those two tokens are intended for the usage
mentionned above, we encourage users to use them for other usages if need be.

A checkpoint can be added with \checkpoint{〈process〉}{〈time〉}{〈name〉},\checkpoint

where process is the name of the process which takes a checkpoint, time is
the the time at which the checkpoint is taken, and name is the name of the

4

q
c1

\begin{messagepass ing }
\ newprocesswith length {q}{2}
\ checkpo int {q}{1}{ c 1}
\ crash {q}{2}{ crash }
\ r e s t a r t {q}{3}{1}
\end{messagepass ing }

Figure 3: A protocol with a checkpoint.

checkpoint, that is printed next to it, and can be used as a coordinate. No-
tice that the name is printed in a math environment, as we expect most check-
points names to be indexed, e.g.c1, c2, etc. To have more control on the printed
name, or if the proposed name is not a valid coordinate name, we offer a variant
\checkpointspecial{〈process〉}{〈time〉}{〈name〉}{〈label〉}, where name is the\checkpointspecial

name of the coordinate of the checkpoint, and label is the label to be printed.
Notice that, in that case, the label is printed as is, i.e. not typeset as maths.

A state interval can be added similarly with the command \stateinterval\stateinterval

{〈process〉}{〈time〉}{〈name〉}.
For the sake of completeness, if you need the name of the coordinate

and the displayed label to be different (e.g. if the label can not be the
name of a coordinate, for whatever reason), we also provide the command
\stateintervalspecial{〈process〉}{〈time〉}{〈name〉}{〈label〉}, in which name\stateintervalspecial

is the name of the created coordinate, and label is the label attached to the state
interval.

Grey boxes In Execution 1, we created a light-red box between processes p and
q, from time 7 to 9, to indicate that they perform a given protocol that we don’t
detail further. We call such boxes (which can be used for a lot of other purposes)
colouredboxes, and they can be added with \colouredbox{〈first process〉}{〈second\colouredbox

process〉}{〈start time〉}{〈end time〉}{〈label〉}. This creates a box that spans be-
tween first process and second process, from start time to end time, with the label
label printed.

Notice that there are no technical restrictions to adding messages on top of a
box, typically to highlight a specific part of a larger execution.

Annotations Finally, it is possible to add annotations on the diagram. To do
so, we provide the macro \annotate{〈process〉}{〈time〉}{〈text〉} which adds an\annotate

annotation with text over the timeline of the given process at time time. This
also creates a coordinate at the annotation time, which name is the content of
the annotation (i.e. text). If text is not a valid coordinate name, then the al-
ternative \annotatexplicit{〈process〉}{〈time〉}{〈text〉}{〈name〉} behaves simi-\annotatexplicit

larly, except that the coordinate name is explicitly given in argument name.

5

2.2.3 Combined commands

The above commands are sufficient to use all primitives offered by the package.
In addition, we provide a lot of combined commands, which, as the name suggest,
have the effect of multiple simple commands.

• \newprocesswithlength{〈name〉}{〈lifetime〉}: combination of \newprocess{〈name〉}
and \processlength{〈name〉}{〈lifetime〉}

• \newprocesswithstateinterval{〈process name〉}{〈state interval name〉}:
combination of \newprocess{〈process name〉} and \stateinterval{〈process
name〉}{〈0 〉}{〈state interval name〉}

• \newprocesswithcrash{〈process name〉}{〈crash time〉}{〈crash name〉}: cre-
ates a process process name that runs until crash time. The crash is named
crash name.

• \sendwithstateinterval{〈sender〉}{〈send time〉}{〈receiver〉}{〈receive time〉}{〈si
name〉}: combines \send and \stateinterval.

• \sendwithstateintervalandname{〈sender〉}{〈send time〉}{〈receiver〉}{〈receive
time〉}{〈si name〉}{〈message name〉}: combines \sendwithname and \stateinterval

2.3 Advanced usage

2.3.1 Customising colours

Two parts of the package use colours: colouredboxes and out-of-band messages.
By default both are shades of red. We provide commands to change that if desired.

\colouredboxcolor{〈colour〉} changes the colour used for colouredboxes. No-\colouredboxcolor

tice that this sets both the background colour (which is a light variant of the
provided colour) and the text colour (which uses the provided colour).

