The mathastext package
 Jean-François Burnol jfbu (at) free (dot) fr
 Package version: 1.3za (2023/12/20)

The mathastext package changes the fonts which are used in math mode for letters, digits and a few other punctuation and symbol signs to replace them with the font as used for the document text. Thus, the package makes it possible to use a quite arbitrary font without worrying too much that it does not have specially designed accompanying math fonts. Also, mathastext provides a simple mechanism in order to use more than one math-as-text font in the same document.

```
`mathastext' is a LaTeX package
    \usepackage{mathastext}
The document will use in math mode the text font
as configured at package loading time, for these
characters:
    abcdefghijklmnopqrstuvwxyz
    ABCDEFGHIJKLMNNOPQRSTUVWXYZ
    0123456789
    !?,.:;+-=()[]/#$%&<<>|{}\
The command \MTsetmathskips allows to set up extra
spacings around each given letter.
Use multiple \Mathastext[name]'s to define in the
preamble various math versions using each a given
text font, to be later activated in the document
body via the command \MTversion{name}.
With the subdued option, mathastext will be active
only inside such math versions distinct from the
normal and bold.
Main options: italic, defaultmathsizes, subdued,
    asterisk, LGRgreek.
```

[^0]
Contents

What mathastext does . . 1, p. 2 Aim of this package and basic usage	Extra glue after \exists, \forall, and before the prime glyph . . . 1.10, p. 31
. 1.1, p. 2	Extended scope of the math alphabets
Miscellanea 1.2, p. 3	commands 1.11, p. 31
Examples 1.3, p. 7	Unicode engines 1.12, p. 34 The unicodeminus option-Two examples.
Main options 1.4, p. 12	Compatibility issues 1.13, p. 37
The italic option-The defaultmathsizes op-tion-The subdued option-The LGRgreek option.	Package commands 2, p. 39
More miscellanea 1.5, p. 14 Derivative, minus, asterisk-load mathastext al-	Commands for regular usage 2.1, p. 39 Preamble-only commands-Commands for body or math.
beamer-avoid OT1 encoding - using mathastext with frenchmath.	Commands for expert usage 2.2, p. 45 Expert commands usable everywhere-Expert
Math versions 1.6, p. 17	commands which are preamble-only-Expert commands usable only outside of math mode
Greek letters 1.7, p. 19	- Expert commands usable only in math mode.
The Greek-related options-Shape of Greek let-ters-Control sequences to access directly upright	Package options 3, p. 52
n	Summary of main options . 3.1, p. 52
Special behavior of \mathrm, \mathbf, \mathit with Greek letters via the LGRgreek+ option.	Complete list of options . . 3.2, p. 52
ces around letters 1.8, p. 27	Change log 4, p. 58
alic corrections 1.9, p. 28	Implementation 5, p. 65

1 What mathastext does

If you have used the package before please make sure to check first section 4 where all changes across releases are recorded.

1.1 Aim of this package and basic usage

The initial ideology of mathastext was to produce mathematical texts with a very uniform look, not separating math from text as strongly as is usually done.
mathastext's basic aim is thus to have the same font for text and mathematics. With hundreds of free text fonts packaged for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ and only a handful of math ones, chances are your favorite text font does not mix so well with the available math ones; mathastext may then help. Note that mathastext was initially developed for the traditional $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts and engines, and that compatibility with Unicode engines and OpenType fonts is partial.

Here is a minimal example of what may go into the preamble:
T1]\{fontenc\}\usepackage\{times\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\usepackage[italic]{mathastext}
```

The package records which font is set up for text, at the time it is loaded, and then arranges things in order for this text font to be used in math mode as well. So, with the preamble as above all letters, digits, and punctuation signs inside math mode will then be typeset in Times. ${ }^{1}$ The exact list of characters concerned by mathastext is a subset of the basic ASCII set:

```
    abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
        0 1 2 3 4 5 6 7 8 9
!?*,.:;+-=()[]/# $ % & <>| {} and \
```

As one can see, this is a very limited list! Some possibilities exist regarding Greek letters and will be described later.

1.2 Miscellanea

Please note that most of this section was written many years ago. But it should still be valid!
the en-dash as minus sign: very often the - character from the text font does not give a good minus sign. So by default, the package uses the en-dash sign -. Use noendash to deactivate it. Starting with version 1.12 of the package this 'en-dash as minus' should work in all encodings, including Unicode (if fontspec has been loaded); see also unicodeminus for OpenType fonts.
amsmath: the behaviour of the \DeclareMathOperator command of amsmath is modified by mathastext for it to use the correct font. Additionally, release $1.3 n$ of mathastext at long last also handles an extra operation done by amsmath for '.:/-* to be used in operator names without the extra math spacing. ${ }^{2}$ This customization is suppressed in subdued mode for the normal and bold math versions.
hbar: the default $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ definition of \backslash hbar would in our context make use of the h of the current math font (so for us, it is also the text font, perhaps in italic

[^1]shape), but with a bar accross the h from the original default math font for letters (usually cmmi). We redefine \hbar to use the text font macron accent $(\backslash=)$ as a mock math accent (this takes into account the italic option and is compatible with subscripts and superscripts).
Since 1.12 mathastext when dealing with a Unicode font sets the \hbar to be the character from the font having hexadecimal codepoint $\mathrm{U}+0127$.
Since 1.3 u the general 8bits font encoding is supported (see discussion of the mathaccents option at end of this list for the shared limitations). Brief testing with various usual $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts shows that the vertical positioning of the bar isn't satisfying. It is planned to either add a parameter to adjust it or to modify altogether the mode of construction of the $\backslash \mathrm{hbar}$.
Use nohbar to tell mathastext not do provide its own \hbar.
dotless \mathbf{i} and \mathbf{j} : by default the package redefines \imath and \jmath to give (in math mode) the dotless i and j (if it exists at all) from the text font. ${ }^{3}$
asterisk: versions of mathastext earlier than 1.2d [2013/01/02] did not do anything with the \ast control sequence but did pick the asterisk $*$ in the document text font, and this often was a rather silly thing as the text asterisk is generally in a raised position. Furthermore, the $*$ lost its status of a binary operator and was treated as an 'ordinary' symbol. An option noasterisk turned this feature off. Starting with 1.2d, the noasterisk option is deprecated and the new default is to do nothing. But when option asterisk is received by the package, then both \ast and $*$ are simultaneously modified to use (as binary operators) the text asterisk, slightly lowered. The amount of lowering ${ }^{4}$ is decided by the mandatory argument to the command $\backslash \mathrm{MT}$ lowerast $\{\langle$ dimen $\rangle\}$. The package initially does \backslash MTlowerast\{. $3 \backslash$ height $\}$. Doing \MTlowerast\{.5ex\} is not a good idea as it does not scale properly in the script and scriptscript styles. With an argument given as a multiple of \height, the asterisk will behave as expected in subscripts and subscripts of subscripts. But $*$ is now 'mathematically active' ${ }^{5}$ and $\$ R^{\wedge} * \$$ or $\$ R^{\wedge} \backslash$ ast $\$$ must be input as $\$ R^{\wedge}\{*\} \$$ and $\$ R^{\wedge}\{\backslash$ ast $\} \$$. Furthermore, they will obey the math alphabet commands.
$\mathrm{X}_{\exists} \mathrm{T}_{E} \mathrm{X}$ and LualATEX: regarding the en-dash and the dotless i and j, the package is now under the Unicode engines compatible not only with the "Unicode" $\mathrm{LAT}_{\mathrm{E} X}$ font encodings EU1 ($\mathrm{X}_{-1} \mathrm{I}_{\mathrm{E}} \mathrm{X}$, old fontspec), EU2 (LuaIATEX, old fontspec), TU

[^2]($\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and LuaIATEX, modern fontspec), but also with traditional 8bitsencodings declared as a fontenc option. Formerly, with a Unicode engine, only OT1, T1 and LY1 were supported by mathastext as the 8bit encoding of the document text font, regarding the minus as en-dash and the dotless i and j .
fontspec: one more note to users of $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{LuaLA} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ with fontspec:
it has to be loaded with the option no-math, and before mathastext.
vec accent: The default \vec accent is not appropriate for upright letters, so mathastext provides a \fouriervec which takes its glyph in a Fourier font, and an Ersatz \pmvec which is reasonably good looking on upright letters and works with the \rightarrow glyph. Contrarily to version 1.0, the default \vec is not overwritten with \fouriervec. And contrarily to version 1.1, one now needs to pass the option fouriervec to have the math accent \backslash fouriervec defined by the package. ${ }^{6}$
math alphabets: - We define a new math alphabet command \mathnormalbold which gives direct access to the bold version of the \mathnormal alphabet (rather than using either the $\backslash \mathrm{bm}$ command from the bm package or the \boldsymbol command from the amsbsy package). As it does not exist in the default $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ math font set-up, this alphabet is not subjected to the subdued option action.

- Depending on options, further math alphabet commands are defined by the package: \MathEulerBold, \MathEuler, \MathPSymbol, and since 1.3 x under the LGRgreek family of options also \mathgreekup and \mathgreekit.
new:
- Addition of \mathgreekupbold and \mathgreekitbold under the LGRgreek family of options.
- \mathnormal, \mathrm, \mathbf, \mathit, \mathsf and \mathtt are modified to use the mathastext-ified text fonts; this can be disabled via defaultalphabets and related individual options, but the package always provides \Mathnormal, \Mathrm, etc..., to match the mathastext font configuration (prior to $1.3 z a$ defaultalphabets and related options also caused the mathastext alphabet commands not to be defined). Recall that there may arise a "too many math alphabets" error if too many of these commands are used in the document: declaring them is not by itself the cause of the error. See the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ news entry of its 2021-11-15 release for the counter localmathalphabets (with default value 2) which can be now be used if one hits such a difficulty.
Please note that in case of the LGRgreek+ option which enhances Greek letters with a specific behavior when in the arguments of some of these

[^3]commands, this works only with the lowercase named commands, not with the ones having an uppercase initial. See subsubsection 1.7.5.

- version 1.2 of mathastext has extended the scope of the math alphabets to apply to non-alphabetical characters and to operator names. This respects the automatic white spaces added by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ around math symbols.
- the extra skips around letters (see subsection 1.8 and subsection 1.9) are removed in the scope of the math alphabets.
math accents: if option mathaccents is used then mathastext attempts to let the math accents \acute, \grave, etc... use the suitable glyphs from the text font. Prior to 1.3 u only OT1, T1, and LY1 were supported (via hardcoded slots). It should now work with any 8bits font encoding having been declared as an option to the fontenc package (and of course providing the ten needed text accents which will mock math accents). ${ }^{7}$

The \vec math accent is not handled here, as it is not available in the usual 8 bits font encodings. See the fouriervec option or the \backslash pmvec command.
The math accents obey the subdued option and will change in sync with the (1.3u) mathastext-ified text font used in each non subdued math version.
(Very) brief testing during $1.3 u$ development with $\mathrm{X}_{H} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and LuaT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ let the author conclude that usage with the \Umathaccent primitive of an OpenType accent glyph slot (which in the text font is for usage as a postpended combining character) gives definitely bad horizontal placements for both engines (each in its own way). Thus, the redefinitions of accents for a mathastext declared math version with an OpenType font is by default canceled. ${ }^{8}$ Use unimathaccents to force usage of the OpenType font text accents glyph slots with the \Umathaccent primitive. Expert users are invited to check out the code and to contribute suggestions if some extras can improve it.
varying font encodings: the very first release of mathastext dealt with only one font; very soon thereafter it acquired the capacity to define multiple math versions, each one using its own text font. But, as was documented at this location formerly, various encoding dependent decisions were done once and for all during package loading.
This meant in particular that the minus sign (using the text endash), the dotless i and j, the \hbar, the math accents were all set up for only one

[^4]}
unique font encoding. It was thus recommended that all math versions share the same font encoding.
The 1.3u release has lifted this restriction.

1.3 Examples

Here is another simple example:
ackage\{libertinus-type1\}\usepackage[italic,LGRgreek,defaultmathsizes]\{mathastext\}TheLGRgreekoptionistheretotakeadvantagethatthelibertinus-type1package9alsoprovidesGreeklettersinLGRencoding,whichcanthusbeusedbymathastextinmathmode.Andwedohereasifwedidnotknowabouttheexistenceofthelibertinust1mathpackage10Thiswouldhavebeentheobviouschoice,butthenonewouldn'tneedmathastextandIcouldn'tevenstartthisdocumentation.undefined

More sophisticated preambles will use multiple times the \Mathastext command in the preamble with its optional argument [\langle math_version \rangle] in order to define math versions corresponding to a given font configuration. These mathastextenriched math versions are then activated in the document body via the \backslash MTversion $\{\langle$ math_version $\rangle\}$ command, which modifies both the text font and the math font.
We now give some examples with a verbatim copy of the preamble code corresponding to them, as can be found in the source of this documentation. The detailed option and command descriptions will be given later.
First of all, the package was loaded using this:

```
\usepackage[subdued,%
    asterisk,%
    defaultmathsizes,%
    symbolmisc,symbolre,%
    LGRgreek] {mathastext}
```

In the definitions of the mathastext-enriched math versions we keep commands which may have been redundant in the original preamble, because they were issued earlier for a previous math version definition.
Let's start with Latin Modern typewriter proportional. Its usage was configured in the preamble using this:
\MTlettershape\{n\}
\backslash MTupgreek

[^5]\MTgreekfont\{cmtt\}
\MTfamily\{lmvtt\}
\Mathastext [lmvtt]
Its usage is triggered using

\MTversion\{lmvtt\}

in the document. Here is an example:
Let (X, Y) be two functions of a variable a. If they obey the differential system $\left(\mathrm{VI}_{\nu, \mathrm{n}}\right)$:

$$
\begin{aligned}
& a \frac{d}{d a} X=\nu X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(\nu+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{\text {VI }}$ differential equation:

$$
\begin{aligned}
& \quad \frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
& +\quad+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\} \\
& \text { with parameters }(\alpha, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right) . \\
& \text { Test of uppercase Greek in math: АВГ } \Xi \Omega .
\end{aligned}
$$

Both the Latin and Greek letters are upright, in conformity to the way the lmvtt version was defined.

Now with the fonts from the libertinus-type1 distribution ${ }^{11}$. The preamble code is:
\MTfamily\{LibertinusSerif-TLF\}
\MTlettershape\{n\}
\MTseries\{m\}
\MTgreekfont\{LibertinusSerif-TLF\}
\backslash MTupgreek
\Mathastext [libertinus]
\backslash MTseries\{sb\}
\Mathastext[libertinussemibold]
Its usage in the document body for the example below is triggered via \MTversion[libertinus] \{libertinussemibold\}
This syntax modifies the text fonts to be those which were defined to hold for the mathastext-math version passed as optional argument, and sets the math fonts

[^6]according to the mandatory argument. Hence the math mode uses semibold font but the text font uses the normal weight.

Let (X, Y) be two functions of a variable a . If they obey the differential system ($\mathrm{VI}_{\mathrm{v}, \mathrm{n}}$):

$$
\begin{aligned}
& \mathrm{a} \frac{\mathrm{~d}}{\mathrm{da}} \mathrm{X}=v \mathrm{X}-\left(1-\mathrm{X}^{2}\right) \frac{2 \mathrm{na}}{1-\mathrm{a}^{2}} \frac{\mathrm{aX}+\mathrm{Y}}{1+\mathrm{aXY}} \\
& \mathrm{a} \frac{\mathrm{~d}}{\mathrm{da}} \mathrm{Y}=-(v+1) \mathrm{Y}+\left(1-\mathrm{Y}^{2}\right) \frac{2 \mathrm{na}}{1-\mathrm{a}^{2}} \frac{\mathrm{X}+\mathrm{aY}}{1+\mathrm{aXY}}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{array}{r}
\frac{d^{2} q}{d^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{array}
$$

with parameters $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{\mathrm{n}^{2}}{2}, \frac{1-\mathrm{n}^{2}}{2}\right)$.
Test of uppercase Greek in math: $\mathrm{AB} \bar{\Delta} \Xi \Omega$.
Now with a Times clone. We will configure Latin letters to be in italic shape, and Greek letters to be italic for lowercase and upright for uppercase:

```
\usepackage{times}% it modifies the \{rm,sf,tt}default's
\MTfamily{\rmdefault}
\MTlettershape{it}
\MTseries{m}
\MTgreekfont{txr}
\MTitgreek\MTupGreek
\Mathastext[times]
% \MTversion{times} will change not only math but also text, so it
% will re-enact the \rmdefault, \sfdefault, \ttdefault from loading times.sty
```

We now use this in the document body via
\MTversion\{times\}
Let (X, Y) be two functions of a variable a. If they obey the differential system ($V I_{v, n}$):

$$
\begin{aligned}
& a \frac{d}{d a} X=v X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(v+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{array}{r}
\frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{array}
$$

with parameters $(\alpha, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.
Test of uppercase Greek in math: АВГ $\triangle \Xi \Omega$.
Let us be a bit more original and have our mathematics with italic letters from the sans serif font Helvetica, while the letters in text use New Century Schoolbook. Also we want Greek letters (both lowercase and uppercase) to be in italic shape. The preamble code was:

```
\usepackage{newcent}% attention that it modifies all three of \rmdefault,
    % \sfdefault and \ttdefault
\MTfamily{\rmdefault}
\MTlettershape{it}
% \MTitgreek\MTupGreek % our demo does not use newcent for math anyway
\Mathastext[newcent]
\usepackage[scaled] {helvet}
\MTfamily{\sfdefault}
\MTlettershape{it} % redundant here
\MTseries{m}
\MTitgreek % make both lowercase and uppercase Greek italic
\MTgreekfont{cmss}
\Mathastext [helvet]
```

And the next demo is configured in the document body via
\MTversion[newcent] \{helvet\}
Let (X, Y) be two functions of a variable a. If they obey the differential system $\left(V I_{v, n}\right)$:

$$
\begin{aligned}
& a \frac{d}{d a} X=v X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(v+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{aligned}
\frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}\right. & \left.+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
& +\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{a+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{aligned}
$$

with parameters $(a, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.
Test of uppercase Greek in math: $A B \Gamma \triangle \equiv$.
And after all that, we may wish to return to the default math typesetting (let's shorten the extract here in case the reader makes an indigestion ...). This is easy because all previous usages were enclosed in braces $\{\ldots\}$ so as to limit the scope. As mathastext was loaded with option subdued the default rendering (i.e. in the normal and bold math versions) is (almost) as if the package was not loaded at all, and it simply matches the document font configuration. Here it thus matches the

\usepackage\{mlmodern\}

which was included in the document preamble prior to loading mathastext.
Let (X, Y) be two functions of a variable a. If they obey the differential system ($V I_{\nu, n}$):

$$
\begin{aligned}
& a \frac{d}{d a} X=\nu X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(\nu+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=$ a^{2} the $P_{V I}$ differential equation with parameters $(\alpha, \beta, \gamma, \delta)=$ $\left(\frac{(\nu+n)^{2}}{2}, \frac{-(\nu+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.

Test of uppercase Greek in math: $\Gamma \Delta \Xi \Omega$ (no \Alpha, no \Beta).
If the scope of our earlier examples using mathastext-enriched math versions had not been limited we would have issued

$$
\backslash M T v e r s i o n\{n o r m a l\}
$$

to return to the normal (almost not influenced by mathastext) math version.
The Greek letters varied across our examples thanks to the LGRgreek option which made the $\backslash M T g r e e k f o n t$ command active for configuration of the math versions. ${ }^{12}$

Since $1.3 x$ this documentation uses globally the mlmodern ${ }^{13}$ font package and has added an example using the Libertinus font in type-1 format ${ }^{14}$ although there is an existing accompanying math font ${ }^{15}$.

[^7]
1.4 Main options

1.4.1 The italic option

In the initial version 1.0, the Latin letters in mathematical mode assumed the exact same shape as in text mode, and this meant, generally speaking, that they would turn up upright. Doing this gives a very uniform look to the document, so that one has to make an effort and read it with attention, and this was one of the design goals of mathastext.

Nevertheless, soon after I posted the initial version of the package to CTAN, I was overwhelmed by numerous ${ }^{16}$ questions ${ }^{17}$ on how to have the letters be in italic shape.

The default is still, as in version 1.0, for everything to be in upright shape, but it suffices to pass to the package the option italic to have the Latin letters in math mode in italic shape. ${ }^{18}$ There is also an option frenchmath to make the uppercase letters nevertheless upright, because this is the way of traditional French mathematical typography. ${ }^{19}$

1.4.2 The defaultmathsizes option

The default sizes give for subscripts of subscripts barely legible glyphs (author's opinion!). So mathastext makes more reasonable choices. It also redefines \Huge and defines a \backslash HUGE size, copied from the moresize package. To cancel all of this use option defaultmathsizes.

1.4.3 The subdued option

This option was introduced in v1.15. It provides a manner to switch on the mathastext-ification only for limited portions of the document, with the help of the mechanism of math versions. Without the subdued option, the mathastextification applies by default to the whole of the document (and one may also define additional math versions in the preamble); with the subdued option the mathastextification is done only in math versions distinct from the standard and bold ones.

Despite some limitations I will now partially describe, the subdued option has its utility, as I think is illustrated enough by the examples given at the start of this document and it works reasonably well.

[^8]mathastext was not written initially in order to allow its action to be completely canceled. It does not store (all) mathcodes nor does it set them (all) when changing math versions; only that would allow a perfect subdued mode (and $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ is rather obstinate in making that tricky or at least uneasy if sticking to its official interface to math mode, as it is almost entirely preamble only).

Releases 1.3 t and 1.3 u do this kind of things to maintain usability across multiple mathastext-ified math versions of characters which are obviously font encoding dependent such as the minus sign as en-dash (or unicode minus), the dotless i, the \hbar, the text accents.

But this should be extended to all mathastext-ified characters which basically would amount to an extensive rewrite of large legacy portions of the code. Currently the support for the subdued mode and to multiple math versions amounts to some kind of a kludge, added to an initial design which handled a single unique text font.

To get the displayed math (almost) as if mathastext had not been loaded, one must also use the option defaultmathsizes. But this does not quite suffice, as, for example, the colon, the dot, and the minus sign belong in the default IATEX math mode set-up to three distinct fonts whereas mathastext will pick (even subdued) the three of them in the same font, ${ }^{20}$ and although it will make a reasonable choice of this font, this is not an exact re-installement of the previously prevailing situation. And then other packages could have done arbitrary things regarding character mathcodes, so to be on the safe side one needs the basic option which limits the mathastextification to letters and digits. ${ }^{21} 2223$ Even then, in some circumstances, this may not suffice: for example the euler package puts the digits in the same font as the Latin letters in math mode, but the subdued mathastext will pick them up in the same font as used for operator names, which for example in the case of the euler package, is the main document font.

1.4.4 The LGRgreek option

There is the issue of Greek letters. Sometimes the text font has Greek glyphs, in LGR encoding ${ }^{24}$ (this should be mentioned in the documentation of the font package).

[^9]Then option LGRgreek tells mathastext to pick up these Greek letters.
It is naturally possible to leave the responsability to set up Greek letters to some other packages loaded previously to mathastext. And even if mathastext has been loaded with one of its Greek related options the command \MTstandardgreek will locally cancel its customization of Greek letters. The command \MTcustomgreek reenables the customization done by mathastext, if it was loaded with the LGRgreek or one of the other Greek related options.

Release $1.3 x$ has added important new aspects to the handling of Greek letters via the LGRgreek option. Make sure to read the subsubsection 1.7.3.

1.5 More miscellanea

This may repeat information already given.

1.5.1 Derivative, minus, asterisk

The text characters ' and - are not used, and the asterisk is done optionally:

- the derivative sign ${ }^{\prime}$ is left to its default as the text font glyph ' is not, as a rule, a satisfying alternative. ${ }^{25}$
- for the minus sign mathastext uses the endash character -, if available, and not the hyphen character - $-{ }^{26}$
- the asterisk option is mandatory for mathastext to replace the binary math operator $*$ (and the equivalent control sequence \ast) with a version which uses the text asterisk * suitably lowered ${ }^{27}$ (and with the correct spaces around it as binary operator). The reason is that after this inputs such as $\$ R^{\sim} * \$$ or $\$ R^{\wedge} \backslash a s t \$$ raise errors and must be written $\$ R^{\wedge}\{*\} \$$ or $\$ R^{\wedge}\{\backslash$ ast $\} \$$.

Nothing is changed to the "large" math symbols, except for Π and \sum in inline math which, like here: $\Pi \Sigma$, will be taken from the Symbol Font if option symbolmisc was used.

The left and right delimiters are taken from the text font only for the base size: any \big, \bigl, \bigr, etc... reverts to the original math symbols.

1.5.2 load mathastext always last

The "large" math symbols are not modified in any way by mathastext. Only loading some math font packages such as fourier, kpfonts, mathabx, mathdesign,

[^10]txfonts, newtxmath, etc... will change them. Think of loading these packages before mathastext, else they might undo what mathastext did.

More generally any package (such as amsmath) dealing with math mode should be loaded before mathastext.

1.5.3 sans in math

The following set-up often gives esthetically pleasing results: it is to use the sansserif member of the font family for math, and the serif for text.
}
} }

1.5.4 using mathastext with beamer

Starting with release 3.34 of beamer ${ }^{28}$, mathastext is recognized as a "math font package".

Only with earlier beamer versions is it necessary to issue \usefonttheme\{professionalfonts\}
in the preamble. Example:

```
\documentclass{beamer}
%\usefonttheme{professionalfonts}% obsolete for mathastext since beamer 3.34
\usepackage{newcent}
\usepackage[scaled=.9]{helvet}
\renewcommand{\familydefault}{\rmdefault}
\usepackage[defaultmathsizes,symbolgreek] {mathastext}
\renewcommand{\familydefault}{\sfdefault}
\begin{document}
\begin{frame}
    This is some text and next comes some math: $E=mc^2$
    \[
    E=mc^2=a^n+b^n-c^n=\alpha\beta\gamma
    \]
    \begin{align}
        E&=mc^2\\
        E&=h\nu
    \end{align}
    And again some text.
\end{frame}
\end{document}
```

[^11]
1.5.5 avoid OT1 encoding

We specified in our minimal working example a T1 encoding (LY1 would have been ok, too) because the default OT1 does not have the $<>\mid\{ \}$ and \backslash glyphs. If mathastext detects OT1 as the default encoding it will leave these characters to their defaults from the math fonts. ${ }^{29}$

If mathastext detects the obsolete OT1 encoding it does not do anything with $<,>, \mid,\{$, and $\}$ which (except for monospace fonts) are not available in that encoding. To fully benefit from mathastext it is recommended to use some other encoding having these glyphs such as T1 or LY1.

1.5.6 using mathastext with frenchmath

To use mathastext concurrently with the frenchmath package ${ }^{30}$ of Antoine Missier:

- load frenchmath with its option capsit,
- and load mathastext second (after perhaps some relevant font packages) and with the option frenchmath*.

Also, frenchmath must be at least at version 1.6 of 2022/10/16.
Limited testing indicated that the combination (using the options as indicated above) works as expected but that some adjustments may be needed for some of the macros defined by frenchmath: we observed in particular that the \paral command (which produces //) may not work well if the / is picked up from the text font due to mathastext (alternative could be for most text fonts \backslash def \backslash paral $\{\backslash$ mathrel $\{/ /\}\}$), and that macros such as \backslash Oijk may not work well due to the font lacking a dotless j (use then option defaultimath).

You can either use the Greek related options of frenchmath (since its version 2.0 of $2022 / 10 / 24$) or those of mathastext.

To handle properly intervals in French mathematical typesetting it is recommended to use the mathtools ${ }^{31}$ package facilities in order to define suitable macros for example like this for open intervals:
\DeclarePairedDelimiterX\Ioo [2] \{]\}\{[\}\{\#1;\#2\}
Use then $\$ \mathrm{I}=\backslash \mathrm{Ioo}\{\mathrm{A}\}\{\mathrm{B}\} \$$ type mark-up in your source, with variants \backslash Ioo* and $\backslash I o o[\backslash B i g]$ for example. We used the semi-colon, as is observed in some French

[^12]mathematical texts, often educational, as they have to handle intervals with decimal numbers as extremities, and the comma is used as decimal separator. With the frenchmath* option, mathastext will let the semi-colon use \mathbin type spacing, matching observed practice in such mathematical texts.

Very advanced expert note: if using \MTnonlettersobeymathxx, the above macro \Ioo will raise errors except if used as \Ioo*. Replace] by \{]\} and [by \{[\} in the above to get an \Ioo which does not raise errors and can be used also with the optional argument for example \Ioo[\} \mathrm { Bigg }] . Unfortunately then the starred form \Ioo* will fail. This is known limitation and explains why mathastext does not execute \MTnonlettersobeymathxx per default.

1.6 Math versions

$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ has the concept of math versions ${ }^{32}$, but most font packages do not define any such version beyond the default normal and bold (the package unicode-math for unicode engines does use this concept).
mathastext extends the concept of math versions in order to allow the math mode fonts (for letters, digits, punctuation and a few other ascii symbols) used in the different parts of the document to be kept in sync with the text fonts.

Most math symbols (sums, products, integrals, logical signs, etc. . .) are kept the same throughout the document though as it is not in mathastext power to modify them.

For examples see the earlier subsection 1.3. The interface to define a math version includes the commands \Mathastext and \MTDeclareVersion.

Once such a math versions has been defined in the preamble, \MTversion\{name_of_version\}, or equivalently \Mathastextversion\{name_of_version\}, enacts the font switches when encountered in the body of the document. As is usual with $L A T_{E} X$ one can limit the scope to inside a group, or also switch back to the main set-up via \Mathastextversion\{normal\}.

When \Mathastext is used in the preamble, it records the current text font defaults (\backslash familydefault et al. or what has been configured by $\backslash M T f a m i l y$ and similar commands) and (except for the normal and bold versions if in subdued regime) sets up both the math font and the text font in the defined mathastextmath version to be this text font. It is still possible to switch on via \MTversion in the document body distinct fonts for text and math: an optional argument (the name of another mathastext-declared math version) to \MTversion is allowed (such as for example \MTversion[newcent] \{helvet\} for one of the examples of the subsection 1.3). It instructs to use as text font the font which was configured to be used in this second mathastext-math version. ${ }^{33}$

[^13]The native $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ command \backslash mathversion\{$\{\langle$ version_name $\rangle\}$ would change only the fonts for the math mode, not the text mode fonts. It is important to use rather the package command $\backslash M T v e r s i o n$ (or one of its synonyms \mathas textversion, \Mathastextversion, \MTVersion), with its mandatory argument \{〈version_name \rangle, as it does additional actions:

- it sets the font for math mode (letters, math operator names, digits, punctuations, some other symbols) according to the version name given as mandatory argument,
- it resets the text font of the document and the
(family,rm, sf, . .) defaults to their values as registered at the time of definition of the version. Use the starred variant in case this is not desired. As explained above tt is possible to specify within brackets an extra optional version name, and the text font will be set according to it.

For all math versions if not using the subdued option, or only for the non-normal and non-bold math versions if using the subdued option, \MTversion does further additional tasks:

- it resets the \hbar, \imath (see \inodot), \jmath, math accents (see option mathaccents) and minus sign as en dash according to the used font encoding for the mathastext-ified text font,
- (see sections 1.8 and 1.9) it re-issues the command \MTmathactiveletters to let a to z, A to Z , be mathematically active in order to automatically insert the skips as defined by the user with \MTsetmathskips, and the italic corrections (if the font is not italic or slanted),
- (see section 1.10) it resets the extra spaces after the symbols \exists, \forall and before the derivative ' to the values as decided by the user in the preamble on a per version basis,
- (see section 1.11) it re-issues the commands \MTmathoperatorsobeymathxx and \MTeasynonlettersobeymathxx to let the math operator names and ('easy') non letter characters obey the math alphabets,
- in case of option asterisk, it re-issues \MTactiveasterisk,
- it does the additional set-up for Greek letters in case of the package received one of the Greek related options.

The scope is limited to the current $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ environment or group.
It is sometimes not compatible with mathastext to load a font package after it, as the font package may contain instructions which will modify the math set-up.
to what was recorded as math font by the \Mathastext call in the preamble (as said above, when not using subdued option).

This may be a bit hidden to the user: for example the epigrafica package loads pxfonts. Hence it will interfere with mathastext if it is loaded after it. ${ }^{34}$ But one can use instead \{epigrafica\}, ${ }^{35}$ followed with \backslash Mathastext, or also \MTfamily\{epigrafica\} \backslash Mathastext which will only change the font in math.

To use epigrafica for Greek in math mode one can use the package option LGRgreek and the command rafica\}\backslashMathastext.Or\usepackage\{epigrafica\}followedwith\usepackage[LGRgreek]\{mathastext\}.undefined

1.7 Greek letters

1.7.1 The Greek-related options

The Computer Modern fonts are very light and thin in comparison to many text fonts, and as a result rarely mix well with them (particularly if the Latin letters in math mode are upright). The following options are provided by mathastext:
no option: nothing is done by the package, Greek letters are the default Computer Modern ones or have been set-up by other packages; for example by the fourier package with option 'upright', which gives upright Greek letters.

LGRgreek: (this was substantially updated at \),makesuretoreadthenewdocumentationatsubsubsection1.7.3)thisoptionisforfontswhichadditionallytoLatinlettersalsoprovideGreeklettersinLGRencoding.Hereisalistfroma2012standard$\mathrm{T}_{\mathrm{E}}\mathrm{X}$installation:theComputerModern,LatinModern,andtheCM-LGCfonts;theGreekFontSocietyfonts(suchasGFSDidot),theepigraficaandkerkispackages,thetxfontsbpackagewhichextendsthetxfontspackagewithLGR-encodedGreekletters;theDroidfonts,theDejaVufonts,theComfortaafont,andtheOpenSansfont.TheLGRencodedCM/LMfonts(inserif,sans-serifandtypewriterfamily)givetheniceGreeklettersinuprightshapefromthecbfontspackage.Togettheselettersinyourmathastextmathmode,youcandothefollowing:\%instructionstoloadthedocumentfonts:\usepackage\{nice_font\}$\%$andthenthefollowing:\{cmr\}\%orcmssorcmttforsansresp.mono\usepackage[LGRgreek]\{mathastext\}\{\rmdefault\}\Mathastext\%thisre-initializesmathastextwiththenice_font,\%withoutchangingtheLGRfontcmr/cmss/cmttusedforGreekletters$\%$inmathmode.undefined

[^14]```
\begin{document}
```

If you use the italic option note that the italic Greek letters from the cbfonts are not the same glyphs as the default Greek letters from the OML encoded font cmmi.
new: LGRgreek+: extends LGRgreek to allow abusive usage of \mathrm and alike commands with Greek letters. This is very much not in the spirit (especially with traditional "8bit" $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts) of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ kernel concept of math alphabet commands. Check subsubsection 1.7.5 for relevant information.
eulergreek: the Greek letters will be taken from the Euler font (the document does not have to load the eulervm package, mathastext directly uses some file included in this package, as it provides a mechanism to scale by an arbitrary factor the Euler font.) The letters are upright.
symbolgreek: the Greek letters will be taken from the (Adobe Postscript) Symbol font. A command is provided so that the user can scale the Symbol font to let it better fit with the text font. The letters are upright.
selfGreek: this option concerns only the eleven Greek capitals from the OT1encoding. It does nothing for the lowercase Greek letters. The encoding used in the document does not have to be OT1.

There is also LGRgreeks (and LGRgreeks+) which tells mathastext to pick up in each math version the letters from the LGR encoded font used in that version, and selfGreeks to tell mathastext to do as for selfGreek but separately in all math versions.

Under the subdued option the Greek letters in the normal and bold math versions are kept to their defaults as found at the time of loading the package.

The commands \MTstandardgreek allow at any point in the document to turn inactive any Greek related option passed to mathastext. And conversely \MTcus tomgreek reactivates it.

### 1.7.2 Shape of Greek letters

Classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses in math mode italic lowercase and upright uppercase Greek letters. French typography uses upright shape for both lowercase and uppercase. And the ISO standard is to use italic shape for both lowercase and uppercase.

The Euler and Symbol fonts not being available in other than their default upright shape, this question of shapes for Greek letters raises issues only in the case of the options LGRgreek and selfGreek.

The options frenchmath, itgreek, upgreek, itGreek and upGreek modify the Greek letter shapes according to the following rules, listed from the lowest to the highest priority:
no option: the lowercase Greek letters are in the same shape as Latin letters, and the uppercase in the same shape as is applied to digits and operator names,
frenchmath: both lowercase and uppercase are in the same shape as the digits and operator names (most of the time this means "upright shape", but it can be otherwise),
itgreek : says that Greek letters (both lowercase and uppercase) will be in 'it' shape. More precisely the expansion of $\backslash M T g r e e k i t d e f a u l t$ is used.
This was changed at $1.3 x$, formerly the value of \itdefault which was in force at the time of using \Mathastext (or at time of loading the package if no use is made of \Mathastext) was used.
upgreek : says that Greek letters (both lowercase and uppercase) will be in ' $n$ '

This was changed at $1.3 x$, formerly the value of \updefault which was in force at the time of using \Mathastext (or at time of loading the package if no use is made of \Mathastext) was used. But since $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2020-02-02 this caused many Font Warnings in the log because \updefault is now 'up', not ' $n$ ' as formerly.
itGreek, upGreek: same but they apply only to the uppercase Greek letters. Their effect is computed after having taken into account either itgreek or upgreek presence.

So, the default gives the classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ behavior when option italic was passed.
As mentioned already the package allows to define various "math versions". There are commands to be used inside the preamble to influence the shapes, and even the font, used for Greek letters in each given mathastext-declared math version: \MTitgreek, \MTupgreek, \MTitGreek, \MTupGreek and \MTgreekfont\{name_of_font\}.

Their effect is as the options of the alike name, except that the effect applies only to mathastext-math versions declared next in the preamble (be it via $\backslash$ Mathastext or \MTDeclareVersion).

To use \MTgreekfont you need to know the name of a suitable font family available in LGR encoding: for example lmr, txr (needs txfontsb package on your system), DejaVuSerif-TLF (needs dejavu package on your system), etc...
 one of the LGRgreek, LGRgreeks, selfGreek or selfGreeks options was passed to the package.

Once any of these commands has been made use of, changes in the shape configuration of the Latin letters will stop having any influence on the shape of the Greek letters.
$\backslash$ MTgreekfont has an effect only for LGRgreek and selfGreek. It is without any effect with LGRgreeks and selfGreeks.

### 1.7.3 Control sequences to access directly upright or italic shape for Greek under LGRgreek option

Some changes were made at $1.3 x$ to enhance the LGRgreek (and LGRgreeks) options with new features. Everything which will be explained here applies only to these two options.
First of all the package now makes available control sequences to access either the upright or italic shape of the Greek letters. Which shape is meant by 'upright' or 'italic' is configured via defining \MTgreekupdefault and \MTgreekitdefault respectively. Their default definitions are to expand to ' $n$ ' and ' $i t$ ' respectively.

See the Table 1 and Table 2 for illustrations (using here the Libertinus Serif font).

| $\backslash$ Alphaup A | $\backslash$ Xiup $\Xi$ | \alphaup $\alpha$ | $\backslash$ xiup $\xi$ |
| :---: | :---: | :---: | :---: |
| \Betaup B | \Omicronup O | \betaup $\beta$ | \omicronup o |
| \Gammaup $\Gamma$ | $\backslash$ Piup $\Pi$ | $\backslash$ gammaup $\gamma$ | $\backslash$ piup $\pi$ |
| $\backslash$ Deltaup $\Delta$ | $\backslash$ Rhoup P | \deltaup $\delta$ | $\backslash$ rhoup $\rho$ |
| $\backslash$ Epsilonup E | $\backslash$ Sigmaup $\Sigma$ | lepsilonup $\varepsilon$ | $\backslash$ sigmaup $\sigma$ |
| \Zetaup Z | \Tauup T | \zetaup $\zeta$ | $\backslash$ tauup $\tau$ |
| $\backslash$ Etaup H | \Upsilonup Y | letaup $\eta$ | \upsilonup v |
| \Thetaup $\Theta$ | $\backslash$ Phiup $\Phi$ | \thetaup $\theta$ | $\backslash$ phiup $\phi$ |
| \Iotaup I | \Chiup X | \iotaup | $\backslash$ chiup $\chi$ |
| $\backslash$ Kappaup K | $\backslash$ Psiup $\Psi$ | $\backslash$ kappaup к | $\backslash \mathrm{psiup} \psi$ |
| $\backslash$ Lambdaup $\Lambda$ | $\backslash$ Omegaup $\Omega$ | $\backslash$ lambdaup $\lambda$ | \omegaup $\omega$ |
| $\backslash$ Muup M | $\backslash$ Digammaup F | $\backslash$ muup $\mu$ | $\backslash$ digammaup F |
| \Nuup N |  | $\backslash$ nuup v | $\backslash$ varsigmaup $\varsigma$ |

Table 1: Greek letters via 'up' control sequences (math mode only)

The regular control sequences without 'up' or 'it' postfix will map to either one of the two versions according to how the shapes were configured, i.e. in almost all cases via usage of either the itgreek, upgreek, etc. . . options or \MTitgreek et al. commands. This is on a per mathastext-enriched math version basis, depending only on how the options or commands were used in the preamble.

Furthermore two math alphabets are provided
\mathgreekup
\mathgreekit
which can be used to map a letter to the corresponding Greek fonts. For example

| $\backslash$ Alphait A | $\backslash$ Xiit $\Xi$ | \alphait $\alpha$ | \xiit $\xi$ |
| :---: | :---: | :---: | :---: |
| $\backslash$ Betait B | $\backslash$ Omicronit $O$ | $\backslash$ betait $\beta$ | \omicronit $o$ |
| \Gammait $\Gamma$ | $\backslash$ Piit $\Pi$ | $\backslash$ gammait $\gamma$ | $\backslash$ piit $\pi$ |
| $\backslash$ Deltait $\Delta$ | $\backslash$ Rhoit $P$ | $\backslash$ deltait $\delta$ | $\backslash$ rhoit $\rho$ |
| $\backslash$ Epsilonit E | $\backslash$ Sigmait $\Sigma$ | \epsilonit $\varepsilon$ | $\backslash$ sigmait $\sigma$ |
| $\backslash$ Zetait $Z$ | \Tauit T | \zetait $\zeta$ | \tauit $\tau$ |
| $\backslash$ Etait H | $\backslash$ Upsilonit Y | letait $\eta$ | lupsilonit $v$ |
| $\backslash$ Thetait $\Theta$ | $\backslash$ Phiit $\Phi$ | \thetait $\theta$ | $\backslash$ phiit $\phi$ |
| $\backslash$ Iotait I | $\backslash$ Chiit $X$ | \iotait $\iota$ | \chiit $\chi$ |
| $\backslash$ Kappait K | $\backslash$ Psiit $\Psi$ | $\backslash$ kappait $\kappa$ | \psiit $\psi$ |
| $\backslash$ Lambdait $\Lambda$ | $\backslash$ Omegait $\Omega$ | $\backslash$ lambdait $\lambda$ | \omegait $\omega$ |
| $\backslash$ Muit M | $\backslash$ Digammait $F$ | $\backslash$ muit $\mu$ | $\backslash$ digammait $F$ |
| $\backslash$ Nuit $N$ |  | $\backslash$ nuit $V$ | \varsigmait $\varsigma$ |

Table 2: Greek letters via 'it' control sequences (math mode only)
(using here the semi-bold LGR encoded LibertinusSerif-TLF, which was stored as a mathastext-enriched math version with name libertinussemibold):
$\$ \backslash$ mathgreekup $\{\mathrm{a}\}=\backslash$ mathgreekup $\{\backslash a l \mathrm{pha}\}=\backslash$ mathgreekup $\{\backslash$ alphait $\}=\backslash$ alphaup $\$$

$$
\alpha=\boldsymbol{\alpha}=\boldsymbol{\alpha}=\boldsymbol{\alpha}
$$

$\$ \backslash$ mathgreekup $\{G\}=\backslash$ mathgreekup $\{\backslash$ Gamma $\}=$ =mathgreekup $\{\backslash$ Gammait $\}=\backslash$ Gammaup $\$$
$\Gamma=\Gamma=\Gamma=\Gamma$
$\$ \backslash$ mathgreekit $\{z\}=\backslash$ mathgreekit $\{\backslash$ zeta $\}=\backslash$ mathgreekit $\{\backslash$ zetaup $\}=\backslash$ zetait $\$$
$\zeta=\zeta=\zeta=\zeta$
$\$ \backslash$ mathgreekit $\{\mathrm{W}\}=\backslash$ mathgreekit $\{\backslash$ Omega\}=\mathgreekit $\{\backslash$ Omegaup $\}=\backslash$ Omegait $\$$ $\Omega=\Omega=\Omega=\Omega$
Some refactoring ${ }^{36}$ was required to achieve this at 1.3 x and it is not $100 \%$ backwards compatible: if none of the itgreek etc... things was used, the Greek letters formerly would follow the shape of Latin letters (for lowercase Greek) and of operator names (for uppercase Greek). Now, some check is made for each of these two shapes whether it is 'it' or 'sl' and then the 'italic' shape, i.e. \MTgreekitdefault which by default is 'it' (without the quotes) is used, else the 'upright' shape, i.e. \MTgreekupdefault which by default expands to ' $n$ ' (without the quotes) is used. Naturally these checks are done on a per mathastext-math version basis, if multiple math versions are used.

So for example those who used some adventurous ' $s c$ ' for the main shape (the one used per default for operator names) and used the option LGRgreek but none of


[^15]need to adjust \MTgreekupdefault to expand to 'sc' prior to some \Mathastext or \Mathastext[〈version_name〉] or \MTDeclareVersion in the preamble depending on context.
It is hoped most documents, even those using multiple math versions, which made use of the LGRgreek (or LGRgreeks) option will simply produce unmodified output. Please report to the author unexpected results not fitting the above attempted description of the only partial backwards compatibility.