\oobcolor{〈colour〉} changes the colour used for out-of-band messages.\oobcolor

2.3.2 Coordinates

TikZ coordinates. Message passing diagrams are drawn using TikZ, which
means that one can add arbitrary commands to a diagram. In addition, the pack-
age defines useful coordinates to refer to. Execution 2 shows the TikZ coordinate
plan overlayed on top of Execution 1.

On TikZ y-axis processes are instanciated one unit apart from each other, in
their declaration order. To keep the coordinate system simple, processes expand
in the negative (e.g. the first process declared is at coordinate (0,−1), the second
at (0,−2), etc.).

The TikZ x-axis corresponds to the time axis of the diagram. Therefore, e.g.
coordinate (3,−4) corresponds to the 3rd time step of the 4th process.

6

Named coordinates. In addition to explicit coordinates explained above, the
package names most of the points of interest in the diagram.

Coordinates of processes. At each process declaration, a coordinate
named after the name of the process is created. The coordinate corresponds to
the beginning of the corresponding process’ timeline (for instance, in Execution 2,
we show coordinate (q), that corresponds to the process q).

Coordinate of states intervals (resp. checkpoints, resp. crashes).
Similarly to processes, each state interval (resp. checkpoint, resp. crashes) creates
a coordinate, named after the name of the state interval (resp. checkpoint, resp.
crashes), is created. The coordinates refers to the place of the state interval (resp.
checkpoint, resp. crashes). For instance, in Execution 2, we show the coordinates
(si q^1), (c p^1) and (k), that respectively correspond to the state interval si1q,
the checkpoint c1p and the crash5 k.

Coordinates of annotations. When an annotation is created, a coordinate
is created at the same place, on the process’ timeline6 For instance, in Execution 1,
the annotation 1 + 1 = 2 is created with the explicit name “note”. We show the
corresponding coordinate in Execution 2.

Protocol

time
0 1 2 3 4 5 6 7 8

p

q

r

c0p

c0q

c0r

c1p

si0p

si0q

si0r

si1q si2q m

si1p

mcopy

si0r
restart

1 + 1 = 2

(1, 0)

(0,−1)

(q) (si q^1)

(c p^1)

(k)

(note)

Execution 2: Showing TikZ coordinates

3 Implementation

1 \newcounter{processnb}

5The names of crashes are not printed on the figure, although they are internally defined.
6Notice that, using the explicit variant of annotate (annotatexplicit), the name of the

annotation has to be explicitly given.

7

2 \setcounter{processnb}{0}

3 \newcounter{maxtime}

4

5 \pgfdeclarelayer{background}

6 \pgfsetlayers{background,main}

7

8 \newfloat{float_messagepassing}{t b h p}{.mp}

9 \floatname{float_messagepassing}{Execution}

10

11 \newif\ifmp@vertical\mp@verticalfalse

12 \DeclareOption{vertical}{

13 \mp@verticaltrue

14 }

15 \newif\ifmp@annotatevertical\mp@annotateverticalfalse

16 \DeclareOption{annotatevertical}{

17 \mp@annotateverticaltrue

18 }

19 \ProcessOptions\relax

20

21 \ifmp@vertical

22 \newcommand{\mp@processnameanchor}{south}

23 \newcommand{\mp@timeticksanchor}{east}

24 \newcommand{\mp@messagelabelanchor}{south}

25 \newcommand{\mp@stateintervalanchor}{north west}

26 \newcommand{\mp@checkpointanchor}{east}

27 \newcommand{\mp@verticalrotation}{270}

28 \ifmp@annotatevertical

29 \newcommand{\mp@annotaterotation}{270}

30 \else

31 \newcommand{\mp@annotaterotation}{0}

32 \fi

33 \else

34 \newcommand{\mp@processnameanchor}{east}

35 \newcommand{\mp@timeticksanchor}{north}

36 \newcommand{\mp@messagelabelanchor}{west}

37 \newcommand{\mp@stateintervalanchor}{south west}

38 \newcommand{\mp@checkpointanchor}{north}

39 \newcommand{\mp@verticalrotation}{0}

40 \newcommand{\mp@annotaterotation}{0}

41 \fi

42

43 \newcommand{\mp@oobcolor}{red}

44 \newcommand{\oobcolor}[1]{

45 \renewcommand\mp@oobcolor{#1}

46 }

47

48 \newcommand{\mp@colouredboxcolor}{red}

49 \newcommand{\colouredboxcolor}[1]{

50 \renewcommand\mp@colouredboxcolor{#1}

51 }

8

52

53 \newif\iftimeline

messagepassing

54 \ExplSyntaxOn

55 %% 1st argument: tikz arguments

56 %% 2nd argument: Float caption (turns in floating)