### 1.7.4 \mathgreekupbold and \mathgreekitbold

Again this applies only to LGRgreek and LGRgreeks options (and the 1.3za added LGRgreek+ and LGRgreeks+).
new: $\quad$ See the Table 3 and Table 4 for illustration of usage (in math mode only) of code such as

```
 \mathgreekupbold{\alpha}
or \mathgreekitbold{\alpha}
```

Note that all three of \alpha, \alphaup and \alphait would give the same output. These two tables again use the Libertinus Serif font via an mathastext math version which was configured in the preamble using this set-up (and the package LGRgreek option):

```
\MTfamily{LibertinusSerif-TLF}
\MTlettershape{n}
\MTseries{m}
\MTgreekfont{LibertinusSerif-TLF}
\MTupgreek
\Mathastext[libertinus]
```

Some examples here to illustrate the effet of the math alphabet commands on Latin letters also:

$$
\begin{aligned}
& \text { \$\mathgreekupbold\{a\}=\mathgreekupbold\{\alpha\}\$ } \\
& \alpha=\boldsymbol{\alpha} \\
& \text { \$\mathgreekupbold\{G\}=\mathgreekupbold\{\Gamma\}\$ } \\
& \Gamma=\Gamma \\
& \text { \$\mathgreekitbold\{z\}=\mathgreekitbold\{\zeta\}\$ } \\
& \zeta=\zeta \\
& \text { \$\mathgreekitbold\{W\}=\mathgreekitbold\{\Omega\}\$ } \\
& \Omega=\Omega
\end{aligned}
$$

### 1.7.5 Special behavior of $\backslash$ mathrm, \mathbf, \mathit with Greek letters via the LGRgreek+ option

new: If option LGRgreek+ or LGRgreeks+ has been used, mathastext makes Greek letters

| $\backslash$ Alpha $\rightarrow$ A | $\backslash \mathrm{Xi} \rightarrow \boldsymbol{\Xi}$ | \alpha $\rightarrow \boldsymbol{\alpha}$ | $\backslash \mathrm{xi} \rightarrow \boldsymbol{\xi}$ |
| :---: | :---: | :---: | :---: |
| $\backslash$ Beta $\rightarrow$ B | $\backslash$ Omicron $\rightarrow \mathbf{O}$ | \beta $\rightarrow \boldsymbol{\beta}$ | \omicron $\rightarrow \mathbf{0}$ |
| $\backslash$ Gamma $\rightarrow \boldsymbol{\Gamma}$ | $\backslash \mathrm{Pi} \rightarrow \boldsymbol{\Pi}$ | \gamma $\rightarrow \boldsymbol{\gamma}$ | \pi $\rightarrow \boldsymbol{\pi}$ |
| $\backslash$ Delta $\rightarrow \Delta$ | $\backslash$ Rho $\rightarrow \mathbf{P}$ | \delta $\rightarrow \boldsymbol{\delta}$ | $\backslash$ rho $\rightarrow \boldsymbol{\rho}$ |
| $\backslash$ Epsilon $\rightarrow \mathbf{E}$ | $\backslash$ Sigma $\rightarrow \boldsymbol{\Sigma}$ | \epsilon $\rightarrow \boldsymbol{\varepsilon}$ | $\backslash$ sigma $\rightarrow \boldsymbol{\sigma}$ |
| $\backslash$ Zeta $\rightarrow$ Z | $\backslash$ Tau $\rightarrow$ T | \zeta $\rightarrow$ ¢ | $\backslash$ tau $\rightarrow \boldsymbol{\tau}$ |
| $\backslash$ Eta $\rightarrow \mathbf{H}$ | $\backslash$ Upsilon $\rightarrow \mathbf{Y}$ | leta $\rightarrow \boldsymbol{\eta}$ | \upsilon $\rightarrow \boldsymbol{v}$ |
| \Theta $\rightarrow \boldsymbol{\Theta}$ | $\backslash \mathrm{Phi} \rightarrow \boldsymbol{\Phi}$ | \theta $\rightarrow \boldsymbol{\theta}$ | $\backslash \mathrm{phi} \rightarrow \boldsymbol{\phi}$ |
| $\backslash$ Iota $\rightarrow$ I | $\backslash$ Chi $\rightarrow$ X | \iota $\rightarrow \mathbf{l}$ | $\backslash$ chi $\rightarrow \chi$ |
| $\backslash$ Kappa $\rightarrow \mathbf{K}$ | $\backslash$ Psi $\rightarrow \Psi$ | $\backslash$ kappa $\rightarrow \boldsymbol{\kappa}$ | $\backslash \mathrm{psi} \rightarrow \boldsymbol{\psi}$ |
| $\backslash$ Lambda $\rightarrow \boldsymbol{\Lambda}$ | $\backslash$ Omega $\rightarrow \boldsymbol{\Omega}$ | $\backslash \mathrm{lambda} \rightarrow \boldsymbol{\lambda}$ | \omega $\rightarrow \boldsymbol{\omega}$ |
| $\backslash \mathrm{Mu} \rightarrow \mathbf{M}$ | $\backslash$ Digamma $\rightarrow \mathbf{F}$ | $\backslash \mathrm{mu} \rightarrow \boldsymbol{\mu}$ | $\backslash$ digamma $\rightarrow F$ |
| $\backslash \mathrm{Nu} \rightarrow \mathbf{N}$ |  | $\backslash \mathrm{nu} \rightarrow \boldsymbol{v}$ | \varsigma $\rightarrow \mathbf{S}$ |

Table 3: Greek control sequences in the argument of \mathgreekupbold.

| $\backslash$ Alpha $\rightarrow$ A | $\backslash \mathrm{Xi} \rightarrow \boldsymbol{\Xi}$ | \alpha $\rightarrow \boldsymbol{\alpha}$ | $\backslash \mathrm{xi} \rightarrow \boldsymbol{\xi}$ |
| :---: | :---: | :---: | :---: |
| $\backslash$ Beta $\rightarrow \boldsymbol{B}$ | $\backslash$ Omicron $\rightarrow \boldsymbol{O}$ | $\backslash$ beta $\rightarrow \boldsymbol{\beta}$ | \omicron $\rightarrow \boldsymbol{o}$ |
| $\backslash \mathrm{Gamma} \rightarrow \boldsymbol{\Gamma}$ | $\backslash \mathrm{Pi} \rightarrow \Pi$ | $\backslash \mathrm{gamma} \rightarrow \gamma$ | $\backslash \mathrm{pi} \rightarrow \boldsymbol{\pi}$ |
| $\backslash$ Delta $\rightarrow \Delta$ | $\backslash$ Rho $\rightarrow \boldsymbol{P}$ | \delta $\rightarrow \boldsymbol{\delta}$ | $\backslash$ rho $\rightarrow \boldsymbol{\rho}$ |
| $\backslash$ Epsilon $\rightarrow \boldsymbol{E}$ | $\backslash$ Sigma $\rightarrow \boldsymbol{\Sigma}$ | \epsilon $\boldsymbol{\rightarrow} \boldsymbol{\varepsilon}$ | $\backslash$ sigma $\rightarrow \boldsymbol{\sigma}$ |
| $\backslash$ Zeta $\rightarrow \boldsymbol{Z}$ | $\backslash$ Tau $\rightarrow \boldsymbol{T}$ | \zeta $\rightarrow$ ¢ | $\backslash$ tau $\rightarrow \boldsymbol{\tau}$ |
| $\backslash \mathrm{Eta} \rightarrow \boldsymbol{H}$ | $\backslash$ Upsilon $\rightarrow \boldsymbol{Y}$ | leta $\rightarrow \boldsymbol{\eta}$ | \upsilon $\rightarrow \boldsymbol{v}$ |
| \Theta $\rightarrow \boldsymbol{\Theta}$ | $\backslash \mathrm{Phi} \rightarrow \boldsymbol{\Phi}$ | $\backslash$ theta $\rightarrow \boldsymbol{\theta}$ | $\backslash \mathrm{phi} \rightarrow \boldsymbol{\phi}$ |
| $\backslash$ Iota $\rightarrow \boldsymbol{I}$ | $\backslash$ Chi $\rightarrow \boldsymbol{X}$ | \iota $\rightarrow \boldsymbol{t}$ | \chi $\rightarrow \chi$ |
| $\backslash$ Карра $\rightarrow \boldsymbol{K}$ | $\backslash \mathrm{Psi} \rightarrow \boldsymbol{\Psi}$ | $\backslash$ kappa $\rightarrow \boldsymbol{\kappa}$ | $\backslash \mathrm{psi} \rightarrow \boldsymbol{\psi}$ |
| $\backslash$ Lambda $\rightarrow \boldsymbol{\Lambda}$ | \Omega $\rightarrow \boldsymbol{\Omega}$ | $\backslash \mathrm{lambda} \rightarrow \boldsymbol{\lambda}$ | \omega $\rightarrow \boldsymbol{\omega}$ |
| $\backslash \mathrm{Mu} \rightarrow \boldsymbol{M}$ | $\backslash$ Digamma $\rightarrow$ N/A | $\backslash \mathrm{mu} \rightarrow \boldsymbol{\mu}$ | \digamma $\rightarrow$ N/A |
| $\backslash \mathrm{Nu} \rightarrow \boldsymbol{N}$ |  | $\backslash \mathrm{nu} \rightarrow \boldsymbol{v}$ | $\backslash$ varsigma $\rightarrow \boldsymbol{S}$ |

Table 4: Greek control sequences in the argument of the \mathgreekitbold command. This font has no bold italic Digamma nor digamma (last tested 2023/12/19).
\mathbf, and \mathnormalbold (but not further math alphabet commands, and not when using the mathastext defined commands named with an uppercased initial).
Here is an example

```
\[\def\zzz{abCD\alpha\pi\Delta\Gamma}
 \begin{array}{c}
 \zzz\\
 mathnormal: \mathnormal{\zzz}\\
 mathrm: \mathrm{\zzz}\\% \mathrm on Greek is like \mathgreekup
 mathit: \mathit{\zzz}\\%% \mathit on Greek is like \mathgreekit
 mathbf: \mathbf{\zzz}\\% \mathbf on Greek is like \mathgreekupbold
 mathnormalbold: \mathnormalbold{\zzz}\\%%
 mathgreekup: \mathgreekup{\zzz}\\%
 mathgreekit: \mathgreekit{\zzz}\\%
 mathgreekupbold: \mathgreekupbold{\zzz}\\%
 mathgreekitbold: \mathgreekitbold{\zzz}%
 \end{array}
\]
```

This will be typeset here with the same "libertinus" version as in the previous section. Please check it there, it is reproduced verbatim. This math version was configured to use upright shape for both Latin letters and Greek letters, which explains the output of \mathnormal and \mathnormalbold here below, and also the fact that \mathrm appears to change nothing. In a simple package configuration with only options italic and LGRgreek+ the lowercase Greek letters would be in italic by default, hence also in the output of \mathnormal and \mathnormalbold.

$a b C D \alpha \pi \Delta \Gamma$<br>mathnormal : abCD $\alpha \pi \Delta \Gamma$<br>mathrm : abCD $\alpha \pi \Delta \Gamma$<br>mathit : $a b C D \alpha \pi \Delta \Gamma$<br>mathbf : abCD $\alpha \boldsymbol{\pi} \Delta \Gamma$<br>mathnormalbold : $\mathbf{a b C D} \boldsymbol{\alpha} \boldsymbol{\pi} \Delta \Gamma$<br>mathgreekup : $\alpha \beta^{\prime \prime} \Delta \alpha \pi \Delta \Gamma$<br>mathgreekit : $\alpha \beta^{\prime \prime} \Delta \alpha \pi \Delta \Gamma$<br>mathgreekupbold : $\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime \prime} \Delta \boldsymbol{\alpha} \pi \Delta \Gamma$<br>mathgreekitbold : $\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime \prime} \boldsymbol{\Delta} \boldsymbol{\alpha} \boldsymbol{\pi} \Delta \Gamma$

The difference here with LGRgreek is that with the latter the Latin math alphabets such as \mathrm, \mathit, \mathbf produce a Latin letter when acting on a Greek control sequence, as the latter are defined by mathastext under LGRgreek to be of "variable family type" for usage with \mathgreekup and \mathgreekit.
mathastext has no logical way to sync shape of Latin and Greek letters once usage has been made of Greek related commands. Hence \mathnormal is configured to do nothing on Greek letters, they are as without it, whereas on Latin letters it will give to an uppercase letter the shape as used for lowercase letters. In the example
above this is not visible because both lowercase and uppercase Latin letters were configured to be upright.

Because neither $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ nor mathastext define an \mathbfit alphabet per default, no mechanism was added for it, but advanced $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ hackers will be able to check the mathastext source code and add the needed definitions.

Remark: this LGRgreek+ functionality is considered by its author an abuse of the concept of a math alphabet command and required accomodating a serious deviation from internal logical design of mathastext. I don't know if it is because LATEX documentations are deficient or misleading on such matters but it appears many $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ users are surprised when $\$ \backslash$ mathrm\{ $\left.\backslash \mathrm{pi}\right\} \$$ does not give an upright pi letter but this is completely to be expected in a world with fonts having only 128 or 256 glyphs, and from the fact that \mathrm and \mathbf originate in Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X} \backslash \mathrm{rm}$ and $\backslash \mathrm{bf}$ and are still quite akin to it, they are font switching commands nothing more or less.

### 1.8 Extra spaces around letters

This is a new feature added with release 1.3: the command $\backslash$ MTsetmathskips allows the user to set up some spaces (more precisely, 'mu glue'; but stretch and shrink are discarded) to be automatically inserted around the letters in math mode. Some (very) unrealistic uses:

```
% this may be anywhere in the document (also within a math group):
\MTsetmathskips{x}{20.33mu}{15.66mu}% 20.33mu before all x's and 15.66mu after.
\MTsetmathskips{y}{\thickmuskip}{\thickmuskip}%
\MTsetmathskips{z}{10mu}{5mu}% stretch and shrink are anyhow without effect.
\MTsetmathskips{A}{\muexpr \thickmuskip*2}{\muexpr \medmuskip-\thinmuskip/2}%
```

Here is what \$wxtytz^\{wxtytz\}=BAC^\{BAC\}\$ then gives using the Times font: $w \quad x \quad$ tyt $z^{w} \quad x$ tyt $z=B A C^{B A C}$. Any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group or $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ environment limits as usual the scope of this command. Furthermore the command $\backslash M T u n s e t m a t h-$ skips cancels previous use of \MTsetmathskips for a given letter.

The implementation relies on the 'mathematical activation' of letters, which is done by default by the package since release 1.2 b . Should this cause compatibility problems, the command \MTmathstandardletters cancels it entirely. To reactivate it, there is \MTmathactiveletters. Note that \MTmathactiveletters is done automatically by mathastext when loaded, and also each time the package enhanced math-version-switch command \MTversion is used, except for the normal and bold math versions under the subdued option.

The extra skips are set at natural width; they do not contribute to the overall stretchability or shrinkability of the math formula and do not create break points.

Changed with 1.3i: they are not applied within the scope of math alphabet commands.

### 1.9 Italic corrections

Note: this is somewhat technical discussion which may well be skipped in its entirety on first reading.

With the italic option the letters in math will be generally in italic shape (and, normally, upright in operator names).

For the built-in placement routines of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in math mode to work as well as they usually do, the characters from the math italic font obviously should have their bounding boxes wide enough for the glyphs not to collide with other symbols. A letter from a text italic font such as $f$ extends way out of its declared bounding box; let us compare the bounding boxes ${ }^{37}$ for the letter $f$ in the math italic font to the one from the text italic font: $[f]$ vs. $\mathscr{f}$.

This could make us think that attempting to use in math a text italic font will lead to disaster. Well, surprisingly the situation is not that bad. Sure $\$ \mathrm{f}(\mathrm{x}) \$$ is wider with the standard math italic $f(x)(21.31474 \mathrm{pt})$ than it is with the text italic font used in math: ${ }^{38} f(x)(19.74986 \mathrm{pt})$ but we should be surprised that our text italic $f$ did not end up even closer to the opening parenthesis. Why is it so?

The explanation is that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses in such a situation the italic correction for the letter $f$. The italic correction also exists and is used for the math italic font, it was inserted in $\$ \mathrm{f} \$$ without us having to ask anything. Its value is 1.17865 pt for the math italic $f$ and 1.8919 pt for the text italic $f .{ }^{39}$ With the italic corrections included our bounding boxes are indeed more alike: $[f]$ vs $\not \subset$.

Without the italic corrections ${ }^{40}$ it is $f$ vs $\not \subset$. I said that $\$ \mathrm{f} \$$ included the italic correction automatically, but if we tell $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to use the text italic in math, and typeset the alphabet, we obtain something exactly identical to typing the letters in text, hence without any italic correction:

$$
\begin{array}{ll}
\text { abcdefghijklmnopqrstuvwxyz } & \text { text italic in text } \\
\text { abcdefghijklmnopqrstuvwxyz } & \text { text italic in math } \\
\text { abcdefghijklmnopqrstuvwxyz } & \text { math italic in math } \\
\text { abcdefghijklmnopqrstuvwxyz } & \text { math italic in text }
\end{array}
$$

Where are our italic corrections gone? the last line was done with \usefont $\{0 M L\}\{\mathrm{mlmm}\}\{\mathrm{m}\}\{i t\}$ and the line before that using math mode is longer and confirms that italic corrections have been used for the math italic in math mode.

Turning to the $\mathrm{T}_{\mathrm{E}} \mathrm{Xbook}$ (and its Appendix G) we learn that in such circumstances, for the italic corrections to be put in from the font, one of its parameters, the interword space (aka \fontdimen2), should be zero. It is indeed zero for the math italic font, not for the text italic.

It is possible to make $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ believe it is. Doing so, we obtain in math mode with the text italic:

[^16]| abcdefghijklmnopqrstuvwxyz | text italic in math |
| :--- | :--- |
| abcdefghijklmnopqrstuvwxyz | math italic in math |

We saw that the italic correction was taken into acount automatically (independently of the value of the interword space font parameter) in expressions such as $\$ f(x) \$$. Another clever thing done by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is to use it for the placement of superscripts; the next examples systematically use the text italic in math. We see that $f^{j}$ is very different from $f^{j}$... where the latter was coded with $\$ \backslash$ hbox $\{\backslash$ itshape $f\}{ }^{\wedge} j \$$. The inputs $\$ \backslash$ mathit $\left\{\backslash\right.$ hbox $\left.\{\backslash i t s h a p e ~ f \ /\}^{\wedge} j\right\} \$$ and $\$ \backslash$ mathit $\left\{f^{\wedge} j\right\} \$$ give almost identical results: $\left[f^{\jmath}\right]$ vs. $\left[f^{j}\right]$. Close examination reveals that the horizontal spacing is exactly identical, however the exponent in the second case is a bit lower. Anyway, the point is that in the second case the italic correction for $f$ was indeed used.

Subscripts are another matter: they do not take into account the italic correction. For example $\$ \backslash$ mathit $\left\{f_{\text {_ }} i\right\} \$$ gives the same horizontal positions as $\$ \backslash$ mathit $\left\{\backslash\right.$ hbox $\{\backslash$ itshape $\left.f\} \_i\right\} \$: f_{i}$ vs. $f_{i}$. Printing them one on another gives $f_{i}$ and reveals (use the zoom of your viewer!) that only the vertical placement was affected, not the horizontal placement.

We learn in Appendix $G$ of the $\mathrm{T}_{\mathrm{E}} \mathrm{Xb}$ book that the italic correction is used for the horizontal shift of the superscript with respect to the position of the subscript: $f_{i}^{j}$, or, going back now to the standard math italics $f_{i}^{j}$. In the next paragraphs we use $f_{i}^{i}$ for more accurate comparison of the positioning of the sub- and superscript.
If we try something like this: $\$\{\mathrm{f} \backslash /\} \mathrm{I}^{1}{ }^{\wedge} \mathrm{i} \$$ we obtain $f_{i}^{i}$. Our overlapping game with $\backslash$ rlap $\left\{\$ f_{-} i^{\wedge} i \$\right\} \$\{f \backslash /\} \_i^{\wedge} i \$$ gives $f_{\dot{i}}^{i}$. We discover that the effect of the explicit italic correction has mainly been to translate the subscript horizontally to be positioned exactly below the superscript! ${ }^{41}$ We most probably do not want this to happen for our indices and exponents in math mode. So perhaps we can rejoice in how astute $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has been in judiciously using the italic correction data, and there seems to be no need into fiddling with this algorithm which seems to work well even when applied to a text italic font. Actually we may even be of the opinion that the text italic version $f_{i}^{i}$ is a bit better-looking than the true math italic $f_{i}^{i} \ldots$

But wait... mathastext was initially developed to easily use in math mode the document text font not in its italic variant, but as is, so, usually, upright. And upright $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts may also have italic correction data! And what I just said about the shift of the superscript with respect to the subscript apply equally well to such a font, if $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has been told to use it. Let's try Latin Modern Upright for letters in math: $\$ f_{i} i \wedge i \$$ now gives ${ }^{42} f_{i}^{i}$. We see the italic correction in action for the positioning of the superscript! Compare with $\$ \backslash$ mathrm\{ $\left.\backslash h b o x\{f\} \_i ` i\right\} \$:$ $f_{i}^{i}$. Overlapping with $\backslash r l a p\left\{\$ \backslash m a t h r m\left\{f \_i ` i\right\} \$\right\} \$ \backslash m a t h r m\left\{\backslash h b o x\{f\} \_i ` i\right\} \$$ gives $f_{i}^{i}$ and shows that the upright $f$ has an italic correction which was used to shift the superscript to the right (and it is now in a slightly lower position). Let's now do $\$ \backslash \operatorname{mathrm}\left\{\{f \backslash /\} \_i^{\wedge}{ }^{〔}\right\} \$$ : this gives $f_{i}^{i}$ and the subscript is shifted to the right, and is

[^17]now on the same vertical axis as the superscript. There are also some slight vertical displacements, $\backslash r \operatorname{lap}\{\$ \backslash$ mathrm\{f_i^i\} $\$\} \$ \backslash$ mathrm\{\{f $\left.\backslash /\} \_i^{\wedge} i\right\} \$$ gives $f_{i}^{i}$.

People will tell me crazy, but if we decide for using upright fonts in math, wouldn't it be satisfying to have the subscript and superscript positioned on the same vertical axis? the letter has no slant, why should the indices display one?

We end up in this strange situation that it is attractive to systematically incorporate the italic corrections after the upright Latin letters in math! But we don't want to do this inside the arguments to math alphabets as this would make impossible the formation of ligatures (the standard $\$ \backslash$ mathrm\{ff $\} \$$, $\$ \backslash$ mathit $\{f f\} \$$, $\$ \backslash$ mathbf $\{\mathrm{ff}\} \$$, $\$ \backslash$ mathsf $\{f f\} \$$ all give ligatures $\mathrm{ff}, f f, \mathrm{ff}$, and ff and we would like to preserve this behavior).

Starting with version v1.2b, mathastext adds the italic correction automatically after each letter of the Latin alphabet in math mode, except when these letters are italic or slanted. ${ }^{43}$

These italic corrections are canceled inside the arguments to the math alphabet commands, to allow the formation of ligatures as is expected in the standard default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ font set-up in math. ${ }^{44}$

The feature-implementing commands \MTicinmath, \MTnoicinmath, \MTicalsoinmathxx are described in section 2.2.1.

Note: from brief testing on 2012/12/28, $X_{\xi} T_{E} X$ seems not to obey in math mode italic corrections for OpenType fonts. Hence the $T_{E} X$ placement algorithms for math mode described in this section do not work well when an OpenType (text) font is used for the letters in math mode, and the document is compiled with the $X_{H} T_{E} X$ engine. On the other hand LuaLA $T_{E} X$ seems to implement the italic corrections when using OpenType fonts, but only with italic fonts (as far as I could tell). Try the following (which will use the OpenType Latin Modern font) on a recent $T_{E} X$ installation and compare the output of both engines:

```
\documentclass{article}
\usepackage{fontspec}
\begin{document}
\Huge
$\mathit{f_i^i}$\par $\mathrm{f_i^i}$
\end{document}
```

Comment out the fontspec line and use pdfLA $T_{E} X$. All three outputs are different

[^18]on my $T_{E} X$ installation. $X_{G} T_{E} X$ does not have the italic corrections. Luald $T_{E} X$ does, but only for the italic font. pdfLAT $E_{E} X$ has them for both the italic and the upright font. ${ }^{45}$

### 1.10 Extra glue after \exists, \forall, and before the prime glyph

$\backslash M T f o r a l l$ skip, $\backslash M T e x i s t s s k i p$, and $\backslash M T$ primeskip are three commands with each a mandatory argument like for example 3 mu plus 1 mu minus 1 mu or just 2.5 mu . They are especially useful when using an upright font in math mode. The mu is a unit length used in math mode ('math unit', $1 / 18$ th of the 'quad' value of the symbol font in the current style). Its value is relative to the current math style. Its use is mandatory in the commands described here.

- compare $\forall \mathrm{B}$ with $\forall \mathrm{B}$, typeset after \MTforallskip\{2mu\},
- compare $\exists \mathrm{N}$ with $\exists \mathrm{N}$, typeset after $\backslash \mathrm{MTexistsskip}\{2 \mathrm{mu}\}$,
- and finally compare $\mathrm{f}^{\prime}$ with $\mathrm{f}^{\prime}$, typeset after \MTprimeskip\{2mu\}.

These three commands may be used throughout the document, or also in the preamble, in which case the declared math versions will record the then current values of the skips. mathastext applies the following (small) default skips: 0.6667 mu for the skip after $\forall 1 \mathrm{mu}$ for the skip after $\exists$, and 0.5 mu for the skip before the prime. The examples above become $\forall \mathrm{B}, \exists \mathrm{N}$ and $\mathrm{f}^{\prime} .{ }^{46}$

With the italic option the defaults are set to zero. Indeed $\forall B, \exists N$ and $f^{\prime}$ look fine without additional skips. If the document decides then to declare in the preamble a math version with an upright font it is thus recommended to use the commands in the preamble before the \Mathastext [/version_name〉] (or \MTDeclareVersion) command defining the version. They will be remembered when this math version is entered in the document. The commands may also be used directly in the document body.
Under the subdued option, the normal math version (at the start of the document body, or after \MTversion\{normal\}) and the bold math version (either at the start of the document body after \boldmath, or after \MTversion\{bold\}) do not have any extra skip inserted (even one of zero width) after $\forall, \exists$, or before the ${ }^{\prime} .{ }^{47}$

### 1.11 Extended scope of the math alphabets commands

Ever since the initial version of the package, some characters usually unaffected by the math alphabet commands \mathbf, \mathtt, \mathsf... are declared to be of 'variable family type', in order for them to obey these commands: for example

[^19]the hash sign \# gives \# if input as $\$ \backslash$ mathbf $\{\backslash \#\} \$$ (mathastext, especially in its beginnings, wanted as many characters as possible to be picked up from the text font and to behave similarly to letters and digits).

So it was especially frustrating that mathematical characters such as + , or $<$, or ] could not be declared of 'variable family' (in addition to being picked up in the text font) as this would, for reasons of the inner workings of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, not be compatible with the automatically inserted spaces around them.

A revolutionary ;-) novelty is introduced with version 1.2 of the package:

1. the pre-declared or user-declared (using the amsmath \DeclareMathOperator or equivalent) operator names obey the math alphabet commands, ${ }^{48}$
2. and, optionally, all non alphabetical characters ${ }^{49}$ treated by mathastext, i.e., if not disabled by options, !?,:;+-=()[]<>\{\}, the asterisk $*$, and .$/ \mid \backslash \# \$ \% \&^{50}$ will also obey the math alphabet commands (when not used as delimiters). The important thing is that the spaces added by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ before and after are not modified.

Let us compare, for example, the new behavior of \mathtt and \mathbf

$$
(\sin (n!)<\cos (m-p) ?) \quad[\sin (x+y)=\cos (z-t)]
$$

with the traditional default behavior:

$$
(\sin (\mathrm{n}!)<\cos (\mathrm{m}-\mathrm{p}) ?) \quad[\sin (\mathbf{x}+\mathbf{y})=\cos (\mathbf{z}-\mathbf{t})]
$$

The first feature is activated by default, except of course for the normal and bold math versions when the package was given the subdued option. The second feature is off by default for the characters listed first. It is on for the 'easy' cases $\# \$ \% \& . / \|$ (activating the feature for them puts no constraint on the user input and should not be too upsetting to other packages), and also for $*$ but only if this was required explicitly by the option asterisk, as the user then is supposed to know that $\$ R^{\wedge} * \$$ is no valid input anymore and should be replaced by $\$ \mathrm{R}^{\wedge}\{*\} \$$. The remaining 'difficult' cases create similar constraints, which will be commented more upon next. The commands ${ }^{51}$ for deactivation are:

[^20]\MTmathoperatorsdonotobeymathxx,
\MTeasynonlettersdonotobeymathxx,
$\backslash$ MTnonlettersdonotobeymathxx,
and those for activation:
$\backslash M T m a t h o p e r a t o r s o b e y m a t h x x$ regards operator names and is executed by default,
\MTeasynonlettersobeymathxx is done by default and applies to $\# \$ \% \& . / \$
and also to $*$ under package option asterisk,
$\backslash$ MTnonlettersobeymathxx is not done by default (see explanations why in the framed box next) and regards
$$
!?,: ;+-=()[]<>
$$
and also \mid and $\backslash$ setminus but applies to the braces $\}$ only if $\backslash M T \operatorname{explicit}$ bracesobeymathxx is also used.

Important: the package does ackslashM\)Tnonlettersdonotobeymathxxbydefault.Thereasonisthatactivatingthemechanismaddssomeconstraintstothewaythingsmustbeinput,adding\usepackage\{mathastext\}\MTnonlettersobeymathxxtoapre-existingdocumentmightwellcreateerrors:allthesecharacterstreatedbymathastext,suchas?,[,<nowrepresent(inmathmodeonly!)two'tokens'andthiswillutterlyconfuse$\mathrm{T}_{\mathrm{E}}\mathrm{X}$ifsomeprecautionsarenottaken:$\$\mathrm{x}^{\wedge}?\$$,$\$R^{\wedge}+\$$or$\$\backslash$mathopen$<A\backslash$mathclose$>\$$mustnowbecodedas$\$x^{\wedge}\{?\}\$,\$R^{\wedge}\{+\}\$$and$\$\backslash$mathopen$\{<\}A\backslash$mathclose$\{>\}\$$(theruleistodoasif$?,+,<$or$>$wereeachreallytwocharacters).undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Even if this rule is respected in the document source, it is still a possibility that incompatibilities with other packages will arise because mathastext does a mathematical activation of the characters which could be unexpected and unchecked for by other packages. This is precisely the case with the amsmath package, and the problem goes away by just making sure that amsmath is loaded before mathastext (generally speaking, mathastext should be loaded last after all packages dealing with math things).

The braces $\backslash\{$ and $\backslash\}$ remain unresponsive to the alphabet changing commands even after \MTnonlettersobeymathxx. One must issue also \MTexplicitbracesobeymathxx, but it has the disadvantage that $\backslash\{$ and $\backslash\}$ become then unusable as variable-size delimiters: \big $\backslash\{$ or $\backslash$ big $\backslash\}$ create errors and one must make use of $\backslash$ big $\backslash \mathrm{lbrace}$ and $\backslash \mathrm{big} \backslash$ rbrace. But one can now enjoy $\{\mathrm{a}, \mathrm{a}>\mathrm{b}\},\{\mathbf{a}, \mathbf{a}>\mathbf{b}\}$, $\{\mathrm{a}, \mathrm{a}>\mathrm{b}\}$, or even $\{\boldsymbol{a}, \boldsymbol{a}>\boldsymbol{b}\} .{ }^{5253}$

[^21]Even with \MTnonlettersobeymathxx, the parenthese-like symbols (, ), [, ], < and $>$ and the slashes $/, \backslash$, if used as left/right delimiters (i.e. with \left/\right) do not react to math alphabet commands. This is mainly explained by the fact that the text font will not contain suitable glyphs, hence no attempt was made to make the delimiters pick up their glyphs there.

But mathastext does try to pick up most of the 'small variants' of the delimiters from the text font: $\$ \backslash$ left $<x \backslash$ right $>\$$ gives $<x>$ (but $\$ \backslash$ left $<b \backslash r i g h t>\$$ gives $\langle b\rangle$.) Notice that this differs from standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ for which $\$ \backslash$ left $<\mathrm{x} \backslash$ right $>\$$ gives $\langle x\rangle$. As it is perhaps a bit strange to have $\langle x\rangle$ next to $\langle X\rangle$ there is option nosmalldelims: with this option the small-sized variants of the delimiters are not modified by mathastext (option nosmalldelims has the side effect that, for the non-delimiter uses of $\backslash\{, \backslash\}$ to be mathastext-ified it is necessary to issue $\backslash M T n o n l e t t e r s o b e y m a t h x x$ and $\backslash M T e x p l i c i t b r a c e s o b e y m a t h x x)$.

At any rate, as said above, whether 'small' or not, delimiters are unresponsive to math alphabet commands, due to technical aspects of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and the way mathastext handles these things. Examples: $\backslash$ mathbf $\{<a, b\rangle\}$ gives $<\mathbf{a}, \mathbf{b}>$ (no use of \left/\right, hence brackets do obey the math alphabets - as we issued \MTnonlettersobeymathxx a bit earlier), \mathbf\{\left<a,b\right>\} gives $\langle\mathbf{a}, \mathbf{b}\rangle$ (brackets used with \left/\right do not obey the math alphabets), $\backslash \operatorname{mathbf}\{\backslash$ mathopen\{<\}a,b \mathclose\{>\}\} gives <a, b> (no \left/\right, brackets do obey the math alphabets).

For comparison, the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ standard behavior for
$\backslash$ mathbf $\{\backslash$ mathopen $\{<\} a, b \backslash$ mathclose $\{>\}\}$
is $\langle\mathbf{a}, \mathbf{b}\rangle$ (neither brackets nor the comma do respond).

### 1.12 Unicode engines

mathastext is minimally Unicode aware since 1.12 and can be used with $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ or LuaTEX. Starting with release 1.3, it needs luatex to be at least as recent as the one which was provided with the TL2013 distribution.

However mathastext applies only to (a subset of) the 32-127 ascii range, and optionally to Greek letters, but for the latter only if provided via " $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts" such as Euler, Symbol or LGR-encoded fonts. It does not know how to use a given Unicode font simultaneously for Latin and Greek letters.

Thus, first consider much better alternatives:

- Since 2018, the package mathfont ${ }^{54}$ adapts Unicode text fonts to usage in math mode. It works with both $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{Lua}_{\mathrm{E}} \mathrm{X}$.
- For $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ only, mathspec ${ }^{55}$ also allows usage of arbitrary text fonts in mathematics.

[^22]- and of course unicode-math ${ }^{56}$ is the standard package for using OpenType fonts which are equipped with the needed extra support being used in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ math mode.

If using any one of the above you probably don't need, don't want, and should not use mathastext.

Let me insist that mathastext has not been tested in any systematic manner under the Unicode engines; and that it is expected to be most definitely incompatible with unicode-math, although your mileage may vary and some features may appear to work.

When using mathastext with either $\mathrm{X}_{-1} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ or Lua $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ it is recommended to use the fontspec package (see remark below on \encodingdefault). Furthermore, if using fontspec it is necessary to load it with its no-math option, and this must happen before loading mathastext.

- Use fontspec with its no-math option, and load it prior to mathastext. As some packages load fontspec themselves (for example polyglossia), a
\PassOptionsToPackage\{no-math\}\{fontspec\}
early in the preamble might be needed.
- The amsmath package, if used, must be loaded prior to mathastext.
- Under lualatex engine, it is recommended to also load the package lualatex-math.

I already mentioned in the section 1.9 the fact that the italic corrections were not available for OpenType fonts under the $\mathrm{X}_{H} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ engine and only partially available for the LuaTEX engine, with the result that the spacings in math mode when using for the letters an upright text font will be less satisfying than with the standard PDFTEX engine (the OpenType fonts not being usable with the latter engine, this is not a criterion of choice anyhow).

To define math versions when using unicode fonts, use fontspec's \setmainfont before the $\backslash$ Mathastext [ $\langle$ version $\rangle$ ] command, or simply before loading mathastext for the default math versions.

It is possible to mix usage of Unicode fonts and classical $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts. All used 8bits font encoding must have been passed as options to the fontenc package.

### 1.12.1 The unicodeminus option

For legacy reason, mathastext uses by default the EN DASH U+2013 for the minus sign in math mode, if the font is determined to be a "Unicode" font.

[^23]There is now the unicodeminus to use rather MINUS SIGN U+2212. ${ }^{57}$ Check its (1.3q) documentation on page 54 .

### 1.12.2 Two examples

I include here two examples which compiled successfully with $\mathrm{X}_{H} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and LuaIATEX, the first one on a Linux machine, the second one on a Mac OS X machine. ${ }^{58}$

```
\documentclass{article}
\usepackage[hscale=0.8] {geometry}
\usepackage{multicol}
\usepackage[no-math]{fontspec}
\usepackage{lmodern}
\usepackage[subdued,italic]{mathastext}
\setmainfont [Color=999999] {Verdana} \Mathastext[Verdana]
\setmainfont[Color=0000FF]{Arial} \Mathastext[Arial]
\setmainfont[Color=00FF00]{DejaVu Serif} \Mathastext[DejaVu]
\MTDeclareVersion{times}{T1}{ptm}{m}{n}
\setmainfont[Color=FF0000]{Andale Mono} \Mathastext[Andale]
\begin{document}
\newcommand\TEST[1]{\MTversion{#1}%
\begin{multicols}{2}
\hbox to\columnwidth{\hbox to\columnwidth{\hfil
 $abcdefghijklmnopqrstuvwxyz$\hfil}\kern-2.5em{#1}}
 \centerline{ $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ }
 \centerline{ 0123456789 }
 \centerline{ $!\,?\,*\, \,.\,:\,;\,+\,-\,=\,(\,)\,[\,]\,/\,\#\,%
 \$\,\%\,\&\,<\,>\,|\,\{\,\}\,\backslash$ }
\columnbreak
 \centerline{ abcdefghijklmnopqrstuvwxyz }
 \centerline{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
 \centerline{ 0123456789}
 \centerline{ !\,?\,*\,,\,.\,:\,;\,+\,-\,=\,(\,)\,[\,]\,\\,\#\,%
 \$\,\%\,\&\,<\,>\,|\,\{\,\}\,\char92 }
\end{multicols}}
\begin{multicols}{2}
 \centerline{\textbf{math mode}}
\columnbreak
 \centerline{ \textbf{text} }
\end{multicols}
\TEST{DejaVu}\TEST{Verdana}\TEST{times}\TEST{Andale}
\TEST{Arial}\TEST{bold}\TEST{normal}
\end{document}
```

And now the same thing with fonts available on Mac OS X:

[^24]documentclass\{article\}\usepackage[hscale=0.8]\{geometry\}\usepackage\{multicol\}\usepackage[no-math]\{fontspec\}\usepackage\{lmodern\}\usepackage[subdued,italic]\{mathastext\}\setmainfont[Color=FF0000]\{HoeflerText\}\Mathastext[Hoefler]\setmainfont[Color=336633]\{AmericanTypewriter\}$\backslash$Mathastext[Typewriter]\setmainfont[Color=0000FF]\{Herculanum\}\Mathastext[Herculanum]\setmainfont[Color=FF00FF]\{Didot\}\Mathastext[Didot]\setmainfont[Color=999999]\{ComicSansMS\}\Mathastext[Comic]\begin\{document\}}---copyherethecodefromthepreviousexample---\TEST\{Didot\}\TEST\{Comic\}\TEST\{normal\}\TEST\{Herculanum\}\TEST\{Hoefler\}\TEST\{Typewriter\}\TEST\{bold\}\end\{document\}}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

### 1.13 Compatibility issues

Compatibility issues (or just questions of who decides last) are naturally to be expected with packages dealing with the math setting; the fix is simply to load mathastext last. And one should always load amsmath before mathastext (this is especially true when using Unicode engines but applies in general as well).
Any definition made in a package loaded before mathastext of the font to be used for letters or for the common characters in the ascii basic range will be overruled by the loading of mathastext (this includes the case when the earlier package had made the character 'mathematically active'). Conversely most of the set-up done by mathastext may well be overruled by packages loaded later which do math related things.

Starting with version 1.2, mathastext makes some characters 'mathematically active' to achieve certain effects: automatic insertion of the italic corrections when using an upright text font in math, extended scope of the math alphabet commands which now apply to non-letter symbols (and also to math operator names, but this is much easier to achieve). And the (already mathematically active) right quote is modified to have some extra space added before the derivative glyph ${ }^{\prime}$.

This is compatible with using \label and \ref in and outside of math mode. But a difficulty arises when some other package has made the character 'globally active' everywhere in the document. The action of mathastext is made anew at each mathematical inline or displayed formula. If it is detected that a character has been activated then nothing further will be done (so the mathastext feature ${ }^{59}$ for that character is lost) except if it appears that this activation was done by the Babel system. In that case mathastext does not make the character mathematically active but it modifies in the appropriate manner the action of Babel for that char-

[^25]acter in math mode. Furthermore mathastext makes the character mathematically inactive. ${ }^{60}$

Here is indeed some code that you should not try at home:

```
\documentclass{article}
\usepackage[french]{babel}
\usepackage{mathtools}\mathtoolsset{centercolon}
\begin{document}
$:$
\end{document}
```

DO NOT DO THIS AT HOME: it creates an infinite loop. ${ }^{61}$ This is due to the fact that the colon is simultaneously active (this is made by babel+frenchb at begin document) and mathematically active (done by mathtools in the preamble). The interaction gives an infinite loop. Such a situation will be cured by mathastext, even loaded before mathtools, if use is made of \MTnonlettersobeymathxx. At each math formula mathastext will detect that Babel has activated the colon, and will cancel the mathematical activation (the precise definition done by mathtools was already lost at begin document due to overwriting by babel but the fact that the character was mathematically active remained true).

So far I have briefly described the problem of document active characters (see the test file mathastexttestalphabets.tex for more explanations and illustrations, and the commented source code of the package). Pure mathematical activation revealed an incompatibility of another type with amsmath. To fix it, mathastext now replaces an inner macro of amsmath (\resetMathstrut@) with its own version.

Always load amsmath before mathastext.
Actually this last commandment was already made necessary by the use of the text endash to represent the minus sign in math mode, and, especially for Unicode engines, some aspects of the \DeclareMathOperator macro from amsmath.

Important! As is mentioned in the section 1.11, after command $\backslash$ MTnonlettersobeymathxx, characters such as ?, or [, now represent two 'tokens' and this will utterly confuse $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ if some precautions are not taken. Examples: $\$ 0^{\wedge}+\$$ or $\$ \mathrm{x} \backslash$ mathrel $? \mathrm{y} \$$ or $\$ \mathrm{R}^{\wedge} * \$$ must be input now as $\$ 0^{\wedge}\{+\} \$$ and, respectively, $\$ x \backslash$ mathrel $\{?\} y \$$ or $\$ R^{\wedge}\{*\} \$$. This is why the package does \MTnonlettersdonotobeymathxx by default.

[^26]One thing to take note of is that this mechanism uses the \everymath and \ev－ erydisplay，so if it is needed to add to these $\mathrm{T}_{\mathrm{E}} \mathrm{X}$＇token lists＇some additional things this should be done in a way preserving the former contents．

If one issues（after \begin\｛document\}) \everymath=\{\} and \everydisplay=\{\} $｛document\}) \everymath=\} and \everydisplay=\}}$ this annihilates not only all the mathastext（evil ？）doings with math active char－ acters but also everything else some other package might have put in these token registers，so it is better，if the need arises to cancel the math activation of char－ acters done by mathastext to use the command \MTeverymathoff，which does all of \MTmathoperatorsdonotobeymathxx，\MTnonlettersdonotobeymathxx（al－ ready default），\MTmathstandardletters，\MTnormalprime，and \MTnormalas－ terisk．This is supposed to be used in a group or environment（as there is no $\backslash$ MTactivemathon）．It must be used prior to entering math mode．

New with 1．3i：mathastext patches \url of packages url and hyperref， and also \nolinkurl，to force them to do automatically \MTeverymathoff． Indeed they use math mode，and it is better to turn mathastext off for their dealings．

## 2 Package commands

## 2．1 Commands for regular usage

## 2．1．1 Preamble－only commands

These commands mainly facilitate the definition of math versions，in a mathastext extended sense．It is not necessary to use them to activate the package basic functionalities，as loading mathastext is enough（except with the subdued option）．
－\Mathastext（or \mathastext）reinitializes mathastext：it sets the fonts used in math mode（in versions normal and bold）for letters，digits and a few ascii symbols to the current defaults of encoding，family，series and shape．${ }^{62}$ Both the normal and bold math version are modified by this action of $\backslash$ Mathastext．
－\Mathastext［ $\langle$ version＿name $\rangle$ ］rather than redefining the fonts for math mode， \Mathastext declares a new math version，and it is this math version which will use the then current text font in math mode．${ }^{63}$
－\Mathastext［〈version＿name〉］［〈parent＿name〉］declares 〈version＿name〉 and configures it to inherit from 〈parent＿name〉 all which is not under the scope

[^27]of mathastext，such as large symbols．The main use will be with［bold］in or－ der for the symbols and large symbols to be typeset as in the bold math version． For example，this document has in its preamble：
makesNewCenturytheromanfont\Mathastext［newcent］\％thismathversionwilluseNewCentury$\backslash$MTseries\｛b\}$\quad\%$next\Mathastextwilluseaboldfont\Mathastext［boldnewcent］［bold］\％largesymbols，etc，willbeboldtooWecancheckthatitdoeswork：undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

> \MTversion\{newcent\} : abcde $\oint \bigvee \biguplus \bigotimes \bigoplus$
> \MTversion\{boldnewcent\} : abcde $\oint \bigvee \biguplus \bigotimes \bigoplus$

Naturally，for this one needs an initial math font setup with some nice bold fonts also for large symbols．This is the case with the excellent txfonts pack－ age of Young Ryu．As the present document must use many fonts and declares many math alphabets，we did not load the full package and fonts but only the largesymbols：
\DeclareSymbolFont\｛largesymbols\}\{0MX\}\{txex\}\{m\}\{n\}
\SetSymbolFont \｛largesymbols\}\{bold\}\{0MX\}\{txex\}\{bx\}\{n\}
\DeclareFontSubstitution\｛OMX\}\{txex\}\{m\}\{n\}
－\MTencoding\｛〈enc〉\}, \MTfamily\{〈fam〉\}, \MTseries\{〈ser〉\}, \MTshape\{〈sh\}\}, and $\backslash M T 1 e t t e r s h a p e\{\langle s h\rangle\} .{ }^{64}$ For example valid respective arguments are，re－ spectively，$\langle T 1\rangle,\langle p h v\rangle,\langle m\rangle,\langle n\rangle$ ，and $\langle i t\rangle$ ：this is the Helvetica font in T1－encoding， regular（medium）series，upright shape，and the letters will be in italic shape． Once used their effect applies to all succeeding calls to \Mathastext，and can only be undone by using them again with other settings，again followed by a call to \Mathastext．

NOTE：only if \Mathastext is used next（possibly with a version name as op－ tional argument）will these commands have any real effect．
－\MTWillUse $[\langle l t s h\rangle]\{\langle e n c\rangle\}\{\langle f a m\rangle\}\{\langle s e r\rangle\}\{\langle s h\rangle\}$ tells mathastext to use the font with the specified encoding，family，series，and shape for the letters and digits （and all other afflicted characters）in math mode．The optional argument 〈ltsh〉 specifies a shape for the letters，for example \itdefault，or directly $\langle i t\rangle$ or $\langle s c\rangle$ ．
－\MTDeclareVersion［〈ltsh $\rangle]\{\langle n a m e\rangle\}\{\langle e n c\rangle\}\{\langle f a m\rangle\}\{\langle s e r\rangle\}\{\langle s h\rangle\}\left[\left\langle o t h e r \_v e r s i o n\right\rangle\right]$ ： declares that the document will have access to the font with the specified char－ acteristics，under the math version name $\langle n a m e\rangle$ ．For example：
$\backslash$ MTDeclareVersion［sc］\｛palatino\}\{T1\}\{ppl\}\{b\}\{sl\}
declares under the name palatino a version where mathematics will be typeset using the Palatino font in T1－encoding，bold，slanted，and the letters will in fact

[^28]be in caps and small caps（and bold）．${ }^{65}$ When the initial optional argument is absent，and mathastext was loaded with the italic option，then the default letter shape will be it，${ }^{66}$ else letters will have the same shape as used for digits and operator－names．
Another optional argument may be used as last argument．Similarly as its use with \Mathastext this makes the declared math version inherit，for things not modified by mathastext like large symbols，the font set up of the math version whose name was passed as optional argument（typical use will be with［bold］）．
－\MTboldvariant $\{\langle$ var $\rangle\}$ ：when used before $\backslash$ Mathastext，specifies which bold（b， $\mathrm{sb}, \mathrm{bx}, \ldots$ ）to be used by $\backslash$ mathbf（and \boldmath）．Default is the $\backslash \mathrm{bfdefault}$ at the time of loading mathastext．When used before the declaration of a version， decides the way \mathbf will act in this version．

- \MTEulerScale\｛〈factor $\rangle\}$ ：scales the Euler font by $\langle$ factor $\rangle$ ．
- \MTSymbolScale\｛〈factor $\rangle$ \}: scales the Symbol font by $\langle$ factor $\rangle$ ．
－\MTitgreek，\MTupgreek，\MTitGreek，\MTupGreek：these commands are active in case the LGRgreek option was used；they act as the options of the similar names itgreek，upgreek，itGreek，upGreek，but only for the Greek letters in the versions yet to be defined．Their effect become recorded only when the version is declared via \Mathastext or \MTDeclareVersion．
－\MTgreekfont\｛〈fontfamily $\rangle$ \}: a command with a mandatory argument which specifies the font family for Greek letters in all mathastext math versions de－ clared afterwards via \Mathastext or \MTDeclareVersion．Only effective if LGRgreek（or LGRgreek＋）or selfGreek option was passed to the package．
Check the LGRgreek documentation for some relevant information．


## 2．1．2 Commands for body or math

－\MTversion［〈nametext $\rangle]\{\langle$ namemath $\rangle\}, \backslash$ MTversion＊$\{\langle$ namemath $\rangle\}$ ，also known as \Mathastextversion（and as \MTVersion，and \mathastextversion）：
－the non－starred version changes both the document text fonts and the math fonts（for those characters treated by mathastext）：the mandatory argu－ ment is the math version to be used for math；the optional argument is the name of（another）mathastext－declared math version，the font which was chosen during its declaration will be set as document text font（and \familydefault etc．．．also are redefined）．In the absence of the optional argument，the mandatory one is used．The versions must be either normal，

[^29]or bold, or previously declared ones via \Mathastext or \MTDeclareVersion.

- the starred variant does the math set-up, but changes nothing to the text fonts (see subsection 1.6 for a description of the math set-up, which summarizes what is done additionally to only using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 's \mathversion).
$\backslash M T v e r s i o n[\langle$ nametext $\rangle]\{\langle$ namemath $\rangle\}$ does $\backslash M T e v e r y m a t h d e f a u l t$ (except for $\backslash M T v e r s i o n\{n o r m a l\}$ and \MTversion\{bold\} under package option subdued), which in particular activates the insertion of skips around letters specified by \MTsetmathskips and also, if the font used is not oblique the insertion of italic corrections (for better positioning of subscripts; see the discussion in subsection 1.9). Under the frenchmath option the package checks separately the letter shape for lowercase and uppercase.
\MTversion also does \MTexistsdoesskip, \MTforalldoesskip, and also \MTprimedoesskip, \MTmathoperatorsobeymathxx, except under the subdued option for normal and bold, in which case it does the opposite actions.
- \hbar: this macro is by default redefined (in a way compatible with the italic option) combining the $h$ letter and the ${ }^{-}$accent from the mathastext font. Note that \mathrm\{\hbar\} and \mathbf\{\hbar\} will work and that \hbar does scale in subscripts and exponents. Since $1.3 u$, this is a priori compatible with all 8bits text font encodings supporting the $\backslash=$ text accent in the LaTeX way. ${ }^{67} 68$
- \fouriervec: this is a \vec accent taken from the Fourier font; the fourier package need not be loaded. Active only if option fouriervec.
- \pmvec: this provides a poor man \vec accent command, for upright letters. It uses the right arrow. Does not change size in subscripts and exponents.
- \Mathnormal, \Mathrm, \Mathbf, \Mathit, \Mathsf, \Mathtt: they use the mathastext-ified fonts. By default, \mathnormal, \mathrm, \mathbf, \mathit, \mathsf, \mathtt are redefined to map to these new commands using the mathastext fonts. The option defaultalphabets tells to keep them with their original meanings. Alternatively the original commands can be saved under other names before loading mathastext: the underlying architecture is not deleted by the package, and aliases defined before loading mathastext will work as expected.
- \mathnormalbold: a bold version of \mathnormal, i.e. picks up the math alphabet used for ascii letters as mathematical variables, but in a bold weight. When the package typesets such letters in the same shape as for operator names (i.e.
 output is as the one of \mathbf.

[^30]This command is also made available under subdued option in the "normal" and "bold" math versions, as $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ does not define it a priori, contrarily to \mathbf and other math alphabet commands.

- \mathgreekup: math alphabet, only available under LGRgreek (or LGRgreeks) option, which gives access to 'upright' Greek letters (picked up from a font available in LGR-encoding). Note that the package also defines \alphaup, ..., \piup, ... mathematical character tokens, see subsubsection 1.7.3. What "up" shape really means may be math version dependent. It is configurable in the preamble via re-defining \MTgreekupdefault and then declaring the math version via \Mathastext (with optional argument if for a math version other than the "normal" one), or \MTDeclareVersion. The font used is also math version dependent: it is the one which was similarly configured via usage of \MTgreekfont prior to the \Mathastext or \MTDeclareVersion step. In absence of any such configuration in the preamble, it will be (in all math versions) the family default at time of loading the package (which thus has then to be available in LGR encoding; it is not a problem if the family default has no LGR support as long as suitable usage of \MTgreekfont later on configures a suitable font).

Also \mathgreekupbold.
These math alphabets are also available under subdued option in the "normal" and "bold" math versions, as $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ does not (a priori) define analog ones, so mathastext has no reason not to leave them live. Note though that \mathgreekup\{\pi\} will work only if the original $\backslash \mathrm{pi}$ is of "variable family type" which is not the case except if some math package handling Greek was used, but then why load mathastext with option LGRgreek?
But you can use \mathgreekup\{p\} as the slot number of $p$ in the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ font for mathematical letters is the same as the slot number of $\pi$ in LGR encoding.
Or, use rather \piup because it is not undefined by mathastext in subdued normal mode, as ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ has no a priori definition for it. Or use (but why?) \mathgreekup $\{\backslash$ piit $\}$.
The LGR font family used will be the latest one configured by \MTgreekfont usage followed by \Mathastext (without optional argument) in the preamble which is what is needed to modify the non-subdued aspects of subdued "normal" math; if no such configuration was done, the font family will be the family default found at time of loading the package.
Worse: $\Delta$ is per $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ default of variable family type but its slot number in its assigned font is not at all the one of the LGR encoding, so \mathgreekupbold\{\Delta\} will give some unrelated glyph. This is because mathastext restores the pristine \Delta in subdued normal mode to its original meaning. But it keeps its own defined \Deltaup and \Deltait, so you can use \mathgreekupbold\{\Deltaup\} for example. Or \mathgreekupbold\{D\} as the mathematical letter D slot number in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ is also the one of $\Delta$ in LGR encoding.
I am sorry for such lengthy explanations, but this is to comment on why mathastext keeps also in subdued normal math some of its Greek related functionality, if option LGRgreek was used. Most mathastext users will not use the subdued option anyhow.

- \mathgreekit: math alphabet, only available under LGRgreek (or LGRgreeks) option, which gives access to 'italic' Greek letters (picked up from a font available in LGR-encoding). The actual shape is configurable via re-defining \MTgreekitdefault and then redeclaring the math version via \Mathastext (with optional
argument if for a math version other than the "normal" one), or \MTDeclareVersion.


## new: Also \mathgreekitbold.

See the discussion of \mathgreekup for some $T_{E} X$ hacker level information on what happens with subdued option in the "normal" (or "bold") math version.

- \inodot, \jnodot: the corresponding glyphs in the mathastext-ified font for use in math mode. By default, \imath and \jmath are redefined to use them. Since 1.3 t , these macros obey the subdued regime. ${ }^{69}$
- \MathEuler, \MathEulerBold: math alphabets to access all the glyphs of the Euler font, if option eulergreek (or eulerdigits was passed to the package.
- \MathPSymbol: math alphabet to access the Symbol font.
- when one of the options symbolgreek, eulergreek, or selfGreek is passed to the package the capital Greek letters which look like their Latin counterparts acquire names: \Digamma, \Alpha, \Beta, \Epsilon, \Zeta, \Eta, \Iota, \Kappa, \Mu, $\backslash \mathrm{Nu}, \backslash$ Omicron, $\backslash \mathrm{Rho}, \backslash \mathrm{Tau}, \backslash \mathrm{Chi}$ (no \Digamma for Symbol). Also an \omicron control sequence is provided.
- LGR Greek and 'var'-letters: only the \varsigma is available in this encoding, so using for example \varphi will load the previous default math font. It might thus be suitable when recompiling already written $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ sources to add to the preamble $\backslash$ let $\backslash$ varphi $=\backslash$ phi, $\backslash$ let $\backslash$ varepsilon=\epsilon, etc. .., in case only the 'variant' form of the letter was used in the documents.
- Miscelleneous mathematical symbols from the postscript Symbol font are made available (or replaced) by option symbolmisc. ${ }^{70}$ They are $\backslash$ prod $\Pi \backslash$ sum $\Sigma$ \implies $\Rightarrow$ \impliedby $\Leftarrow$ \iff $\Longleftrightarrow$ \shortiff $\Leftrightarrow$ \to $\rightarrow$ \longto $\longrightarrow$ $\backslash$ mapsto $\mapsto$ \longmapsto $\longmapsto$ \aleph $\aleph$ \inftypsy $\infty$ \emptyset $\varnothing$ \surd $\sqrt{ }$ \nabla $\nabla$ \angle $\angle \backslash$ forall $\forall$ lexists $\exists \backslash$ neg $\neg \backslash c l u b s u i t ~ \& ~ \ d i a m o n d s u i t ~ * ~$ \heartsuit $\vee$ \spadesuit $\uparrow$ \smallint $\int$ \wedge $\wedge$ \vee $\vee \backslash$ cap $\cap \backslash$ cup $\cup$ $\backslash$ bullet $\bullet \backslash$ div $\div$ \otimes $\otimes$ \oplus $\oplus \backslash$ pm $\pm$ \ast $* \backslash$ times $\times \backslash$ proptopsy $\propto$ $\backslash$ mid $\mid \backslash$ leq $\leq \backslash$ geq $\geq \backslash$ approx $\approx \backslash$ supset $\supset \backslash$ subset $\subset \backslash$ supseteq $\supseteq \backslash$ subseteq $\subseteq$ \in $\in \backslash$ sim $\sim \backslash$ cong $\cong \backslash$ perp $\perp$ \equiv $\equiv \backslash$ notin $\notin \backslash$ langle 〈 \rangle $\rangle$. And a \DotTriangle $\therefore$ is made available by option symbolre (which overwrites $\backslash$ Re and $\backslash \mathrm{Im}: \mathfrak{R}, \mathfrak{I}$ ). The \inftypsy and $\backslash$ proptopsy have these names to leave up to the user the choice to replace (or no) the original (larger) \infty $\infty$ and $\backslash$ propto $\propto$.

[^31]Regarding the \prod and \sum commands: they will use the Symbol glyphs $\Pi \Sigma$ in inline math, and in display math the Computer Modern ones (or whatever is set up by other packages; here we have the symbols from txfonts):

$$
\Pi \Sigma
$$

The package provides \prodpsy and \sumpsy: if one really wants in all situations the Symbol glyphs, one can do \let $\backslash p r o d \backslash p r o d p s y$ and $\backslash$ let $\backslash$ sum $\backslash$ sumpsy. Also \MToriginalprod and \MToriginalsum will refer to the \prod and \sum before redefinition by the package: this is to allow constructs such as $\$ \backslash d i s p l a y s t y l e \backslash M T o r i g i n a l p r o d \$$ or $\backslash[\backslash t e x t s t y l e \backslash M T o r i g i n a l p r o d \backslash]$, because they would not work with the $\backslash$ prod and \sum as re-defined by the package.

### 2.2 Commands for expert usage

A few preliminary comments, mainly destined to advanced users aware of some $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ innards (more extensive explanations are to be found in the code comments). The timing for actions of mathastext falls into three cases:

1. things done during the loading of the package, or delayed to $\backslash$ AtBeginDocument,
2. things done as the result of user commands, either in the preamble or in the body of the document,
3. things done everytime math mode is entered.

The second category overlaps with the others, as the (preamble) use of some commands can have either immediate effect or only trigger some actions in $\backslash$ AtBeginDocument or perhaps only influence the things done later by mathastext each time math mode is entered.

The third category deserves some brief additional comments: it mainly (but not exclusively) regards the "math activation" of characters, and conversely all "math activations" fall into this category. The package re-checks each time math mode is entered if some characters have been made in-between catcode active, or math active, and takes appropriate decisions: one important aspect of this issue is that babel's mechanism for activating character was not, last time I checked, very robust against math active characters. I now checked again (on January 15, 2016) that

```
\documentclass{article}
\usepackage[french] {babel}
\usepackage{mathtools}\mathtoolsset{centercolon}
\begin{document}
$:$
\end{document}
```

creates an infinite loop (see section 1.13 where this was mentioned already, some years ago). Thus mathastext has (since 1.2e 2013/01/10) a somewhat elaborate mechanism related to these issues (see the code comments), installed into the list of things done by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ systematically each time it enters math mode. For some legacy reason the package also puts into this list a few other things which could arguably be done elsewhere once and for all. The command $\backslash$ MTeverymathoff cancels all actions done by mathastext.

### 2.2.1 Expert commands usable everywhere

- \MTsetmathskips $\{\langle a-z / A-Z\rangle\}\{\langle$ muglue_before $\rangle\}\{\langle$ muglue_after $\rangle\}$ : is used to specify extra skips (or rather mu glue) to be inserted in math mode, before and after a letter. The rationale is that standard text fonts used in math mode may sometimes cause glyph (near-) collisions with math symbols, as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has some implicit expectations on the design of fonts for math letters.

These extra skips around letters are set at their natural width and do not add any stretchability or shrinkability to the math formula as a whole, nor do they result in extra potential break points.

Random (silly) examples:
$\backslash$ MTsetmathskips\{x\}\{\medmuskip\}\{\thickmuskip\}
$\backslash$ MTsetmathskips\{A\}\{.5mu\}\{2.3mu\}
and the effect: $v w x y z A B C^{v w} x y z A B C$. The effect obeys the usual $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ scoping rules.

The first argument of \MTsetmathskips may be any expandable code giving a letter; this facilitates use of \MTsetmathskip in \@for loops such as this one:
\makeatletter
\@for\@tempa:=a, b, c, d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\do\{\%
\MTsetmathskips\{\@tempa\}\{2mu\}\{2mu\}\}\%
\makeatother

Starting with v1.3i: the extra skips are not applied to the letters within the scope of math alphabet commands, or the letters from operator names (pre-defined or user declared).

Note that contrarily to the \MTexistsskip, \MTforallskip, and \MTprimeskip commands described next, these extra skips (which may be specified in the preamble) are not recorded in the definition of the math version (as defined via \Mathastext with its optional argument or via $\backslash$ MTDeclareVersion). The declared skips hold thoughout the document until modified or canceled, independently of math versions (of course, mathastext cancels the skips in the normal and bold math versions if package option subdued was used).
－$\backslash$ MTunsetmathskips $\{\langle a-z / A-Z\rangle\}$ ：cancels the skips for that letter（they are not set to 0 mu but completely removed）．
The argument may be a macro（or any expandable code）expanding to a letter．
－\MTexistsskip\｛〈math glue〉\}: specifies the amount of skip or more generally glue to put after each $\exists$ math symbol．Indeed，upright letters（or digits for that matter）often appear to be positioned a bit too close to the quantifier： $\exists \mathrm{B}$ ．The package default is to add a 1 mu skip（this default is set to zero in the case of italic）：$\exists \mathrm{B}$ ．One can change the default with the following syn－ tax：\MTexistsskip\｛2mu plus 1mu minus 1mu\}, which if used in the preamble and followed with a \Mathastext command（or \MTDeclareVersion），will be recorded in the definition of this math version（and subsequent ones）．One may also use the command at any time in the document．In the case of the option subdued，the skip is canceled in the normal and bold math versions．${ }^{71}$ In the case of the option italic，the default skip is set to zero．
－\MTnormalexists，\MTexistsdoesskip：the latter（done by default if not subdued，and also on each use of $\backslash$ MTversion in the body of the document）makes it so that $\exists$ takes into account the math glue as specified by $\backslash$ MTexistsskip．The former is its opposite．
－\MTforallskip\｛〈math glue〉\}: the default is to add a . 6667 mu math skip after each $\forall$（except with the option italic for which the default skip is set to zero）． Compare $\forall \mathrm{F}$（has the skip）with $\forall \mathrm{F}$（has no skip）．Use this command in the preamble to set up the skip or glue to be used in the next to be declared math versions．In the case of the option subdued，the skip is canceled in the normal and bold math versions．${ }^{72}$ In the case of the option italic，the default skip is zero for all math versions．One may use the command at any location in the document．
－\MTnormalforall，\MTforalldoesskip：the latter（done by default if not
 makes it so that $\forall$ takes into account the math glue as specified by $\backslash \mathrm{MTforall}$－ skip．The former is its opposite．
－\MTprimeskip\｛〈math glue $\rangle$ \}: the default is to add a 0.5 mu skip before the deriva－ tive glyph，except for the italic option．In the case of the option subdued，the skip is canceled in the normal and bold math versions．${ }^{73}$
－$\backslash$ MTlowerast $\{\langle$ dimen $\rangle\}$ ：a \raisebox command is used to lower the text asterisk to produce a reasonable math asterisk．The package uses this command initially with argument $0.3 \backslash$ height，this will have to be fine－tuned for each given text font

[^32]but worked out ok with the fonts we tried. Note that the dimension argument will be used also in sub-scripts and sub-sub-scripts, so it is best not to use an absolute dimension.

- \MTmathoperatorsobeymathxx, \MTmathoperatorsdonotobeymathxx: the former is done by default, it makes operator names obey math alphabets. See also section 1.11. This functionality does not rely on "math active characters". Automatically issued by each \MTversion, except under option subdued when switching to normal or bold.
- \MTcustomgreek: in case mathastext has been loaded with one of its Greek related options, this activates the corresponding customization of Greek letters in math mode. It is issued automatically by the package in the preamble (except if loaded with subdued option) and at each switch of math version via \MTversion or \MTversion* (except for the normal and bold math versions in subdued mode). Also available as \Mathastextcustomgreek. May be used even inside of math mode.
- \MTstandardgreek: in case mathastext was loaded with one of the Greek related options this command reverts the customization, it resets the Greek letters to their definitions in force at package loading time. Can be used in the preamble, but is mainly for the document body (may even be used inside math mode ...). Done automatically under the subdued option when switching to the normal or bold math version. Also available as \Mathastextstandardgreek.


### 2.2.2 Expert commands which are preamble-only

- \MTgreekupdefault: a command with no argument whose expansion specifies, under LGRgreek regime, the shape for the 'up' Greek control sequences (and for the no-postfix Greek control sequences under upgreek option) in all mathastext math versions declared afterwards via \Mathastext or \MTDeclareVersion. The a priori default for this shape is ' $n$ ' (without the quotes). See subsubsection 1.7.3.
This command can also be defined prior to loading the package, as the package itself only does:
\providecommand*\MTgreekupdefault\{n\}
- \MTgreekitdefault: a command with no argument whose expansion specifies, under LGRgreek regime, the shape for the 'it' Greek control sequences (and for the no-postfix Greek control sequences under itgreek option) in all mathastext math versions declared afterwards via \Mathastext or \MTDeclareVersion. The a priori default for this shape is 'it' (without the quotes). See subsubsection 1.7.3. This command can also be defined prior to loading the package, as the package itself only does:
\providecommand*\MTgreekitdefault\{it\}


### 2.2.3 Expert commands usable only outside of math mode

They are usable only from outside math mode because they act via turning on or off the execution, each time math mode is entered, of certain macros added by mathastext to the \everymath and \everydisplay token list variables.

- \MTmathactiveletters: activates the 'math activation' of Latin letters. This is done by the package during loading, except under the subdued option. ${ }^{74}$ It is again executed in the body at each \MTversion, except under the subdued option when switching to the normal or bold math versions.
The letters are made mathematically active ${ }^{75}$ to insert the extra skips as specified by $\backslash M T$ setmathskips (see section 1.8), and also possibly the italic corrections when using upright fonts (see section 1.9).
- \MTmathstandardletters: cancels the 'math activation' of the letters. Must be re-issued after each $\backslash M T v e r s i o n$, but see $\backslash M T e v e r y m a t h d e f a u l t . ~$
- \MTicinmath: this command is executed by default by mathastext except in case of option subdued or if the user chosen letter shape is oblique (it or sl). It tells mathastext to add italic corrections after all letters in math mode, except within the scope of math alphabets. ${ }^{76}$
This command and the next ones in this item can be used in the preamble as well as in the body of the document (in case of subdued option, using the commands from within the preamble will remain without effect, as the document body will start in the subdued normal math version anyhow.) But each \MTversion in the body will re-emit \MTicinmath (in case of non-oblique letter shape), except if the subdued option was used and the chosen math version is normal or bold.
The effect of this and the other commands of this item is local to the group or environment in which it has been issued.
It may theoretically be used from inside math mode, but the included $\backslash M T m a t h a c t i v e l e t t e r s$ will have an effect only if issued prior to entering math mode.
\MTnoicinmath: this command deactivates the package added italic corrections. It can be used inside as well as outside of math mode (or in the preamble of the document).
$\backslash$ MTICinmath, \MTnoICinmath: these commands activate the italic corrections only for the uppercase letters (but recall that $\backslash$ MTicinmath is done by default, thus this will typically have to follow \MTnoicinmath.)
$\backslash$ MTicalsoinmathxx: this command de-activates the de-activation of the italic corrections inside the arguments to the math alphabet commands. It can be issued inside as well as outside of math mode. Will be effective only if \MTicinmath or \MTICinmath is in force. To cancel its effect either enclose it in a group or environment or re-issue $\backslash$ MTicinmath after it.

[^33]- \MTnormalasterisk, \MTactiveasterisk: the latter will use for $*$ and \ast the text font asterisk, suitably lowered; the former tells mathastext to not modify the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ default. Both are no-op without option asterisk.
- \MTeasynonlettersobeymathxx, \MTeasynonlettersdonotobeymathxx: the former is done by default, it makes characters ., /, ।, <br>, \#, $\$, \%$, and \& (if not excluded by package options) obey math alphabet commands. See also section 1.11. This functionality does not make the characters "math active" (but it does modify \mathcode's, naturally).
- \MTnonlettersobeymathxx, \MTnonlettersdonotobeymathxx: the former will make (except if excluded by relevant package options) !, ?, ,, :, ;, +, -, =, (, ), [, ], <, and > obey the math alphabet commands (when not used as delimiters). These characters are made "math active", and each one now expands to two tokens. This makes for example $\${ }^{\wedge}$ ! $\$$ illegal input and it will have to be coded $\$ a^{\wedge}\{!\} \$$. Hence, by default, the package does $\backslash M T n o n l e t t e r s d o n o t o b e y m a t h x x$.

Under subdued option, \MTnonlettersobeymathxx effect is of course canceled in the normal and bold math versions; but please note that when switching back to a non-subdued math version it will be mandatory to issue again $\backslash M T n o n l e t t e r s o b e y m a t h x x$ explicitly if its effect is to be re-activated.
In particular, executing \MTnonlettersobeymathxx in the preamble or at the start of the document body serves nothing, because the document is in the subdued normal math version regime then. It must thus be executed after the first usage of \MTversion switching to a non-subdued math version, and again on each successive exit from the normal or bold math versions.

- \MTexplicitbracesobeymathxx: extends an earlier \MTnonlettersobeymathxx to also treat $\backslash\{$ and $\backslash\}$. But then \left } \backslash \{ , \right \backslash \} must be coded \left \lbrace, \right \rbrace rather. There is also \MTexplicitbracesdonotobeymathxx.
- \MTnormalprime, \MTprimedoesskip: the latter (done by default if not subdued,
 subdued normal and bold math version) makes it so that ' takes into account the math glue as specified by \MTprimeskip. The former is its opposite. In all cases the right quote ' is a mathematically active character producing ' as is the default in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, it is only its meaning which changes to include or not an extra skip. For some (legacy) reason, this change of meaning is done anew by mathastext each time math mode is entered. The commands of this item are thus no-op from inside math mode.
- \MTeverymathdefault: this hook is executed by \MTversion\{〈version_name〉\}, (1.3j)
except under option subdued when switching to the normal or bold math versions. Its default meaning is:

```
\MTactiveasterisk % this has no effect without option asterisk
\MTprimedoesskip % this makes prime glyph obey extra space
\MTeasynonlettersobeymathxx
\MTicinmath % this does \MTmathactiveletters, hence also skips from
 % \MTsetmathskips are obeyed.
\MTfixfonts % only operant under LuaLaTeX.
```

Notice that under subdued option, switching to the normal or bold version does \MTeverymathoff which includes \MTnonlettersdonotobeymathxx.

The default \MTeverymathdefault which is issued when going back to a non-normal or bold math version doesn't do \MTnonlettersobeymathxx: thus it is up to the user to correct this if needed (no issue without subdued option).
Notice also that \MTversion\{〈version_name〉\}, except for normal or bold if subdued does \MTforalldoesskip and \MTexistsdoesskip, which are not included in \MTeverymathdefault actions as they are not related to \everymath and \everydisplay.

- \MTeverymathoff: does \MTnormalasterisk, \MTnormalprime, \MTnonlettersdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTmathstandardletters and \MTdonotfixfonts.

The commands \url/\nolinkurl of package hyperref and url from url.sty (which use math mode under the hood) are patched by mathastext to do \MTeverymathoff automatically: this is needed because mathastext modifies anew some mathcodes each time math mode is entered, hence may overwrite to some extent the specific preparation done by \{url,hyperref\}.sty.
 math versions; and \MTversion then does also \MTnormalexists and \MTnormalforall.

- \MTfixfonts: this is operant only under LuaLATEX. It has the effect that each time math mode is entered macro \MTfixmathfonts will be executed. The latter forces so-called base mode for the used text font in math mode, in an effort to (only partially, see code comments) fix the fact that OpenType features such as Lining Figures were in some cases not being applied in math mode when one uses text fonts there (text fonts are declared by LuaTEX + luaotfload to use node mode, which is non-functional in math.) It is invoked automatically by the package (except for normal and bold math versions under subdued option), and in normal situations, there is no reason to use it directly.
- \MTdonotfixfonts: cancels the job of \MTfixfonts. Done automatically in subdued mode when in the normal or bold math version; in normal contexts, there is no reason to use this command. Only operant under Luala ${ }^{A} \mathrm{X}$.


### 2.2.4 Expert commands usable only in math mode

- \MTfixmathfonts: this used to be an internal package macro but it is given a public name at 1.3 p because I discovered that \$. . \hbox\{\mathversion\{foo\}\$. . \$\} . . \$ causes an issue and one needs to invoke again \MTfixmathfonts after the \hbox, for some reason. To be used only under LuaLA $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and only for such rare cases where it may be needed.


## 3 Package options

## 3．1 Summary of main options

italic：tells mathastext to typeset the ascii letters in math using italic shape； indeed，its legacy historical default is to typeset them in roman（upright） shape．
frenchmath：lowercase ascii letters in italic shape，uppercase in upright shape． Also lets the Greek letters，if the latter are under mathastext influence，be upright，i．e．also the lowercase ones．
subdued：tells mathastext to not change the default fonts or the math alphabets for the normal and bold math versions．The mathastext－ification activates only after \MTversion\｛〈version＿name〉\} usage in the document body, where the $\left\langle v e r s i o n \_n a m e\right\rangle$ was declared as an mathastext enriched math version in the preamble via \Mathastext［〈version＿name $\rangle$ ］or akin package commands．

LGRgreek，eulergreek，symbolgreek：the Greek letters will be taken，respectively from the text font itself（which must be available in LGR encoding），or respec－ tively the Euler or Symbol font．
symbolmax：all characters other than letters and digits，are taken from the Symbol font．This option also makes a number of further glyphs available，such as some basic mathematical arrows，and the sum and product signs．For doc－ uments with very simple needs in mathematical symbols，mathastext with option symbolmax may give in the end a PDF file size quite smaller than the one one would get without the package．${ }^{77}$
defaultmathsizes：prevents mathastext from setting up，as it does per default， larger subscripts and superscripts in math mode，and from copying code from the moresize package ${ }^{78}$ in order to redefine $\backslash$ Huge and define a $\backslash H U G E$ com－ mand．

## 3．2 Complete list of options

Some items are described succinctly as more developed descriptions were given earlier．They may sometimes simplify by omission and not consider all possible configurations，particularly those resulting from usage of the package commands in the preamble to configure math versions．

Note that this list in not in alphabetical order，the items are grouped roughly by themes．So，objectively，the best for the diligent reader is to read thoroughly all descriptions．

[^34]- basic: only mathastextify letters and digits.
- subdued: acts in a subdued way, which means that the $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}}$ "normal" (default) and "bold" (triggered by \boldmath or \mathversion\{bold\}, undone by \unboldmath or on exit from a scope limiting context such as an environment) math versions are left (not quite: check subsubsection 1.4.3 for specifics) unchanged and the mathastext action is triggered only when switching via $\backslash M T v e r$ sion $\{\langle$ version_name $\rangle\}$ (or its starred variant) in the document body to a version previously defined in the preamble via $\backslash$ Mathastext [ $\left.\left\langle v e r s i o n \_n a m e\right\rangle\right]$ (or alternative declarative interface such as $\backslash M T D e c l a r e V e r s i o n) . ~{ }^{79}$
- defaultalphabets: mathastext always defines \Mathnormal, \Mathrm, \Mathbf etc... to refer to the mathastext-ified text fonts, and redefines the math alphabets \mathrm, \mathit, \mathtt etc... (but not \mathcal of course) to use them. To avoid the remapping and keep the \mathrm et al. to refer to the non mathastextified fonts, use this option. The \Mathnormal et al. commands with an initial uppercase will always be available whether or not this option is made use of.
Prior to $1.3 z a$ (and since $1.15 f$ ), this option also prevented the package to declare the \Mathnormal et al. and \mathnormalbold commands. In this context, recall that the dreaded "too many math alphabets" error can only occur on use in the document of too many of such commands, and not at the time of their declarations. The author's notes from time of 1.15 f release (2012/10/25) only say that it may not be "useful" to package user to have both (for example) \mathrm and \Mathrm, which sounds weird if they are to acquire distinct meanings. So since $1.3 z a$ both will exist. In the default package configuration \mathrm is configured to expand to $\backslash$ Mathrm (with some extra behavior under LGRgreek+), and with this option or the defaultrm option \mathrm is kept with its original meaning (and the LGRgreek+ extras do not work).
- defaultnormal, defaultrm, defaultbf, defaultit, defaultsf, defaulttt: tell mathas text to not set up, respectively, the \mathnormal, \mathrm, \mathbf, \mathit, $\backslash$ mathsf, and \mathtt commands to use the mathastext-ified font which are accessible always via \Mathnormal, \Mathrm, \Mathbf, \Mathit, etc...
Prior to $1.3 z a$ these options also prevented the creation of the corresponding mathastext command with an uppercased initial.
- italic: let the Latin letters (both lowercase and uppercase) use the italic shape ( itdefault) in math mode. If the package handles Greek letters, also lowercase (but not uppercase) Greek letters will use this a priori italic shape except if some other option such as upgreek was used. ${ }^{80}$
- frenchmath: configures for lowercase Latin letters to use italic shape (\itdefault), and uppercase Latin letters to be in same shape as for digits and operator names (i.e. a priori \shapedefault). If the package handles Greek letters

[^35]both lowercase ${ }^{81}$ and uppercase Greek letters will use the same shape as operator names, except if some other option such as itgreek was used. ${ }^{82}$

- ncccomma: it triggers the loading of the ncccomma package ${ }^{83}$ and configures mathastext for compatibility (this is canceled if nopunctuation option is used, or basic as it implies it).

The effect of the ncccomma package will apply to the entire document body, even to portions using the normal or bold math versions with mathastext having been loaded with the subdued option. Also, in case of usage of package babel with french option, the effect of ncccomma will also apply to those parts of the document using another language than French. ${ }^{84}$

- binarysemicolon: sets (except if nopunctuation is used) the semi-colon to let $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ use spacing of binary type, not punctuation type, around the semi-colon (it is often used in French mathematical typesetting as separator in interval denotations, when the extremities are decimal numbers, as the comma is used as decimal separator).
The effect applies to all math versions, even the normal and bold math versions with mathastext having been loaded with the subdued option.
- frenchmath*: does all three of frenchmath, ncccomma and binarysemicolon.
- endash, emdash: use the text font en-dash (-) or even the em-dash (- but this seems crazy) for the minus sign rather than -. endash option is default for the package.
- unicodeminus: use the MINUS SIGN $\mathrm{U}+2212$ (requires fontspec.) Or, in the form unicodeminus $=\mathrm{HHHH}$ with four uppercased hexadecimal digits: use the $\mathrm{U}+\mathrm{HHHH}$ code point. As noendash really means "use the hyphen from the text font", unicodeminus remains without effect under it, or, naturally, under nominus. Without this option, mathastext uses the EN DASH U +2013 by default for OpenType fonts.
- asterisk: use the text font (or the Symbol font) asterisk in math mode.
- nohbar: prevents mathastext from defining its own \hbar.
- noendash: the minus sign will be the - from the text font, not the en-dash -.

[^36]- nolessnomore: besides !?,.:;+-=()[]/\#\$\%\& mathastext treats also $<>\mid$ $\}$ and $\backslash$. Use this option to let it not do it. This is the default in case of OT1-encoding.
- further excluding options: noexclam !? nopunctuation ,.:; noplus, nominus, noplusnominus +- noequal $=$ noparenthesis ()[]$/$ nospecials $\# \$ \%$ \& and nodigits.
- alldelims: true by default, means that the characters excluded by nolessnomore are treated. Use this option in case of a mono-width OT1-encoded font.
- nosmalldelims: this prevents mathastext from trying to pick up in the text font the 'small variants' of some math delimiters; it only affects what happens when a character such as a left parenthesis ( or [ is used as a delimiter, and in the event that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has chosen the smallest sized variant. This has no impact on what happens when they are not used as delimiters: then, and if not disabled by the corresponding options, these characters are always picked up from the text font. ${ }^{85}$
- symbolgreek, symboldigits: to let Greek letters (digits) use the Symbol font.
- symbolre: replaces $\backslash$ Re and $\backslash \operatorname{Im}$ by the Symbol glyphs $\mathfrak{R}, \mathfrak{I}$ and defines a $\backslash$ DotTriangle command ( $\therefore$ ).
- symbolmisc: takes quite a few glyphs, including logical arrows, product and sum signs from Symbol. They are listed supra. Doing }\{\backslash\) smallint $\}$ will maximize even more the use of the Symbol font.
- symboldelimiters: the characters apart from letters and digits will be taken from the Symbol font.
- symbol: combines symbolgreek, symbolre, and symbolmisc.
- symbolmax: combines symbol and symboldelimiters.
- eulergreek, eulerdigits: to let Greek letters (digits) use the Euler font.
- LGRgreek: this configures the Greek letters in math mode to use the text font (i.e. a priori the font which was default at time of loading the package) in LGRencoding. The command $\backslash M T g r e e k f o n t ~ c a n ~ b e ~ u s e d ~ t o ~ s e t ~ a ~ s p e c i f i c ~(L G R-~$ encoded) font family. Each use of \MTgreekfont must be followed at some point by a \Mathastext or \Mathastext [〈version_name $\rangle$ ] to be effective. Any subsequent math version declaration will be influenced by it until \MTgreekfont is used again to configure another font for Greek letters. ${ }^{86}$

[^37]If $\backslash$ MTgreekfont is never used the font family for Greek under option LGRgreek will be, in all math versions except under subdued for the "normal" and "bold", the family which was the default at time of loading the package. You must use $\backslash$ MTgreekfont to change it.
See further on this topic the upgreek, itgreek, upGreek and itGreek options as well as the \MTupgreek, \MTitgreek, \MTupGreek and \MTitGreek commands.
It is up to the user to ascertain that the font family is indeed available in the LGR encoding; if it is not, only at time of the first math mode typesetting will ${ }^{\mathrm{LA}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ issue warnings such as this one:

> Font shape $‘ \mathrm{LGR} / \mathrm{ptm} / \mathrm{m} / \mathrm{n}$ ' undefined using ${ }^{`} \mathrm{LGR} / \mathrm{cmr} / \mathrm{m} / \mathrm{n}$ ' instead on input line 28

The LGRgreek option also triggers pre-definition of Greek character tokens such as \alphaup or \betait, see subsubsection 1.7.3 for the explanations.
Although under subdued option mathastext does not modify Latin and Greek letters in the "normal" and "bold" math versions it still under LGRgreek option declares two additional symbol fonts with the associated \mathgreekup and \mathgreekit commands to access them, and also since $1.3 z a \backslash$ mathgreekupbold and \mathgreekitbold, and these math alphabets can be used also in the "normal" and "bold" math versions. They will work on mathchar tokens which are of "variable family type"; mathastext makes all Greek letters of such "variable family type" but only of course in non-subdued math versions so this situation depends on the math configuration of the document. As per the font used by these alphabets in the subdued "normal" and "bold" it is either the one in LGR encoding which was the family default at time of loading the package or the one configured last by $\backslash M T g r e e k f o n t$ when the command $\backslash$ Mathastext (without optional argument) was used in the preamble.
$1.3 z a$ fixes here a bug which froze the target font to be the one at time of loading the package: this bug applied (only) to the subdued "normal" and "bold" math versions and was not readily visible as there is a priori no reason to use in these subdued math versions these mathastextprovided Greek font alphabets.

- LGRgreeks: each declared math version will be supposed to be with a font which is also available in LGR-encoding. This is a shortcut to using \MTgreekfont systematically to keep in sync in all declared math versions the font for Greek with the font for Latin letters. Please note that macro \MTgreekfont becomes then inoperant, and if you need one math version without this Latin-Greek synching, you will have to use rather LGRgreek and then \MTgreekfont manually appropriately.
- LGRgreek+ and LGRgreeks+: they extend respectively LGRgreek or LGRgreeks to let Greek letters control sequences when in the scope of \mathrm, \mathit, and \mathbf behave as would be expected by LaTeX users who have not read fntguide.pdf or any other $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ documentation but have used unicode-math. See subsubsection 1.7.5 for details.
- selfGreek: this is for a font which is also available in OT1-encoding and contains the glyphs for the default eleven capital Greek letters.
- selfGreeks: each declared math version will be supposed to be with a font with the eleven capital Greek letters in its OT1-encoded version.
- upgreek, itgreek: options to tell mathastext to use \MTgreekupdefault or \MTgreekitdefault for the lowercase and uppercase Greek letters shape. These two commands can be defined prior to loading the package. This option is operant only under the LGRgreek(s) or selfGreek(s) options.
- upGreek, itGreek: influence only uppercase Greek.
- mathaccents: use the text font also for the math accents. As in vanilla $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, they are taken from the font for the digits and \log-like names. Obey the alphabet changing commands.
- unimathaccents: extends mathaccents to OpenType fonts. Gave bad results in my brief testing.
- defaultimath: do not overwrite \imath and \jmath to use \inodot and $\backslash j n o d o t$.
- defaultmathsizes: do not change the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ defaults for the sizes of exponents and subscripts.
- fouriervec: provides a \fouriervec command. The user can then add in the preamble \let $\backslash v e c=\backslash$ fouriervec. There is also always available a "poor man" vec accent \pmvec for upright letters.

Thanks to Kevin Klement, Tariq Perwez and Ricard Torres for sending bug reports and feature requests when the first version of the package was issued.

Numerous examples will be found there:
http://jf.burnol.free.fr/mathastext.html
http://jf.burnol.free.fr/showcase.html

## 4 Change log

1.3za [2023/12/20]

* Under LGRgreek and LGRgreeks options, new math alphabets \mathgreekupbold and \mathgreekitbold.
* New options LGRgreek+ and LGRgreeks+. Thanks to Holger Gerhardt for feature request and code ideas. Please find and read the relevant documentation in the PDF.
* The meaning of defaultalphabets and related individual options such as defaultbf has been modified (reverted to pre 1.15 f release): even under these options, the package always creates \mathnormalbold, \Mathnormal, \Mathrm, $\backslash$ Mathbf etc..., commands. This may break documents which used these options in order to reserve these command names. This was done with some hesitancy, but for the sake of internal logical coherence.
* Fix an obscure bug with no real consequences regarding interaction of subdued with LGRgreek and $\backslash M$ Tgreekfont. See the LGRgreek documentation in the complete list of options for details.
* Fix long-standing hyperlink problems in the documentation: blue color words should now all be functioning hyperlinks.


## 1.3z [2023/09/01]

Fix 1.3 y regression which broke selfGreek option due to internal renamings. Thanks to Stephan Korell for report.
1.3y [2022/11/04]
(the 1.3 x had an annoying documentation bug, and had already been pushed to CTAN, hence the version increase to 1.3 y )

* mathastext now requires the \expanded primitive (which is available with all major engines since TeXLive 2019).
* Revisit parts of the documentation (mainly the Examples, and the section on Greek letters) and shuffle the other parts to surely improve things. Mention the [mathfont](https://ctan.org/pkg/mathfont) and [frenchmath](https://ctan.org/pkg/frenchmath) packages.
* Add the ncccomma option which loads the [ncccomma](https://ctan.org/pkg/ncccomma)
package to allow the comma as decimal separator.
* Add the binarysemicolon option to let the semi-colon be of type \mathbin, not $\backslash$ mathpunct.
* Add the frenchmath* option which does all three of frenchmath, ncccomma and binarysemicolon.
* Under the LGRgreek and LGRgreeks options only:
- make available upright and italic Greek letters in math mode via \alphaup, \alphait, ... control sequences, in addition to those not using such postfixed-names.
- add \mathgreekup and \mathgreekit math alphabets.
- add $\backslash M$ Tgreekupdefault and $\backslash M$ Tgreekitdefault. The former replaces \updefault which was used in some places and since LaTeX 2020-02-02 caused systematic Font Warnings about the substitution of up by n .
These new features required an extensive internal refactoring which is expected to not induce changes to most existing documents. But it may induce changes to those using some unusual configuration in the preamble, as made possible via the package macros; this can apply only to documents authored by those few people who actually read the documentation. For full details make sure to read the PDF documentation about this change.
* Fix " $\backslash$ Digamma under LGRgreek option uses the shape for lowercase not uppercase Greek".
* Fix some incongruities in log messages related to Greek letters and emitted during math version creation in the preamble.
1.3w [2019/11/16]
* LaTeX 2019-10-01 release (up to patch level 3 inclusive) together with amsmath conspired :-) to break mathastext, in connexion with math accents. This has been fixed upstream, but I am releasing nevertheless a hot fix to this https://github.com/latex3/latex2e/issues/216 issue (this is compatible with future LaTeX releases).
* Fix: the \hbar is originally a robust command but becomes a \mathchardef token if (e.g.) amsfonts is loaded and then with recent LaTeX \hbar<space> is made undefined and mathas-
text definition of it remained without effect. The $\backslash$ mathastext own \hbar is now defined \protected.
* Fix: option noendash (or symboldelimiters which implies it) caused (since 1.3 u ) a bug under Unicode engines when setting up the minus sign.
* Version names declared via the optional argument of $\backslash$ Mathastext or as first argument of $\backslash M T$ DeclareVersion must not be normal or bold. Enforce that! (this was marked as a bug to fix since 2012/10/24...)


## 1.3v [2019/09/19]

* LaTeX 2019-10-01 release has made more math macros robust. This applies in particular to the math accents and to the \hbar. This required for mathastext to adapt. Also \leftarrowfill and \rightarrowfill are now defined robust by the kernel, hence mathastext does the same. These changes are dropped if mathastext detects an older LaTeX format.
* These LaTeX kernel changes motivated an examination of some redefinitions done (optionally) by mathastext:
- The user math alphabet macros got redefined as expanding to some other (robust) math alphabet macros, but were not robust in the strict sense. This does cause some issues for moving arguments in the context of multiple math versions, hence it was a bug. The special behaviour of the math alphabet commands (they redefine themselves and other macros on first use) makes is somewhat problematic for mathastext to keep them updated across math versions and at the same time strictly LaTeX2e robust. Thus mathastext now requires the e-TeX primitive $\backslash$ protected and uses it for the definitions of the user level math alphabet macros.
- There are a number of \mathchardef tokens which (under certain options and/or configuration via the package user interface), mathastext redefines as macros. These macros cause no issue in moving arguments (they are not "fragile"), still it is probably better if they expand only at the time of typesetting. To this effect they are now also $\backslash$ protected: \exists, \forall, \colon, \setminus, \mid, $\backslash$ prod, \sum, \imath, \jmath.
- The macro \vert (which expands to a \delimiter) is now defined robust by LaTeX. Its mathastext redefinition is a $\backslash$ protected one rather.
- The $\backslash\{$ and $\backslash\}$ (which get redefined only under \MTexplicitbracesobeymathxx regime) are now strictly robust in the LaTeX2e sense (formerly
they were $\backslash$ let to some robust macros, and this did not make them strictly LaTeX2e-robust entities).
* The various changes in mathastext described in the previous item apply independently of the LaTeX release version. The LaTeX format itself requires the e-TeX extensions since 2015.