57 %% 3rd argument: Float placement (‘p‘ by default)

58 %% 4th argument: Float label

59 \NewDocumentEnvironment{messagepassing} {o o o o}

60 {

61 \timelinefalse

62 \setcounter{processnb}{0}

63 \IfNoValueTF{#2} {

64 }{

65 \IfNoValueTF{#3}{

66 \begin{float_messagepassing}[p]

67 } {

68 \begin{float_messagepassing}[#3]

69 }

70 \begin{center}

71 }

72 \IfNoValueTF{#1}{

73 \begin{tikzpicture}[rotate=\mp@verticalrotation]

74 } {

75 \begin{tikzpicture}[rotate=\mp@verticalrotation, #1]

76 }

77 }{

78 %% Draw timeline if boolean is true

79 \iftimeline

80 \begin{pgfonlayer}{background}

81 \setcounter{maxtime}{\@maxtime}

82 \addtocounter{maxtime}{-1}

83 \coordinate (maxtime) at (\@maxtime, 0);

84

85 \addtocounter{processnb}{1}

86 \coordinate (timeline) at (0, -\value{processnb});

87 \draw (timeline) node [anchor=\mp@processnameanchor] {{\it time}};

88 \draw[->] (timeline) -- ($(timeline) + (maxtime)$);

89 \foreach \i in {0,...,\value{maxtime}} {

90 \draw ($(timeline) + (\i, 0) + (0, 0.1)$) -- ($(timeline) + (\i, 0) + (0, -0.1)$) node [anchor=\mp@timeticksanchor] {\i};

91 }

92 \end{pgfonlayer}

93 \else

94 \fi

95 \end{tikzpicture}

96 \IfNoValueTF{#2} {

97 \linebreak

98 } {

99 \end{center}

9

100 \caption{#2}

101 \IfNoValueTF{#4} {

102 }{

103 \label{#4}

104 }

105 \end{float_messagepassing}

106 }

107 }

108 \ExplSyntaxOff

109 %% #1: name

110 \newcommand{\newprocess}[1]{

111 \addtocounter{processnb}{1}

112 \coordinate (#1) at (0, -\value{processnb});

113 \draw (#1) node[anchor=\mp@processnameanchor] {$#1$};

114 }

115 %% #1: name

116 %% #2: width

117 \newcommand{\newprocesswithlength}[2]{

118 \newprocess{#1}

119 \processlength{#1}{#2}

120 }

121 %% #1: name

122 %% #2: state interval name

123 \newcommand{\newprocesswithstateinterval}[2]{

124 \newprocess{#1}

125 \stateinterval{#1}{0}{#2}

126 }

127 %% #1: name

128 %% #2: width

129 %% #3: crash name

130 \newcommand{\newprocesswithcrash}[3]{

131 \newprocess{#1}{#2}

132 \crash{#1}{#2}{#3}

133 }

134 %% #1: sender’s name

135 %% #2: send date

136 %% #3: receiver’s name

137 %% #4: receive date

138 \newcommand{\send}[4]{

139 \draw[->] (#1) +(#2, 0) -- ($ (#3) +(#4, 0) $);

140 }

141 %% #1: sender’s name

142 %% #2: send date

143 %% #3: receiver’s name

144 %% #4: receive date

145 %% #5: message name

146 \newcommand{\sendwithname}[5]{

10

147 \draw[->] (#1) +(#2, 0) -- ($ (#3) +(#4, 0) $) node[anchor=\mp@messagelabelanchor, pos=0.3] {#5};

148 }

149 %% #1: process name

150 %% #2: process width

151 \newcommand{\processlength}[2]{

152 \draw (#1) -- +(#2, 0);