## 1.3u [2019/08/20]

* new feature: the initial release dealt with only one font, and although shortly thereafter the 1.11 version added support for extended math versions, it was documented that some font-dependent setup (minus as endash, dotless i and j , hbar, math accents) was done only once. This release makes the relevant characters font encoding savvy in each mathastext-extended math version. Thus, they should render correctly even with multiple math versions using fonts with varying encodings.
This reinforces importance of using \MTversion and not the LaTeX \mathversion when switching to a new math version (which got declared via the package interface). The implementation is compatible with Unicode engines and mixed usage of TU encoding (OpenType fonts) with traditional 8bits TeX font encodings. For all engines, all used (8bits) encodings must have been passed as options to the fontenc package.
Thanks to Falk Hanisch for feature request and code suggestions.
* new option unimathaccents: this adds to option mathaccents the demand to use the text font accents for OpenType fonts in math mode via the \Umathaccent primitive. Indeed, as my testing showed that this gave non-satisfactory results both with XeTeX and LuaTeX regarding the horizontal placement of the accents, the main option mathaccents acts only on 8 bits encoded fonts.
* bugfix: the $\backslash$ Mathastext without optional argument forgot to repeat some font-encoding dependent initialization set-up done originally during package loading.
* bugfix: under the subdued option macros $\backslash$ MTmathactiveletters or $\backslash$ MTnonlettersobeymathxx now act like no-ops if issued explicitly while in the normal or bold math version. Formerly, this was not the case and could cause bugs such as a disappearing minus sign in math mode.
* bugfix: the letter $h$ used in the $\backslash h b a r ~ o b e y e d ~$ the extra skips as set-up by $\backslash M$ Tsetmathskips, badly interfering with the horizontal positioning of the bar accent. They are now ignored (as well as
the added italic correction).


## 1.3t [2018/08/22]

* bugfix: the 1.3 s bugfix about subdued compatibility with fontspec was deficient.
* bugfix: very old (v1.2, 2012/12/20) bug causing low-level TeX error during package loading (with pdflatex) when setting up the math minus sign to be the text font endash character, in cases with $\backslash$ encodingdefault other than OT1, T1 or LY1, e.g. something like T2A.
* \imath and \jmath obey the subdued regime. And the minus sign is now handled especially to ensure perfect compatibility with the subdued option.
* breaking change: mathastext does not redefine anymore $\backslash i$ and $\backslash j$ to let them be usable both in text and math mode.


## 1.3s [2018/08/21]

* fix to an issue with subdued option in a fontspec context.


## 1.3 r [2016/11/06]

* documentation tweaks.


## 1.3q [2016/10/31]

* new option unicodeminus.
* the Recent Changes section of the documentation has been removed as it was a duplicate of information available in the Change Log.
* some other changes in the documentation, in particular the use of straight quotes in verbatim.


## 1.3p [2016/05/13]

* bugfix: release $1.3 n$ had forgotten to activate by default its new customization of the amsmath macro \newmcodes@ (it was done from using $\backslash$ MTversion in the document body but not by default at start of body.)
* public name $\backslash \mathrm{MTfixmathfonts}$ for a 1.30 macro.


### 1.30 [2016/05/03]

* mathastext fixes an issue related to a feature of LuaLaTeX and luaotfload that OpenType fonts are declared in one of two modes: node and base, and only the latter is functional in math mode. But by default text fonts are declared in mode node. Thus mathastext now intervenes to make it so that
the font it declares in math mode will use mode base. This fixes issues with for example old style figures being used while the text font used lining figures (or vice versa, depending on the font). But see the code comments for more.


## 1.3n [2016/04/22]

* at long last, mathastext takes care properly of annoying and perplexing amsmath's \newmcodes@. The very recent change in amsopn.sty finally made it compatible with Unicode engines, but anyhow, mathastext must do its own patch to use the correct font. All of this taking into account the various options passed to the package. Lots of trouble for a tiny thing.
1.3m [2016/04/02]
* minor code maintenance before annual TL freeze.
1.31 [2016/01/29]
* compatibility with fontspec's upcoming switch from EU1/EU2 to TU common to both Unicode engines.


## 1.3k [2016/01/24]

* typos fixed in the documentation. In particular, the README link to the package homepage had remained broken from day one of the package releases: mathastext.html therein was misspelled as mathsastext.html ! (but the pdf documentation had the correct link; as well as the CTAN catalogue).
1.3j [2016/01/15]
* renamed and modified recent 1.3i's $\backslash \mathrm{MTac}$ tivemathoff into \MTeverymathoff. Added $\backslash$ MTeverymathdefault.
* subdued mode is a bit stronger: also the asterisk reverts to the default (if it was modified due to option asterisk), the added extra \mskip's (useful with upright fonts) for ', \exists, and \forall are suppressed rather than re-configured to use 0 mu . Related new commands \MTexistsdoesskip, \MTforalldoesskip, \MTprimedoesskip, \MTnormalexists, \MTnormalforall, \MTnormalprime.
* the toggle for using mathematically active letters is only emitted once during package loading; the $\backslash$ Mathastext command does not do it anymore; the use in the preamble of $\backslash \mathrm{MTmathstan}$ dardletters, or $\backslash M$ noicinmath and related commands is not overruled by later use of $\backslash$ Mathastext.
* quite a few documentation improvements and rewrites, particularly in the description of commands which are related to the modifications of mathcodes (mainly for math activation of characters or letters) as done by mathastext at \everymath or \everydisplay.


## 1.3i [2016/01/06]

\url from url.sty as well as \url and \nolinkurl from hyperref.sty use math mode and (by default) the monospace text font. To avoid mathastext overwriting the special preparation done by \{url,hyperref\}.sty the commands \url/\nolinkurl are patched to do automatically $\backslash$ MTactivemathoff (now $\backslash M T e v e r y m a t h o f f)$ before entering math mode.

* the extra skips specified by $\backslash M T$ setmathskips are not inserted around letters if inside the arguments of math alphabet commands, or within operator names.
* the added explicit italic corrections (for nonoblique fonts) were disabled within math alphabet scopes, except mathnormal; they are now disabled within all math alphabets, inclusive of mathnormal.


## 1.3h [2015/10/31]

* bugfixes: since 1.3 d 2014/05/23 the option symbolgreek caused $\backslash$ ell to become undefined, and, similarly but far worse, options selfGreek, selfGreeks caused all lowercase Greek letters \alpha, $\backslash$ beta, etc.. to become undefined


## 1.3g [2015/10/15]

* following 2015/10/01 LaTeX release, removal of the "luatex" prefix from the names of the LuaLaTeX math primitives. Compatibility maintained with older LaTeX formats.


## 1.3f [2015/09/12]

* the replacement of amsmath's \resetMathstrut@, when it is done, emits an Info rather than a Warning as this could be potentially stressful to some users.
* the README self-extracts from the dtx source, as a text file README.md with Markdown syntax.


## 1.3e [2015/09/10]

* bugfix: under option nosmalldelims, \Ibrace and \rbrace were redefined as math symbols and could not be used as delimiters.
1.3d [2015/02/26]
* the documentation mentions the improved compatibility of mathastext with the latest (3.34) beamer release: no more need for \usefonttheme $\{$ professionalfonts $\}$.
1.3d [2014/05/23]
* new commands \MTstandardgreek and \MTcustomgreek.
* The Greek letters, in case of use of one of the package related options, are left to their defaults in the normal and bold math versions if the subdued option was also used (this was so far the case only with options LGRgreek/LGRgreeks).
* \newmcodes@ of amsmath is left untouched if package lualatex-math is detected.
1.3c [2013/12/14]
* added a starred variant to $\backslash$ MTversion which tells mathastext to only do the math set-up and not modify the text fonts.
* added second optional version name argument to $\backslash$ Mathastext and to $\backslash$ MTDeclareVersion, to transfer settings for things not otherwise changed by mathastext from a math version to the one declared. This is mainly for symbols and large symbols to be the bold ones when the user sets up the series of a mathastextified font to be bold in a mathastext-declared version.
* renamed \defaultprod to $\backslash M$ Toriginalprod, $\backslash$ defaultsum to $\backslash \mathrm{MToriginalsum}, \mathrm{(this} \mathrm{is} \mathrm{in} \mathrm{case} \mathrm{of}$ option symbolmisc).
* changes to the dtx organization; options for generating the documentation can be customized in generated mathastext.tex file.
* 1.2 d code for $\backslash \#, \backslash \$, \backslash \%$, and $\backslash \&$ modified erroneously the earlier correct 1.2 c code and created a bug showing up with more than 16 math families (a possibility only with lualatex or xelatex).
1.3a [2013/09/04]
* the somewhat silly \string's are removed from the $\backslash M$ Tsetmathskips command of release 1.3, thus allowing its first argument to be a macro, or any expandable code, giving a letter.
* the amsmath \resetMathstrut@, which is incompatible with a mathematically active parenthesis (is now modified only if necessary (i.e.)@ only when $\backslash M$ Tnonlettersobeymathxx is issued) and is restored to its original value if not needed anymore
(i.e. after \MTnonlettersdonotobeymathxx, as for example when switching to the normal version under option subdued).
* improved documentation.
1.3 [2013/09/02]
* commands $\backslash M$ Tsetmathskips and $\backslash M$ Tunsetmathskips added.
* commands \MTmathactiveletters and \MTmathstandardletters to govern the math activation of letters independently of its use for insertion of the italic corrections ( $\backslash M$ Ticinmath and $\backslash M T$ noicinmath correspondingly modified).
* the new \luatexUmathcodenum as available since TL2013 allows identical treatment by mathastext of $=$ and - under both LuaTeX and XeTeX.
* \newmcodes@ of amsmath is left untouched in case of option basic.
* a sentence containing \| which was written to the log during the loading caused a problem if | was active (typically if $\backslash$ MakeShortVerb $\{\backslash \mid\}$ was added to the preamble prior to the loading of mathastext).
* some preemptive measures taken regarding things such as $\backslash$ mid, $\backslash$ lbrace, and $\backslash$ rbrace, as some packages define these things in manners which made the re-definitions done by mathastext issue errors.


## 1.2 f [2013/01/21]

* minor code improvements. Change log added to the user manual.
1.2e [2013/01/10]

This version should be the last one in the 1.2 series as it seems to correct most of the main problems which were introduced with the massive use of mathematically active characters in versions 1.2 and 1.2 b .

* It is indeed a thorny point when one wants to modify an active character in math mode only (without breaking usage in label's and ref's for example). The package now does that _only_ if the activation originated in the Babel system as it is then possible to modify appropriately the Babel macros \user@active<char> and \normal@char<char>, at the time of entering math mode (mathastext does all its activation job at $\backslash$ everymath and \everydisplay).

The relevant issues are discussed in section 2.10 of the user manual, in the test file mathastexttestalphabets.tex, and in the source code comments for macro \mst@mathactivate. The inherent incompatibility of Babel with packages having made mathematically active the characters itself makes document active is circumvented by this interference of mathastext. A generally applicable Babel patch could be derived from the method used by mathastext.
For the non catcode active characters, mathematical activation is used. This is done at the entrance in math mode.

* Sadly, the feature of added italic corrections introduced in version 1.2 b did not behave as described in the user manual, due to forgotten group braces. Fixed.
* The command $\backslash \mathrm{MTlowerast}$ from the user manual of v 1.2 d was not the one implemented in the source code. Fixed.
* The test files automatically extracted from a latex run on the dtx file have been revised and extended.
* The code is better documented.


## 1.2d [2013/01/02]

* an incompatibility with amsmath (its macro $\backslash$ resetMathstrut@), exists since version 1.2 of the package. This is fixed here.
* various improvements in dealing with the asterisk and in the mechanism of letting non-letter symbols obey the math alphabet commands.
* documentation extended and improved.
1.2c [2012/12/31]
* mathastext now inserts automatically after all (latin) letters in math mode their italic corrections, if the font used is upright (sic). This improves the spacings for the positioning of subscripts. The feature is de-activated inside the math alphabets commands (apart from $\backslash$ mathnormal), so as to not prohibit the formation of ligatures.
* the documentation has been extended to explain in detail the issues which are relevant to the new feature of added italic corrections.
* version 1.2 had some bad bugs when confronted to active characters. This is corrected and additionally $\backslash M$ Tnonlettersdonotobeymathxx is made the default, as the user input is too much constrained in its absence.
* a less fatal, but still annoying, typo had made the dot in 1.2 of type $\backslash$ mathpunct rather than $\backslash$ mathord.
* the inner namespace has been rationalized a bit.


## 1.2 [2012/12/20]

* a new command sets up the amount of space to be automatically inserted before the derivative glyph (useful when using an upright font).
* the scope of the math alphabets has been extended to apply to the non-alphabetical characters, and also to operator names.
* the format of the dtx file has changed. The package file is self-extracting from the dtx, and four additional test files are also produced during latex mathastext.dtx.
1.15 and 1.15 g [2012/10/25]
* $\backslash \$, \backslash \#, \backslash \&$, and $\backslash \%$ had been re-defined by mathastext since its inception in a rather strange (but working) way, which could cause surprises to other packages. Fixed.
* the subdued mechanism for the math alphabets is implemented in a simpler and more efficient manner than in 1.15e.
* the defaultxx options act a bit differently, and are more useful in case of a too many math alphabets situation.
* various improvements in the documentation.
* general clean up and better commenting of the source code.


### 1.15e [2012/10/22]

* new user commands to specify skip or glue to be inserted after the math symbols \exists and \forall
* complete (user transparent) rewrite of the code implementing the subdued option; and its action has been extended to apply also to the $\backslash$ mathbf, \mathit, \mathsf, \mathtt alphabets and not only to \mathrm and \mathnormal as in the previous versions.
* improvements in the documentation.
1.15d [2012/10/13]
* the Unicode situation is now correctly treated, throughout the code (this had been left in a half-done way from version 1.14 of April 2011).
* this includes an issue related to amsmath and its DeclareMathOperator macro which has been fixed,
* and the code related to \relbar and \Relbar (and $\backslash$ models) has been revised.
1.15c [2012/10/05]
* it is now possible to use distinct fonts in LGR encoding for the Greek letters according to the current math version.
* improvements to the documentation.


### 1.15b

* corrected a 'feature' of 1.15 which was backward-incompatible
* improvements to the pdf documentation


### 1.15 [2012/09/26]

* the subdued option allows the mathastextification to act only locally.
* some measures taken to deal with amsmath related issues when using xetex or luatex.


### 1.14c

* a bug is fixed: the $\backslash$ Mathastext macro reinitializes the fonts in the normal and bold math versions, but it also erroneously redeclared the math alphabet changing commands which could have been set up in previously defined math versions (via earlier calls to $\backslash$ Mathastext $\backslash$ [version_name $\backslash]$ ).
1.14b [2011/04/03]
* there was a bug with $\backslash \$, \backslash \#, \backslash \&, \backslash \%$ in math mode which showed up when ten or more math families had been declared. This bug affected also the minus sign under the same circumstances, when Unicode engines were used. Fixed.
* the options LGRgreek and selfGreek act now a bit differently, and new options LGRgreeks and selfGreeks have been defined.
* I also cleaned up a bit the code, for a more structured namespace.


### 1.14

* mathastext now modifies also the math alphabets $\backslash$ mathit, $\backslash$ mathsf and $\backslash$ mathtt, thus making it a quite generic complete manner to adapt the math configuration to fonts provided with no math support.


### 1.13b

* when the Symbol font is used for \prod and $\backslash$ sum this will be only for inline math; display math will use the default glyphs
1.13 [2011/03/11]
* the LGRgreek option is added.
* internal changes for better readability of the code.
1.12
* various bugs have been corrected.
* the endash and alldelims options are active by default.
* the package is more Unicode aware.
* the $\backslash$ Mathastext command has been improved to facilitate the mechanism of math versions also when using XeTeX or LuaTeX (with package fontspec.)
* the en-dash and dotless $i$ and $j$ now work with all encodings, Unicode inclusive.
1.11 [2011/02/06]
* optional argument to $\backslash$ Mathastext macro.
1.1 [2011/02/01]
* options italic and frenchmath.
1.0 [2011/01/25]
* Initial version.


## 5 Implementation

The usual catcode regime for letters and digits is assumed and some characters such as *, `, ", = are supposed to be of catcode other at the time of loading of mathastext. The source of mathastext takes precautions for some other characters such as the right quote ', which may thus be active with no harm at the time of loading. By the way, I think $\mathrm{IA}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ should have provided to authors a standard macro to be used at the beginning of a style file to make sure the catcodes are standard. Shorthands created by Babel should be mostly no problem as Babel does the activation only at the \begin\{document\}. }

The comments have been accumulating through successive versions with only partial efforts to achieve some sort of coherence; as a result some are a bit strange or obsolete to various degrees. And the similar remark applies to some ancient parts of the code itself!

Should I require 2005/12/01 $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ ? (not sure about the month).
1 \NeedsTeXFormat\{LaTeX2e\}
2 \ProvidesPackage \{mathastext\}
3 [2023/12/20 v1.3za Use the text font in math mode (JFB)]
$\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 release has made robust math macros such as the math accents and \hbar.

```
4 \newif\ifmst@robust@obsessed@LaTeX@era
5\@ifl@t@r\fmtversion{2019/10/01}{\mst@robust@obsessed@LaTeX@eratrue}{}
6 \edef\mst@robustifyingspace{\ifmst@robust@obsessed@LaTeX@era\space\fi}
```

Testing for $\mathrm{X}_{-1} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and LualATEX.
1.3g 2015/10/15: update for the naming of primitives, the situation has evolved both on $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ side and on the LuaLATEX side (LaTeX base 2015/10/01): I was told "U" named math primitives were always available for LualATEX. For $\mathrm{X}_{\mathrm{H}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$, the XeTeX prefix got replaced by U prefix with 0.99 .. a certain number of 9 . I opted for rather simple approach of just trying the "modern" names and if they don't exist fall back on earlier (and in danger of being deprecated) names.

```
\let\mst@Umathcharnumdef\Umathcharnumdef
\let\mst@Umathcodenum \Umathcodenum
\let\mst@Umathcode \Umathcode
\let\mst@Umathchardef \Umathchardef
\let\mst@Umathaccent \Umathaccent
\newif\ifmst@XeTeX
\ifx\XeTeXinterchartoks\@undefined
 \mst@XeTeXfalse
\else
 \mst@XeTeXtrue
 \ifx\mst@Umathcharnumdef\@undefined
 \let\mst@Umathcharnumdef\XeTeXmathcharnumdef
 \let\mst@Umathcodenum \XeTeXmathcodenum
 \let\mst@Umathcode \XeTeXmathcode
 \let\mst@Umathchardef \XeTeXmathchardef
 \let\mst@Umathaccent \XeTeXmathaccent
 \i
\i
\newif\ifmst@LuaTeX
\ifx\directlua\@undefined
\mst@LuaTeXfalse
```

```
\else
 \mst@LuaTeXtrue
 \ifx\mst@Umathcharnumdef\@undefined
 \let\mst@Umathcharnumdef\luatexUmathcharnumdef
 \let\mst@Umathcodenum \luatexUmathcodenum
 \let\mst@Umathcode \luatexUmathcode
 \let\mst@Umathchardef \luatexUmathchardef
 \let\mst@Umathaccent \luatexUmathaccent
 \fi
\i
\newif\ifmst@XeOrLua
\ifmst@LuaTeX\mst@XeOrLuatrue\fi
\ifmst@XeTeX \mst@XeOrLuatrue\fi
```

1.2: all inner macros of mathastext now starts with \mst@ for a cleaner name-space.
1.31 2016/01/29: hmmm... at this late stage where nobody would expect me to still look at the code, I have found at least two macros which still didn't: \do@the@endashstuff and \do@the@emdashstuff.

Ok, doing something more serious: compatibility with upcoming TL2016 fontspec and its switch to 'TU' NFSS font encoding in replacement of 'EU1/EU2' Anyhow, the code in mathastext has been common to the two Unicode engines for a while, hence it is not hard to adapt to the replacement of EU1/EU2 by TU, maintaining compatibility with legacy installations.
\mst@OneifUniEnc The \mst@OneifUniEnc is expandable but must be used after having set \mst@tmp@enc...

```
41 \def\mst@oti{OT1}
42\def\mst@eui{EU1}\def\mst@euii{EU2}\def\mst@tu{TU}
43\def\mst@OneifUniEnc {%
44 \ifx \mst@tmp@enc\mst@tu 1\else
45 \ifx \mst@tmp@enc\mst@eui 1\else
46 \ifx \mst@tmp@enc\mst@euii 1\else 0\fi\fi\fi }
47 \newif\ifmst@goahead
48 \newif\ifmst@abort
```

\mst@encMacrostostorethefontsettings,eachmathversionwillstoreitsownrecords.\mst@fam49\def$\backslash$mst@enc\{\encodingdefault\}\mst@ser50\def\mst@fam\{\familydefault\}\mst@opsh51\def\mst@ser\{\seriesdefault\}\mst@bold52\def$\backslash\mathrm{mst@opsh}\{\backslash$shapedefault\}$\%\%$willbedefaultshapeforoperatornames\mst@ltsh53\def$\backslash$mst@bold\{\bfdefault\}54\def\mst@ltsh\{\shapedefault\}$\%\%$willbedefaultshapeforletters\mst@greekfont1.15c:forusebytheLGRgreekandselfGreekoptions.Definedasan\edefinordertobeabletoset-uponceandforalltheGreekatthetimeof\usepackage.Modifiableinthepreamblevia\MTgreekfont\{〈font_name〉\}\Mathastext.55\edef\mst@greekfont\{\familydefault\}Packageoptions2011/03/09:1.13introducestheoptionLGRgreekandsystematicuseof\if...conditionals,forbetterreadability(bymyself)ofthecode.$1.3x$of2022/11/03addsncccomma,binarysemicolonandfrenchmath*options.$1.3za$addsLGRgreek+andLGRgreeks+.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\newif\ifmst@italic
\newif\ifmst@frenchmath
\newif\ifmst@ncccomma
\newif\ifmst@binarysemicolon
 \DeclareOption{italic}{\mst@italictrue
 \def\mst@ltsh{\itdefault}}
 \DeclareOption{frenchmath}{\mst@frenchmathtrue\mst@italictrue
 \def\mst@ltsh{\itdefault}}
 \DeclareOption{ncccomma}{\mst@ncccommatrue}
 \DeclareOption{binarysemicolon}{\mst@binarysemicolontrue}
 \DeclareOption{frenchmath*}{\mst@frenchmathtrue\mst@italictrue
 \def\mst@ltsh{\itdefault}\mst@ncccommatrue\mst@binarysemicolontrue}
\newif\ifmst@endash\mst@endashtrue
 \DeclareOption{endash}{\mst@endashtrue}
 \DeclareOption{noendash}{\mst@endashfalse}
\newif\ifmst@emdash
 \DeclareOption{emdash}{\mst@emdashtrue\mst@endashfalse}
\newif\ifmst@alldelims
\edef\mst@tmp{\encodingdefault}\ifx\mst@oti\mst@tmp\else\mst@alldelimstrue\fi
 \DeclareOption{alldelims}{\mst@alldelimstrue}
 \DeclareOption{nolessnomore}{\mst@alldelimsfalse}
\newif\ifmst@nosmalldelims
 \DeclareOption{nosmalldelims}{\mst@nosmalldelimstrue}
\newif\ifmst@noplus
 \DeclareOption{noplus}{\mst@noplustrue}
\newif\ifmst@nominus
 \DeclareOption{nominus}{\mst@nominustrue}
\DeclareOption{noplusnominus}{\ExecuteOptions{noplus,nominus}}
\newif\ifmst@noparen
 \DeclareOption{noparenthesis}{\mst@noparentrue}
\newif\ifmst@nopunct
 \DeclareOption{nopunctuation}{\mst@nopuncttrue}
\newif\ifmst@noequal
 \DeclareOption{noequal}{\mst@noequaltrue}
\newif\ifmst@noexclam
 \DeclareOption{noexclam}{\mst@noexclamtrue}
\newif\ifmst@asterisk
 \DeclareOption{noasterisk}{\PackageWarningNoLine{mathastext}
 {option `noasterisk\string' is deprecated.``J\space\space\space
 Check the documentation}}
 \DeclareOption{asterisk}{\mst@asterisktrue}
\newif\ifmst@nospecials
 \DeclareOption{nospecials}{\mst@nospecialstrue}
\newif\ifmst@basic % 1.3 to avoid unnecessary patch of amsmath \newmcodes@
 \DeclareOption{basic}{\mst@basictrue
 \ExecuteOptions{noparenthesis,nopunctuation,%
 noplusnominus,noequal,noexclam,nospecials,nolessnomore}}
\newif\ifmst@nohbar
 \DeclareOption{nohbar}{\mst@nohbartrue}
```

```
\newif\ifmst@nodigits
 \DeclareOption{nodigits}{\mst@nodigitstrue}
\newif\ifmst@defaultimath
\DeclareOption{defaultimath}{\mst@defaultimathtrue}
\newif\ifmst@mathaccents
 \DeclareOption{mathaccents}{\mst@mathaccentstrue}
\newif\ifmst@unimathaccents % 1.3u
 \DeclareOption{unimathaccents}{\mst@mathaccentstrue\mst@unimathaccentstrue}
\newif\ifmst@needsymbol
\newif\ifmst@symboldelimiters
 \DeclareOption{symboldelimiters}{\mst@needsymboltrue\mst@symboldelimiterstrue}
\newif\ifmst@symboldigits
 \DeclareOption{symboldigits}{\mst@needsymboltrue\mst@symboldigitstrue}
\newif\ifmst@symbolgreek
\newif\ifmst@customgreek %% new with 1.3d
 \DeclareOption{symbolgreek}{\mst@needsymboltrue\mst@symbolgreektrue
 \mst@customgreektrue }
\newif\ifmst@symbolre
 \DeclareOption{symbolre}{\mst@needsymboltrue\mst@symbolretrue}
\newif\ifmst@symbolmisc
 \DeclareOption{symbolmisc}{\mst@needsymboltrue\mst@symbolmisctrue}
 \DeclareOption{symbol}{\ExecuteOptions{symbolgreek,symbolmisc,symbolre}}
 \DeclareOption{symbolmax}{\ExecuteOptions{symbol,symboldelimiters}}
\newif\ifmst@needeuler
\newif\ifmst@eulerdigits
 \DeclareOption{eulerdigits}{\mst@needeulertrue\mst@eulerdigitstrue}
\newif\ifmst@eulergreek
 \DeclareOption{eulergreek}{\mst@needeulertrue\mst@eulergreektrue
 \mst@customgreektrue }
\newif\ifmst@selfGreek
 \DeclareOption{selfGreek}{\mst@selfGreektrue\mst@customgreektrue}
\newif\ifmst@selfGreeks
 \DeclareOption{selfGreeks}{\mst@selfGreekstrue\mst@selfGreektrue
 \mst@customgreektrue }
\newif\ifmst@LGRgreek
 \DeclareOption{LGRgreek}{\mst@LGRgreektrue\mst@customgreektrue}
 \newif\ifmst@LGRgreeks
 \DeclareOption{LGRgreeks}{\mst@LGRgreekstrue\mst@LGRgreektrue
 \mst@customgreektrue}
\newif\ifmst@greekplus
 \DeclareOption{LGRgreek+}{\ExecuteOptions{LGRgreek}\mst@greekplustrue}
 \DeclareOption{LGRgreeks+}{\ExecuteOptions{LGRgreeks}\mst@greekplustrue}
\def\mst@greek@select{0}
\newif\ifmst@itgreek
\newif\ifmst@upgreek
 \DeclareOption{itgreek}{\mst@itgreektrue}
 \DeclareOption{upgreek}{\mst@upgreektrue}
 \DeclareOption{itGreek}{\def\mst@greek@select{1}}
 \DeclareOption{upGreek}{\def\mst@greek@select{2}}
```

Starting with 1.15 f the meaning of the 'defaultxx' options has changed. They now prevent mathastext from defining additional alphabets rather than prevent it from identifying the 'mathxx' with the new 'Mathxx'. The 'Mathnormal' and 'Mathrm' alphabet commands are always created as they are SymbolFontAlphabets.

This was again changed at $1.3 z \mathrm{za}$. The additional alphabets are always declared, the options only prevent mapping the existing 'mathxx' to the new 'Mathxx'. This may be breaking change if people used these options because they had a need for the \Mathbf etc... names.

```
154 \newif\ifmst@defaultnormal
155 \DeclareOption{defaultnormal}{\mst@defaultnormaltrue}
156 \newif\ifmst@defaultrm
157\DeclareOption{defaultrm}{\mst@defaultrmtrue}
158 \newif\ifmst@defaultbf
159\\DeclareOption{defaultbf}{\mst@defaultbftrue}
160 \newif\ifmst@defaultit
161 \DeclareOption{defaultit}{\mst@defaultittrue}
162 \newif\ifmst@defaultsf
163\\DeclareOption{defaultsf}{\mst@defaultsftrue}
164 \newif\ifmst@defaulttt
165 \DeclareOption{defaulttt}{\mst@defaulttttrue}
```

Here and elsewhere 1.3za has removed an \ifmst@nonormalbold conditional.

```
166 \DeclareOption{defaultalphabets}{\ExecuteOptions{defaultnormal,defaultrm,%
167 defaultbf,defaultit,defaultsf,defaulttt}}
```

mathastext considers the default script and especially scriptscript sizes to be far too small, and it will modify them. An option maintains the default.

```
68 \newif\ifmst@defaultsizes
169 \DeclareOption{defaultmathsizes}{\mst@defaultsizestrue}
170 \newif\ifmst@twelve
171 \DeclareOption{12pt}{\mst@twelvetrue}
172 \newif\ifmst@fouriervec
173\\DeclareOption{fouriervec}{\mst@fouriervectrue}
1.15: the subdued option.
174 \newif\ifmst@subdued
175\\DeclareOption{subdued}{\mst@subduedtrue}
```

1.3q: the unicode option. Thanks to Tobias Brink for suggesting its incorporation. The parsing of \CurrentOption does not seek any robustness, it just does its job if the option is used correctly.

```
76 \def \(\backslash m s t @ u n i c o d e m i n u s\) \{2013\}
```

77 \def\mst@checkoption \#1unicodeminus\#2\mst@\#3\mst@@
178 \{\ifx<br>\#3<br><br>PackageWarningNoLine\{mathastext\}
179 \{Unknown option `\CurrentOption\string'\}\else
$180 \backslash i f x \backslash \backslash \# 2 \backslash \backslash \backslash d e f \backslash m s t @ u n i c o d e m i n u s ~\{2212\} \backslash e l s e$
181 \expandafter $\backslash$ def $\backslash$ expandafter $\backslash m s t @ u n i c o d e m i n u s \backslash e x p a n d a f t e r\{\backslash @ s e c o n d o f t w o \# 2\} \%$
$182 \backslash$ fi\fi\}
183 \DeclareOption*\%
184 \{\expandafter\mst@checkoption\CurrentOption\mst@ unicodeminus\mst@\mst@@\}

185 \ProcessOptions $\backslash$ relax

I somehow missed realizing $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 if used together with amsmath made repeated usage of \DeclareMathAccent trigger an error: https://github.com/latex3/latex2e/issues/216.

This broke usage of \Mathastext macro in preamble.
1.3w works around this via \mst@DeclareMathAccent. And other changes were made in mathastext code to cope with these complications around robustness.

```
186 \def\mst@DeclareMathAccent#1{\let#1\mst@undefined
187 \expandafter
188 \let\csname\expandafter\@gobble\string#1\space\endcsname\mst@undefined
189 \DeclareMathAccent{#1}}
```

Helper macros to test math version names. User is not allowed to redefine via \Mathastext with optional argument or via \MTDeclareVersion the normal and bold math versions! Added at 1.3 w , about 7 years late.

190 \def\mst@normalversionname\{normal\}\%
191 \def \mst@boldversionname\{bold\}\%
\exists
\mst@exists@skip
\forall \mst@forall@skip \MTnormalexists \MTexistsdoesskip \MTnormalforall \MTforalldoesskip
1.15e 2012/10/21: math skip/glue after \exists and \forall, this is useful with upright letters in math mode. Each math version has its own user defined values for the skips, stored as macros. The redefinitions of $\exists$ and $\forall$ are done only at the end of the package as the symbol option will also want to redefine these math symbols.

The subdued option (later and only for the normal and bold math version) and the italic option (here) set to zero the package default skips. With 1.2 the skips can be modified on the fly in the document, they are not necessarily set in the preamble once and for all for each math version.
1.3 j adds \MTnormalexists, \MTexistsdoesskip, \MTnormalforall, \MTforalldoesskip.

Earlier to 1.3 j , \let\mst@exists@original\exists was done at End of Package, now it is done at Begin Document, and same for \forall. We pay attention that use of \MTnormalexists etc... inside the preamble does not create self-let's.

Also subdued mode will do \MTnormalexists, \MTnormalforall (earlier than 1.3 j , it only set the muskips to Omu.) Same when using \MTversion\{normal\}, if subdued.

For some (random, legacy) reason, the handling of $\exists$ and $\forall$ is part of the things not included inside \everymath/\everydisplay.
$1.3 v$ The mathastext-defined \exists and \forall are created \protected. We feel this matches better with their default definition as \mathchardef tokens than dealing with LATEX2e robust macros. Besides, the coding is simpler.

```
\newmuskip\mst@exists@muskip %% v 1.15e
\newmuskip\mst@forall@muskip
\def\mst@exists@skip{1mu}
\def\mst@forall@skip{.6667mu}
\ifmst@italic\ifmst@frenchmath\else
 \def\mst@exists@skip{0mu}
 \def\mst@forall@skip{0mu}
 \def\mst@prime@skip {0mu}
\i\fi
\protected\def\mst@exists{\mst@exists@original\mskip\mst@exists@muskip}
\protected\def\mst@forall{\mst@forall@original\mskip\mst@forall@muskip}
\AtBeginDocument{%
 \let\mst@exists@original\exists
 \let\mst@forall@original\forall
```

206
207
208
209
\def\MTnormalexists \{\let\exists\mst@exists@original \}\% \def $\backslash M T e x i s t s d o e s s k i p ~\{\backslash l e t \backslash e x i s t s \backslash m s t @ e x i s t s ~\} \% ~$ \def \MTnormalforall \{\let\forall\mst@forall@original \}\% \def \MTforalldoesskip \{\let\forall\mst@forall \}\%
The document body starts in the normal math version, whether or not \Mathastext command as been used in the preamble (which either re-defines the normal/bold math version or defines another one in case of optional argument), and in case of subdued option should use the standard $\forall$ and $\exists$.

```
210 \ifmst@subdued
211 \else
212 \MTexistsdoesskip
213 \MTforalldoesskip
214 \fi
215 }%
216 \newcommand*\MTnormalexists {\AtBeginDocument {\MTnormalexists }}
217 \newcommand*\MTexistsdoesskip {\AtBeginDocument {\MTexistsdoesskip }}
218 \newcommand*\MTnormalforall {\AtBeginDocument {\MTnormalforall }}
219\newcommand*\MTforalldoesskip {\AtBeginDocument {\MTforalldoesskip }}
```

$\backslash$ prime 1.2 2012/12/17: math skip/glue before the \prime glyph. This is useful with the default CM
\mst@prime@skip \active@math@prime
\MTnormalprime
\MTprimedoesskip glyph and upright letters (in contrast the prime from txfonts works fine with upright letters). For this we replace the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ kernel \active@math@prime with our own skip-enhanced version
\mst@active@math@prime.
1.2b 2012/12/31: doing
\{\catcode`\'=\active \global\let'\mst@active@math@prime\}
is awfully wrong when the right quote is made active at begin document by some other package (as happens with babel for some languages). So mathastext treats now the right quote with the same method as applied to the other characters it makes mathematically active. This uses the macro \mst@mathactivate which is defined later in the package.

Babel does \let\prim@s\bbl@prim@s when ' is made active via its services (the czech and slovak languages also store the initial version of \prim@s, else the quote would not work correctly when being again of catcode 12), and it doesn't matter if mathastext is loaded before or after this happens, as the \mst@mathactivate does its job only as part of the \everymath and \everydisplay token lists.
1.2 e being paranoid, we take precautions against a possibly catcode active right quote at the time of loading mathastext.
$1.3 i$ adds $\backslash M T a c t i v e p r i m e$.
 prime or \MTprimedoesskip.
220 \newmuskip\mst@prime@muskip $\% \%$ v 1.2
221 \def \mst@prime@skip\{.5mu\}
222 \ifmst@italic $\backslash$ ifmst@frenchmath $\backslash e l s e \backslash d e f \backslash m s t @ p r i m e @ s k i p\{0 m u\} \backslash f i \backslash f i$
223 \def \mst@active@math@prime\{\sp\bgroup\mskip\mst@prime@muskip\prim@s\}
224 \{\catcode ${ }^{-}$' $=12$
225 \gdef $\backslash$ mst@@modifyprime\{\mst@mathactivate' $\} \backslash$ mst@active@math@prime\}\}
226 \newcommand $* \backslash$ MTnormalprime $\{\backslash$ let $\backslash m s t @ m o d i f y p r i m e \backslash @ e m p t y ~\} ~$
227 \newcommand*\MTprimedoesskip \{\let\mst@modifyprime\mst@@modifyprime\}
228 \ifmst@subdued
229
$\backslash$ MTnormalprime

```
30 \else
231 \MTprimedoesskip
232 \fi
33 \AtBeginDocument{%
234 \everymath\expandafter
235 {\the\everymath
236 \everydisplay\expandafter
237 {\the\everydisplay \mst@modifyprime \MTnormalprime}%
238}
```

\MTexistsskip 1.15e: These user macros set up the amount of muglue after \exists or \forall. The normal $\backslash M T f o r a l l$ skip and bold math versions inherit the same skips; these skips are set to zero in case of the subdued, \MTprimeskip or the italic option. Each command \Mathastext [〈version_name $\rangle$ ] stores the current values in the definition of the math version.
1.2: \MTprimeskip added, the silly \@onlypreamble are removed and the macros are modified to have immediate effect in the document, independently of their possible use in the preamble for the math versions to store values.

Note (september 2013): the names were badly chosen; \MTsetprimeskipto for example would have been a better choice.

```
239 \newcommand*\MTexistsskip[1]{\edef\mst@exists@skip{#1}%
240 \mst@exists@muskip\mst@exists@skip\relax}
241 \newcommand*\MTforallskip[1]{\edef\mst@forall@skip{#1}%
242 \mst@forall@muskip\mst@forall@skip\relax}
243 \newcommand*\MTprimeskip[1]{\edef\mst@prime@skip{#1}%
244 \mst@prime@muskip\mst@prime@skip\relax}
245\let\Mathastextexistsskip\MTexistsskip
246 \let\Mathastextforallskip\MTforallskip
247 \let\Mathastextprimeskip\MTprimeskip
248 \let\mathastextexistsskip\MTexistsskip
249 \let\mathastextforallskip\MTforallskip
250 \let\mathastextprimeskip\MTprimeskip
```

\resetMathstrut@ 2012/12/31: The amsmath macro \resetMathstrut@ is not compatible with a mathematically active opening parenthesis: it does
\mathchardef \@tempa\mathcode`<br>(\relax
and is made a part of the hook \every@math@size inside \glb@settings. This is called from \check@mathfonts which is done in particular in \frozen@everymath, hence before (but wait) what mathastext puts in \everymath. Also, \glb@settings is triggered by \mathversion which must be done outside of math mode.

Alas, with things such as \$... $\operatorname{lhb}$ box\{...\$.. \$..\}... \$ mathastext will have already made the parenthesis (mathematically) active. And \boldsymbol from amsbsy disables the \@nomath switch and executes \mathversion\{bold\} directly in math mode. So we have a problem with \resetMathstrut@.
lualatex-math replaces \resetMathstrut@ with its own version (which also looks at )) and no error is signaled when mathastext has done \mathcode` (="8000, but the \Mathstrutbox@ created by mathastext is then wrong.

The replacement macro avoids a potentially math active (. It assumes that there is still some appropriate glyph in slot 40 of operators and it sets the height and depth of \Mathstrutbox@ to be large enough to accomodate both this glyph and the one from the mathastext font (both in the current math version). If option noparenthesis was used, we leave everything untouched.

In $1.3 \mathrm{a}, 2013 / 09 / 04$, the modification is done only at the time of $\backslash$ MTnonlettersobeymathxx. It is canceled by \MTnonlettersdonotobeymathxx. So the code has been moved to these macros and here we just store at the begin document the then meaning of \resetMathstrut@, and check also if \MTnonlettersobeymathxx has been invoked in the preamble.
$1.3 f 2015 / 09 / 12$ issues only an Info message not a Warning, as I am becoming aware from another context (etoc) that Warnings are stressful to users, in some integrated environments for editing and compiling $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ source files.

```
251 \ifmst@noparen\else
52 \AtBeginDocument{%
253 \@ifundefined{resetMathstrut@}{% nothing to do, no amsmath
254 }{% amsmath loaded, and possibly patched by things such as lualatex-math
255\\let\mst@savedresetMathstrut@\resetMathstrut@
256 \PackageInfo{mathastext}{current meaning of amsmath
 \string\resetMathstrut@\space saved}%
 \ifx\mst@the\the % means that \MTnonlettersobeymathxx was used in preamble
 \let\mst@the\@gobble\MTnonlettersobeymathxx
 \fi}}
261 \fi
```

1.2 2012/12/20 does some rather daring math activation of ; : ! ? + = < > ( ) [ ] in math mode to achieve something I wanted to do since a long time: overcome the mutually excluding relation between the variable-family concept and the automatic spacing concept. After loading mathastext, these characters now obey the math alphabets commands but still have the automatic spacing. The use as delimiters for those concerned is also ok.

The activation is done via setting the \mathcode to " 8000 through the macro \mst@mathactivate which in turn is put into the \everymath and \everydisplay token lists. No character is made active in the sense of the \catcode (the issues with catcode active characters at the entrance of the math mode are discussed later),
but the concerned characters will now expand in math mode to two tokens.
1.2c 2012/12/31: hence, this current implementation puts constraints on the input: $\$ x^{\wedge}$ ? $\$$ or $\$ x \backslash$ mathrel? $y \$$ now create errors. They must be input $\$ x^{\wedge}\{?\} \$$, respectively $\$ x \backslash$ mathrel\{?\}y $\$$. The disactivating macro \MTnonlettersdonotobeymathxx is made the default.
The mechanism is (even more) off by default for $\backslash\{$ and $\backslash\}$ as this is not compatible with their use as delimiters (\llbrace and \rbrace should be used instead) but it can be activated for them too.
\mst@mathactivate 1.2 b 2012/12/30: there were bad oversights in the 1.2 code for \mst@mathactivate related to the possibility for some characters to have been made active (in the sense of the catcode) elsewhere (something which often is done by language definition files of the babel system). The code from v1.2b tried to provide correct behavior using a prefix called \mst@fork (its definition and its use has since been modified) which let the active character expand to the mathastext re-definition only in math mode and only if \protect was \@typeset@protect. This indeed took care of situations such as $\$ \backslash$ hbox\{? $\} \$$ with an active ? or $\$ \backslash$ label $\{$ eq: 1$\} \$$ with an active : (assuming for the latter that things would have worked ok before the twiddling by mathastext).
1.2e 2013/01/09: alas $\$ \backslash$ ref $\{$ eq: 1$\} \$$ still was a problem. Indeed in that case the mathastext prefix had no means to know it was inside a \ref so it made the character expand to its mathastext redefinition, which is not acceptable inside a \csname...\endcsname. What happens with Babel is that it patches things such as \ref, \newlabel,... we can test the \if@safe@actives flag to detect it in that case, but this is Babel specific. After having thought
hard about this I see no general solution except patching all macros such as \ref．．．（in an im－ itation of what Babel does）．So the final decision is to not do anything when the character is catcode active except it it seems that Babel is behind the scenes．

Incidently，Babel and TikZ are buggy with characters which are mathcode actives．For example the combination of［french］\｛babel\} and mathtools with its centercolon turns $\$: \$$ into an infinite loop ！！

In the case of Babel the reason is that，generally（but not always，the right quote＇is an ex－ ception），the \normal＠char〈char〉 fall－back is \string〈char〉．But this is wrong if the mathcode is 32768 ！The fall－back becomes the default if the user switches to a language where 〈char〉 is ＇normal＇and then an infinite loop arises．

As a further example（I am not familiar with other languages from the Babel system）with frenchb the active ！？；：expand in math mode to \string！or ？or ；or ：．This creates an infinite loop if the mathcode is 32768.

For the special case of the right quote＇when it is made active by Babel，its fall－back does not invoke \string＇so being still of mathcode 32768 is not a problem．

I have posted online how Babel should possibly modify its definitions and I use this here．I simplify a bit my proposed replacement of \normal＠char〈char〉 as the check for $\backslash$ protect is superfluous，I think，having been done already at the level of the Babel prefix．

Replacing \user＠active〈char〉 is indeed not enough，and \normal＠char〈char〉 also must be changed，because when the user switches back to a language where the character is＇normal＇it remains catcode active．The crucial thing is the test of \if＠safe＠actives in the replacement of the \normal＠char $\langle$ char $\rangle$ ，besides of course the test for math mode in both replacements．

When the character is not catcode active，then mathastext uses the math activation method． As the mathcode is not looked at in \edef，\write or inside \csname．．．\endcsname nothing special needs to be done，I think，in terms of protection against premature expansion．（I did not know that initially）．

So，to recapitulate，mathastext will use the mechanism of the active mathcode if the char－ acter is not catcode active，and in the opposite case will do something only in the context of Babel，modifying directly its \user＠active〈char〉 and its \normal＠char〈char〉 macros and it does NOT then set the mathcode to $32768!!$ ，rather it makes sure the character is not math－ ematically active．

As 1.2 e is a bit paranoid it takes precautions against the possibility of characters it treats being active at the time of its loading．Excepted from the scope of the paranoia are the latin letters（that would be crazy！）and also $*$ ，＂and the left quote ${ }^{\text {．}}$
$1.2 f$ 2013／01／21 with earlier versions $\left(^{*}\right)$ it was important not to do twice the business of \mst＠mathactivate（think \＄hbox\｛\＄？\＄\}\$), so I used (this was a bit wasteful) some sort of boolean macro for each character．But now that there are the \mst＠the．．prefixes，let＇s just use them！（don＇t know why I did not think of that earlier；perhaps I had in mind some more general character per character customization initially，which I just dropped．）
$\left.{ }^{*}\right)$ it is still important to not do twice the thing when the character is active，in which case the babel macros are patched．

As an aside，$\$ \backslash$ hbox $\left\{\backslash\right.$ catcode ${ }^{`}$ ？$=$ \active $\left.\$ ? \$\right\}$ for an $?$ which was unactive at the first $\$$ will just make mathastext overwrite the definition（assumed here to have been done earlier）of an active ？，but the result is that the inner ？can not be used in \label or \ref．So testing for active characters should be done always．．．many things should be done always．．．I leave as is．

1．3i 2016／01／06 removes a spurious end of line space in \mst＠mathactivate（did not show as anyhow done in math mode）．
\mst＠do＠az \mst＠do＠AZ \mst＠addtodo＠az \mst＠addtodo＠AZ \mst＠the
$\backslash$ MTmathactiveletters $\backslash$ MTmathstandardletters
\MTnonlettersobeymathxx \MTnonlettersdonotobeymathxx \resetMathstrut®
letters a-z and A-Z to insert automatically the italic corrections. See the discussion in the user manual. Ironically I wrote the code initially for the italic option only to realize later it was more suitable to using an upright text font in math mode! So this mathematical activation of the letters is not done if the font shape is detected to be it or sl; to bypass this the command $\backslash$ MTicinmath is provided.
$1.2 \mathrm{e} 2013 / 01 / 10$ corrects a bad oversight of 1.2 b in \mst@mathactivate which made the reproduction of the user manual illustrations with $\$ f_{\text {_ }} i^{\wedge} i \$$ impossible. As \mst@mathactivate was originally used also to get the non-letters obey math alphabet while maintaining the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ spacings, it added no extra braces. The braces should however be added for expansion of math active letters, in order of things like $x^{\wedge} y$ to work as expected. (the group braces do not prevent ligatures when the letters are arguments to the math alphabet commands, the added macros \mst@itcorr and \mst@before<letter> expanding to nothing).

Added note 2016/01/06: it should be explicitly said that the extra \{ . .\} in \mst@mathactivate for letters end up creating \hbox'es around each letter with its extra skips and explicit italic correction, when present. These skips are thus set at natural width and do not add any break point.
1.3 2013/09/02 extends the use of mathematically active letters to allow the user to specify muglue before and after the letter itself (see \MTsetmathskips, below). Mathematically active letters were previously used only to add the italic correction; the math activation has now been separated and put in \MTmathactiveletters. There is also \MTmathactiveLetters to allow math activation only for the uppercase letters. To cancel the (now default, even with option italic) math activation of letters, there is \MTmathstandardletters. Version 1.3a removes some silly \string's from the code, which prevented to pass macros as first argument to the command.

These macros are modified in version 1.3a 2013/09/04 in order to cleverly adjust, or not, the amsmath \resetMathstrut@. When used in the preamble, they just modify \mst@the. And there is code at begin document to check the status there of \mst@the and if its meaning is \the, then \MTnonlettersobeymathxx is activated again to do the patch. When used in the body they adjust \resetMathstrut@.

Notice that the saved meaning is the one at begin document (thus, possibly patched by lualatex-math - not anymore since 1.5 of March 2016, as amsmath. sty now maintained by LaTeX team has modified \resetMathStrut@ to make it compatible to Unicode engines) but modifications done after that would not be seen in \mst@savedresetMathstrut@.

The new version of \resetMathStrut@ from LaTeX team release 2016/03/03 v2.15a of amsmath.sty is still not compatible with a math active opening parenthesis. Hence my patch here is still needed.

At $1.3 \mathrm{u} \backslash M T n o n l e t t e r s o b e y m a t h x x$ and $\backslash M T e a s y n o n l e t t e r s o b e y m a t h x x ~ a r e ~ m a d e ~ n o-o p s ~$ under subdued mode. This fixes some bug if for example the former was used in preamble or immediately after \begin\{document\} making the minus sign math active although the mathastext } action was supposedly subdued. Similarly \MTmathactiveletters is now a no-op if issued under subdued mode in the normal or bold math versions.