153 }

154 %% #1: sender’s name

155 %% #2: send date

156 %% #3: receiver’s name

157 %% #4: receive date

158 %% #5: state interval name

159 \newcommand{\sendwithstateinterval}[5] {

160 \send{#1}{#2}{#3}{#4}

161 \stateinterval{#3}{#4}{#5}

162 }

163 %% #1: sender’s name

164 %% #2: send date

165 %% #3: receiver’s name

166 %% #4: receive date

167 %% #5: state interval name

168 %% #6: message name

169 \newcommand{\sendwithstateintervalandname}[6] {

170 \sendwithname{#1}{#2}{#3}{#4}{#6}

171 \stateinterval{#3}{#4}{#5}

172 }

173 %% #1: sender’s name

174 %% #2: send date

175 %% #3: receiver’s name

176 %% #4: receive date

177 %% #5: OoB message name

178 \newcommand{\sendoutofband}[5]{

179 \draw[->, color=\mp@oobcolor] (#1) +(#2, 0) -- ($ (#3) +(#4, 0) $) node[anchor=\mp@messagelabelanchor, pos=0.3] {#5};

180 }

181 %% #1: process’s name

182 %% #2: state interval date

183 %% #3: state interval name

184 \newcommand{\stateinterval}[3] {

185 \stateintervalspecial{#1}{#2}{#3}{#3}

186 }

187 %% #1: process’s name

188 %% #2: state interval date

189 %% #3: coordinate name

190 %% #4: state interval label

191 \newcommand{\stateintervalspecial}[4] {

192 \coordinate (#3) at ($ (#1) +(#2, 0) $);

193 \draw (#3) + (0, 0.1) -- +(0, -0.1) node[anchor=\mp@stateintervalanchor] {$#4$};

194 }

11

195 %% #1: process’s name

196 %% #2: checkpoint date

197 %% #3: checkpoint name

198 \newcommand{\checkpoint}[3]{

199 \coordinate (#3) at ($ (#1) + (#2, 0) $);

200 \fill (#3) + (-0.05, 0.1) rectangle +(0.05, -0.1);

201 \draw (#3) + (0, -0.1) node[anchor=\mp@checkpointanchor] {$#3$};

202 }

203 %% #1: process’s name

204 %% #2: checkpoint date

205 %% #3: checkpoint coordinate name

206 %% #4: checkpoint label

207 \newcommand{\checkpointspecial}[4]{

208 \coordinate (#3) at ($ (#1) + (#2, 0) $);

209 \fill (#3) + (-0.05, 0.1) rectangle +(0.05, -0.1);

210 \draw (#3) + (0, -0.1) node[anchor=\mp@checkpointanchor] {#4};

211 }

212 %% #1: process’s name

213 %% #2: crash date

214 %% #3: crash name

215 \newcommand{\crash}[3]{

216 \coordinate (#3) at ($ (#1) + (#2, 0) $);

217 \draw (#3) + (-0.1, -0.1) -- +(0.1, 0.1);

218 \draw (#3) + (0.1, -0.1) -- +(-0.1, 0.1);

219 }

220 %% #1: process’s name

221 %% #2: restart date

222 %% #3: restart length

223 \newcommand{\restart}[3]{

224 \draw (#1) + (#2, 0) -- ($ (#1) + (#2, 0) + (#3, 0) $);

225 }

226 %% #1: first process’s name

227 %% #2: second process’s name

228 %% #3: begining of the grey box

229 %% #4: end of the grey box

230 %% #5: caption

231 \newcommand{\colouredbox}[5]{

232 \begin{pgfonlayer}{background}

233 \fill[color=\mp@colouredboxcolor!20] ($(#1) + (#3, 0)$) rectangle ($(#2) + (#4, 0)$) node[midway, color = \mp@colouredboxcolor, rotate=\mp@annotaterotation]{#5};

234 \end{pgfonlayer}

235 }

236 %% #1: Timeline length

237 \newcommand{\drawtimeline}[1]{

238 \timelinetrue

239 \def\@maxtime{#1}

240 }

241 %% #1: process’s name

12

242 %% #2: annotation date

243 %% #3: annotation

244 \newcommand{\annotate}[3]{

245 \annotatexplicit{#1}{#2}{#3}{#3}

246 }

247 %% Same than annotate, but with the coordinate name provided explicitly

248 %% #1: process’s name

249 %% #2: annotation date

250 %% #3: annotation

251 %% #4: coordinate name

252 \newcommand{\annotatexplicit}[4]{

253 \coordinate (#4) at ($ (#1) +(#2, 0.1) $);

254 \draw (#4) node[rotate=\mp@annotaterotation, anchor=south] {#3};

255 }

13

	Introduction
	Usage
	Loading the package
	Basic usage
	Creating a diagram.
	Populating the run.
	Combined commands

	Advanced usage
	Customising colours
	Coordinates

	Implementation