```
262 \newtoks\mst@do@nonletters
263 \newtoks\mst@do@easynonletters
264 \newtoks\mst@do@az
265\newtoks\mst@do@AZ
266 \let\mst@the\@gobble
267 \newcommand*\MTnonlettersdonotobeymathxx{%
```

```
 \ifx\mst@the\@gobble
 \else
 \@ifundefined{mst@savedresetMathstrut@}{}{%
 \PackageInfo{mathastext}{restoring (for this group or environment) ams-
 math \string\resetMathstrut@}%
 \let\resetMathstrut@\mst@savedresetMathstrut@}%
 \fi
 \let\mst@the\@gobble
 }%
```

    \(1.3 u\) adds this check that we are not in a subdued normal or bold math version. No need for
    expandable coding.
    76 \def \mst@OnlyIfNotSubdued\#1 \(5 \%\)
    277 \ifmst@subdued
278 \ifx\math@version\mst@normalversionname
279 \else
\ifx\math@version\mst@boldversionname
\else
\#1\%
$\backslash f i$
\fi
\else
\#1\%
\fi
3\%
\def $\backslash m s t @ n o n l e t t e r s o b e y m a t h x x\{\%$
\ifx\mst@the\the
\else
\@ifundefined\{mst@savedresetMathstrut@\}\{\}\{\%
\ifmst@symboldelimiters
\def \resetMathstrut@\{\%
\setbox\z@\hbox\{\the\textfont\symmtpsymbol\char40
\the \textfont $\backslash$ symmtoperatorfont $\backslash$ char 40
\the\textfont\symoperators\char40\}\%
\ht $\backslash$ Mathstrutbox@\ht $\backslash z @ \backslash d p \backslash M a t h s t r u t b o x @ \backslash d p \backslash z @\} \%$
\else
\def $\backslash$ resetMathstrut@\{\%
\setbox\z@\hbox\{\the\textfont\symmtoperatorfont $\backslash$ char40
\the \textfont $\backslash$ symoperators $\backslash$ char 40$\} \%$
\ht $\backslash$ Mathstrutbox@\ht $\backslash z @ \backslash d p \backslash$ Mathstrutbox@ $\backslash d p \backslash z @\} \%$
\fi
\PackageInfo\{mathastext\}\{\string\resetMathstrut@\space
from amsmath replaced (for this group or environment) \}\}\%
\fi
\let $\backslash m s t @ t h e \backslash t h e$
\}\%
310 \newcommand* $\backslash$ MTnonlettersobeymathxx
311 \{\mst@OnlyIfNotSubdued\mst@nonlettersobeymathxx\}\%
312 \newcommand*\MTeasynonlettersdonotobeymathxx\{\let\mst@theeasy\@gobble\}\%
$313 \backslash$ def $\backslash m s t @ e a s y n o n l e t t e r s o b e y m a t h x x\{\backslash l e t \backslash m s t @ t h e e a s y \backslash t h e\} \%$

```
314 \newcommand*\MTeasynonlettersobeymathxx
315 {\mst@OnlyIfNotSubdued\mst@easynonlettersobeymathxx}%
316\MTeasynonlettersobeymathxx % no-op here if subdued mode
317\def\mst@mathactiveletters{\let\mst@thef\the \let\mst@theF\the}%
18 \newcommand*\MTmathactiveletters
319 {\mst@OnlyIfNotSubdued\mst@mathactiveletters}%
20 \MTmathactiveletters % no-op here if subdued mode
\def\mst@mathactiveLetters{\let\mst@theF\the}%
\newcommand*\MTmathactiveLetters
{\mst@OnlyIfNotSubdued\mst@mathactiveLetters}%
324 \newcommand*\MTmathstandardletters{\let\mst@thef\@gobble \let\mst@theF\@gobble}%
```

\MTicinmath \MTICinmath
\MTnoicinmath \MTicalsoinmathxx
\MTnoicinmath can also be used from inside math mode.
$\backslash$ MTicalsoinmathxx is destined to be used inside \mathnormalbold as I didn't want to add the complication of extracting the family number used inside \mathnormalbold (will perhaps come back if I have time to spend on source2e). Added note 2016/01/06: this number is a priori simply symmtletterfont+1.
$\backslash$ MTicinmath can also be used inside math mode, to revert an earlier \MTnoicinmath from inside the same math group: the math mode had to be entered with the math activation of letters allowed.
1.3i 2016/01/06: For some reason which I have now forgotten I did until now:

```
% \def\mst@itcorr{\ifnum\fam=\m@ne\/\else\ifnum\fam=\symmtletterfont\/\fi\fi}%
%
```

hence italic corrections were also applied inside \mathnormal (for upright fonts; \mathnormalbold math alphabet was not treated like \mathnormal). I now drop this to be more in sync with the handling of the extra skips around letters. Everything gets suppressed inside all math alphabets, allowing ligatures, even for \mathnormal.

```
\newcommand*\MTicinmath{%
 \MTmathactiveletters
 \def\mst@itcorr{\ifnum\fam=\m@ne\/\fi}%
 \let\mst@ITcorr\mst@itcorr}
\newcommand*\MTICinmath{%
 \MTmathactiveLetters
 \def\mst@ITcorr{\ifnum\fam=\m@ne\/\fi}}
\newcommand*\MTnoicinmath{\let\mst@itcorr\@empty\let\mst@ITcorr\@empty}
\newcommand*\MTnoICinmath{\let\mst@ITcorr\@empty}
\newcommand*\MTicalsoinmathxx{%
 \ifx\mst@itcorr\@empty\else\def\mst@itcorr{\/}\fi
 \ifx\mst@ITcorr\@empty\else\def\mst@ITcorr{\/}\fi}
```

\MTsetmathskips \MTunsetmathskips
1.3 2013/09/02: user level command to specify extra spaces in math mode around the letters (only the 7 bit $\mathrm{a}, \mathrm{b}, . ., \mathrm{z}$ and $\mathrm{A}, \mathrm{B}, . ., \mathrm{Z}$ ). First parameter is the letter, second is the math skip to be inserted before, and third the skip to be inserted after; for example \thickmuskip or explicitly 0.1 mu .

For this, letters are made mathematically active. This is now the package default (version 1.2 did this only in the absence of option italic, or more precisely when the font used was not of shape it or sl). But if \MTsetmathskips has not been used for that letter, the only effect of the math activation is, as in 1.2 , to add the italic correction automatically, except when the
font shape is detected to be it or sl; in these latter cases, although mathematically active, the letter acts in the standard way.

The command \MTmathstandardletters turns off math activation and its effects for all letters.
Ligatures within the argument of a math alphabet command are impeached by skips; so \MTunsetmathskips is provided to cancel the skips for one specific letter ( $f$ for example).
1.3a 2013/09/04: I strangely had \string\#1 inside \MTsetmathskips. Phobic of catcode active letters... but with \string one needs some \expandafter to use \MTsetmathskips in an \@for loop for example. It is better to allow the first argument to be a macro or anything expanding to a letter, and to not be paranoid about improbable catcode active letters (the user just has to tame them at the time of the \MTsetmathskip) so I take out these \string's.
1.3i 2016/01/06: the extra skips are suppressed for the arguments of math alphabet commands. This applies in particular for amsmath's \DeclareMathOperator.

```
337 \newcommand*\MTsetmathskips [3] {%
338\\@namedef{mst@before#1}{\ifnum\fam=\m@ne\mskip#2\relax\fi }%
339 \@namedef{mst@after#1}{\ifnum\fam=\m@ne\mskip#3\relax\fi }%
340 }
341 \newcommand*\MTunsetmathskips[1] {%
 \@namedef {mst@before#1}{}%
 \@namedef{mst@after#1}{}%
344 }
```

\mst@mathactivate laddtodo@nonletters odo@easynonletters
\mst@addtodo@az
\mst@addtodo@AZ

Added note 2016/01/06: Notice that the initially \relax tokens \mst@[before|after]@<letter> formed with \csname. . \endcsname do not modify TeX's math layout: \{\relax f\relax\} is like f (also for ligatures inside \mathrm for example).
345 \def \mst@magic@v \#1\#2\#3\#4\#5\{\#1\#3\#4\}
346 \def \mst@magic@vi \#1\#2\#3\#4\#5\#6\{\#1\#2\#4\#5\}
347 \def \mst@fork\{\ifmmode\mst@magic@v\fi\@thirdofthree\}
348 \def \mst@safefork\{\ifmmode\if@safe@actives\else\mst@magic@vi\fi\fi\@thirdofthree\}
349 \def $\backslash$ mst@do@activecase\#1\#2\#3\{\% \#1 is a category 11 or 12 character token
350 \@ifundefined\{active@char\#1\}\{\}\{\%
\ifcat \#1a\mathcode`\#1=\#2\else \ifx\relax \#2\relax\mathcode`\#1=`\#1 \else\mathcode`\#1=\#3\fi\fi
\expandafter\expandafter\expandafter\let\expandafter\expandafter
\csname mst@orig@user@active\#1\endcsname
\csname user@active\#1\endcsname
\expandafter\expandafter\expandafter\let\expandafter\expandafter
\csname mst@orig@normal@char\#1\endcsname
\csname normal@char\#1\endcsname
\ifcat \#1a\%
\expandafter\edef \csname user@active\#1 \endcsname \{\noexpand\mst@fork \{\{\#2\noexpand\#3\}\}\{\}\expandafter \noexpand\csname mst@orig@user@active\#1\endcsname \}\%
\expandafter\edef\csname normal@char\#1\endcsname $\{\backslash$ noexpand $\backslash$ mst@safefork $\{\{\# 2 \backslash$ noexpand\#3\}\}\{\}\expandafter \noexpand\csname mst@orig@normal@char\#1\endcsname \}\%
\else
\expandafter\edef \csname user@active\#1 \endcsname
\mst@newmcodes@ \MTresetnewmcodes customizenewmcodes
401 \def \mst@addtodo@nonletters\#1\#2\#3\{\%
$402 \%$ \#1 will be of cat 11 or 12.
$403 \%$ \#2 is empty for asterisk and right quote
404 \mst@do@nonletters $\backslash$ expandafter
405 \{\the\mst@do@nonletters \mst@mathactivate\#1\{\#2\}\#3\}\%
$406\}$
407 \def\mst@addtodo@easynonletters\#1\#2\{\% \#1 is a one char control sequence
408 \mst@do@easynonletters $\backslash$ expandafter\{\the\mst@do@easynonletters $\backslash$ mathcode`\#1=\#2\}\% 409 \} 410 \def \mst@addtodo@az\#1\#2\{\% 411 \mst@do@az\expandafter\{\the\mst@do@az\mst@mathactivate\#1\#2\mst@itcorr\} \(412\}\) 413 \def \mst@addtodo@AZ\#1\#2\{\% \(414 \backslash\) \mst@do@AZ\expandafter\{\the\mst@do@AZ\mst@mathactivate\#1\#2\mst@ITcorr\}\% 415 \} \newmcodes@ 1.15d: the \newmcodes@ amsmath macro causes an error in Unicode engines as soon someone \(\{\backslash\) noexpand \(\backslash m s t @ f o r k\{\# 2\} \backslash\) noexpand\#3\expandafter \noexpand \(\backslash c s n a m e ~ m s t @ o r i g @ u s e r @ a c t i v e \# 1 \backslash e n d c s n a m e ~\) \}\% \expandafter\edef \csname normal@char\#1 \endcsname \(\{\backslash\) noexpand \(\backslash m s t @ s a f e f o r k\{\# 2\} \backslash n o e x p a n d \# 3 \backslash e x p a n d a f t e r ~\) \noexpand\csname mst@orig@normal@char\#1\endcsname 3\% \fi\}\} begingroup \catcode`<br>~=\active
\def $\backslash x\{\backslash$ endgroup
\def\mst@mathactivate\#\#1\#\#2\#\#3\{\% \#\#1 guaranteed of cat 11 or 12
\begingroup
\lccode`~=`\#1
\lccode`\#\#1=`\#\#1
\lowercase\{\endgroup
\ifnum\catcode`\#\#1=\active \mst@do@activecase \#\#1\{\#\#2\}\#\#3\% \(\%\) careful as \#\#2 is empty in the asterisk and \% prime case! \else \mathcode`\#\#1="8000
$\%$ version 1.3 adds the possibility of extra skips around letters,
$\%$ (only if non catcode active at the time of use).
\ifcat\#\#1a\edef~\{\% extra braces for $\mathrm{a}^{\wedge} \mathrm{b}$ for example
$\{\backslash$ expandafter $\backslash$ noexpand \csname mst@before\#\#1\endcsname
\#\#2\noexpand\#\#3\%
\expandafter\noexpand\csname mst@after\#\#1\endcsname\}\}\%
\else\def~\{\#\#2\#\#3\}\fi
\fi\}\}\}
401 \def\mst@addtodo@nonletters\#1\#2\#3\{\%
$402 \%$ \#1 will be of cat 11 or 12.
$403 \%$ \#2 is empty for asterisk and right quote
404 \mst@do@nonletters $\backslash$ expandafter
405 \{\the\mst@do@nonletters \mst@mathactivate\#1\{\#2\}\#3\}\%
$406\}$
407 \def \mst@addtodo@easynonletters\#1\#2\{\% \#1 is a one char control sequence
408 \mst@do@easynonletters \expandafter\{\the\mst@do@easynonletters $\backslash$ mathcode`\#1=\#2\}\%
$409\}$
410 \def \mst@addtodo@az\#1\#2\{\%
411 \mst@do@az\expandafter\{\the\mst@do@az\mst@mathactivate\#1\#2\mst@itcorr\}
$412\}$
413 \def \mst@addtodo@AZ\#1\#2\{\%
414 \mst@do@AZ\expandafter\{\the\mst@do@AZ\mst@mathactivate\#1\#2\mst@ITcorr\}\% 415 \} assigns a Unicode mathcode to the minus sign, and then makes a \DeclareMathOperator decla-
ration. Furthermore it hard-codes the font family 0 as being the one to be used. Moreover just putting the concerned signs,$-:, ., \backslash, ', *$ inside braces emulates enough the behavior (although the tick will give a prime).
1.3: now tests if 'basic' option was used.
1.3d: I should re-examine the situation with \newmcodes@. In the meantime its relaxification will not be done if lualatex-math is loaded. And the whole thing is put at begin document.
1.3 m : lualatex-math 1.5 n'a pas modifié son traitement de \newmcodes@ mais par contre a supprimé le patch de \resetMathstrut@. Mais la date de release est restée à 2015/09/22 (date de 1.4 a ) au lieu de quelque chose comme 2016/03/13 (date pour l'annonce sur CTAN). Il faudra suivre l'évolution future de amsmath.sty maintenant assurée par D.C.
1.3n 2016/04/22: there is no more a patch of \newmcodes@ by lualatex-math 1.6 (2016/04/16), as amsmath 2016/03/10 v2.15b has now a version compatible with LuaLATEX.

My very radical \let $\backslash$ newmcodes $\backslash$ \relax was only a temporary measure I adopted for lack of time on October 13, 2012, and apart from avoiding to do that in case lualatex-math was detected, I never came back... finally I handle it myself for 1.3 n . The remaining problem of this macro (now that it does not anymore crash lualatex or vice versa) is that (also with amsmath version 2016/03/10 v2.15b) it hardcodes the font used. The aim of the macro is to modify the type of spacing affected to symbols ${ }^{\prime}, *, .,-, /,:$, in case they are used in operator names.

- As I don't want to monopolize a count register only for computations, let's just be mean if $\varepsilon-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ not there.
- mathastext makes (or not, depending on commands issued by the user) these characters math active (the right tick already is), which complicates recovery of former mathcode. We have mathchar type macros, but then the complication is in diverging behaviours of the engines: \numexpr\mst@varfam@minus $\backslash$ relax works with LuaTEX, not with $\mathrm{X}_{\mathrm{G}} \mathrm{T}_{\mathrm{E}} \mathrm{C}$.
- the $*$ must presumably really be the non-lowered text glyph.
- for the - I hesitated but do use the hyphen in the end.
- seems I simply don't understand what the amsmath code does with \std@minus. It is used in \relbar and it escapes me why \newmcodes@ would ever want to redefine it, and more importantly why on earth it tests the mathcode of - for that? yes, \std@minus is defined (at begin document) using the mathcode of -, but what's the connexion to \newmcodes@ ?? Any way mathastext defines \relbar with \mst@minus@sign. Thus I just drop this conditional.
- things are complicated by the options such as nominus, noparenthesis.
- the \newmcodes@ macro is anyhow assuming that if a new math font is used it occupies math groups 0 and 1 !! very bad; fixing it in passing if the character has not been handled by mathastext could be envisioned, but that's not mathastext's job.
- years go by, and I remain as baffled as ever about the story of "more than 16 math families". I will not test again, but I am pretty sure that \DeclareMathSymbol does not work with more than 16 families, thus when I try to be a good boy and use \Umathcode syntax with symmtoperatorfont I am perhaps doing unnecessary efforts.
- I noticed that Lua ${ }^{A} T_{E} \mathrm{X}$ does not apply the "TeX Ligature" (bad name) regarding the right tick APOSTROPHE being transformed into RIGHT SINGLE QUOTATION MARK in math mode, but $\mathrm{X}_{\mathrm{H}}{ }^{\mathrm{A}} \mathrm{TEX}_{\mathrm{E}}$ does. From the point of view of mathastext, the behaviour of $\mathrm{X}_{\mathrm{H}} \mathrm{AT}_{\mathrm{E}} \mathrm{X}$ is the coherent one. It appears that LuaLATEX use in math mode of a text font does not obey the set features.I opened a ticket at https://github.com/wspr/fontspec/
issues/238, but as usual it is hard to figure out the best place where to report font matters. This item might be obsolete - not checked (1.3q).
- Some hesitation about what to do under option symboldelimiters. I temporarily used \symmtpsymbol, except for the right quote and for the hyphen, but finally I drop that and use \symmtoperatorfont always. (after testing how it looked like).

All in all this is a great deal of trouble and I understand I postponed back in 2012! I spent some hours on this small thing, with consequent testing and for example this TeX Ligature issue with
Unicode engines.
Since 1.3 v we require e- $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ extensions, so a test for \numexpr has been dropped here.

```
16 \ifmst@basic
```

417 \else
418 \ifmst@XeOrLua
$419 \backslash$ AtBeginDocument $\{\%$
420 \ifx\newmcodes@\@undefined $\backslash e l$ se
421 \edef $\backslash m s t @ n e w m c o d e s @\{\%$
422 \mst@Umathcode '\noexpand\' 0 \symmtoperatorfont 39\relax
423 \ifmst@asterisk
$424 \backslash$ \mst@Umathcode `\noexpand\* 0 \symmtoperatorfont \(42 \backslash\) relax 425 \else\mathcode`\noexpand\* 42
426 \fi
427 \ifmst@nopunct\mathcode `\noexpand\."613A \mathcode `\noexpand\: "603A
428 \else
429 \mst@Umathcode `\noexpand \. 6 \symmtoperatorfont \(46 \backslash\) relax \(430 \backslash\) \mst@Umathcode `\noexpand \: 6 \symmtoperatorfont 58\relax
431 \fi
432 \ifmst@nominus $\backslash$ mathcode`\noexpand\-45 433 \else \(434 \backslash\) \mst@Umathcode `\noexpand\- 0 \symmtoperatorfont $45 \backslash$ relax
435 \fi
436 \ifmst@noparen\mathcode `\noexpand\/ 47 437 \else 438 \mst@Umathcode `\noexpand \/ 0 \symmtoperatorfont 47\relax
439 \fi
440 \}\%
441 \let\mst@originalnewmcodes@\newmcodes@
442 \fi
443 \}\% end of AtBeginDocument
444 \else
445 \AtBeginDocument \{\%
446 \ifx\newmcodes@\@undefined $\backslash e l$ se
447 \edef $\backslash m s t @ n e w m c o d e s @\{\%$
448 \mathcode`\noexpand\' \the\numexpr\symmtoperatorfont*\@cclvi+39\relax 449 \mathcode`\noexpand \*
450 \the\numexpr\ifmst@asterisk\symmtoperatorfont*\@cclvi\fi+42\relax
451 \ifmst@nopunct\mathcode `\noexpand\."613A \mathcode `\noexpand\: "603A
452 \else
453 \mathcode`\noexpand \. \the\numexpr\mst@varfam@dot-"1000\relax \(454 \backslash\) mathcode`\noexpand $\backslash$ : \the\numexpr\mst@varfam@colon-"1000\relax

```
4 5 5
 \i
 \mathcode`\noexpand\-
 \the\numexpr\unless\ifmst@nominus\symmtoperatorfont*\@cclvi\fi+45\relax
 \mathcode`\noexpand\/
 \the\numexpr\unless\ifmst@noparen\symmtoperatorfont*\@cclvi\fi+47\relax\relax
 }%
 \let\mst@originalnewmcodes@\newmcodes@
 \i
 }% end of second AtBeginDocument
 \fi % mst@XeOrLua
 65 \fi % mst@basic
 466 \newcommand*\MTresetnewmcodes{\ifx\mst@originalnewmcodes@\undefined\else
 4 6 7 ~ \ l e t \ n e w m c o d e s @ \ m s t @ o r i g i n a l n e w m c o d e s @ \ f i \}
 468\newcommand*\MTcustomizenewmcodes{\ifx\mst@originalnewmcodes@\undefined\else
 4 6 9
 \let\newmcodes@\mst@newmcodes@\fi}
```

mtoperatorfont Declaration of the current default font as our math font. The characteristics of the used font can be changed by a user call to the macros \Mathastext or \Mathastextwilluse, which will be defined next. We will also make one internal call to \Mathastext to set up the normal and bold math versions, so we will also employ \SetSymbolFont later.
$470 \backslash$ DeclareSymbolFont \{mtoperatorfont\}\{\mst@enc\}\{\mst@fam\}\{\mst@ser\}\{\mst@opsh\}
\operator@font We modify this $\mathrm{AAT}_{\mathrm{E}}$ internal variable in order for the predefined \cos, \sin, etc... to be typeset with the mathastext font. This will also work for things declared through the amsmath package command \DeclareMathOperator. The alternative would have been to redefine the 'operators' Math Symbol Font. Obviously people who expect that \operator@font will always refer to the 'operators' math font might be in for a surprise... well, we'll see.

## \MTmathoperators- <br> obeymathxx

\MTmathoperators-
donot-
obeymathxx
1.2: rather than just replacing \symoperators by \symmtoperatorfont I add a modification which makes the declared operator names sensitive to the math alphabets... ouh le vilain!
471 \newcommand*\{\MTmathoperatorsobeymathxx\}
$472\{\backslash d e f \backslash o p e r a t o r @ f o n t\{\backslash m a t h g r o u p \backslash i f n u m \backslash f a m=\backslash m @ n e \backslash s y m m t o p e r a t o r f o n t \backslash e l s e \backslash f a m \backslash f i\}\}$
473 \newcommand*\{\MTmathoperatorsdonotobeymathxx\}
474 \{\def \operator@font\{\mathgroup\symmtoperatorfont\}\}
475 \MTmathoperatorsobeymathxx
mtletterfont At version 1.1, we add the possibility to mimick the standard behavior, that is to have italic letters and upright digits. Thanks to Tariq Perwez and Kevin Klement who asked for such a feature.
476 \DeclareSymbolFont\{mtletterfont\}\{\mst@enc\}\{\mst@fam\}\{\mst@ser\}\{\mst@ltsh\}
\MTfixmathfonts There is a long-standing issue https://github.com/lualatex/luaotfload/issues/204 on LualATEX not applying OpenType features in math mode (this impacts \url macro too, as it uses math mode.) LuaT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ has two modes for handling of OpenType fonts, the default in text being to use the node mode, and this mode is non-working in math, thus mathastext needs to force use of base mode. Else one sees old style figures where one does not expect them, or the opposite, depending on the default font feature.

Once we know the cause, the fix is relatively easy. I will go for the \everymath way, because I don't want to dwelve at all with the details of IATEX's handling of math fonts, of size changes, of
math versions etc... perhaps in the future $\mathrm{IAT}_{\mathrm{E}}$ will fix the issue upstream by modifying $\backslash \mathrm{De}$ clareSymbolFont under LuaLATEX + luaotfload regime, then the present patch by mathastext will be unneeded. Naturally, here we care only about the two maths fonts used by mathastext: mtoperatorfont and mtletterfont.

For the \url situation, I have posted online a patch.
Not all is resolved, as I comment online at https://github.com/lualatex/luaotfload/ issues/204\#issuecomment-216465680 that with TeX Gyre Termes for example I can not get simultaneously Old Style and Tabular Figures to work in math mode, although the font name as constructed by my patch (which is like the code below, only simpler as we only have to consider \textfont0) is the correct one. Similarly with Vollkorn: I can then not get the two features lnum and tnum to work simultaneously when specified with mode=base. It does work with mode=node but this mode "does not work in math mode."

Done for 1.30 of 2016/05/03.
1.3 p renames the macro to \MTfixmathfonts for public access.

77 \begingroup
478 \catcode`N 12 479 \catcode`0 12
480 \catcode`D 12 481 \catcode`E 12
482 \lowercase\{\gdef \mst@fixmathfonts@ \#1=NODE; \#2\#3\relax \#4\@empty \#5\}\%
483 \{\ifx\#2\empty\else\font\mst@mathfont=\#1=base; \#2\#3\relax\#5=\mst@mathfont\fi\}
484 \lowercase\{\gdef \MTfixmathfonts
485 \{\expandafter $\backslash m s t @ f i x m a t h f o n t s @$
486 \fontname\textfont\symmtoperatorfont\relax\relax=NODE; \empty $\backslash$ relax $\$ @empty
487 \{\textfont\symmtoperatorfont\}\%
488 \expandafter\mst@fixmathfonts@
489 \fontname\scriptfont\symmtoperatorfont\relax\relax=NODE; \empty\relax\@empty \{\scriptfont\symmtoperatorfont\}\%
\expandafter\mst@fixmathfonts@
\fontname\scriptscriptfont\symmtoperatorfont\relax\relax=NODE; \empty\relax\@empty
\{\scriptscriptfont\symmtoperatorfont\}\%
\expandafter\mst@fixmathfonts@
\fontname\textfont\symmtletterfont\relax\relax=NODE; \empty\relax\@empty
\{\textfont\symmtletterfont\}\%
\expandafter\mst@fixmathfonts@
\fontname\scriptfont\symmtletterfont\relax\relax=NODE; \empty\relax\@empty
\{\scriptfont\symmtletterfont\}\%
\expandafter\mst@fixmathfonts@
\fontname\scriptscriptfont \symmtletterfont\relax\relax=NODE; \empty\relax\@empty \{\scriptscriptfont\symmtletterfont\}\% \}\%
504 \}\%
505 \endgroup
506 \ifmst@LuaTeX
507 \everymath\expandafter\{\the\everymath\mst@fixmathfonts\}\%
508 \everydisplay\expandafter\{\the\everydisplay\mst@fixmathfonts\}\%
509 \fi
510 \newcommand*\MTfixfonts\{\let\mst@fixmathfonts $\backslash$ MTfixmathfonts\}\%
511 \newcommand*\MTdonotfixfonts\{\let\mst@fixmathfonts\empty\}\%

## 512 \MTfixfonts

\Mathnormal
\Mathrm \Mathbf \Mathit \Mathsf \Mathtt \Mathnormalbold

We redefine the default normal, rm, bf, it, sf, and tt alphabets, but this will be done via \{\Mathrm\} etc... (not anymore, see comment below).

We follow the standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ behavior for \mathbf, which is to pick up the bold series of the roman font (digits and operator names).

We will access (if no option is passed for Greek) the \omicron via \mathnormal. But unfortunately the fourier package with the upright option does not have an upright omicron obtainable by simply typing \mathnormal\{o\}. So if fourier is loaded we use \mathrm and not \mathnormal.

Actually math alphabet macros are created robust since $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ from 2005, so at 1.3v 2019/09/19 I decided to modify the old mathastext approach a bit. Indeed with the old approach a \mathtt in a moving argument translates ultimately into \Mathtt but if for example the new context where it gets expanded is a subdued normal math version, this does not give the same as \mathtt would have given there. This was a bug: imagine $\backslash$ section $\{\$ \backslash \operatorname{math} t t\{\mathrm{X}\} \$\}$ issued in a math version, but the TOC is done in subdued normal version; the output in TOC will often differ (fontsize being put aside) both from out it looked at the section title and from what direct usage of $\backslash$ mathtt in the TOC would have given. I have no strong preference between the two possibilities (to be as in section title, or to be as if \mathtt gets executed in TOC and obeys its local regime), but it is a bug if the result is still a third one. Thus I decided to follow $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ and that $\backslash$ mathtt had to remain \mathtt when moving.

But a math alphabet command such as \Mathtt redefines its unprotected meaning on first use as well as the one of the math version macro, hence a \letrobustmacro\mathtt $\backslash$ Mathtt of sorts is no good at all. I thus opted to not hack into the math $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ font support across math versions and to simply use \protected $\backslash$ def in place of obeying strictly $\mathrm{LT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ robustness (except of course in the subdued math versions as there the math alphabets acquire back their original robust meanings.)

Potential breaking change at $1.3 z a$, the defaultbf etc... options do not prevent the package declaring \Mathbf etc... commands.
$1.3 z a$ defines a \Mathnormalbold and then defines \mathnormalbold in terms of it in place of defining directly \mathnormalbold as a math alphabet. This is in relation to implementation of the LGRgreek+ option. There was some hesitation though to restrict this change to that option only or not.

```
513 \let\mst@alph@omicron\mathnormal
515 \DeclareSymbolFontAlphabet{\Mathnormal}{mtletterfont}
516 \DeclareSymbolFontAlphabet{\Mathrm}{mtoperatorfont}
5 1 7
518 \protected\def\mathnormalbold{\Mathnormalbold} nal» macros are sort of superfluous but well it works.
523 \let \(\backslash\) mst@original@normal\mathnormal
524 \let \(\backslash m s t @ o r i g i n a l @ r m \backslash m a t h r m\)
525 \let \(\backslash m s t @ o r i g i n a l @ b f \backslash m a t h b f\)
526 \let\mst@original@it\mathit
```

514 \@ifpackageloaded\{fourier\}\{\ifsloped\else\let\mst@alph@omicron\mathrm\fi\}\{\}
519 \DeclareMathAlphabet $\{\backslash$ Mathbf\} $\{\backslash$ mst@enc\} $\{\backslash m s t @ f a m\}\{\backslash m s t @ b o l d\}\{\backslash m s t @ o p s h\}$
$520 \backslash$ DeclareMathAlphabet $\{\backslash$ Mathit $\}\{\backslash$ mst@enc $\}\{\backslash$ mst@fam\}\{\mst@ser\}\{\itdefault\}
521 \DeclareMathAlphabet\{\Mathsf\}\{\mst@enc\}\{\sfdefault\}\{\mst@ser\}\{\mst@opsh\}
522 \DeclareMathAlphabet\{\Mathtt\}\{\mst@enc\}\{\ttdefault\}\{\mst@ser\}\{\mst@opsh\}

The \mathxx macros being $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ robust, or course the meanings here are known, and «origi-

```
\let\mst@original@sf\mathsf
\let\mst@original@tt\mathtt
\def\mst@restorealphabets{% for subdued
5 3 0 \ \ l e t \ m a t h n o r m a l \ m s t @ o r i g i n a l @ n o r m a l ~
531 \let\mathrm\mst@original@rm
532 \let\mathbf\mst@original@bf
5 3 3 ~ \ l e t \ m a t h i t \ m s t @ o r i g i n a l @ i t ~
5 3 4 ~ \ l e t \ m a t h s f \ m s t @ o r i g i n a l @ s f ~
535 \let\mathtt\mst@original@tt
536 }
537 \ifmst@greekplus
```

\mst@mathalph The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ kernel code regarding math fonts is too complex and rigid for there to be a robust and easy way to know when one is in the argument of \mathrm or \mathbf, and the code is spread on various chapters of source2e.pdf, and the comments are often not up-to-date. So I did not try a too complex hack and decided for $1.3 z a$ to add a numeric indicator to let Greek letters react to it. It incorporates a space to be self-delimiting in an \ifcase to maintain expandability in numeric context of the to-be-defined Greek control sequences.

```
\def\mst@mathalph{-1}
\def\mst@setalphabets{%
 \protected\def
 \mathnormalbold##1{\def\mst@mathalph{4 }\Mathnormalbold{##1}\def\mst@mathalph{-1 }}%
 \ifmst@defaultnormal\else
 \protected\def
 \mathnormal##1{\def\mst@mathalph{0 }\Mathnormal{##1}\def\mst@mathalph{-1 }}%
 \fi
 \ifmst@defaultrm\else
 \protected\def
 \mathrm##1{\def\mst@mathalph{1 }\Mathrm{##1}\def\mst@mathalph{-1 }}%
 \fi
 \ifmst@defaultbf\else
 \protected\def
 \mathbf##1{\def\mst@mathalph{2 }\Mathbf{##1}\def\mst@mathalph{-1 }}%
 \fi
 \ifmst@defaultit\else
 \protected\def
 \mathit##1{\def\mst@mathalph{3 }\Mathit{##1}\def\mst@mathalph{-1 }}%
 \fi
 \ifmst@defaultsf\else\protected\def\mathsf{\Mathsf}\fi
 \ifmst@defaulttt\else\protected\def\mathtt{\Mathtt}\fi
}
\else
\def\mst@setalphabets{%
 \ifmst@defaultnormal\else\protected\def\mathnormal{\Mathnormal}\fi
 \ifmst@defaultrm\else\protected\def\mathrm{\Mathrm}\fi
 \ifmst@defaultbf\else\protected\def\mathbf{\Mathbf}\fi
 \ifmst@defaultit\else\protected\def\mathit{\Mathit}\fi
 \ifmst@defaultsf\else\protected\def\mathsf{\Mathsf}\fi
 \ifmst@defaulttt\else\protected\def\mathtt{\Mathtt}\fi
```

```
569 }
570 \fi
571\ifmst@subdued\else\mst@setalphabets\fi
```

LGRgreek 1.14b: We can not move the \DeclareSymbolFont to the \Mathastext macro because it resets \MTgreekupdefault \MTgreekitdefault selfGreek the font family in *all* math versions, and some could have been defined by the user with previous calls to \Mathastext. So we have to have them here. The problem is that at this stage it is impossible to know if we really need (in the case of LGRgreek) two separate shapes for upper and lowercase, and (in the case of selfGreek) a shape distinct from the one used in mtoperatorfont. So I opted in the end for declaring possibly one too many font. To achieve more economy the only way would be to keep cumulative track of all previously declared math versions and to redeclare appropriately the LGR or self greek fonts at each call to \Mathastext (with no optional argument): a bit painful, and as I am possibly the sole user in the world of this possibility of multiple math versions with this package. Also the advantage to systematically allocate a font for the selfGreek option is that we can force the use of the OT1 encoding.

First we establish the cumulative effect of the greek related options.
1.15 c introduces some possibilities to change the shapes of Greek letters in each math versions, and even the Greek font (in LGR encoding). The commands \MTitgreek etc... will be used in-between calls to \Mathastext and re-adjust the shapes. And the command \MTgreekfont changes the Greek font family.

Note that \mst@ltsh expands to \shapedefault or \itdefault at this location.
Note added 2022/11/02: using \MTitgreek etc... once implies that from then on, for subsequent mathastext-math versions, the shape of Greek letters will not be kept in sync with the shape and lettershape version parameters, but only react to the configuration decided by these commands (and italic/frenchmath options).

Note 2022/10/29: for some time \updefault was made into up by $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ (since 2020-0202 now that I check this out). As a result this triggered Font Warnings in the log about the replacement of up by $n$.
1.3x refactors completely the handling of Greek letter shapes under the LGRgreek(s) options (and only under them). Under these options we don't use one font for lowercase Greek and anotherone for uppercase Greek (some above code comments have not been updated) but one math font mtgreekit for italic Greek and one math font mtgreekup for upright Greek. What 'italic' and 'upright' mean is decided by the expansion of \MTgreekitdefault and \MTgreekupdefault, which give respectively it and $n$ per default.

If no itgreek et al. options or \MTitgreek et al. commands have been used, we need to map \mst@ltsh (which was used for lowercase Greek, except under frenchmath option) and \mst@opsh to either 'italic' or 'upright'. This is done by testing if they hold 'it' or 'sl'. If yes we map to 'italic' by setting to false an 'up' Boolean, if not we leave the 'up' Boolean to true.

In order to maintain perfect identical code for non-LGRgreek, the LGRgreek related code is simply added to previously shared constructions. The LGRgreek behaviour will remain identical in most documents, but for example those who used some adventurous ' $s c$ ' for the main shape (the one used per default for operator names) need to adjust \MTgreekupdefault to be 'sc', for the math version being defined, or the default one if this is followed by usage of \Mathastext.

The new LGRgreek-specific commands \MTgreekupdefault and \MTgreekitdefault are the only ones in the package which can possibly be defined previously to loading it. (Perhaps some other macros could be also converted to being modifiable prior to loading mathastext, thus avoiding potential need to use \Mathastext at least once after loading the package; to be examined next time - which may be a long time in future!).

Unfortunately the $1.3 \mathrm{x} / 1$. 3 y did some internal renamings here (using @lgr@ in macro names
in place of @greek@) which were not everywhere followed up, and this broke the selfGreek option. Fixed at $1.3 z$.

572 \providecommand*\MTgreekupdefault\{n\}
573 \providecommand*\MTgreekitdefault\{it\}
574 \newif \ifmst@greek@lower@up
575 \newif \ifmst@greek@upper@up
576 \def $\backslash m s t @ u p d a t e @ g r e e k s h\{$
577 \def \mst@greek@1sh\{\mst@ltsh\}
578 \def\mst@greek@ush\{\mst@opsh\}
579 \mst@greek@lower@uptrue
$580 \backslash$ expandafter $\backslash i n @ \backslash e x p a n d e d\{\{\backslash m s t @ 1$ tsh.\}\}\{it.,sl.\}\%
581 \ifin@\mst@greek@lower@upfalse\fi
582 \mst@greek@upper@uptrue
583 \expandafter\in@\expanded\{\{\mst@opsh.\}\}\{it.,sl.\}\%
584 \ifin@\mst@greek@upper@upfalse\fi
585 \ifmst@itgreek
$586 \backslash$ def \mst@greek@1sh\{\MTgreekitdefault\}
587 \def \mst@greek@ush\{\MTgreekitdefault\}
588 \mst@greek@lower@upfalse
589 \mst@greek@upper@upfalse
590 \fi
591 \ifmst@upgreek
$592 \backslash$ def \mst@greek@1sh\{\MTgreekupdefault\}
593 \def\mst@greek@ush\{\MTgreekupdefault\}
594 \mst@greek@lower@uptrue
595 \mst@greek@upper@uptrue
596 \fi
597 \ifmst@frenchmath
598 \ifmst@itgreek\else
599 \ifmst@upgreek\else
$600 \backslash$ def $\backslash m s t @ g r e e k @ 1$ sh $\{\backslash$ mst@opsh\}
601 \def\mst@greek@ush\{\mst@opsh\}
602 \mst@greek@lower@uptrue
603 \mst@greek@upper@uptrue
$604 \backslash$ fi\fi
605 \fi
606 \ifcase\mst@greek@select
607 \or
$608 \backslash$ def \mst@greek@ush\{\MTgreekitdefault\}
609 \mst@greek@upper@upfalse
610 \or
$611 \backslash$ def $\backslash m s t @ g r e e k @ u s h\{\backslash M T g r e e k u p d e f a u l t\}$
612 \mst@greek@upper@uptrue
613 \fi
614 \}
615 \mst@update@greeksh
mtgreekup The $1.3 x$ refactoring was done in order to be able to define $\backslash a l$ phaup, etc $\ldots$ control sequences mtgreekit (\mathchar's), as well as the italic ones. Formerly two math fonts were created but to be used $\backslash$ mathgreekup \mathgreekit \mathgreekupbold \mathgreekitbold
respectively with lowercase or uppercase Greek. Now we have two fonts indexed by their shape, and we take advantage to create two math alphabets mapping to the two defined symbol fonts mtgreekup and mtgreekit.
$1.3 z a$ adds \mathgreekupbold and \mathgreekitbold.
616 \ifmst@LGRgreek
617 \DeclareFontEncoding\{LGR\}\{\}\{\}
618 \DeclareSymbolFont\{mtgreekup\}\{LGR\}\}\{\mst@fam\}\{\mst@ser\}\{\MTgreekupdefault\}
619 \DeclareSymbolFont\{mtgreekit\}\{LGR\}\{\mst@fam\}\{\mst@ser\}\{\MTgreekitdefault\}
620 \DeclareSymbolFontAlphabet \{\mathgreekup\} \{mtgreekup\}
621 \DeclareSymbolFontAlphabet \{\mathgreekit\}\{mtgreekit\}
$622 \backslash$ DeclareMathAlphabet $\{\backslash$ mathgreekupbold\}\{LGR\} $\{\backslash$ mst@fam\}\{\mst@bold\}\{
$623 \backslash$ DeclareMathAlphabet $\{\backslash$ mathgreekitbold\}\{LGR\}\{\mst@fam\}\{\mst@bold\}\{\MTgreekitdefault\}
624 \else
mtselfGreekfont
625 \ifmst@selfGreek
$626 \backslash$ DeclareSymbolFont\{mtselfGreekfont\}\{0T1\}\{\mst@fam\}\{\mst@ser\}\{\mst@greek@ush\}
627 \fi\fi
mteulervm
\MathEuler
$\backslash$ MathEulerBold

In case we need the Euler font, we declare it here. It will use uzeur.fd from the eulervm package of Walter Schmidt
628 \ifmst@needeuler\typeout\{** will use Euler font; command \string\MTEulerScale\}
629 \DeclareSymbolFont\{mteulervm\}\{U\}\{zeur\} \{m\}\{n\}
630 \DeclareSymbolFontAlphabet\{\MathEuler\}\{mteulervm\}
631 \DeclareMathAlphabet $\{\backslash$ MathEulerBold\} $\{U\}\{$ zeur $\}\{\backslash m s t @ b o l d\}\{n\}$
632 \fi
633 \newcommand*\MTEulerScale[1]\{\edef $\backslash$ zeu@Scale\{\#1\}\}
634 \let $\backslash$ MathastextEulerScale $\backslash M T E u l e r S c a l e$
${ }^{\mathrm{IA}} \mathrm{T}_{\mathrm{E}} \mathrm{X} 2{ }_{\varepsilon}$ has a strange initial configuration where the capital Greek letters are of type mathalpha, but the lower Greek letters of type mathord, so that \mathbf does not act on them, although lowercase Greek letters and Latin letters are from the same font. This is because \mathbf is set up to be like a bold version of \mathrm, and \mathrm uses the 'operators' font, by default cmr, where there are NO lowercase greek letters. This set-up is ok for the Capital Greek letters which are together with the Latin letters in both cmmi and cmr .

The package eulervm sets the lowercase Greek letters to be of type mathalpha, the default \mathbf and \mathrm will act wierdly on them, but a \mathbold is defined which will use the bold series of the Euler roman font, it gives something coherent for Latin and Greek lowercase letters, and this is possible because the same font contains upright forms for them all.

Here in mathastext, Latin letters and Greek letters (lower and upper case) must be (generally) assumed to come from two different fonts, as a result the standard \mathbf (and \mathrm) will give weird results when used for Greek letters. We could coerce \mathbf to do something reasonable (cf http://tug.org/pipermail/texhax/2011-January/016605.html) but at this time 30-01-2011 09:42:27 CET I decided I would not try to implement it here. I prefer to respect the default things.

I followed the simpler idea of the eulervm package and defineed \MathEuler and \MathEulerBold alphabet commands (the eulervm package does this only for the bold font).
mtpsymbol In case we need the Symbol font, we declare it here. The macro \psy@scale will be used to scale $\backslash$ MathPSymbol the font (see at the very end of this file).

```
635\ifmst@needsymbol\typeout{** will use Symbol font; command \string\MTSymbolScale}
636 \def\psy@scale{1}
637 \DeclareSymbolFont{mtpsymbol}{U}{psy}{m}{n}
638 \DeclareSymbolFontAlphabet{\MathPSymbol}{mtpsymbol}
639 \AtBeginDocument{%
640\DeclareFontFamily{U}{psy}{}%
641 \DeclareFontShape{U}{psy}{m}{n}{<->s*[\psy@scale] psyr}{}%
642}
643\fi
644 \newcommand*\MTSymbolScale[1]{\edef\psy@scale{#1}}
645\let\MathastextSymbolScale\MTSymbolScale
```

I did not choose for name \MathSymbol as this may be defined somewhere for another thing. There is no bold for the postscript Symbol font distributed with the $\mathrm{A}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon} \mathrm{psnffs}$ core package.
\pmece Definition of a poor man version of the \vec accent
$646 \backslash$ DeclareRobustCommand*\pmvec [1] $\{\backslash$ mathord\{\stackrel\{
647 \{\tiny $\backslash$ boldmath\$\mathord\{\rightarrow\}\$\}\}\{\{\}\#1\}\}\}
\fouriervec The glyph is taken from the Fourier font of Michel Bovani. Note: (oct 2012) I should not allocate an entire symbol font just for one glyph! But I have not given any serious thought to what one can do to simulate a math accent without doing such a wasteful thing.

```
648 \ifmst@fouriervec
649 \DeclareFontEncoding{FML}{}{}
650 \DeclareFontSubstitution{FML}{futm}{m}{it}
651 \DeclareSymbolFont{mathastextfourier}{FML}{futm}{m}{it}
652 \SetSymbolFont{mathastextfourier}{bold}{FML}{futm}{b}{it}
653\mst@DeclareMathAccent{\fouriervec}{\mathord}{mathastextfourier}{"7E}
65 \fi
```

$\backslash$ MTencoding $\backslash M T f a m i l y$ $\backslash$ MTseries $\backslash$ MTshape
\MTboldvariant \MTlettershape

Some public macros to modify our private internals, and we will use them also ourself.
In version 1.1 we add the possibility to have two distinct font shapes for letters and digits.
So in fact we could as well have two really unrelated fonts but this is really not the spirit of the package.

Note that using these macros in the preamble allows \Mathastext to set up math versions with a given font for math mode, and at the same time not modifying the \familydefault or \romandefault etc...

At time of $1.3 z a$ I considered letting LGRgreeks and selfGreeks support $\backslash M T g r e e k f o n t ~ a n d ~$ this needed a chaneg to $\backslash M T f a m i l y$ here but I dropped the idea. Too wary of documentation changes.

```
655\newcommand*\MTencoding[1]{\def\mst@enc{#1}}
656 \newcommand*\MTfamily[1]{\def\mst@fam{#1}}
657 \newcommand*\MTseries[1]{\def\mst@ser{#1}}
658\newcommand*\MTshape[1]{\def\mst@opsh{#1}\ifmst@italic\else\def\mst@ltsh{#1}\fi}
659\newcommand*\MTboldvariant[1]{\def\mst@bold{#1}}
660 \newcommand*\MTlettershape[1]{\def\mst@ltsh{#1}}
661 \let\Mathastextencoding\MTencoding
662 \let\Mathastextfamily\MTfamily
663\let\Mathastextseries\MTseries
```

664 \let $\backslash$ Mathastextshape $\backslash$ MTshape
665 \let \Mathastextboldvariant $\backslash$ MTboldvariant
$666 \backslash$ let $\backslash$ Mathastextlettershape $\backslash M T 1$ ettershape
\MTitgreek 1.15c: These new macros can be used in-between calls to \Mathastext. They reset the
\MTupgreek
\MTitGreek \MTupGreek
$\backslash$ MTgreekfont shapes for Greek letters (applies to LGRgreek(s) and selfGreek(s) options). The \MTgreekfont presupposes either LGRgreek or selfGreek (it is inoperant under LGRgreeks or selfGreeks). $\backslash M T g r e e k f o n t\{\backslash f a m i l y d e f a u l t\}$ is somewhat like using LGRgreeks or selfGreeks.

At time of $1.3 z$ za I let $\backslash M T g r e e k f o n t ~ a l s o ~ h a v e ~ a n ~ e f f e c t ~ u n d e r ~ o p t i o n ~ L G R g r e e k s ~ o r ~$ selfGreeks, via a refactoring which also modified \MTfamily.
667 \newcommand*\MTitgreek\{\mst@itgreektrue\mst@upgreekfalse\def \mst@greek@select\{0\}\} 668 \newcommand*\MTupgreek\{\mst@upgreektrue\mst@itgreekfalse\def\mst@greek@select\{0\}\}
669 \newcommand*\MTitGreek\{\def\mst@greek@select\{1\}\}
670 \newcommand*\MTupGreek\{\def\mst@greek@select\{2\}\}
671 \let $\backslash$ Mathastextitgreek $\backslash M T i t g r e e k ~$
672 \let $\backslash$ Mathastextupgreek $\backslash M T u p g r e e k$
673 \let $\backslash$ MathastextitGreek\MTitGreek
674 \let $\backslash$ MathastextupGreek $\backslash M T u p G r e e k ~$
675 \newcommand*\MTgreekfont[1]\{\def \mst@greekfont\{\#1\}\}
676 \let $\backslash$ Mathastextgreekfont $\backslash$ MTgreekfont
At (long...) last we now change the font for the letters of the latin alphabet. In version 1.1, Latin letters have their own font (shape).
1.2 b initiated the use of mathematically active letters to insert the italic corrections. With version 1.3 the use of math active letters is also for extra muglue added before and after the letters. Use of \@for to shorten the code initiated with release 1.3.

```
677 \def\mst@DeclareMathLetter #1{%
678 \DeclareMathSymbol {#1}{\mathalpha}{mtletterfont}{`#1}%
679 \expandafter
680 \DeclareMathSymbol \csname mst@#1\endcsname{\mathalpha}{mtletterfont}{`#1}%
681 \expandafter\mst@addtodo@az\expandafter #1\csname mst@#1\endcsname
682 }%
63\\@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do
684 {\expandafter\mst@DeclareMathLetter\mst@tmp}%
685\ifmst@frenchmath \def\mst@font@tbu{mtoperatorfont}%
686 \else \def\mst@font@tbu{mtletterfont}%
687\fi
688\def\mst@DeclareMathLetter #1{%
689 \DeclareMathSymbol {#1}{\mathalpha}{\mst@font@tbu}{`#1}%
690 \expandafter
691 \DeclareMathSymbol \csname mst@#1\endcsname{\mathalpha}{\mst@font@tbu}{`#1}%
692 \expandafter\mst@addtodo@AZ\expandafter #1\csname mst@#1\endcsname
693 }%
694\@tfor\mst@tmp:=ABCDEFGHI JKLMNOPQRSTUVWXYZ\do
695 {\expandafter\mst@DeclareMathLetter\mst@tmp}%
696 \let\mst@DeclareMathLetter\relax
6 9 7 \text { \ifmst@nodigits\else}
698\def\mst@font@tbu{mtoperatorfont}%
```

In version 1.1, we have now separated digits from letters, so paradoxically it is less problematic to give them the mathalpha type.

```
699 \ifmst@symboldigits \def\mst@font@tbu{mtpsymbol} \fi
700 \ifmst@eulerdigits \def\mst@font@tbu{mteulervm} \fi
701 \DeclareMathSymbol{0}{\mathalpha}{\mst@font@tbu}{`0}%
702 \DeclareMathSymbol{1}{\mathalpha}{\mst@font@tbu}{`1}%
703 \DeclareMathSymbol{2}{\mathalpha}{\mst@font@tbu}{`2}%
704 \DeclareMathSymbol{3}{\mathalpha}{\mst@font@tbu}{`3}%
705 \DeclareMathSymbol{4}{\mathalpha}{\mst@font@tbu}{`4}%
706 \DeclareMathSymbol{5}{\mathalpha}{\mst@font@tbu}{`5}%
707 \DeclareMathSymbol{6}{\mathalpha}{\mst@font@tbu}{`6}%
708\DeclareMathSymbol{7}{\mathalpha}{\mst@font@tbu}{`7}%
709 \DeclareMathSymbol{8}{\mathalpha}{\mst@font@tbu}{`8}%
710 \DeclareMathSymbol{9}{\mathalpha}{\mst@font@tbu}{`9}%
7 1 1 \ f i
```

When symboldelimiters is passed as an option, we use the Symbol font for the printable characters other than letters and digits.

```
712 \ifmst@symboldelimiters
713\def\mst@font@tbu{mtpsymbol}%
714 \mst@endashfalse
715\mst@emdashfalse
7 1 6 \ e l s e
717\def\mst@font@tbu{mtoperatorfont}%
718 \fi
```

1.2 adds the tricks to let non letters/digits obey math alphabets. We have to double the definitions for easy switch on-off of the mechanism, via a token list which is put into \everymath and \everydisplay.
719 \ifmst@noexclam\else\typeout\{** \string! and \string?\}\%
720 \DeclareMathSymbol\{!\}\{\mathclose\}\{\mst@font@tbu\}\{"21\}\%
721 \DeclareMathSymbol\{\mst@varfam@exclam\}\{\mathalpha\}\{\mst@font@tbu\}\{"21\}\%
722 \expandafter\mst@addtodo@nonletters \string! \mathclose\mst@varfam@exclam
723 \DeclareMathSymbol\{?\}\{\mathclose\}\{\mst@font@tbu\}\{"3F\}\%
724 \DeclareMathSymbol\{\mst@varfam@question\}\{\mathalpha\}\{\mst@font@tbu\}\{"3F\}\%
725 \expandafter\mst@addtodo@nonletters\string? \mathclose\mst@varfam@question
726 \fi
\MTlowerast 1.12d The \ast or * is defined in fontmath.ltx as a binary operator from the symbols font.
\mst@doasterisk \mst@@doasterisk \MTnormalasterisk \MTactiveasterisk

Usually the asterisk from the text font is in a raised position. Previous versions of mathastext did nothing with \ast but strangely defined $*$ to be the one from the text font, with type \mathalpha. The package now leaves by default both $*$ and \ast untouched, and if passed option asterisk replaces both of them with a lowered text asterisk (or the one from the Symbol font), and of type \mathbin. A trick is used to optionally get both $*$ and \ast obey the math alphabets.

The user macro \MTlowerast sets the amount of lowering to be applied to the text asterisk.
1.12 e Somehow there was a big omission in 1.12d, the command $\backslash$ MTlowerast as described in the manual was missing!
nota bene: it is assumed that $*$ is of type other when mathastext is loaded... it should neither be active, nor of type letter!
 asterisk.

27 \def\mst@@doasterisk\{\let\ast\mst@ast\mst@mathactivate*\{\}\mst@ast\}\%
28 \newcommand $* \backslash$ MTnormalasterisk \{\let $\backslash$ mst@doasterisk $\backslash$ relax\}
\newcommand*\MTactiveasterisk \{\let\mst@doasterisk\mst@@doasterisk\}
30 \ifmst@asterisk\typeout\{** asterisk: \string\ast\space and *\}
$\backslash$ AtBeginDocument\{\%
\everymath
$\{\backslash$ the $\backslash$ everymath \mst@doasterisk \MTnormalasterisk \}\%
\everydisplay $\backslash$ expandafter
\{\the \everydisplay\mst@doasterisk \MTnormalasterisk \}\}
\ifmst@symbolmisc
\def\mst@bin@ast\{\%
\mathbin\{\mathchoice\{\raisebox\{-. $1 \backslash$ height $\} \%$
$\{\backslash$ the $\backslash$ textfont $\backslash$ symmtpsymbol $\backslash$ char 42\}\}\%
$\{\backslash$ raisebox\{-. $1 \backslash$ height $\} \%$
$\{\backslash$ the $\backslash$ textfont $\backslash$ symmtpsymbol $\backslash$ char 42\}\}\%
\{\raisebox\{-. $1 \backslash$ height $\} \%$
$\{\backslash$ the $\backslash$ scriptfont $\backslash$ symmtpsymbol $\backslash$ char 42$\}\} \%$
\{\raisebox\{-. $1 \backslash$ height $\} \%$
\{\the\scriptscriptfont\symmtpsymbol\char42\}\}\}\}\%
\else
\def\mst@bin@ast\{\%
\mathbin\{\mathchoice\{\raisebox\{-\mst@lowerast\}\%
$\{\backslash$ the $\backslash$ textfont $\backslash$ symmtoperatorfont $\backslash$ char 42$\}\} \%$ \{\raisebox\{-\mst@lowerast\}\%
$\{\backslash$ the $\backslash$ textfont $\backslash$ symmtoperatorfont $\backslash$ char 42\}\}\% \{\raisebox\{-\mst@lowerast\}\%
\{\the\scriptfont\symmtoperatorfont \char42\}\}\%
\{\raisebox\{-\mst@lowerast\}\%
\{\the\scriptscriptfont\symmtoperatorfont \char42\}\}\}\}\%
$\backslash f i$
\def \mst@varfam@ast $\{\backslash$ ifnum $\backslash f a m=\backslash m @ n e \backslash m s t @ b i n @ a s t \backslash e l s e ~$
$\backslash$ mathbin $\{\backslash$ mathchoice $\{\backslash$ raisebox\{-\mst@lowerast\}\% $\{\backslash$ the $\backslash$ textfont $\backslash$ fam $\backslash c h a r 42\}\} \%$
\{\raisebox\{-\mst@lowerast\}\%
$\{\backslash$ the $\backslash$ textfont $\backslash$ fam $\backslash$ char 42\} \}\%
\{\raisebox\{-\mst@lowerast\}\%
\{\the\scriptfont $\backslash$ fam $\backslash$ char 42$\}\} \%$
\{\raisebox\{-\mst@lowerast\}\%
$\{\backslash$ the $\backslash$ scriptscriptfont $\backslash$ fam $\backslash$ char 42$\}\}\} \backslash f i\} \%$
\MTactiveasterisk
\DeclareRobustCommand*\{\mst@ast\}\{\mst@bin@ast $\}$
\newcommand*\MTlowerast [1]\{\def \mst@lowerast\{\#1\}\}
\MTlowerast\{.3\height\}
\mst@do@easynonletters $\backslash$ expandafter $\backslash$ expandafter $\backslash$ expandafter
$\{\backslash$ expandafter $\backslash$ the $\backslash$ expandafter $\backslash m s t @ d o @ e a s y n o n l e t t e r s$
\expandafter\def\csname mst@ast \endcsname\{\mst@varfam@ast\}\}
773 \fi
(2011) I renounced to try to do things with all the various dots, they are defined in many different ways, and there is the amsmath also. Dealing with this issue would mean a lot a time for a minuscule result. Better to leave the user use the mathdots package and accept that we can not avoid the default fonts in that case. So here I just treat . (in the hope to really lessen by 1 the number of fonts embedded at the end in the PDF).
[(Dec. 2012) should I reexamine these definitive sounding remarks?]
1.3 x of 2022/11/03 adds support for ncccomma option.

Some non-obvious hack is needed for compatibility with our home-made mechanism of nonletters obeying math alphabet commands. Alternative would have been to not load at all this package and provide the functionality purely by our own means (rewriting entirely its two macros after loading the package would not have made much sense).

```
774 \ifmst@nopunct\else\typeout{** punctuation\string: \string, \string. \string:
775 \string; and \string\colon}
776 \DeclareMathSymbol{,}{\mathpunct}{\mst@font@tbu}{"2C}
777 \DeclareMathSymbol{\mst@varfam@comma}{\mathalpha}{\mst@font@tbu}{"2C}
778 \ifmst@ncccomma
779 \typeout{** loading package ncccomma for 'smart comma\string'}
780 \RequirePackage{ncccomma}%
```

Work around some bad interaction of ncccomma, numprint with autolanguage and babel-frenchb. Some hesitation whether I should use the \noextrasfrench to work around babel-frenchb code influencing non-French sections in the document.
$781 \backslash$ AtBeginDocument $\{\backslash$ mathcode $\backslash,=" 8000 \backslash$ relax

## \@ifpackageloaded\{babel\}\{\%

\addto\noextrasfrench\{\mathcode`\,="8000\relax\}\% \addto\extrasfrench\{\mathcode`\,="8000\relax\}\%
\}\{\}\}
\let $\backslash$ mathcomma $\backslash$ relax
\DeclareMathSymbol\{\mathcomma\}\{\mathpunct\}\{\mst@font@tbu\}\{"2C\}
Complications for compatibility with the \MTnonlettersobeymathxx mechanism.

```
 \edef \(\backslash\) mst@NCC@comma\{ \let \(\backslash\) noexpand \(\backslash\) @empty \(\backslash\) mathpunct
 \unexpanded \(\backslash\) expandafter \(\{\backslash\) NCC@comma\}\%
 \let\noexpand\@empty\noexpand\empty\}
 \mst@do@nonletters\expandafter\{\the\mst@do@nonletters
 \let \(\backslash\) mathcomma\mst@varfam@comma
 \let\NCC@comma\mst@NCC@comma
 \}
\else
 \expandafter\mst@addtodo@nonletters \string, \mathpunct\mst@varfam@comma
\fi \% ncccomma true
\DeclareMathSymbol\{.\}\{\mathord\}\{\mst@font@tbu\}\{"2E\}
\DeclareMathSymbol\{\mst@varfam@dot\}\{\mathalpha\}\{\mst@font@tbu\}\{"2E\}
\mst@addtodo@easynonletters \.\mst@varfam@dot
\DeclareMathSymbol\{:\}\{\mathrel\}\{\mst@font@tbu\}\{"3A\} \% relation spacing
\DeclareMathSymbol\{\mst@varfam@colon\}\{\mathalpha\}\{\mst@font@tbu\}\{"3A\}
\expandafter\mst@addtodo@nonletters\string:\mathrel\mst@varfam@colon
\@ifpackageloaded\{amsmath\}
\{\} \% \colon defined in amsmath.sty in terms of : with some enlarged explicit
 \% spacing. No need to intervene.
```

```
807 {% no amsmath, use standard punctuation spacing
808 \let\colon\undefined
809 % the reason is if some package has redefined \colon which then
810 % can not be used in \cs{DeclareMathSymbol} anymore (we
811 % shamelessly overwrite...)
812 \DeclareMathSymbol{\colon}{\mathpunct}{\mst@font@tbu}{"3A}
813\\mst@do@nonletters\expandafter{\the\mst@do@nonletters
1.3v uses \protected for the (optional) \colon redefinition.
814 \protected\def\colon{\mathpunct{\mst@varfam@colon}}}%
815 }
816 \DeclareMathSymbol{\mst@varfam@pointvirgule}{\mathalpha}{\mst@font@tbu}{"3B}
1.3x adds binarysemicolon option.
 \ifmst@binarysemicolon
 \typeout{** semi-colon set to be of type \string\mathbin}
 \DeclareMathSymbol{;}{\mathbin}{\mst@font@tbu}{"3B}
 \expandafter\mst@addtodo@nonletters\string;\mathbin\mst@varfam@pointvirgule
 \else
 \DeclareMathSymbol{;}{\mathpunct}{\mst@font@tbu}{"3B}
 \expandafter\mst@addtodo@nonletters\string;\mathpunct\mst@varfam@pointvirgule
824 \fi % binarysemicolno
825\fi % end \ifmst@nopunct else branch
```

\relbar Due to the way $=$ and - are used by $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ in arrows, we will have to redefine $\backslash$ Relbar and \relbar in order for them to preserve their original meanings.
1.15d: Oct 13, 2012. Belated amendment of the code to be compatible with Unicode engines in case someone changed the mathcode of -. However, for the time being I can do it in an easy way only for $\mathrm{X}_{\mathrm{H}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$, not for LuaIAT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$. Also I do my modifications to \relbar in a manner testing for the presence of amsmath.
1.3v 2019/09/19: $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ of 2019-10-01 defines \leftarrowfill and \rightarrowfill as robust macros, so we do the same.

I need to put amsmath under surveillance to check if it decides to robustify \relbar at some point, now that the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ team has taken over maintenance.

2019/09/16 Use \protected for \right|leftarrowfill in the non \DeclareRobustCommand branch?

```
826 \ifmst@nominus
827 \else
8 2 8 ~ \ i f m s t @ X e O r L u a ~
829 \mst@Umathcharnumdef\mst@minus@sign=\mst@Umathcodenum`\-\relax
830%^^A I used this prior to the new \luatexUmathcodenum, as available since TL2013:
831%^^A \mathchardef\mst@minus@sign=8704\relax % "2200
832 \else
 \mathchardef\mst@minus@sign=\mathcode`\-\relax
 \fi
 \@ifpackageloaded{amsmath}
 {\def\relbar{\mathrel{\mathpalette\mathsm@sh\mst@minus@sign}}}
 {\DeclareRobustCommand\relbar{\mathrel{\smash\mst@minus@sign}}}
 \ifmst@robust@obsessed@LaTeX@era\expandafter\DeclareRobustCommand
 \else\expandafter\def\fi
```

```
840 ->fill{$\m@th\mathord{\relbar}\mkern-7mu%
841 \cleaders\hbox{$\mkern-2mu\relbar\mkern-2mu$}\hfill
842 \mkern-7mu\mathord->$}
843 \ifmst@robust@obsessed@LaTeX@era\expandafter\DeclareRobustCommand
844 \else\expandafter\def\fi
845 \leftarrowfill{$\m@th\mathord\leftarrow\mkern-7mu%
846\cleaders\hbox{$\mkern-2mu\relbar\mkern-2mu$}\hfill
847 \mkern-7mu\mathord{\relbar}$}
848 \fi
```

endash 1.1 2011/01/29: Producing this next piece of code was not a piece of cake for a novice like myself!
1.11 2011/02/05: Compatibility with Unicode (via use of fontspec encodings EU1 and EU2) 1.12 2011/02/07: Improved dealing of Unicode possibility.
1.14b 2011/04/02: Corrected some very irresponsible bug in the Unicode part which caused a problem when 10 or more math families have been allocated.
1.15 2012/09/24: Added AtBeginDocument to circumvent some amsmath problem with unicode engines.
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
1.3t 2018/08/22: fix to very ancient (2012/12/20) bug with \DeclareMathSymbol lacking last argument if encoding not T1, OT1 or LY1 when setting up math mode to use the en-dash character as minus sign ( $\mathrm{PDFT}_{\mathrm{E}} \mathrm{X}$ engine).
\mst@subduedminus ast@nonsubduedminus
1.3t Further, new macros \mst@subduedminus and \mst@nonsubduedminus, for the good functioning of the subdued option also in case of presence of fontspec. This is the only character for which subdued option works (now) by setting the mathcode on each math version change. Indeed, a typical issue is when the Unicode EN DASH or MINUS is used, but the actual font in subdued normal math version is originally in OT1 or T1 encoding. The only reasonable way to address this is by actually modifying the assigned mathcode at each version change. This means also that \MTversion and not \mathversion must be used for good functioning.
$1.3 u$ improves the handling of the minus sign by letting it be compatible with math versions (and not only with the with subdued mechanism but all math versions) having varying font encodings, even possibly classic 8bit font encoding mixed with TU encoding for Unicode engines. For this it is needed to work around a feature of XeTeX/LuaLaTeX, here is original comment:
afaict it is impossible to use straightforwardly in extended mathcode assignments a control sequence as created by \Umathchardef. This is counter-intuitive and breaks expectations.

But the 1.3u mechanism with \mst@UmathchardefWorkAround@i introduced a bug which showed under option noendash (hence also symboldelimiters) with Unicode engines. Fixed at 1.3w.

849 \let\mst@subduedminus \empty
$850 \backslash$ let $\backslash m s t @ n o n s u b d u e d m i n u s \backslash e m p t y$
851 \def \mst@dothe@endashstuff\#1\#2\#3\{\%
852 \edef $\backslash m s t @ t m p @ e n c\{\# 3\} \%$
853 \if1\mst@OneifUniEnc
854 \mst@Umathchardef\#1=2 \symmtoperatorfont "\mst@unicodeminus\relax
855 \mst@Umathchardef\#2=7 \symmtoperatorfont "\mst@unicodeminus\relax
856 \else

```
857 \DeclareMathSymbol{#1}{\mathbin}{mtoperatorfont}
 {\csname\mst@tmp@enc\string\textendash\endcsname}
 \DeclareMathSymbol{#2}{\mathalpha}{mtoperatorfont}
 {\csname\mst@tmp@enc\string\textendash\endcsname}
 \fi}% mst@dothe@endashstuff
 \def\mst@dothe@emdashstuff#1#2#3{%
 \edef\mst@tmp@enc{#3}%
 \if1\mst@OneifUniEnc
 \mst@Umathchardef#1=2 \symmtoperatorfont "2014\relax
 \mst@Umathchardef#2=7 \symmtoperatorfont "2014\relax
 \else
 \DeclareMathSymbol{#1}{\mathbin}{mtoperatorfont}
 {\csname\mst@tmp@enc\string\textemdash\endcsname}
 \DeclareMathSymbol{#2}{\mathalpha}{mtoperatorfont}
 {\csname\mst@tmp@enc\string\textemdash\endcsname}
 \fi}% mst@dothe@emdashstuff
873 \def\mst@dothe@hyphenstuff#1#2{%
874 \DeclareMathSymbol{#1}{\mathbin}{\mst@font@tbu}{"2D}%
875 \DeclareMathSymbol{#2}{\mathalpha}{\mst@font@tbu}{"2D}%
876 }%
877 \def\mst@varfam@minus{\@nameuse{mst@varfam@minus@mv\math@version}}%
878 \ifmst@nominus\else
879 \expandafter\mst@addtodo@nonletters\string-\mathbin\mst@varfam@minus
880 \def\mst@nonsubduedminus{%
881 \edef\mst@tmp@enc{\csname mst@encoding@\math@version\endcsname}%
882 \if1\mst@OneifUniEnc
883 \mst@Umathcode`\-=\expandafter
 \mst@UmathchardefWorkAround@i
 \csname mst@minus@mv\math@version\endcsname
 \relax
 \else
 \mathcode`\-=\@nameuse{mst@minus@mv\math@version}% self-delimiting
 \fi
 }% \mst@nonsubduedminus
```

The above works only if the \mst@minus@mv<name> was really defined via \Umathchardef. If it was defined via \DeclareMathSymbol then it is a \mathchar, not a \Umathchar. At least currently (2019). So we need to correct the definition of \mst@nonsubduedminus.

```
891 \ifmst@endash\else\ifmst@emdash\else
 \def\mst@nonsubduedminus{%
 \mathcode`\-=\@nameuse{mst@minus@mv\math@version}% self-delimiting
 }% non Umathchardef \mst@minus@mv<mathversion> macros
 \fi\fi
896 \fi
897\def\mst@UmathchardefWorkAround@i
898 {\expandafter\mst@UmathchardefWorkAround@ii\meaning}%
899\def\mst@UmathchardefWorkAround@ii#1"{"}%
```

\mst@hbar@mvnormal $2011 / 01 / 31$, 1.1 I decide to settle the question of the $\backslash$ hbar. The $I^{A} T_{E} X$ definition is mst@ltbar@mvnormal \def \hbar\{\{\mathchar'26\mkern-9muh\}\} and its advantage is that h is in the correct font.

But of course not the macron character ( $\backslash=, \backslash$ bar $)$. And anyway amsfonts uses a \DeclareMathSymbol. Also there is the kern whose length depends on cmsy ( $18 \mathrm{mu}=1 \mathrm{em}$ and em taken from info in cmsy).

I will need an rlap adapted to math mode, and this is provided by code from Alexander R. Perlis in his TugBoat article 22 (2001), 350-352, which I found by googling rlap. (as an aside, I am only now (April 2, 2011) aware that the package mathtools provides the mathrlap etc... )
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
1.3u 2019/08/20: encoding (8bits) agnostic construct for hbar, using same method as for mathaccents option. I should add some way to adjust the vertical positioning.

On this occasion I replace h by $\backslash m s t @ h$ because the mechanism for before and after skips does not interact well with the rlap construct.
$1.3 \mathrm{v} 2019 / 09 / 19$ adapts to maintain the robustness of $\backslash$ hbar which now applies with $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ 2019-10-01.
1.3w works around https://github.com/latex3/latex2e/issues/216 via \mst@DeclareMathAccent.

The upstream bug affected the definition of \mst@ltbar@mvnormal and broke usage of \Mathastext in preamble.
1.3w also fixes oversight that \hbar may have been redefined via \DeclareMathSymbol by some package (e.g. amsfonts) and with $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 this means \hbar<space> is now undefined. Modifying it changed nothing to \hbar behaviour in such circumstances. Finally we opt for a \protected \hbar and choose to ignore completely if there is a \hbar<space> or not. To avoid extra steps we do not undefine it if it exists, because we would need to restore it in subdued math versions.

```
900\let\mst@subduedhbar\@empty
901 \let\mst@nonsubduedhbar\@empty
02 \ifmst@nohbar\else
 \def\mst@subduedhbar{\let\hbar\mst@original@hbar}%
 \def\mst@nonsubduedhbar{\expandafter
 \let\expandafter\hbar\csname mst@hbar@mv\math@version\endcsname}%
 fi
 \def\mst@mathrlap{\mathpalette\mst@mathrlapinternal}
 def\mst@mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}}
 \def\mst@dothe@hbarstuff#1#2#3{%
 \edef\mst@tmp@enc{#3}%
 \if1\mst@OneifUniEnc % Unicode engine and font
 \mst@Umathchardef#1="7 \symmtletterfont "0127 \relax %% or 210F?
 \else
 \begingroup
 \def\@text@composite##1\@text@composite##2{##2}%
 \let\add@accent\@firstoftwo
 \mst@DeclareMathAccent{#2}{\mathalpha}{mtletterfont}%
 {\csname\mst@tmp@enc\string\=\endcsname{}}%
 \endgroup
 \protected\def#1{\mst@mathrlap{#2{\ }}\mst@h}%
 \i
922 }% end of \mst@dothe@hbarstuff
```

1.15d: Oct 13, 2012. The \mathcode thing with = is (belatedly, sorry!) made Unicode compatible.

```
 +,=,\Relbar
923 \ifmst@noplus\else\typeout{** \string+ and \string=}
924 \DeclareMathSymbol{+}{\mathbin}{\mst@font@tbu}{"2B}
925\DeclareMathSymbol{\mst@varfam@plus}{\mathalpha}{\mst@font@tbu}{"2B}
926 \expandafter\mst@addtodo@nonletters\string+\mathbin\mst@varfam@plus
927 \fi
928\ifmst@noequal\else
929 \ifmst@XeOrLua
930\mst@Umathcharnumdef\mst@equal@sign=\mst@Umathcodenum`\=\relax
931 \else
932 \mathchardef\mst@equal@sign=\mathcode`\=\relax
933\fi
934 \@ifpackageloaded{amsmath}
935 {\def\Relbar{\mathrel\mst@equal@sign}}
936 {\DeclareRobustCommand\Relbar{\mathrel{\mst@equal@sign}}}
937\DeclareMathSymbol{=}{\mathrel}{\mst@font@tbu}{"3D}
938\DeclareMathSymbol{\mst@varfam@equal}{\mathalpha}{\mst@font@tbu}{"3D}
```

\nfss@catcodes 2012/12/18: Activating = (only in math mode actually) seems very bad but surprisingly works well. However I had a problem with eu2lmtt.fd which should not be loaded with an active $=$. 2012/12/25: Since then I had switched to only math activation. And in fact the problematic $=$ from eu2lmtt.fd end up in \csname... \endcsname and I have learnt since that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ does not look at the mathcode inside a \csname...\endcsname. Example:
\% \mathcode` \(\mathrm{x}=\) " 8000 \% \begingroup \% \catcode`x=\active
\% \global \everymath\{\defx\{Hello\}\}
\% \endgroup
\% \def\foox\{World!\}
\% \$x \csname foox\endcsname\$
\%
We need nevertheless to inactivate the $=$, for the following reason. Imagine someone did \catcode`==\active\def=\{\string=\}, or another definition which would not lead to a tragedy in a \csname... \endcsname. Then the $=$ is active and the re-definition done by mathastext will not be compatible with loading eu2lmtt.fd (for the first time) from math mode, as this re-definition can not be expanded inside a \csname... \endcsname.

2012/12/28: to be on the safe side, I add also ; and + and do it without discriminating between engines

```
939 \typeout{** adding \string= \string; and \string+ to \string\nfss@catcodes}
940 \g@addto@macro\nfss@catcodes{%
941 \@makeother\=%
942 \@makeother\;%
943\@makeother\+%
944}
945\expandafter\mst@addtodo@nonletters\string=\mathrel\mst@varfam@equal
946 \fi
```

noparenthesis \lbrack and \rbrack are defined in latex.ltx by \def $\backslash$ lbrack $\{[ \} \backslash \operatorname{def} \backslash$ rbrack $]\}$ so this fits (, ), [,],/ well with what we do here. \lparen and \rparen are similarly defined in mathtools. On the
other hand in latex.ltx with $\backslash\{$ and $\backslash\}$ are defined (in math mode) in terms of the control sequences \lbrace and \rbrace. Such control sequences can not be simultaneously math symbols and math delimiters, thus, this complicates things for the mathastextification.

```
947 \ifmst@noparen\else\typeout{** parentheses \string(\string) \string[\string] and slash \s
948 \ifmst@nosmalldelims
949 \DeclareMathSymbol{(}{\mathopen}{\mst@font@tbu}{"28}
950\\DeclareMathSymbol{)}{\mathclose}{\mst@font@tbu}{"29}
951 \DeclareMathSymbol{[}{\mathopen} {\mst@font@tbu}{"5B}
952\DeclareMathSymbol{]}{\mathclose}{\mst@font@tbu}{"5D}
953\\DeclareMathSymbol{/}{\mathord}{\mst@font@tbu}{"2F}
954 \else
955\\DeclareMathDelimiter{(}{\mathopen}{\mst@font@tbu}{"28}{largesymbols}{"00}
956 \DeclareMathDelimiter{)}{\mathclose}{\mst@font@tbu}{"29}{largesymbols}{"01}
957 \DeclareMathDelimiter{[}{\mathopen} {\mst@font@tbu}{"5B}{largesymbols}{"02}
958\\DeclareMathDelimiter{]}{\mathclose}{\mst@font@tbu}{"5D}{largesymbols}{"03}
959 \DeclareMathDelimiter{/}{\mathord}{\mst@font@tbu}{"2F}{largesymbols}{"OE}
960\fi
961 \DeclareMathSymbol{\mst@varfam@lparen}{\mathalpha}{\mst@font@tbu}{40}
962 \DeclareMathSymbol{\mst@varfam@rparen}{\mathalpha}{\mst@font@tbu}{41}
963\DeclareMathSymbol{\mst@varfam@lbrack}{\mathalpha}{\mst@font@tbu}{"5B}
964\DeclareMathSymbol{\mst@varfam@rbrack}{\mathalpha}{\mst@font@tbu}{"5D}
965\DeclareMathSymbol{\mst@varfam@slash}{\mathalpha}{\mst@font@tbu}{"2F}
966\expandafter\mst@addtodo@nonletters\string(\mathopen\mst@varfam@lparen
967 \expandafter\mst@addtodo@nonletters\string)\mathclose\mst@varfam@rparen
968 \expandafter\mst@addtodo@nonletters\string[\mathopen\mst@varfam@lbrack
969\expandafter\mst@addtodo@nonletters\string]\mathclose\mst@varfam@rbrack
970\mst@addtodo@easynonletters\/\mst@varfam@slash
971 \fi
```

alldelims
$<,>, \backslash 972 \backslash i f m s t @ a l l d e l i m s \backslash t y p e o u t\{* *$ alldelims: \string< \string>
\setminus 973 \string\backslash\space\string\setminus\space\string|
\backslash 974 \string\vert\space\string\mid\space\string<br>{\space and \string } \backslash \} \}
975 \ifmst@nosmalldelims
Dec 18, 2012. We then want \let\backslash\mst@varfam@backslash to do nothing when the \backslash is used as a delimiter. So here the original definition from latex.ltx is copied, generally speaking when people use other math symbol fonts they do respect the encoding of the CM symbols and largesymbols, so this is $90 \%$ safe. But in truth I should extract from the meaning of \backslash the delcode.

```
976 \DeclareMathDelimiter{\mst@varfam@backslash}
977 {\mathalpha}{symbols}{"6E}{largesymbols}{"0F}
978 \else
979 \DeclareMathDelimiter{<}{\mathopen}{\mst@font@tbu}{"3C}{largesymbols}{"OA}
980 \DeclareMathDelimiter{>}{\mathclose}{\mst@font@tbu}{"3E}{largesymbols}{"OB}
```

There is no backslash in the Symbol font hence mtoperatorfont here.
981 \DeclareMathDelimiter\{\backslash\}
982 \{\mathord\}\{mtoperatorfont\}\{"5C\}\{largesymbols\}\{"0F\}
$983 \backslash$ DeclareMathDelimiter\{\mst@varfam@backslash\}

```
 984 {\mathalpha}{mtoperatorfont}{"5C}{largesymbols}{"0F}
985\fi
986\DeclareMathSymbol{<}{\mathrel}{\mst@font@tbu}{"3C}
987 \DeclareMathSymbol{>}{\mathrel}{\mst@font@tbu}{"3E}
988\DeclareMathSymbol{\mst@varfam@less}{\mathalpha}{\mst@font@tbu}{"3C}
989 \DeclareMathSymbol{\mst@varfam@more}{\mathalpha}{\mst@font@tbu}{"3E}
990 \expandafter\mst@addtodo@nonletters\string<\mathrel\mst@varfam@less
991 \expandafter\mst@addtodo@nonletters\string>\mathrel\mst@varfam@more
992 \mst@do@easynonletters\expandafter{\the\mst@do@easynonletters
993 \let\backslash\mst@varfam@backslash}
994\DeclareMathSymbol{\setminus}{\mathbin}{mtoperatorfont}{"5C}
995\DeclareMathSymbol{\mst@varfam@setminus}{\mathalpha}{mtoperatorfont}{"5C}
1.3v adds a \protected here for \setminus.
996\mst@do@nonletters\expandafter{\the\mst@do@nonletters
997
 \protected\def\setminus{\mathbin{\mst@varfam@setminus}}}
\models \(1.15 \mathrm{~d}: 13\) oct 2012 . Before modifying | we must preserve \models.
998\ifmst@XeOrLua
999 \mst@Umathcharnumdef\mst@vert@bar=\mst@Umathcodenum`\|\relax
1000 \else
1001 \mathchardef\mst@vert@bar=\mathcode`\|\relax
1002 \fi
1003\DeclareRobustCommand\models{\mathrel{\mst@vert@bar}\joinrel\Relbar}
```

I , \mid, \vert (2011) I did not do anything then to try to emulate \Vert with the vertical bar from the text font... and now (2012) mathastext is not as radical as it used to be anyhow, so it is too late. Or not (2019)? maybe I should do something here...
1.3v 2019/09/19: I discover this rather radical legacy \def \vert\{|\}, which is done here once in the preamble, but I leave it unmodified apart from prefixing it with \protected. I also add a \protected for the definition of \mid (which applies only under \MTnonlettersobeymathxx regime).
1004 \ifmst@nosmalldelims
$1005 \backslash$ DeclareMathSymbol\{|\}\{\mathord\}\{\mst@font@tbu\}\{124\}
1006 \else
$1007 \backslash$ DeclareMathDelimiter\{l\}\{\mathord\}\{\mst@font@tbu\}\{124\}\{largesymbols\}\{"0C\}
1008 \fi
1009 \protected\def \vert\{|\}
$1010 \backslash$ DeclareMathSymbol\{\mst@varfam@vbar\}\{\mathalpha\}\{\mst@font@tbu\}\{124\}
1011 \mst@addtodo@easynonletters \/ \mst@varfam@vbar
1012 \let\mid\undefined \% 1.3: to avoid problems with some packages
$1013 \backslash$ DeclareMathSymbol\{\mid\}\{\mathrel\}\{\mst@font@tbu\}\{124\}
$1014 \backslash \mathrm{mst@do@nonletters} \backslash \operatorname{expandafter\{ \backslash the\backslash mst@do@nonletters}$
$1015 \backslash$ protected\def\mid\{\mathrel\mst@varfam@vbar\}\}
\MTexplicitbracesobeymathxx
\MTexplicitbracesdonotobeymathxx

Braces. With version $1.2, \backslash\{$ and $\backslash\}$ will not be acceptable as delimiters anymore if the redefinitions below in \mst@dobraces are enacted. But they will obey math alphabets. Improvements in 1.2 a , to preserve robustness.

For 1.3 I make \lbrace and \rbrace undefined first, else problems may arise with some packages.
$1.3 e$ suppresses under option nosmalldelims the definitions of $\backslash$ lbrace and $\backslash$ rbrace as math symbols as this made \left \lbrace cause an error, it was a bug.

LaTeX2e defines $\backslash\{$ and $\backslash\}$ as robust commands for a long time (I don't know since when). The mathastext redefinition is done only if user has executed \MTexplicitbracesobeymathxx, and it is done only when entering math mode, but there could be some \hbox inside math, hence it has to be careful to be valid in text too.
1.3 v maintains strict $\mathrm{IA}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ robustness for $\backslash\{$ and $\backslash\}$. This assumes no one fiddled with $\backslash\{$ and $\backslash\}$ proper (without space in the name).

specials $\quad 1.14 \mathrm{~b} 2011 / 04 / 02$ : the redefinitions of $\#, \$, \%$ and $\&$ were buggy (this showed up when 10 or more math families had been created).
1.15f 2012/10/23: the code, although working, was perhaps a bit insane and had definitions which could surprise other packages. For example, it did:
}\{\backslash\) ifmmode $\backslash$ mt@mmode@percent $\backslash$ else\char37\relax $\backslash$ fi\}
But it seems this provokes a problem with microtype. Perhaps the problem was that the command was not declared robust? For the dollar $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ itself does
\DeclareRobustCommand\{<br>\$\}\{\ifmmode\mathdollar\else\$\fi\}
So here I just modify \mathdollar. Then we have in latex.ltx the same definitions as in plain.tex: \chardef $\backslash \%=-\backslash \%$, \chardef $\backslash \&=-\backslash \&$, and \chardef $\backslash \#=-\backslash \#$. It turns out that we can just adjust the mathcodes of these characters and achieve exactly what is wanted for the corresponding one char control sequences. In math mode the control sequence will use the specified mathcode. So here it is not a redefinition of the control sequences, purely an adjustment of mathcodes.
1.2d 2013/01/01: previous versions imposed the variable family type. I hereby make it possible to de-activate this feature with the macro $\backslash M T e a s y n o n l e t t e r s d o n o t o b e y m a t h x x . ~ B e s i d e s, ~$ I have absolutely no idea why I had different looking code depending on the engine $\mathrm{X}_{-\mathrm{H}_{\mathrm{H}}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$,

LuaTEX or default. Removed.
1.3c 2013/12/14: I have absolutely no idea why I removed the $\mathrm{X}_{\underset{H}{ }} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and LuaT $\mathrm{F}_{\mathrm{E}} \mathrm{X}$ code at the time of 1.2 d ! the code for tex/pdftex engine could not accomodate more than 16 math families. Code for $\mathrm{X}_{\mathcal{H}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$ and LuaTEX again added. (and since TL2013 no more problems with \luatexUmathcode.)

```
1039 \ifmst@nospecials
1040 \else
1041 \typeout{** \string\#\space\string\mathdollar\space
1 0 4 2 ~ \ s t r i n g \ \% \ s p a c e \ s t r i n g \ \& \ s p a c e \}
1043 \ifmst@XeOrLua
1044 \mst@Umathcode`\#=0 \symmtoperatorfont "23 \relax
1045 \mst@Umathchardef\mathdollar=0 \symmtoperatorfont "24 \relax
1046 \mst@Umathcode`\%=0 \symmtoperatorfont "25 \relax
1047 \mst@Umathcode`\&=0 \symmtoperatorfont "26 \relax
1048\mst@do@easynonletters\expandafter{%
1049 \the\mst@do@easynonletters
1050 \mst@Umathcode`\#=7 \symmtoperatorfont "23 \relax
1051 \mst@Umathchardef\mathdollar=7 \symmtoperatorfont "24 \relax
1052 \mst@Umathcode`\%=7 \symmtoperatorfont "25 \relax
1053 \mst@Umathcode`\&=7 \symmtoperatorfont "26 \relax
1054 }
1055 \else
1056 \count@=\symmtoperatorfont
1057 \multiply\count@ by \@cclvi
1058 \advance\count@ by 35
1059\\mathcode`\#\count@
1060 \advance\count@ by \@ne
1061 \mathchardef\mathdollar\count@
1062 \advance\count@ by \@ne
1063 \mathcode`\%\count@
1064 \advance\count@ by \@ne
1065\\mathcode`\&\count@
1066 \count@=\symmtoperatorfont
1067 \multiply\count@ by \@cclvi
1068 \advance\count@ by 28707 % = "7023
1069 \mathchardef \mst@varfam@mathhash\count@
1070 \advance\count@ by \@ne
1071 \mathchardef\mst@varfam@mathdollar\count@
1072 \advance\count@ by \@ne
1073\\mathchardef\mst@varfam@mathpercent\count@
1074 \advance\count@ by \@ne
1075 \mathchardef\mst@varfam@mathampersand\count@
1076\mst@do@easynonletters\expandafter{\the\mst@do@easynonletters
1077 \mathcode`\#=\mst@varfam@mathhash
1078 \let\mathdollar\mst@varfam@mathdollar
1079 \mathcode`\%=\mst@varfam@mathpercent
1080 \mathcode`\&=\mst@varfam@mathampersand}
1081 \fi
1082 \fi
```

We construct (with some effort) some long arrows from the Symbol glyphs, of almost the same lengths as the standard ones. By the way, I always found the \iff to be too wide, but I follow here the default. Also, although there is a \longmapsto in standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, if I am not mistaken, there is no \longto. So I define one here. I could not construct in the same manner \Longrightarrow etc... as the $=$ sign from Symbol does not combine easily with the logical arrows, well, I could have done some box manipulations, but well, life is finite.
$\backslash$ prod 1.13 b : I correct the brutal re-definitions of $\backslash$ prod and \sum from the earlier versions of the
\sum package; most of the time the Symbol glyphs do appear to be too small in display mode. The new redefinitions do have some defects: \$\displaystyle\prod_1^2\$ changes the position of limits but not the glyph itself, and $\$ \$ \backslash$ textstyle $\backslash$ prod_1~ $2 \$ \$$ change the limits but switches to the CM inline math glyph. So I tried
\{\mathchoice\{\mst@prod\}\{\prodpsy\}\{\prodpsy\}\{\prodpsy\}\}
but this did not go well with subscripts and exponents.
October 2012: maybe I should re-examine what I did?
$1.3 c(2013 / 12 / 14)$ renames \defaultprod to \MToriginalprod and \defaultsum to \MToriginalsum.
$1.3 v$ hesitates about making robust here \prod and \sum. Finally I use \protected for them.

```
1083 \ifmst@symbolmisc\typeout{** symbolmisc: miscellaneous math symbols from Symbol font}
1084 \let\mst@prod\prod
1085\let\MToriginalprod\prod
1086 \DeclareMathSymbol{\prodpsy}{\mathop}{mtpsymbol}{213}
1087 \protected\def\prod{\ifinner\prodpsy\else\mst@prod\fi}
1088\let\mst@sum\sum
1089 \let\MToriginalsum\sum
1090 \DeclareMathSymbol{\sumpsy}{\mathop}{mtpsymbol}{229}
1091 \protected\def\sum{\ifinner\sumpsy\else\mst@sum\fi}
1092 \DeclareMathSymbol{\mst@implies}{\mathrel}{mtpsymbol}{222}
1093\DeclareRobustCommand*{\implies}{\;\mst@implies\;}
1094 \DeclareMathSymbol{\mst@impliedby}{\mathrel}{mtpsymbol}{220}
1095 \DeclareRobustCommand*{\impliedby}{\;\mst@impliedby\;}
1096 \DeclareRobustCommand*{\iff}{\;\mst@impliedby\mathrel{\mkern-3mu}\mst@implies\;}
1097 \DeclareMathSymbol{\mst@iff}{\mathrel}{mtpsymbol}{219}
1098 \DeclareRobustCommand*{\shortiff}{\;\mst@iff\;}
1099 \DeclareMathSymbol{\mst@to}{\mathrel}{mtpsymbol}{174}
1100 \DeclareMathSymbol{\mst@trait}{\mathrel}{mtpsymbol}{190}
1101 \DeclareRobustCommand*\to{\mst@to}
1102 \DeclareRobustCommand*\longto{\mkern2mu\mst@trait\mathrel{\mkern-10mu}\mst@to}
1103\DeclareRobustCommand*\mapsto{\mapstochar\mathrel{\mkern0.2mu}\mst@to}
1104 \DeclareRobustCommand*\longmapsto{%
1105\mapstochar\mathrel{\mkern2mu}\mst@trait\mathrel{\mkern-10mu}\mst@to}
1106 \DeclareMathSymbol{\aleph}{\mathord}{mtpsymbol}{192}
1107 \DeclareMathSymbol{\inftypsy}{\mathord}{mtpsymbol}{165}
1108 \DeclareMathSymbol{\emptyset}{\mathord}{mtpsymbol}{198}
1109\let\varnothing\emptyset
1110 \DeclareMathSymbol{\nabla}{\mathord}{mtpsymbol}{209}
1111 \DeclareMathSymbol{\surd}{\mathop}{mtpsymbol}{214}
1 1 1 2 \ l e t \ a n g l e \ u n d e f i n e d ~
1113 \DeclareMathSymbol{\angle}{\mathord}{mtpsymbol}{208}
1114 \DeclareMathSymbol{\forall}{\mathord}{mtpsymbol}{34}
```

```
1 1 1 5 \ D e c l a r e M a t h S y m b o l \{ \ e x i s t s \} \{ \ m a t h o r d \} \{ m t p s y m b o l \} \{ 3 6 \}
1116 \DeclareMathSymbol{\neg}{\mathord}{mtpsymbol}{216}
1117 \DeclareMathSymbol{\clubsuit}{\mathord}{mtpsymbol}{167}
1 1 1 8 \ D e c l a r e M a t h S y m b o l \{ \ d i a m o n d s u i t \} \{ \ m a t h o r d \} \{ m t p s y m b o l \} \{ 1 6 8 \}
1119 \DeclareMathSymbol{\heartsuit}{\mathord}{mtpsymbol}{169}
1120 \DeclareMathSymbol{\spadesuit}{\mathord}{mtpsymbol}{170}
1121 \DeclareMathSymbol{\smallint}{\mathop}{mtpsymbol}{242}
1122 \DeclareMathSymbol{\wedge}{\mathbin}{mtpsymbol}{217}
1123 \DeclareMathSymbol{\vee}{\mathbin}{mtpsymbol}{218}
1124 \DeclareMathSymbol{\cap}{\mathbin}{mtpsymbol}{199}
1125 \DeclareMathSymbol{\cup}{\mathbin}{mtpsymbol}{200}
1126 \DeclareMathSymbol{\bullet}{\mathbin}{mtpsymbol}{183}
1127 \DeclareMathSymbol{\div}{\mathbin}{mtpsymbol}{184}
1128\DeclareMathSymbol{\otimes}{\mathbin}{mtpsymbol}{196}
1129 \DeclareMathSymbol{\oplus}{\mathbin}{mtpsymbol}{197}
1130 \DeclareMathSymbol{\pm}{\mathbin}{mtpsymbol}{177}
1131 \DeclareMathSymbol{\times}{\mathbin}{mtpsymbol}{180}
1132 \DeclareMathSymbol{\proptopsy}{\mathrel}{mtpsymbol}{181}
1133 \DeclareMathSymbol{\mid}{\mathrel}{mtpsymbol}{124}
1134 \DeclareMathSymbol{\leq}{\mathrel}{mtpsymbol}{163}
1135 \DeclareMathSymbol{\geq}{\mathrel}{mtpsymbol}{179}
1136 \DeclareMathSymbol{\approx}{\mathrel}{mtpsymbol}{187}
1137 \DeclareMathSymbol{\supset}{\mathrel}{mtpsymbol}{201}
1138 \DeclareMathSymbol{\subset}{\mathrel}{mtpsymbol}{204}
1139 \DeclareMathSymbol{\supseteq}{\mathrel}{mtpsymbol}{202}
1140 \DeclareMathSymbol{\subseteq}{\mathrel}{mtpsymbol}{205}
1141 \DeclareMathSymbol{\in}{\mathrel}{mtpsymbol}{206}
1142 \DeclareMathSymbol{\sim}{\mathrel}{mtpsymbol}{126}
1 1 4 3 \ l e t \ c o n g \ u n d e f i n e d
1144 \DeclareMathSymbol{\cong}{\mathrel}{mtpsymbol}{64}
1145\DeclareMathSymbol{\perp}{\mathrel}{mtpsymbol}{94}
1146 \DeclareMathSymbol{\equiv}{\mathrel}{mtpsymbol}{186}
1147 \let\notin\undefined
1148 \DeclareMathSymbol{\notin}{\mathrel}{mtpsymbol}{207}
1149 \DeclareMathDelimiter{\rangle}
1150 {\mathclose}{mtpsymbol}{241}{largesymbols}{"OB}
1151 \DeclareMathDelimiter{\langle}
1152 {\mathopen}{mtpsymbol}{225}{largesymbols}{"OA}
1153 \fi
```

symbolre I like the \Re and \Im from Symbol, so I overwrite the CM ones.
1154 \ifmst@symbolre\typeout\{** symbolre: \string\Re\space and \string\Im\space from Symbol font\}
1155 \DeclareMathSymbol\{\Re\}\{\mathord\}\{mtpsymbol\}\{"C2\}
1156 \DeclareMathSymbol\{\Im\}\{\mathord\}\{mtpsymbol\}\{"C1\}
1157 \DeclareMathSymbol\{\DotTriangle\} \{\mathord\} \{mtpsymbol\} \{92\}
1158 \fi

Greek letters LGRgreek > selfGreek > eulergreek > symbolgreek
1.11 I correct some bugs on how eulergreek and symbolgreek interacted.
1.12 b more bug fixes.
1.13

* Option LGRgreek.
* Also, a behavior has been changed: it regards the selfGreek case, the default shape is now the one for letters, not for operator-names and digits. This complies to the ISO standard.
* bugfix: version 1.12b did not define the \omicron in the case when no Greek-related option was passed to the package.
1.13d has new macros $\backslash M T$ standardgreek and $\backslash M T$ customgreek. And in the subdued case $\backslash$ MTstandardgreek is done when switching to the normal or bold math versions (previously something like this was only done in case of LGRgreek option.)

```
1159 \let\mst@mathord\mathalpha
1160 \mst@goaheadtrue
1161 \ifmst@selfGreek
1162 \def\mst@font@tbu{mtselfGreekfont}
1163 \else
1164 \ifmst@eulergreek
1165 \def\mst@font@tbu{mteulervm}
1166 \else
1167 \ifmst@symbolgreek
1168 \def\mst@font@tbu{mtpsymbol}
1169 \let\mst@mathord\mathord
1170 \else
1171 \ifmst@LGRgreek
1172 \mst@goaheadfalse
1173 \else
```

The \omicron requires special treatment. By default we use the o from the (original) normal alphabet, if eulergreek or symbolgreek we adapt. There is also a special adjustment if the package fourier was loaded in its upright variant: we then take \omicron from the (original) rm alphabet.

```
1174 \mst@goaheadfalse
1175 \def\mst@omicron {\mst@alph@omicron{o}}
1176 \fi
1177 \fi
1178 \fi
1179 \fi
1180 \ifmst@goahead
1181 \DeclareMathSymbol{\mst@Alpha}{\mst@mathord}{\mst@font@tbu}{"41}
1182 \DeclareMathSymbol{\mst@Beta}{\mst@mathord}{\mst@font@tbu}{"42}
1183 \DeclareMathSymbol{\mst@Epsilon}{\mst@mathord}{\mst@font@tbu}{"45}
1184 \DeclareMathSymbol{\mst@Zeta}{\mst@mathord}{\mst@font@tbu}{"5A}
1185 \DeclareMathSymbol{\mst@Eta}{\mst@mathord}{\mst@font@tbu}{"48}
1186 \DeclareMathSymbol{\mst@Iota}{\mst@mathord}{\mst@font@tbu}{"49}
1187 \DeclareMathSymbol{\mst@Kappa}{\mst@mathord}{\mst@font@tbu}{"4B}
1188 \DeclareMathSymbol{\mst@Mu}{\mst@mathord}{\mst@font@tbu}{"4D}
1189 \DeclareMathSymbol{\mst@Nu}{\mst@mathord}{\mst@font@tbu}{"4E}
1190 \DeclareMathSymbol{\mst@Omicron}{\mst@mathord}{\mst@font@tbu}{"4F}
1191 \DeclareMathSymbol{\mst@Rho}{\mst@mathord}{\mst@font@tbu}{"50}
```

```
1192 \DeclareMathSymbol{\mst@Tau}{\mst@mathord}{\mst@font@tbu}{"54}
1193 \DeclareMathSymbol{\mst@Chi}{\mst@mathord}{\mst@font@tbu}{"58}
```

When we in fact use Symbol, we have to correct $\backslash \mathrm{Rho}$ and $\backslash$ Chi. And $\backslash$ Digamma is non-existent in fact (no F in Symbol, F codes a $\backslash \mathrm{Phi}$ ).
1194 \ifx\mst@mathord\mathord
symbolgreek but neither eulergreek nor selfGreek

| $\begin{aligned} & 1195 \% \% \\ & 1196 \end{aligned}$ | attention le P de Symbol est un \Pi pas un \Rho \DeclareMathSymbol\{\mst@Rho\}\{\mathord\}\{mtpsymbol\}\{"52\} |
| :---: | :---: |
| 1197 \%\% | attention le X de Symbol est un \Xi pas un \Chi |
| 1198 | \DeclareMathSymbol\{\mst@Chi\}\{\mathord\}\{mtpsymbol\}\{"43\} |
| 1199 \%\% | attention le F de Symbol est un \Phi. Il n'y a pas de \Digamma |
| 1200 | \DeclareMathSymbol\{\mst@Gamma\}\{\mathord\}\{mtpsymbol\}\{"47\} |
| 1201 | \DeclareMathSymbol\{\mst@Delta\}\{\mathord\}\{mtpsymbol\}\{"44\} |
| 1202 | \DeclareMathSymbol\{\mst@Theta\}\{\mathord\}\{mtpsymbol\}\{"51\} |
| 1203 | \DeclareMathSymbol\{\mst@Lambda\}\{\mathord\}\{mtpsymbol\}\{"4C\} |
| 1204 | \DeclareMathSymbol\{\mst@Xi\}\{\mathord\}\{mtpsymbol\}\{"58\} |
| 1205 | $\backslash$ DeclareMathSymbol\{\mst@Pi\}\{\mathord\} \{mtpsymbol\}\{"50\} |
| 1206 | \DeclareMathSymbol\{\mst@Sigma\}\{\mathord\}\{mtpsymbol\}\{"53\} |
| 1207 | \DeclareMathSymbol\{\mst@Upsilon\}\{\mathord\}\{mtpsymbol\}\{"A1\} |
| 1208 | \DeclareMathSymbol\{\mst@Phi\}\{\mathord\}\{mtpsymbol\}\{"46\} |
| 1209 | \DeclareMathSymbol\{\mst@Psi\}\{\mathord\}\{mtpsymbol\}\{"59\} |
| 1210 | \DeclareMathSymbol\{\mst@Omega\}\{\mathord\}\{mtpsymbol\}\{"57\} |
|  | else \% de \mst@mathord=\mathord |

not symbolgreek but eulergreek or selfGreek. Note 2015/10/31 : apparemment à un moment dans le passé je considérais eulergreek et selfGreek comme pouvant être utilisés simultanément car j'avais ici "or both". Mais je laisse tomber tout effort réel de m'en préoccuper.

| 1212 | $\backslash$ DeclareMathSymbol\mst@Digamma | \{\mathalpha\}\{\mst@font@tbu\}\{"46\} |
| :---: | :---: | :---: |
| 1213 | \DeclareMathSymbol\mst@Gamma | \{\mathalpha\}\{\mst@font@tbu\}\{"00\} |
| 1214 | \DeclareMathSymbol\mst@Delta | \{\mathalpha\}\{\mst@font@tbu\}\{"01\} |
| 1215 | $\backslash$ DeclareMathSymbol\mst@Theta | \{\mathalpha\}\{\mst@font@tbu\}\{"02\} |
| 1216 | \DeclareMathSymbol\mst@Lambda | \{\mathalpha\}\{\mst@font@tbu\}\{"03\} |
| 1217 | \DeclareMathSymbol\mst@Xi | \{\mathalpha\}\{\mst@font@tbu\}\{"04\} |
| 1218 | \DeclareMathSymbol\mst@Pi | \{\mathalpha\}\{\mst@font@tbu\}\{"05\} |
| 1219 | $\backslash$ DeclareMathSymbol\mst@Sigma | \{\mathalpha\}\{\mst@font@tbu\}\{"06\} |
| 1220 | $\backslash$ DeclareMathSymbol\mst@Upsilon | \{\mathalpha\}\{\mst@font@tbu\}\{"07\} |
| 1221 | $\backslash$ DeclareMathSymbol\mst@Phi | \{\mathalpha\}\{\mst@font@tbu\}\{"08\} |
| 1222 | \DeclareMathSymbol\mst@Psi | \{\mathalpha\}\{\mst@font@tbu\}\{"09\} |
| 1223 | \DeclareMathSymbol\mst@Omega | \{\mathalpha\}\{\mst@font@tbu\}\{"OA\} |
| 1224 | fi \% de \mst@mathord=\mathord |  |
| 1225 \fi \% fin de goahead |  |  |

There are differences regarding Euler and Symbol with respect to the available var-letters. We include one or two things like the wp and the partial.

The lower case Greek letters in default $\mathrm{A}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}}$ are of type mathord. If we use the Euler font it is perhaps better to have them be of type mathalpha

```
1226 \ifmst@goahead
1227 \ifmst@eulergreek
1228 \DeclareMathSymbol{\mst@alpha} {\mathalpha}{mteulervm}{"OB}
```

$1260 \backslash$ DeclareMathSymbol\{\mst@partial\}\{\mathalpha\}\{mteulervm\}\{"40\}
1261 \DeclareMathSymbol\{\mst@wp\}\{\mathalpha\}\{mteulervm\}\{"7D\}
1262 \DeclareMathSymbol\{\mst@ell\}\{\mathalpha\}\{mteulervm\}\{"60\}
\DeclareMathSymbol\{\mst@beta\} \{\mathalpha\}\{mteulervm\}\{"0C\}
\DeclareMathSymbol\{\mst@gamma\} \{\mathalpha\}\{mteulervm\}\{"OD\}
\DeclareMathSymbol\{\mst@delta\} \{\mathalpha\}\{mteulervm\}\{"0E\}
\DeclareMathSymbol\{\mst@epsilon\}\{\mathalpha\}\{mteulervm\}\{"0F\}
\DeclareMathSymbol\{\mst@zeta\} \{\mathalpha\}\{mteulervm\}\{"10\}
\DeclareMathSymbol\{\mst@eta\} \{\mathalpha\}\{mteulervm\}\{"11\}
\DeclareMathSymbol\{\mst@theta\} \{\mathalpha\}\{mteulervm\}\{"12\}
\DeclareMathSymbol\{\mst@iota\} \{\mathalpha\}\{mteulervm\}\{"13\}
\DeclareMathSymbol\{\mst@kappa\} \{\mathalpha\}\{mteulervm\}\{"14\}
\DeclareMathSymbol\{\mst@lambda\} \{\mathalpha\}\{mteulervm\}\{"15\}
\DeclareMathSymbol\{\mst@mu\} \{\mathalpha\}\{mteulervm\}\{"16\}
\DeclareMathSymbol\{\mst@nu\} \{\mathalpha\}\{mteulervm\}\{"17\}
\DeclareMathSymbol\{\mst@xi\} \{\mathalpha\}\{mteulervm\}\{"18\}
\DeclareMathSymbol\{\mst@omicron\}\{\mathalpha\}\{mteulervm\}\{"6F\}
\DeclareMathSymbol\{\mst@pi\} \{\mathalpha\}\{mteulervm\}\{"19\}
\DeclareMathSymbol\{\mst@rho\} \{\mathalpha\}\{mteulervm\}\{"1A\}
\DeclareMathSymbol\{\mst@sigma\} \{\mathalpha\}\{mteulervm\}\{"1B\}
\DeclareMathSymbol\{\mst@tau\} \{\mathalpha\}\{mteulervm\}\{"1C\}
\DeclareMathSymbol\{\mst@upsilon\}\{\mathalpha\}\{mteulervm\}\{"1D\}
\DeclareMathSymbol\{\mst@phi\} \{\mathalpha\}\{mteulervm\}\{"1E\}
\DeclareMathSymbol\{\mst@chi\} \{\mathalpha\}\{mteulervm\}\{"1F\}
\DeclareMathSymbol\{\mst@psi\} \{\mathalpha\}\{mteulervm\}\{"20\}
\DeclareMathSymbol\{\mst@omega\} \{\mathalpha\}\{mteulervm\}\{"21\}
\DeclareMathSymbol\{\mst@varepsilon\}\{\mathalpha\}\{mteulervm\}\{"22\}
\DeclareMathSymbol\{\mst@vartheta\}\{\mathalpha\}\{mteulervm\}\{"23\}
\DeclareMathSymbol\{\mst@varpi\} \{\mathalpha\}\{mteulervm\}\{"24\}
\let $\backslash m s t @ v a r r h o=\backslash m s t @ r h o$
\let\mst@varsigma=\mst@sigma
\DeclareMathSymbol\{\mst@varphi\} \{\mathalpha\}\{mteulervm\}\{"27\}
\else
\ifmst@symbolgreek
\DeclareMathSymbol\{\mst@alpha\}\{\mathord\}\{mtpsymbol\}\{"61\}
\DeclareMathSymbol\{\mst@beta\}\{\mathord\}\{mtpsymbol\}\{"62\}
\DeclareMathSymbol\{\mst@gamma\}\{\mathord\}\{mtpsymbol\}\{"67\}
\DeclareMathSymbol\{\mst@delta\}\{\mathord\}\{mtpsymbol\}\{"64\}
\DeclareMathSymbol\{\mst@epsilon\}\{\mathord\}\{mtpsymbol\}\{"65\}
\DeclareMathSymbol\{\mst@zeta\}\{\mathord\}\{mtpsymbol\}\{"7A\}
\DeclareMathSymbol\{\mst@eta\}\{\mathord\}\{mtpsymbol\}\{"68\}
\DeclareMathSymbol\{\mst@theta\}\{\mathord\}\{mtpsymbol\}\{"71\}
\DeclareMathSymbol\{\mst@iota\}\{\mathord\}\{mtpsymbol\}\{"69\}
\DeclareMathSymbol\{\mst@kappa\}\{\mathord\}\{mtpsymbol\}\{"6B\}
\DeclareMathSymbol\{\mst@lambda\}\{\mathord\}\{mtpsymbol\}\{"6C\}
\DeclareMathSymbol\{\mst@mu\}\{\mathord\}\{mtpsymbol\}\{"6D\}
\DeclareMathSymbol\{\mst@nu\}\{\mathord\}\{mtpsymbol\}\{"6E\}

| 1278 | $\backslash$ D |
| :---: | :---: |
| 1279 | \DeclareMathSymbol\{\mst@omicron\}\{\mathord\}\{mtpsymbol\}\{"6F\} |
| 1280 | \DeclareMathSymbol\{\mst@pi\}\{\mathord\}\{mtpsymbol\}\{"70\} |
| 1281 | \DeclareMathSymbol\{\mst@rho\}\{\mathord\}\{mtpsymbol\}\{"72\} |
| 1282 | \DeclareMathSymbol\{\mst@sigma\}\{\mathord\}\{mtpsymbol\}\{"73\} |
| 1283 | \DeclareMathSymbol\{\mst@tau\}\{\mathord\}\{mtpsymbol\}\{"74\} |
| 1284 | \DeclareMathSymbol\{\mst@upsilon\}\{\mathord\}\{mtpsymbol\}\{"75\} |
| 1285 | \DeclareMathSymbol\{\mst@phi\}\{\mathord\}\{mtpsymbol\}\{"66\} |
| 1286 | \DeclareMathSymbol\{\mst@chi\}\{\mathord\}\{mtpsymbol\}\{"63\} |
| 1287 | \DeclareMathSymbol\{\mst@psi\}\{\mathord\}\{mtpsymbol\}\{"79\} |
| 1288 | \DeclareMathSymbol\{\mst@omega\}\{\mathord\}\{mtpsymbol\}\{"77\} |
| 1289 | \let\mst@varepsilon=\mst@epsilon |
| 1290 | \DeclareMathSymbol\{\mst@vartheta\}\{\mathord\}\{mtpsymbol\}\{"4A\} |
| 1291 | \DeclareMathSymbol\{\mst@varpi\}\{\mathord\}\{mtpsymbol\}\{"76\} |
| 1292 | $\backslash \mathrm{let} \backslash \mathrm{mst@varrho=} \mathrm{\ mst@rho}$ |
| 1293 | \DeclareMathSymbol \{\mst@varsigma\}\{\mathord\}\{mtpsymbol\}\{"56\} |
| 1294 | \DeclareMathSymbol\{\mst@varphi\}\{\mathord\} \{mtpsymbol\}\{"6A\} |
| 1295 | \DeclareMathSymbol\{\mst@partial\}\{\mathord\}\{mtpsymbol\}\{"B6\} |
| 1296 | \DeclareMathSymbol\{\mst@wp\}\{\mathord\}\{mtpsymbol\}\{"C3\} |
| 1297 | $\backslash \mathrm{fi}$ |
| 1298 | $\backslash f i$ |
|  |  |

\alphaup etc... Completely refactored at $1.3 x$ to define \Alphaup, \Alphait, \alphaup, \alphait, etc... and prepare templates $\backslash A l p h a, \ldots, \backslash a l p h a, \ldots$, which when activating a math version will be submitted to an \expanded, whose behaviour will depend on version-specific conditionals.
1300 \ifmst@LGRgreek
1301 \% cf http://milde.users.sourceforge.net/LGR/lgrxenc.def.html
$1302 \%$ et greek.ldf du package babel
1303 \DeclareMathSymbol\{\Alphaup\}\{\mathalpha\}\{mtgreekup\}\{65\}
1304 \DeclareMathSymbol\{\Betaup\}\{\mathalpha\}\{mtgreekup\}\{66\}
1305 \DeclareMathSymbol\{\Epsilonup\}\{\mathalpha\}\{mtgreekup\}\{69\}
1306 \DeclareMathSymbol\{\Zetaup\}\{\mathalpha\}\{mtgreekup\}\{90\}
1307 \DeclareMathSymbol\{\Etaup\}\{\mathalpha\}\{mtgreekup\}\{72\}
1308 \DeclareMathSymbol\{\Iotaup\}\{\mathalpha\}\{mtgreekup\}\{73\}
1309 \DeclareMathSymbol\{\Kappaup\}\{\mathalpha\}\{mtgreekup\}\{75\}
1310 \DeclareMathSymbol\{\Muup\}\{\mathalpha\}\{mtgreekup\}\{77\}
1311 \DeclareMathSymbol\{\Nuup\}\{\mathalpha\}\{mtgreekup\}\{78\}
1312 \DeclareMathSymbol\{\Omicronup\}\{\mathalpha\}\{mtgreekup\}\{79\}
1313 \DeclareMathSymbol\{\Rhoup\}\{\mathalpha\}\{mtgreekup\}\{82\}
1314 \DeclareMathSymbol\{\Tauup\}\{\mathalpha\}\{mtgreekup\}\{84\}
1315 \DeclareMathSymbol\{\Chiup\}\{\mathalpha\}\{mtgreekup\}\{81\}
1316 \%
1317 \DeclareMathSymbol\{\Alphait\}\{\mathalpha\}\{mtgreekit\}\{65\}
1318 \DeclareMathSymbol\{\Betait\}\{\mathalpha\}\{mtgreekit\}\{66\}
1319 \DeclareMathSymbol\{\Epsilonit\}\{\mathalpha\}\{mtgreekit\}\{69\}
1320 \DeclareMathSymbol\{\Zetait\}\{\mathalpha\}\{mtgreekit\}\{90\}
1321 \DeclareMathSymbol\{\Etait\}\{\mathalpha\}\{mtgreekit\}\{72\}
1322 \DeclareMathSymbol\{\Iotait\}\{\mathalpha\}\{mtgreekit\}\{73\}

| 1323 | \DeclareMathSymbol\{\Kappait\}\{\mathalpha\}\{mtgreekit\}\{75\} |
| :---: | :---: |
| 1324 | \DeclareMathSymbol\{\Muit\}\{\mathalpha\}\{mtgreekit\}\{77\} |
| 1325 | \DeclareMathSymbol\{\Nuit\}\{\mathalpha\}\{mtgreekit\}\{78\} |
| 1326 |  |
| 27 | $\backslash$ DeclareMathSymbol\{ |
| Rhoit\}\{\mathalpha\}\{mtgreekit\}\{82\} |  |
| 328 | $\backslash$ DeclareMathSymbol\{\Tauit\}\{\mathalpha\}\{mtgreekit\} \{84\} |
| 1329 | \DeclareMathSymbol\{ |
| Chiit\}\{\mathalpha\}\{mtgreekit\} \{81\} |  |

1.3w and earlier had a bug regarding Digamma which was set up to use same font shape as for lowercase digamma.

| 1330 | \DeclareMathSymbol\{\Digam |
| :---: | :---: |
| 1331 | \DeclareMathSymbol\{\Digammait\}\{\mathalpha\}\{mtgreekit\} \{195\} |
| 1332 | \% |
| 1333 | \DeclareMathSymbol \{\Gammaup\} \{\mathalpha\}\{mtgreekup\} \{71\} |
| 1334 | \DeclareMathSymbol\{\Deltaup\}\{\mathalpha\}\{mtgreekup\}\{68\} |
| 1335 | \DeclareMathSymbol $\left\{\backslash\right.$ Thetaup\}\{\mathalpha\}\{mtgreekup\} ${ }^{\text {a }}$ (74\} |
| 1336 | \DeclareMathSymbol\{\Lambdaup\}\{\mathalpha\}\{mtgreekup\}\{76\} |
| 1337 | \DeclareMathSymbol\{\Xiup\}\{\mathalpha\}\{mtgreekup\}\{88\} |
| 1338 | \DeclareMathSymbol\{\Piup\}\{\mathalpha\}\{mtgreekup\}\{80\} |
| 1339 | \DeclareMathSymbol\{\Sigmaup\}\{\mathalpha\}\{mtgreekup\}\{83\} |
| 1340 | \DeclareMathSymbol\{\Upsilonup\}\{\mathalpha\}\{mtgreekup\}\{85\} |
| 1341 | \DeclareMathSymbol\{\Phiup\}\{\mathalpha\}\{mtgreekup\}\{70\} |
| 1342 | \DeclareMathSymbol $\{\backslash$ Psiup\}\{\mathalpha\}\{mtgreekup\}\{89\} |
| 1343 | \DeclareMathSymbol \{\0megaup\}\{\mathalpha\}\{mtgreekup\}\{87\} |
| 1344 | \% |
| 1345 | \DeclareMathSymbol $\left\{\backslash\right.$ Gammait\}\{\mathalpha\}\{mtgreekit\} ${ }^{\text {a }}$ (71\} |
| 1346 |  |
| 1347 | \DeclareMathSymbol $\{\backslash$ Thetait\}\{\mathalpha\}\{mtgreekit\} $\{74\}$ |
| 1348 | \DeclareMathSymbol\{\Lambdait\}\{\mathalpha\}\{mtgreekit\}\{76\} |
| 1349 | \DeclareMathSymbol\{\Xiit\}\{\mathalpha\}\{mtgreekit\}\{88\} |
| 1350 | \DeclareMathSymbol\{\Piit\}\{\mathalpha\}\{mtgreekit\}\{80\} |
| 1351 | \DeclareMathSymbol\{\Sigmait\}\{\mathalpha\}\{mtgreekit\}\{83\} |
| 1352 | \DeclareMathSymbol\{\Upsilonit\}\{\mathalpha\}\{mtgreekit\}\{85\} |
| 1353 | \DeclareMathSymbol $\left\{\backslash\right.$ Phiit\} $\left\{\backslash\right.$ mathalpha\}\{mtgreekit\} ${ }^{\text {a }}$ (70\} |
| 1354 | \DeclareMathSymbol\{\Psiit\}\{\mathalpha\}\{mtgreekit\}\{89\} |
| 1355 | \DeclareMathSymbol\{\0megait\}\{\mathalpha\}\{mtgreekit\}\{87\} |
| 1356 | \% |
| 1357 | \def\mst@Alpha\{\ifmst@greek@upper@up\Alphaup\else\Alphait\fi\}\% |
| 1358 | \def \mst@Beta\{\ifmst@greek@upper@up\Betaup\else\Betait\fi\}\% |
| 1359 | \def\mst@Epsilon\{\ifmst@greek@upper@up\Epsilonup\else\Epsilonit\fi\}\% |
| 1360 | \def\mst@Zeta\{\ifmst@greek@upper@up\Zetaup\else\Zetait\fi\}\% |
| 1361 | \def\mst@Eta\{\ifmst@greek@upper@up\Etaup\else\Etait\fi\}\% |
| 1362 | \def \mst@Iota\{\ifmst@greek@upper@up\Iotaup\else\Iotait\fi\}\% |
| 1363 | \def\mst@Kappa\{\ifmst@greek@upper@up\Kappaup\else\Kappait\fi\}\% |
| 1364 | \def \mst@Mu\{\ifmst@greek@upper@up\Muup\else\Muit\fi\}\% |
| 1365 | \def \mst@Nu\{\ifmst@greek@upper@up\Nuup\else\Nuit\fi\}\% |
| 1366 | \def \mst@Omicron\{\ifmst@greek@upper@up\Omicronup\else\Omicronit\fi\}\% |
| 1367 | $\backslash d e f \backslash m s t @ R h o\{\backslash i f m s t @ g r e e k @ u p p e r @ u p \backslash R h o u p \backslash e l s e \backslash R h o i t \backslash f i\} \%$ |
| 1368 |  |
| 1369 | \def\mst@Chi\{\ifmst@greek@upper@up\Chiup\else\Chiit\fi\}\% |

1373 \def\mst@Gamma\{\ifmst@greek@upper@up\Gammaup\else\Gammait\fi\}\%
1374 \def\mst@Delta\{\ifmst@greek@upper@up\Deltaup\else\Deltait\fi\}\%
1375 \def\mst@Theta\{\ifmst@greek@upper@up\Thetaup\else\Thetait\fi\}\%
1376 \def \mst@Lambda\{\ifmst@greek@upper@up\Lambdaup\else\Lambdait\fi\}\%
1377 \def\mst@Xi\{\ifmst@greek@upper@up\Xiup\else\Xiit\fi\}\%
1378 \def\mst@Pi\{\ifmst@greek@upper@up\Piup\else\Piit\fi\}\%
1379 \def\mst@Sigma\{\ifmst@greek@upper@up\Sigmaup\else\Sigmait\fi\}\%
$1380 \backslash d e f \backslash m s t @ U p s i l o n\{\backslash i f m s t @ g r e e k @ u p p e r @ u p \backslash U p s i l o n u p \backslash e l s e \backslash U p s i l o n i t \backslash f i\} \%$
1381 \def\mst@Phi\{\ifmst@greek@upper@up\Phiup\else\Phiit\fi\}\%
$1382 \backslash d e f \backslash m s t @ P s i\{\backslash i f m s t @ g r e e k @ u p p e r @ u p \backslash P s i u p \backslash e l s e \backslash P s i i t \backslash f i\} \%$
1383 \def\mst@Omega\{\ifmst@greek@upper@up\Omegaup\else\Omegait\fi\}\%
1384 \%
$1385 \backslash$ DeclareMathSymbol\{\alphaup\}\{\mathalpha\}\{mtgreekup\}\{97\}
$1386 \backslash$ DeclareMathSymbol\{\betaup\}\{\mathalpha\}\{mtgreekup\}\{98\}
$1387 \backslash$ DeclareMathSymbol\{\gammaup\}\{\mathalpha\}\{mtgreekup\}\{103\}
$1388 \backslash$ DeclareMathSymbol\{\deltaup\}\{\mathalpha\}\{mtgreekup\}\{100\}
1389 \DeclareMathSymbol\{\epsilonup\}\{\mathalpha\}\{mtgreekup\}\{101\}
$1390 \backslash$ DeclareMathSymbol\{\zetaup\}\{\mathalpha\}\{mtgreekup\}\{122\}
$1391 \backslash$ DeclareMathSymbol\{\etaup\}\{\mathalpha\}\{mtgreekup\}\{104\}
$1392 \backslash$ DeclareMathSymbol\{\thetaup $\}\{$ mathalpha\}\{mtgreekup\}\{106\}
$1393 \backslash$ DeclareMathSymbol\{\iotaup\}\{\mathalpha\}\{mtgreekup\}\{105\}
$1394 \backslash$ DeclareMathSymbol\{\kappaup\}\{\mathalpha\}\{mtgreekup\}\{107\}
$1395 \backslash$ DeclareMathSymbol\{\lambdaup\}\{\mathalpha\}\{mtgreekup\}\{108\}
$1396 \backslash$ DeclareMathSymbol\{\muup\}\{\mathalpha\}\{mtgreekup\}\{109\}
$1397 \backslash$ DeclareMathSymbol\{\nuup\}\{\mathalpha\}\{mtgreekup\}\{110\}
$1398 \backslash$ DeclareMathSymbol\{\xiup\}\{\mathalpha\}\{mtgreekup\}\{120\}
$1399 \backslash$ DeclareMathSymbol\{\omicronup\}\{\mathalpha\}\{mtgreekup\}\{111\}
$1400 \backslash$ DeclareMathSymbol\{\piup\}\{\mathalpha\}\{mtgreekup\}\{112\}
$1401 \backslash$ DeclareMathSymbol\{\rhoup\}\{\mathalpha\}\{mtgreekup\}\{114\}
$1402 \backslash$ DeclareMathSymbol\{\sigmaup\}\{\mathalpha\}\{mtgreekup\}\{115\}
$1403 \backslash$ DeclareMathSymbol\{\tauup\}\{\mathalpha\}\{mtgreekup\}\{116\}
$1404 \backslash$ DeclareMathSymbol\{\upsilonup\}\{\mathalpha\}\{mtgreekup\}\{117\}
$1405 \backslash$ DeclareMathSymbol\{\phiup\}\{\mathalpha\}\{mtgreekup\}\{102\}
$1406 \backslash$ DeclareMathSymbol\{\chiup\}\{\mathalpha\}\{mtgreekup\}\{113\}
$1407 \backslash$ DeclareMathSymbol\{\psiup\}\{\mathalpha\}\{mtgreekup\}\{121\}
$1408 \backslash$ DeclareMathSymbol\{\omegaup\}\{\mathalpha\}\{mtgreekup\}\{119\}
1409 \%
$1410 \backslash$ DeclareMathSymbol\{\digammaup\}\{\mathalpha\}\{mtgreekup\}\{147\}
$1411 \%$ only varsigma defined (I should check this again)
$1412 \backslash$ DeclareMathSymbol\{\varsigmaup\}\{\mathalpha\}\{mtgreekup\}\{99\}
1413 \%
$1414 \backslash$ DeclareMathSymbol\{\alphait\}\{\mathalpha\}\{mtgreekit\}\{97\}
$1415 \backslash$ DeclareMathSymbol\{\betait\}\{\mathalpha\}\{mtgreekit\}\{98\}
$1416 \backslash$ DeclareMathSymbol\{\gammait\}\{\mathalpha\}\{mtgreekit\}\{103\}
$1417 \backslash$ DeclareMathSymbol\{\deltait\}\{\mathalpha\}\{mtgreekit\}\{100\}
$1418 \backslash$ DeclareMathSymbol\{\epsilonit\}\{\mathalpha\}\{mtgreekit\}\{101\}

| 1419 | $\backslash D \epsilon$ |
| :---: | :---: |
| 1420 | \DeclareMathSymbol\{\etait\}\{\mathalpha\}\{mtgreekit\}\{104\} |
| 1421 | \DeclareMathSymbol\{\thetait\}\{\mathalpha\} \{mtgreekit\} \{106\} |
| 1422 | $\backslash$ DeclareMathSymbol\{\iotait\}\{\mathalpha\}\{mtgreekit\}\{105\} |
| 1423 | $\backslash$ DeclareMathSymbol\{\kappait\}\{\mathalpha\} \{mtgreekit\}\{107\} |
| 1424 | \DeclareMathSymbol\{\lambdait\}\{\mathalpha\}\{mtgreekit\}\{108\} |
| 1425 |  |
| 1426 | \DeclareMathSymbol $\{\backslash$ nuit\} $\{\backslash$ mathalpha\}\{mtgreekit\} $\{110\}$ |
| 1427 | \DeclareMathSymbol $\{\backslash x i i t\}\{\backslash$ mathalpha\}\{mtgreekit\} $\{120\}$ |
| 1428 | \DeclareMathSymbol\{\omicronit\}\{\mathalpha\}\{mtgreekit\}\{111\} |
| 1429 | \DeclareMathSymbol $\{\backslash \mathrm{piit}\}\{\backslash$ mathalpha\}\{mtgreekit\} $\{112\}$ |
| 1430 | \DeclareMathSymbol\{\rhoit\}\{\mathalpha\}\{mtgreekit\}\{114\} |
| 1431 | $\backslash$ DeclareMathSymbol\{\sigmait\}\{\mathalpha\}\{mtgreekit\}\{115\} |
| 1432 | $\backslash$ DeclareMathSymbol\{\tauit\}\{\mathalpha\}\{mtgreekit\}\{116\} |
| 1433 | \DeclareMathSymbol\{\upsilonit\}\{\mathalpha\}\{mtgreekit\} \{117\} |
| 1434 | \DeclareMathSymbol\{\phiit\}\{\mathalpha\}\{mtgreekit\}\{102\} |
| 1435 | \DeclareMathSymbol\{\chiit\}\{\mathalpha\}\{mtgreekit\}\{113\} |
| 1436 | $\backslash$ DeclareMathSymbol\{\psiit\}\{\mathalpha\}\{mtgreekit\}\{121\} |
| 1437 | \DeclareMathSymbol\{\omegait\}\{\mathalpha\}\{mtgreekit\}\{119\} |
| 1438 | \% |
| 1439 | \DeclareMathSymbol\{\digammait\}\{\mathalpha\}\{mtgreekit\} \{147\} |
| 1440 | $\backslash$ DeclareMathSymbol\{\varsigmait\}\{\mathalpha\}\{mtgreekit\}\{99\} |
| 1441 | \% |
| 1442 | $\backslash d e f \backslash m s t @ a l p h a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash a l p h a u p \ e l s e \backslash a l p h a i t \backslash f i\} \% ~$ |
| 1443 | $\backslash d e f \backslash m s t @ b e t a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash b e t a u p \ e l s e \backslash b e t a i t ~ \ f i\} \% ~$ |
| 1444 | \def\mst@gamma\{\ifmst@greek@lower@up\gammaup\else\gammait\fi\}\% |
| 1445 | $\backslash d e f \backslash m s t @ d e l t a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash d e l t a u p \ e l s e \backslash d e l t a i t \ f i\} \% ~$ |
| 1446 | \def \mst@epsilon\{\ifmst@greek@lower@up\epsilonup\else\epsilonit\fi\}\% |
| 1447 | $\backslash d e f \backslash m s t @ z e t a\{\backslash i f m s t @ g r e e k @ 1 o w e r @ u p \backslash z e t a u p \ e l s e \backslash z e t a i t \ f i\} \% ~$ |
| 1448 | \def\mst@eta\{\ifmst@greek@lower@up\etaup\else\etait\fi\}\% |
| 1449 | \def \mst@theta\{\ifmst@greek@lower@up\thetaup\else\thetait\fi\}\% |
| 1450 | $\backslash d e f \backslash m s t @ i o t a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \ i o t a u p \ e l s e \ i o t a i t \ f i\} \% ~$ |
| 1451 | \def\mst@kappa\{\ifmst@greek@lower@up\kappaup\else\kappait\fi\}\% |
| 1452 | $\backslash d e f \backslash m s t @ l a m b d a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash l a m b d a u p \ e l s e \backslash l a m b d a i t \backslash f i\} \% ~$ |
| 1453 | \def \mst@mu\{\ifmst@greek@lower@up\muup\else\muit\fi\}\% |
| 1454 | \def \mst@nu\{\ifmst@greek@lower@up\nuup\else\nuit\fi\}\% |
| 1455 | \def \mst@xi\{\ifmst@greek@lower@up\xiup\else\xiit $\backslash f i\} \%$ |
| 1456 | \def \mst@omicron\{\ifmst@greek@lower@up\omicronup\else\omicronit\fi\}\% |
| 1457 | \def \mst@pi\{\ifmst@greek@lower@up\piup\else\piit\fi\}\% |
| 1458 | $\backslash d e f \backslash m s t @ r h o\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash r h o u p \backslash e l s e \backslash r h o i t \backslash f i\} \% ~$ |
| 1459 | \def\mst@sigma\{\ifmst@greek@lower@up\sigmaup\else\sigmait\fi\}\% |
| 1460 | \def\mst@tau\{\ifmst@greek@lower@up\tauup\else\tauit\fi\}\% |
| 1461 | \def \mst@upsilon\{\ifmst@greek@lower@up\upsilonup\else\upsilonit\fi\}\% |
| 1462 | \def\mst@phi\{\ifmst@greek@lower@up\phiup\else\phiit\fi\}\% |
| 1463 | \def\mst@chi\{\ifmst@greek@lower@up\chiup\else\chiit\fi\}\% |
| 1464 | \def\mst@psi\{\ifmst@greek@lower@up\psiup\else\psiit\fi\}\% |
| 1465 | \def\mst@omega\{\ifmst@greek@lower@up\omegaup\else\omegait $\backslash$ fi\}\% |
| 1466 | \% |
| 1467 |  |

## 1468 \def\mst@varsigma\{\ifmst@greek@lower@up\varsigmaup\else\varsigmait\fi\}\%

 1469 \fi$\backslash$ MTstandardgreek \MTcustomgreek ecordstandardgreek
1.3d 2014/05/23 defines the commands \MTstandardgreek and \MTcustomgreek for package and user. I leave \MTrecordstandardgreek undocumented as I don't want to encourage people to load math packages after mathastext.
1.3h 2015/10/31: corrected \MTcustomgreek as it caused \ell to become undefined under option symbolgreek and, much more catastrophic, caused \alpha, etc.. to become undefined under option selfGreek!
1470 \newcommand*\{\MTstandardgreek\}\{\}
1471 \newcommand*\{\MTcustomgreek\} \{\}
1472 \newcommand*\{\MTrecordstandardgreek\}\{\}
1473 \ifmst@customgreek
1474 \{\%
1475 \let\mst@origAlpha\Alpha
1476 \let $\backslash m s t @ o r i g B e t a \backslash B e t a$
1477 \let\mst@origGamma\Gamma
1478 \let\mst@origDelta\Delta
1479 \let\mst@origEpsilon\Epsilon
1480 \let\mst@origZeta\Zeta
1481 \let\mst@origEta\Eta
$1482 \backslash$ let $\backslash m s t @ o r i g T h e t a \backslash T h e t a ~$
1483 \let\mst@origIota\Iota
1484 \let\mst@origKappa\Kappa
1485 \let\mst@origLambda\Lambda
1486 \let $\backslash m s t @ o r i g M u \backslash M u$
1487 \let $\backslash m s t @ o r i g N u \backslash N u$
1488 \let\mst@origXi\Xi
1489 \let\mst@origOmicron\Omicron
$1490 \backslash$ let $\backslash m s t @ o r i g P i \backslash P i$
1491 \let\mst@origRho\Rho
1492 \let\mst@origSigma\Sigma
1493 \let\mst@origTau\Tau
1494 \let\mst@origUpsilon\Upsilon
1495 \let\mst@origPhi\Phi
1496 \let $\backslash m s t @ o r i g C h i \backslash C h i$
1497 \let\mst@origPsi\Psi
1498 \let\mst@origOmega\Omega
1499 \%
1500 \let\mst@origalpha\alpha
1501 \let\mst@origbeta\beta
1502 \let\mst@origgamma\gamma
$1503 \backslash$ let $\backslash m s t @ o r i g d e l t a \backslash d e l t a$
1504 \let\mst@origepsilon\epsilon
1505 \let\mst@origvarepsilon\varepsilon
1506 \let\mst@origzeta\zeta
1507 \let\mst@origeta\eta
1508 \let\mst@origtheta\theta
1509 \let\mst@origvartheta\vartheta

| 1510 | \let\mst@origiota\iota |
| :---: | :---: |
| 1511 | \let\mst@origkappa\kappa |
| 1512 | \let\mst@origlambda\lambda |
| 1513 | \let\mst@origmu\mu |
| 1514 | \let\mst@orignu\nu |
| 1515 | \let\mst@origxi\xi |
| 1516 | \let\mst@origomicron\omicron |
| 1517 | \let\mst@origpi\pi |
| 1518 | \let\mst@origvarpi\varpi |
| 1519 | \let\mst@origrho\rho |
| 1520 | \let\mst@origvarrho\varrho |
| 1521 | \let\mst@origsigma\sigma |
| 1522 | \let\mst@origvarsigma\varsigma |
| 1523 | \let\mst@origtau\tau |
| 1524 | \let\mst@origupsilon\upsilon |
| 1525 | \let\mst@origphi\phi |
| 1526 | \let\mst@origvarphi\varphi |
| 1527 | \let\mst@origchi\chi |
| 1528 | \let\mst@origpsi\psi |
| 1529 | \let\mst@origomega\omega |
| 1530 | \let\mst@origDigamma\Digamma |
| 1531 | \let\mst@origdigamma\digamma |
| 1532 \% |  |
| 1533 | \let\mst@origpartial\partial |
| 1534 | \let\mst@origwp\wp |
| 1535 | \let\mst@origell\ell $3 \%$ \MTrecordstandardgreek |
| 1536 \MTrecordstandardgreek |  |
| 1537  \{\% |  |
| 1538 | $\backslash l e t \backslash A l p h a \backslash m s t @ o r i g A l p h a ~$ |
| 1539 | \let\Beta\mst@origBeta |
| 1540 | \let\Gamma\mst@origGamma |
| 1541 | \let\Delta\mst@origDelta |
| 1542 | \let\Epsilon\mst@origEpsilon |
| 1543 | \let\Zeta\mst@origZeta |
| 1544 | \let\Eta\mst@origEta |
| 1545 | \let\Theta\mst@origTheta |
| 1546 | \let\Iota\mst@origIota |
| 1547 | \let\Kappa\mst@origKappa |
| 1548 | \let\Lambda\mst@origLambda |
| 1549 | $\backslash l e t \backslash M u \ m s t @ o r i g M u ~$ |
| 1550 | \let\Nu\mst@origNu |
| 1551 | \let\Xi\mst@origXi |
| 1552 | \let\Omicron\mst@origOmicron |
| 1553 | \let\Pi\mst@origPi |
| 1554 | \let $\backslash$ Rho\mst@origRho |
| 1555 | \let\Sigma\mst@origSigma |
| 1556 | \let\Tau\mst@origTau |
| 1557 | \let\Upsilon\mst@origUpsilon |
| 1558 | \let\Phi\mst@origPhi |


| 1559 | \let\Chi\mst@origChi |
| :---: | :---: |
| 1560 | $\backslash l e t \backslash P s i \backslash m s t @ o r i g P s i$ |
| 1561 | \let\Omega\mst@origOmega |
| 1562 \% |  |
| 1563 | \let\alpha\mst@origalpha |
| 1564 | \let\beta\mst@origbeta |
| 1565 | \let\gamma\mst@origgamma |
| 1566 | \let\delta\mst@origdelta |
| 1567 | \let\epsilon\mst@origepsilon |
| 1568 | \let\varepsilon\mst@origvarepsilon |
| 1569 | \let\zeta\mst@origzeta |
| 1570 | \let\eta\mst@origeta |
| 1571 | \let\theta\mst@origtheta |
| 1572 | \let\vartheta\mst@origvartheta |
| 1573 | \let\iota\mst@origiota |
| 1574 | \let\kappa\mst@origkappa |
| 1575 | \let\lambda\mst@origlambda |
| 1576 | \let\mu\mst@origmu |
| 1577 | \let\nu\mst@orignu |
| 1578 | \let\xi\mst@origxi |
| 1579 | \let\omicron\mst@origomicron |
| 1580 | \let\pi\mst@origpi |
| 1581 | \let\varpi\mst@origvarpi |
| 1582 | \let\rho\mst@origrho |
| 1583 | \let\varrho\mst@origvarrho |
| 1584 | \let\sigma\mst@origsigma |
| 1585 | \let\varsigma\mst@origvarsigma |
| 1586 | \let\tau\mst@origtau |
| 1587 | \let\upsilon\mst@origupsilon |
| 1588 | \let\phi\mst@origphi |
| 1589 | \let\varphi\mst@origvarphi |
| 1590 | \let\chi\mst@origchi |
| 1591 | \let\psi\mst@origpsi |
| 1592 | \let\omega\mst@origomega |
| 1593 | \let\Digamma\mst@origDigamma |
| 1594 | \let\digamma\mst@origdigamma |
| 1595 \% |  |
| 1596 | \let\partial\mst@origpartial |
| 1597 | \let\wp\mst@origwp |
| 1598 | \let\ell\mst@origell |
| 1599 \}\% \MTstandardgreek |  |
| 1600 \i | mst@greekplus |

$1.3 z a$ implementation of LGRgreek+ option. It is not exactly clear what we should do for \mathnormal and \mathnormalbold.

This definition allows usage of \alpha for example in numerical context. To be completely clean perhaps we should get rid of final $\backslash f i$, but old-fashioned $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ does not have built-in conveniences, were it not for the nested if's simple \expandafter would do, but here we would need three in four places. Or simply wrap the whole in \expanded. Anyway, not really important.

[^38]| 1602 | \protected\def\#1\{\ifcase\mst@mathalph |
| :---: | :---: |
| 1603 | \ifmst@greek@lower@up\mathgreekup\{\#2\}\else\mathgreekit\{\#2\}\fi |
| 1604 | \or \% rm |
| 1605 | \mathgreekup\{\#2\}\% |
| 1606 | \or \% bf |
| 1607 | \mathgreekupbold\{\#2\}\% |
| 1608 | \or \% it |
| 1609 | \mathgreekit\{\#2\}\% |
| 1610 | \or \% normalbold |
| 1611 | \ifmst@greek@lower@up\mathgreekupbold\{\#2\}\else\mathgreekitbold\{\#2\}\fi |
| 1612 | \else \#2\fi\}\% |
| 1613 | \} |
| 1614 \def \mst@define@uppergreekletter\#1\#2\{\% |  |
| 1615 | \protected\def\#1\{\ifcase\mst@mathalph |
| 1616 | \ifmst@greek@upper@up\mathgreekup\{\#2\}\else\mathgreekit\{\#2\}\fi |
| 1617 | \or \% rm |
| 1618 | \mathgreekup\{\#2\}\% |
| 1619 | \or \% bf |
| 1620 | \mathgreekupbold\{\#2\}\% |
| 1621 | \or \% it |
| 1622 | \mathgreekit\{\#2\}\% |
| 1623 | \or \% mathnormalbold |
| 1624 | \ifmst@greek@upper@up\mathgreekupbold\{\#2\}\else\mathgreekitbold\{\#2\}\fi |
| 1625 | \else \#2\fi\}\% |
| 1626 | \} |
| 1627  \{\% |  |
| 1628 | \mst@define@uppergreekletter\Alpha\mst@Alpha |
| 1629 | \mst@define@uppergreekletter\Beta\mst@Beta |
| 1630 | \mst@define@uppergreekletter\Epsilon\mst@Epsilon |
| 1631 | \mst@define@uppergreekletter\Zeta\mst@Zeta |
| 1632 | \mst@define@uppergreekletter\Eta\mst@Eta |
| 1633 | \mst@define@uppergreekletter\Iota\mst@Iota |
| 1634 | \mst@define@uppergreekletter\Kappa\mst@Kappa |
| 1635 | \mst@define@uppergreekletter\Mu\mst@Mu |
| 1636 | \mst@define@uppergreekletter\Nu\mst@Nu |
| 1637 | \mst@define@uppergreekletter\Omicron\mst@Omicron |
| 1638 | \mst@define@uppergreekletter\Rho\mst@Rho |
| 1639 | \mst@define@uppergreekletter\Tau\mst@Tau |
| 1640 | $\backslash \mathrm{mst@define@uppergreekletter} \mathrm{\backslash Chi} \mathrm{\backslash mst@Chi}$ |
| 1641 | \mst@define@uppergreekletter\Digamma\mst@Digamma |
| 1642 | \mst@define@uppergreekletter\Gamma\mst@Gamma |
| 1643 | \mst@define@uppergreekletter\Delta\mst@Delta |
| 1644 | \mst@define@uppergreekletter\Theta\mst@Theta |
| 1645 | \mst@define@uppergreekletter\Lambda\mst@Lambda |
| 1646 | \mst@define@uppergreekletter\Xi\mst@Xi |
| 1647 | \mst@define@uppergreekletter\Pi\mst@Pi |
| 1648 | \mst@define@uppergreekletter\Sigma\mst@Sigma |
| 1649 | $\backslash m s t @ d e f i n e @ u p p e r g r e e k l e t t e r \backslash U p s i l o n \backslash m s t @ U p s i l o n ~$ |
| 1650 | \mst@define@uppergreekletter\Phi\mst@Phi |


| 1651 | \mst@define@uppergreekletter\Psi\mst@Psi |
| :---: | :---: |
| 1652 | \mst@define@uppergreekletter\Omega\mst@Omega |
| 1653 | \mst@define@lowergreekletter\alpha\mst@alpha |
| 1654 | \mst@define@lowergreekletter\beta\mst@beta |
| 1655 | \mst@define@lowergreekletter\gamma\mst@gamma |
| 1656 | \mst@define@lowergreekletter\delta\mst@delta |
| 1657 | \mst@define@lowergreekletter\epsilon\mst@epsilon |
| 1658 | \mst@define@lowergreekletter\zeta\mst@zeta |
| 1659 | \mst@define@lowergreekletter\eta\mst@eta |
| 1660 | \mst@define@lowergreekletter\theta\mst@theta |
| 1661 | \mst@define@lowergreekletter\iota\mst@iota |
| 1662 | \mst@define@lowergreekletter\kappa\mst@kappa |
| 1663 | \mst@define@lowergreekletter\lambda\mst@lambda |
| 1664 | \mst@define@lowergreekletter\mu\mst@mu |
| 1665 | \mst@define@lowergreekletter\nu\mst@nu |
| 1666 | \mst@define@lowergreekletter\xi\mst@xi |
| 1667 | \mst@define@lowergreekletter\omicron\mst@omicron |
| 1668 | \mst@define@lowergreekletter\pi\mst@pi |
| 1669 | \mst@define@lowergreekletter\rho\mst@rho |
| 1670 | \mst@define@lowergreekletter\sigma\mst@sigma |
| 1671 | \mst@define@lowergreekletter\tau\mst@tau |
| 1672 | \mst@define@lowergreekletter\upsilon\mst@upsilon |
| 1673 | \mst@define@lowergreekletter\phi\mst@phi |
| 1674 | \mst@define@lowergreekletter\chi\mst@chi |
| 1675 | \mst@define@lowergreekletter\psi\mst@psi |
| 1676 | \mst@define@lowergreekletter\omega\mst@omega |
| 1677 | \mst@define@lowergreekletter\varsigma\mst@varsigma |
| 1678 | \mst@define@lowergreekletter\digamma\mst@digamma |
| 1679 \}\% end of True branch of \ifmst@greekplus |  |
|  |  |

Under selfGreek or other Greek option but not LGRgreek, these Greek letter control sequences are already \mathchar's, but under LGRgreek they need (well not really, but I feel it is cleaner) expansion which will react to the Boolean saying if using 'upright' or 'italic'. This Boolean setting
 the document body. We must be careful not to contaminate things in the principal mode from math version declarations but I think my (now quite old) code is globally designed to achieve this protection see how \MTDeclareVersion is done. The \MTcustomgreek will always be executed in preamble at least once, except under subdued option.

The \expanded's act on unexpanding tokens if not used under LGRgreek regimen.

|  | newcommand*\{\MTcustomgreek\} \{\% |
| :---: | :---: |
| 1683 | \let\noexpand \Alpha\mst@Al |
| 1684 | \let \noexpand\Beta\mst@Beta |
| 1685 | \let\noexpand\Epsilon\mst@Epsilon |
| 1686 | \let\noexpand\Zeta\mst@Zeta |
| 1687 | \let\noexpand\Eta\mst@Eta |
| 1688 | \let $\backslash$ noexpand \Iota\mst@Iota |
| 1689 | \let\noexpand\Kappa\mst@Kappa |
| 1690 | \let\noexpand\Mu\mst@Mu |


| 1691 | \let\noexpand $\backslash \mathrm{Nu} \backslash \mathrm{mst@Nu}$ |  |
| :---: | :---: | :---: |
| 1692 | \let\noexpand\Omicron\mst@Omicron |  |
| 1693 | \let\noexpand \Rho\mst@Rho |  |
| 1694 | \let\noexpand\Tau\mst@Tau |  |
| 1695 | \let\noexpand\Chi\mst@Chi |  |
| 1696 | \}\% end of first big \expanded |  |
| 1697 \% | 1.3h: \mst@Digamma not defined if sy |  |
| 1698 | \ifmst@symbolgreek\else |  |
| 1699 | \expanded\{\let\noexpand\Digamm |  |
| 1700 | $\backslash f i$ |  |
| 1701 | \expanded\{\% |  |
| 1702 | \let\noexpand\Gamma\mst@Gamma |  |
| 1703 | \let \noexpand\Delta\mst@Delta |  |
| 1704 | \let\noexpand\Theta\mst@Theta |  |
| 1705 | \let $\backslash n o e x p a n d \backslash L a m b d a \ m s t @ L a m b d a ~$ |  |
| 1706 | \let\noexpand\Xi\mst@Xi |  |
| 1707 | $\backslash l e t \backslash n o e x p a n d \backslash P i \backslash m s t @ P i$ |  |
| 1708 | \let\noexpand\Sigma\mst@Sigma |  |
| 1709 | \let\noexpand\Upsilon\mst@Upsilon |  |
| 1710 | \let\noexpand\Phi\mst@Phi |  |
| 1711 | \let\noexpand\Psi\mst@Psi |  |
| 1712 | \let\noexpand\Omega\mst@0mega |  |
| 1713 | \}\% end of second big \expanded |  |
|  | h 2015/10/31 adds this conditional to correc pha etc... to become undefined under option | 2014/05/23 which caused |
| 1714 | \ifmst@selfGreek\else |  |
| 1715 | \expanded\{\% |  |
| 1716 | \let\noexpand\alpha\mst@alpha |  |
| 1717 | \let\noexpand\beta\mst@beta |  |
| 1718 | \let\noexpand\gamma\mst@gamma |  |
| 1719 | \let\noexpand\delta\mst@delta |  |
| 1720 | \let\noexpand\epsilon\mst@epsilon |  |
| 1721 | \let\noexpand\zeta\mst@zeta |  |
| 1722 | \let\noexpand\eta\mst@eta |  |
| 1723 | \let \noexpand\theta\mst@theta |  |
| 1724 | \let\noexpand\iota\mst@iota |  |
| 1725 | \let\noexpand\kappa\mst@kappa |  |
| 1726 | \let\noexpand\lambda\mst@lambda |  |
| 1727 | $\backslash l e t \backslash n o e x p a n d \backslash m u \backslash m s t @ m u$ |  |
| 1728 | $\backslash l e t \backslash n o e x p a n d \backslash n u \backslash m s t @ n u$ |  |
| 1729 | \let\noexpand\xi\mst@xi |  |
| 1730 | \let\noexpand\omicron\mst@omicron |  |
| 1731 | \let\noexpand \pi\mst@pi |  |
| 1732 | \let \noexpand \rho\mst@rho |  |
| 1733 | \let\noexpand\sigma\mst@sigma |  |
| 1734 | \let\noexpand\tau\mst@tau |  |
| 1735 | \let\noexpand\upsilon\mst@upsilon |  |
| 1736 | \let\noexpand \phi\mst@phi |  |
| 1737 | \let\noexpand\chi\mst@chi |  |

```
1738 \let\noexpand\psi\mst@psi
1739 \let\noexpand\omega\mst@omega
1740\\let\noexpand\varsigma\mst@varsigma
1741 }% end of third big \expanded
1742% 1.3h: digamma only defined with option LGRgreek:
1743 \ifmst@LGRgreek
1744 \expanded{\let\noexpand\digamma\mst@digamma}%
1745 \fi
1746% conditional added 1.3h 2015/10/31
1747 \ifmst@LGRgreek\else
1748 \let\varepsilon\mst@varepsilon
1749 \let\vartheta\mst@vartheta
1750 \let\varpi\mst@varpi
1751 \let\varrho\mst@varrho
1752 \let\varphi\mst@varphi
1753 %
1754 \let\partial\mst@partial
1755 \let\wp\mst@wp
1756% 1.3h: no \mst@ell if symbolgreek (bugfix 1.3h 2015/10/31)
1757 \ifmst@symbolgreek\else\let\ell\mst@ell\fi
1758 \fi
1759 \fi
1760 }% \MTcustomgreek
1761 \fi% end of else branch of \ifmst@greekplus
1762 \fi% end of \ifmst@customgreek
1763 \let\Mathastextstandardgreek\MTstandardgreek
1764 \let\Mathastextcustomgreek\MTcustomgreek
1765 \ifmst@subdued\else\MTcustomgreek\fi
```

\inodot In 1.0, I had them of type mathord, here I choose mathalpha. If I used $\backslash i$ and $\backslash j$ from the text \jnodot font the problem would be with the fontsize, if in scriptstyle. The amsmath \text would do the trick.
1.14b 2011/04/02: again this bug in the EU1/EU2 encoding part, as in the code redefining $\$$ etc in math mode (see above). Fixed.
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
$1.3 \mathrm{t} 2018 / 08 / 22$ removes the definitions done of $\backslash \mathrm{i}$ and $\backslash \mathrm{j}$ since 1.12 (as robust commands usable both in text and math mode).
1.3 u lets the \imath and \jmath react to the font encoding at each math version.
1.3 v lets the redefined \imath and $\backslash j m a t h$ be $\backslash$ protected.

```
1766 \def\mst@subduedinodot{%
1767 \let\inodot\mst@original@imath
1768 \let\jnodot\mst@original@jmath
1769 }%
1770 \def\mst@nonsubduedinodot{%
1771 \expandafter\let\expandafter\inodot
1772 \csname mst@inodot@mv\math@version\endcsname
1773 \expandafter\let\expandafter\jnodot
1774 \csname mst@jnodot@mv\math@version\endcsname
1775 }%
```

```
1776 \def\mst@dothe@inodotstuff#1#2#3{%
1777 \edef\mst@tmp@enc{#3}%
1778 \if1\mst@OneifUniEnc
1779 % Unicode engine and font
1780 \mst@Umathchardef#1="7 \symmtletterfont "0131 \relax
1781 \mst@Umathchardef#2="7 \symmtletterfont "0237 \relax
1782 \else
1783 \DeclareMathSymbol{#1}{\mathalpha}{mtletterfont}
 {\csname\mst@tmp@enc\string\i\endcsname}
 \DeclareMathSymbol{#2}{\mathalpha}{mtletterfont}
 {\csname\mst@tmp@enc\string\j\endcsname}
 \fi}% \mst@dothe@inodotstuff
1788 \ifmst@defaultimath\else\typeout{** \string\imath\space and \string\jmath\space}
1789 \AtEndOfPackage{\AtBeginDocument{%
1790 \protected\def\imath{\inodot}%
1791 \protected\def\jmath{\jnodot}%
1792 }}%
1793 \fi
```

math accents Obsolete comments relative to the 2011 code:
I don't know how to get from the encoding to the slot positions of the accents (apart from going to look at all possible encodings definition files and putting this info here). In standard $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$, the math accents are taken from the 'operators' font. So we do the same here. Of course there is the problem that the user can define math versions with different encodings. Here I take T1 if it was the default at the time of loading the package, else OT1. 1.12b: I add LY1 which is quasi like OT1.
At 1.3 u 2019/08/20 I decide to remove the hard-coded slot positions for OT1, T1 and LY1, and replace them with some hack which assumes LaTeX2e way of handling text accents got executed by the encoding definition file. If not, some breakage on package loading could occur, but this whole thing is conditional on the mathaccents option anyway, which per default is not executed.

The \vec accent is not considered here because it has no suitable available glyph in a standard 8 bits text font encodings.

Also at 1.3 u the math accents adapt to the font encoding at each math version.
1.3 v adapts to $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 which now comes with robust math accent macros. The «original»-named macros are without the robustifying space (NOT true anymore, see 1.3wnext), as they only serve as meaning holders.

On the other hand the macros indexed by math version names are (in the pdflatex branch) always defined via \DeclareMathAccent hence they will be robust with 2019-10-01 or later and we must use the \mst@robustifyingspace with them to access their real meaning (this thus differs from the situation with \hbar).
1.3w The above was a bit optimistic as amsmath for example modifies $\mathrm{IATEX}_{\mathrm{E}}$ internals and handles math accents differently.

We thus needed to double our \let's as, if amsmath is loaded, the cs with space will exist but not be paired in expected way with the original cs. This breaks things by the way if some math accent is written to an external file under a certain context and executed in another context. The new context will be probably ignored if amsmath is loaded, as the external file will have an already expanded-once meaning.

Some macros with space in name might thus be created as \relax. Should I rather create \protected macros for the math accents with Unicode engines? Anyway, the construct does give good result with the few OpenType text fonts I tested.

```
1794 \let\mst@subduedmathaccents\@empty
1795\let\mst@nonsubduedmathaccents\@empty
1796 \ifmst@mathaccents
1797\def\mst@subduedmathaccents{%
1798 \@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
1806 }%
1807\def\mst@nonsubduedmathaccents{%
1817\def\mst@dothe@mathaccentsstuff#1#2{%
1 8 1 8 ~ \ b e g i n g r o u p
1819 \edef\mst@tmp@enc{#2}%
1820 \def\@text@composite##1\@text@composite##2{##2}%
1821 \let\add@accent\@firstoftwo
1822 \let\add@unicode@accent\@firstoftwo
1823 \if1\mst@OneifUniEnc
1824 \ifmst@unimathaccents
1825 % \` -> \grave
1826 \expandafter\xdef\csname mst@grave@mv#1\mst@robustifyingspace\endcsname
1827 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\`\endcsname{}\relax}%
 % \' -> \acute
 \expandafter\xdef\csname mst@acute@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\'\endcsname{}\relax}%
 % \v -> \check
 1838 \expandafter\xdef\csname mst@check@mv#1\mst@robustifyingspace\endcsname
1839 {\mst@Umathaccent
```

```
1840 7
1841 \number\symmtoperatorfont\space
\csname#2\string\v\endcsname{}\relax}%
 % \u -> \breve
 \expandafter\xdef\csname mst@breve@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\u\endcsname{}\relax}%
 % \= -> \bar
 \expandafter\xdef\csname mst@bar@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\=\endcsname{}\relax}%
 % \. -> \dot
 \expandafter\xdef\csname mst@dot@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\.\endcsname{}\relax}%
 % \" -> \ddot
 \expandafter\xdef\csname mst@ddot@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\"\endcsname{}\relax}%
 % \r >> \mathring
 \expandafter\xdef\csname mst@mathring@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\r\endcsname{}\relax}%
 % \^ -> \hat
 \expandafter\xdef\csname mst@hat@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\^\endcsname{}\relax}%
 % \~ -> \tilde
 \expandafter\xdef\csname mst@tilde@mv#1\mst@robustifyingspace\endcsname
 {\mst@Umathaccent
 7
 \number\symmtoperatorfont\space
 \csname#2\string\~\endcsname{}\relax}%
 \else % false branch of ifmst@unimathaccents
1.3 u used some \def but this made the accent macro meanings look slightly different depending on whether the math version being set-up was with an 8bit encoding or TU encoding.
For the sake of uniform treatment we modify this at 1.3 v , but this is a bit complicated
```

regarding timing: we need, in absence of unimathaccents option, in math versions with an OpenType font, to let the \acute etc... acquire back some prior non-mathastext meanings. To allow maximal flexibility, these original meaning get stored at begin document only. But \mst@nonsubduedmathaccents assigns to \acute etc... (in the robust sense with $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 or later) the meaning stored in the macros with the math version in their names. Such \mst@acute@mvnormal etc... must thus be ready before \mst@nonsubduedmathaccents (or at least before the last such) execution: the code here must get executed after the definition of the «original»-named macros but prior to the (last one, if multiple) \mst@nonsubduedmathaccents.

Hence 1.3 v delayed a bit the initial execution of this macro (see further down in the code) compared to what happened in 1.3 u .

We are in a group but \AtEndOfPackage does the right thing.

```
1886 \AtEndOfPackage{\AtBeginDocument{%
1887 \@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
1888 {dot}{ddot}{mathring}{hat}{tilde}%
1889 \do
1890 {\expandafter\let
1891 \csname mst@\@tempa @mv#1\expandafter\endcsname
1892 \csname mst@original@\@tempa\endcsname
1893 \expandafter\let
1894 \csname mst@\@tempa @mv#1\space\expandafter\endcsname
1895 \csname mst@original@\@tempa\space\endcsname}%
1896 }}%
1897 \fi
```

This is needed because the pdflatex engine branch will use \DeclareMathAccent and it creates robust macros with $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 or later. As we want elsewhere in the package code not to have to check if under Unicode engine or not, we need to handle here also some definition of robust macros.

But wouldn't it be simpler to manage \protected macros?
1898 \ifmst@robust@obsessed@LaTeX@era
1899 \@tfor\@tempa:=\{grave\}\{acute\}\{check\}\{breve\}\{bar\}\% \{dot\}\{ddot\}\{mathring\} \{hat\}\{tilde\}\%
1900
1901
$1901 \backslash$ do
1902 \{ $\backslash$ expandafter $\backslash x d e f \backslash c s n a m e ~ m s t @ \backslash @ t e m p a ~ @ m v \# 1 \backslash e n d c s n a m e ~$
$1903 \quad\{\backslash$ noexpand $\backslash$ protect
1904 \expandafter\noexpand\csname mst@\@tempa @mv\#1 \endcsname\}\%
1905
1906
3\%
$\backslash f i$
\else \% false branch of ifUniEnc
\DeclareMathAccent works \globally. And with $\mathrm{IAT}_{\mathrm{EX}}$ 2019-10-01 or later it creates robust macros.
\mst@DeclareMathAccent to work around https://github.com/latex3/latex2e/issues/ 216
1908 \% \` -> \grave 1909 \expandafter \(\backslash\) mst@DeclareMathAccent \(\backslash\) expandafter 1910 \{\csname mst@grave@mv\#1 \endcsname\}\{\mathalpha\}\{mtoperatorfont\}\% 1911 \{\csname\#2\string\`\endcsname\{\}\}
1912 \% \' -> \acute
1913 \expandafter\mst@DeclareMathAccent \expandafter

| 1914 | csname mst@acute@mv\#1\endcsname\}\{\mathalpha\}\{mtoperatorfont\}\% |
| :---: | :---: |
| 1915 | \{\csname\#2\string\'\endcsname\{\}\} |
| 1916 | \% \v -> \check |
| 1917 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1918 | $\{\backslash c s n a m e ~ m s t @ c h e c k @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash m a t h a l p h a\}\{m t o p e r a t o r f o n t\} \%$ |
| 1919 | \{\csname\#2\string\v\endcsname\{\}\} |
| 1920 | \% \u -> \breve |
| 1921 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1922 |  |
| 1923 | \{\csname\#2\string\u\endcsname\{\}\} |
| 1924 | \% \= -> \bar |
| 1925 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1926 | $\{\backslash$ csname mst@bar@mv\#1 \endcsname\} \{\mathalpha\} \{mtoperatorfont\}\% |
| 1927 | \{\csname\#2\string\=\endcsname\{\}\} |
| 1928 | \% \. -> \dot |
| 1929 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1930 | $\{\backslash c s n a m e ~ m s t @ d o t @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash m a t h a l p h a\}\{m t o p e r a t o r f o n t\} \%$ |
| 1931 | \{\csname\#2\string\. \endcsname\{\}\} |
| 1932 | \% \" -> \ddot |
| 1933 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1934 | $\{\backslash$ csname mst@ddot@mv\#1\endcsname\} \{\mathalpha\} \{mtoperatorfont\}\% |
| 1935 | \{\csname\#2\string\"\endcsname\{\}\} |
| 1936 | \% \r -> \mathring |
| 1937 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1938 | \{\csname mst@mathring@mv\#1\endcsname\}\{\mathalpha\}\{mtoperatorfont\}\% |
| 1939 | \{\csname\#2\string\r\endcsname\{\}\} |
| 1940 | \% |
| ~ -> \hat |  |
| 1941 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1942 | $\{\backslash c s n a m e ~ m s t @ h a t @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash m a t h a l p h a\}\{m t o p e r a t o r f o n t\} \% ~$ |
| 1943 | \{\csname\#2\string\^\endcsname\{\}\} |
| 1944 | \% |
| ~ -> \tilde |  |
| 1945 | \expandafter\mst@DeclareMathAccent $\backslash$ expandafter |
| 1946 | $\{\backslash c s n a m e ~ m s t @ t i l d e @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash m a t h a l p h a\}\{m t o p e r a t o r f o n t\} \% ~$ |
| 1947 | \{\csname\#2\string\~\endcsname\{\}\} |
| 1948 | $\backslash \mathrm{fi}$ |
| 1949 | \endgroup |
| 1950 \}\% |  |
| 1951 | i \% \ifmst@mathaccents |

\MTDeclareVersion The \MTDeclareVersion command is to be used in the preamble to declare a math version. A more complicated variant would also specify a choice of series for the Euler and Symbol font: anyhow Symbol only has the medium series, and Euler has medium and bold, so what is lacking is the possibility to create a version with a bold Euler. There is already one such version: the default bold one. And there is always the possibility to add to the preamble $\backslash$ SetSymbolFont\{mteulervm\}\{versionname\} $\{U\}\{$ zeur $\}\{b x\}\{n\}$ if one wants to have a math version with bold Euler characters.

For version 1.1 we add an optional parameter specifying the shape to be used for letters.
Note: (2012/10/24) I really should check whether the user attempts to redefine the 'normal' and 'bold' versions and issue a warning in that case! Finally done at 1.3w 2019/11/16! Better
late than never...
$1.3 c(2013 / 12 / 14)$ adds an extra optional parameter after all previous ones, to inherit the settings from another version. Typically to be used with [bold]. I take this opportunity to sanitize a bit some line endings to avoid generating (in the preamble, document macros were already careful of course) too many space tokens, at least inside macros. And I modifiy (correct? perhaps it was on purpose) the strange way I used \@onlypreamble in earlier version.
1.3 u adds storage of macros holding the needed meanings for \imath, \hbar, math accents, and the minus symbol, version wise.
1.3 w adds the check to forbid normal and bold as version names.

```
1952 \newcommand*\MTDeclareVersion [6] [] \{\%
1953 \edef\mst@declareversionargs\{\{\#1\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}\{\#6\}\}\%
1954 \edef\mst@version\{\#2\}\%
1955 \if0\ifx\mst@version\mst@normalversionname0\else
 \ifx\mst@version\mst@boldversionnameO\else
 \(1 \backslash f i \backslash f i\)
 \expandafter\expandafter \(\backslash\) expandafter
 \(\backslash\) MTDoNotDeclareVersion@\expandafter\@gobblefour
 \fi
 \relax\DeclareMathVersion\{\mst@version\}\MTDeclareVersion@
 \}\% \MTDeclareVersion
 newcommand*\MTDoNotDeclareVersion@[1] [] \{\%
 \(\backslash\) PackageWarningNoLine\{mathastext\}\{You asked to declare a version with name
 - \mst@version'. ^^J\%
 \@spaces Sorry but you are not allowed to do that. \({ }^{\wedge}\) J\%
 \@spaces \ifmst@subdued Anyway the 'subdued' option is in force\else
 Use rather \string\Mathastext\space macro (with no optional argument) \fi
 \(\}\} \% \backslash M T D o N o t D e c l a r e V e r s i o n @\)
 70 \newcommand*\MTDeclareVersion@ [1] [] \{\%
 \edef\mst@tmp\{\#1\}\%
 \ifx\mst@tmp\empty\else
 \global\expandafter\let\csname mv@\mst@version\expandafter\endcsname
 \csname mv@\#1\endcsname
 \typeout\{** Math version '\mst@version\string' inherits from `\#1\string'.\}\%
 \fi
 \expandafter\MTDeclareVersion@@\mst@declareversionargs
 \}\% \MTDeclareVersion@
 1979 \newcommand*\MTDeclareVersion@@[6] \{\%
 1980 \expandafter\edef \csname mst@encoding@\mst@version\endcsname\{\#3\}\%
 1981 \expandafter\edef\csname mst@family@\mst@version\endcsname\{\#4\}\%
 1982 \expandafter\edef\csname mst@series@\mst@version\endcsname\{\#5\}\%
 1983 \expandafter\edef\csname mst@shape@\mst@version\endcsname\{\#6\}\%
 1984 \expandafter\edef\csname mst@boldvariant@\mst@version\endcsname\{\mst@bold\}\%
 1985 \expandafter\edef \csname mst@itdefault@\mst@version\endcsname\{\itdefault\}\%
 1986 \expandafter\edef \csname mst@rmdefault@\mst@version\endcsname\{\rmdefault\}\%
 1987 \expandafter\edef \csname mst@sfdefault@\mst@version\endcsname\{\sfdefault\}\%
 1988 \expandafter\edef \csname mst@ttdefault@\mst@version\endcsname\{\ttdefault\}\%
 1989 \expandafter\edef\csname mst@exists@skip@\mst@version\endcsname
1990 \{\mst@exists@skip\}\%
1991 \expandafter\edef\csname mst@forall@skip@\mst@version\endcsname
```

1992 1993 1994 1995

Here and elsewhere 1.3za has removed an \ifmst@nonormalbold conditional.

```
2018 \SetMathAlphabet{\Mathnormalbold}{#2}{#3}{#4}{\mst@bold}%
2019
2018 \SetMathAlphabet\{\Mathnormalbold\}\{\#2\}\{\#3\}\{\#4\}\{\mst@bold\}\%
\SetSymbolFont\{mtoperatorfont\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}\{\#6\}\%
```

```
 {\mst@forall@skip}%
\expandafter\edef\csname mst@prime@skip@\mst@version\endcsname
 {\mst@prime@skip}%
\def\mst@tmp{#1}%
\ifx\mst@tmp\empty
 \ifmst@italic
 \SetSymbolFont{mtletterfont}{#2}{#3}{#4}{#5}{\mst@ltsh}%
 \typeout{** Latin letters in math version '#2\string' will use the font
 #3/#4/#5/\mst@ltsh~^J%
 ** Other characters (digits, ...) and \protect\log-like names
 will be in `#6\string' shape.}%
 \expandafter\edef\csname mst@ltshape@\mst@version\endcsname{\mst@ltsh}%
 \else
 \SetSymbolFont{mtletterfont}{#2}{#3}{#4}{#5}{#6}%
 \typeout{** Latin letters in math version '#2\string' will use the fonts
 #3/#4/#5(\mst@bold)/#6}%
 \expandafter\edef\csname mst@ltshape@\mst@version\endcsname{#6}%
 \fi
 \else
 \SetSymbolFont{mtletterfont}{#2}{#3}{#4}{#5}{#1}%
 \typeout{** Latin letters in math version '#2\string' will use the font
 #3/#4/#5/#1~^J%
 ** Other characters (digits, ...) and \protect\log-like
 names will be in '#6\string' shape.}%
 \expandafter\edef\csname mst@ltshape@\mst@version\endcsname{#1}%
```

Since $1.3 z a$ (and prior to $1.15 f$ ) these math alphabet commands are always defined.

```
2021 \SetMathAlphabet{\Mathbf}{#2}{#3}{#4}{\mst@bold}{#6}
2022 \SetMathAlphabet{\Mathit}{#2}{#3}{#4}{#5}{\itdefault}
2023 \SetMathAlphabet{\Mathsf}{#2}{#3}{\sfdefault}{#5}{#6}
2024 \SetMathAlphabet{\Mathtt}{#2}{#3}{\ttdefault}{#5}{#6}
2025 \ifmst@needeuler
2026 \SetMathAlphabet{\MathEulerBold}{#2}{U}{zeur}{\mst@bold}{n}%
2027 \fi
```

LGRgreeks selfGreeks

In the case of option LGRgreeks (selfGreeks), it is expected that the fonts used in each math versions exist in LGR (OT1) encoding. We first recalculate the shapes to be used for lowercase and uppercase Greek letters depending on the frenchmath and [it/up][g/G]reek options as well as on the (local to this version) shapes for letters and digits.
$1.3 x$ replaces \updefault by \MTgreekupdefault and \itdefault by \MTgreekitdefault. It also prepares to store two Boolean settings saying whether lowercase respectively uppercase Greek letters will use 'upright' or 'italic' (LGRgreek(s) only).

The 1.3 x refactoring of LGRgreek is done via a decoupling, thus things are done here under selfGreek or other Greek options which ultimately serve nothing and conversely things are done
here for LGRgreek which are superfluous.

```
\def\mst@greek@lsh@loc{\csname mst@ltshape@\mst@version\endcsname}%
\def\mst@greek@ush@loc{\csname mst@shape@\mst@version\endcsname}%
\mst@greek@lower@uptrue
 \expandafter\in@\expanded{{\mst@greek@lsh@loc.}}{it.,sl.}%
 \ifin@\mst@greek@lower@upfalse\fi
\mst@greek@upper@uptrue
 \expandafter\in@\expanded{{\mst@greek@ush@loc.}}{it.,sl.}%
 \ifin@\mst@greek@upper@upfalse\fi
\ifmst@itgreek
 \def\mst@greek@lsh@loc{\MTgreekitdefault}%
 \def\mst@greek@ush@loc{\MTgreekitdefault}%
 \mst@greek@lower@upfalse
 \mst@greek@upper@upfalse
\i
\ifmst@upgreek
 \def\mst@greek@lsh@loc{\MTgreekupdefault}%
 \def\mst@greek@ush@loc{\MTgreekupdefault}%
 \mst@greek@lower@uptrue
 \mst@greek@upper@uptrue
\i
\ifmst@frenchmath
 \ifmst@itgreek\else
 \ifmst@upgreek\else
 \def\mst@greek@lsh@loc{\csname mst@shape@\mst@version\endcsname}%
 \def\mst@greek@ush@loc{\csname mst@shape@\mst@version\endcsname}%
 \mst@greek@lower@uptrue
 \mst@greek@upper@uptrue
 \fi\fi
 \fi
 \ifcase\mst@greek@select
 \or
 \def\mst@greek@ush@loc{\MTgreekitdefault}%
 \mst@greek@upper@upfalse
 \or
 \def\mst@greek@ush@loc{\MTgreekupdefault}%
 \mst@greek@upper@uptrue
\i
```

$1.3 z a$ refactoring to reduce code duplication; I briefly considered trying to enhance $\backslash \mathrm{MTgreek}$ font to work also with LGRgreeks and selfGreeks but I have dropped the idea for now.

```
\ifmst@LGRgreeks \def\mst@greekfont{#4}\fi
\ifmst@selfGreeks\def\mst@greekfont{#4}\fi
\ifmst@LGRgreek
 \SetSymbolFont{mtgreekup}{#2}{LGR}{\mst@greekfont}{#5}{\MTgreekupdefault}%
 \SetSymbolFont{mtgreekit}{#2}{LGR}{\mst@greekfont}{#5}{\MTgreekitdefault}%
 \SetMathAlphabet{\mathgreekupbold}{#2}{LGR}{\mst@greekfont}
 {\mst@bold}{\MTgreekupdefault}%
 \SetMathAlphabet{\mathgreekitbold}{#2}{LGR}{\mst@greekfont}
```

This is where the shape of uppercase/lowercase Greek letters is recorded, for \MTversion's triggered $\backslash M T c u s t o m g r e e k ~ t o ~ d o ~ t h e ~ r i g h t ~ t h i n g . ~$
2074 \expandafter\let\csname ifmst@greek@\mst@version @upper@up\expandafter\endcsname

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2110
2110

2111 \fi
2112 \fi
2113 \}\% \MTDeclareVersion@@
2114 \let $\backslash$ MathastextDeclareVersion\MTDeclareVersion
\MTversion \MTversion@ $\backslash$ MTversion@s \MTversion@@

This is a wrapper around $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 's \mathversion: here we have an optional argument allowing a quick and easy change of the text fonts additionally to the math fonts. Present already in the initial version of the package (January 2011.)
1.15: some modifications for the subdued option vs LGRgreek and for the math muskips after

## \exists and \forall.

1.2: with the subdued option sets the math alphabets in the normal and bold math versions do not apply to operator names and non-alphabetical symbols. The switch for braces is left as it is.
1.2 b : with the subdued option, the italic corrections are not added. Else, we check the shape of letters in this version. Also, there was a bug since 1.15: the values of the math skips were taken not from the settings for the math version (\#2) but from those of the optional argument (\#1), if present...
1.3: activation of italic corrections is now separated from actual math activation of letters.
1.3c: a starred variant is added which does not modify the text fonts, only the math set-tup.
1.3d: replaced in \MTversion@ things like \edef \mst@encoding\{. . .\} and  etc... All those \mst@@. . . things were useless. I also redefine \seriesdefault rather than \mddefault.
1.3 d : mechanism of restoration of Greek in subdued normal and bold versions has been to all cases, and not only for the LGRgreek option.
1.3u: version savvy (i.e. font-encoding savvy) minus sign, \hbar, \imath, math accents.
1.3 x : Booleans recovered from stored data in the math version will configure the things \MTcustomgreek do, under LGRgreek option.

```
2115 \newcommand*\MTversion {\@ifstar\MTversion@s\MTversion@ }
2116 \newcommand*\MTversion@s [1]{\mathversion{#1}\MTversion@@ }
2117 \newcommand*\MTversion@ [2] []{%
2118 \mathversion{#2}% defines \math@version as expanded #2
2119 \edef\mst@tmpa{#1}%
2120 \ifx\mst@tmpa\empty
2121 \let\mst@tmp\math@version
2122 \else
 \let\mst@tmp\mst@tmpa
2124 \fi
2125 \edef\encodingdefault {\csname mst@encoding@\mst@tmp\endcsname}%
2126 \edef\familydefault {\csname mst@family@\mst@tmp\endcsname}%
2127 \edef\seriesdefault {\csname mst@series@\mst@tmp\endcsname}%
2128 \edef\shapedefault {\csname mst@shape@\mst@tmp\endcsname}%
2129 \edef\bfdefault {\csname mst@boldvariant@\mst@tmp\endcsname}%
2130 \edef\itdefault {\csname mst@itdefault@\mst@tmp\endcsname}%
2131 \edef\rmdefault {\csname mst@rmdefault@\mst@tmp\endcsname}%
2132 \edef\sfdefault {\csname mst@sfdefault@\mst@tmp\endcsname}%
2133 \edef\ttdefault {\csname mst@ttdefault@\mst@tmp\endcsname}%
2134 \usefont{\encodingdefault}{\familydefault}{\seriesdefault}{\shapedefault}%
2135 \MTversion@@
2136 }% \MTversion@
```

$1.3 j$ has a stronger subdued which does \MTnormalprime, \MTnormalexists, \MTnormalforall rather than setting the skips to Omu. Hence $\backslash$ MTversion by default should do $\backslash$ MTprimedoesskip, $\backslash M T e x i s t s d o e s s k i p, ~ \ M T f o r a l l d o e s s k i p$.
$1.3 u$ drops the argument, as the info is in \math@version from $\mathrm{INT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ code.
2137 \newcommand*\MTversion@@ \{\%
2138 \MTexistsdoesskip
2139 \MTforalldoesskip
2140 \MTprimedoesskip
v1.15e: muskips.
2141 \mst@exists@muskip\csname mst@exists@skip@\math@version\endcsname\relax
v1.2: muskip for \prime.
$2143 \backslash$ \mst@prime@muskip\csname mst@prime@skip@\math@version\endcsname\relax
v1.2b: italic corrections except for italic/slanted (sic) letters, and of course except in the subdued normal and bold math versions.
v1.3: by default, letters are made mathematically active, even if italic corrections are not used, to allow the action of \MTsetmathskips.

```
2144 \edef\mst@tmpa{\csname mst@ltshape@\math@version\endcsname}%
2145 \edef\mst@tmpb{\csname mst@shape@\math@version\endcsname}%
```

v1.15c: extending subdued to LGRgreek.
v1.15f: subdueing math alphabets in a simpler way than in 1.15 e .
v1.2b: subdueing the activation of characters in math mode.
v 1.2 d : special treatment of the asterisk.
v1.3d: extended LGRgreek mechanism of activation/restoration of Greek to all cases.
v 1.3 j : use of \MTeverymathdefault, which includes \MTicinmath, but must be corrected then according to shape of letters and presence or absence of option frenchmath. We do only \def \mst@ITcorr\{\ifnum \fam=\m@ne\/\fi\} and not \MTICinmath to not overwrite some userdefined \MTeverymathdefault. Code for italic corrections or not according to letter shape is executed after \MTeverymathdefault which limits a bit user customizing possibilities, but if I moved it later, I would possibly have to put inside the \MTicinmath the check for it ot sl. Similary the \MTcustomgreek always executed (if not subdued).

```
2146 \MTmathoperatorsobeymathxx
2 1 4 7 ~ \ M T e v e r y m a t h d e f a u l t ~
2 1 4 8 ~ \ M T c u s t o m i z e n e w m c o d e s ~
2149 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpa\MTnoicinmath\fi}%
2150 \ifmst@frenchmath
2151 \def\mst@ITcorr{\ifnum\fam=\m@ne\/\fi}%
2152 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpb\MTnoICinmath\fi}%
2153 \fi
```

$1.3 j$ has a stronger subdued which does \MTnormalprime, \MTnormalexists, \MTnormalforall rather than simply setting the skips to 0mu. Note: \MTnormalprime is done as part of \MTeverymathoff.

```
2154 \ifmst@subdued
2155 \ifx\math@version\mst@normalversionname
2156 \mst@restorealphabets
2157 \MTstandardgreek
2158 \MTmathoperatorsdonotobeymathxx
2159 \MTnormalexists
2160 \MTnormalforall
2161 \MTeverymathoff
2162 \MTresetnewmcodes
```

$1.3 t$ adds better compatibility with subdued mode for \imath/\jmath and perfect compatibility for the minus sign.
$1.3 u$ extends this further to allow per-math-version meanings for them.

| 2163 | \mst@subduedhbar |
| :---: | :---: |
| 2164 | $\backslash$ mst@subduedinodot |
| 2165 | \mst@subduedmathaccents |
| 2166 | \mst@subduedminus |
| 2167 | \else |
| 2168 | \ifx\math@version\mst@boldversionname |
| 2169 | \mst@restorealphabets |
| 2170 | $\backslash$ MTstandardgreek |
| 2171 | \MTmathoperatorsdonotobeymathxx |
| 2172 | \MTnormalexists |
| 2173 | \MTnormalforall |
| 2174 | $\backslash$ MTeverymathoff |
| 2175 | $\backslash$ MTresetnewmcodes |
| 2176 | $\backslash m s t @ s u b d u e d h b a r$ |
| 2177 | \mst@subduedinodot |
| 2178 | \mst@subduedmathaccents |
| 2179 | \mst@subduedminus |
| 2180 | $\backslash \mathrm{else}$ |
| 2181 | \mst@setalphabets |

1.3 x addition for $\backslash M T c u s t o m g r e e k ~ u n d e r ~ L G R g r e e k s ~ o p t i o n . ~$

2182 \expandafter\let\csname ifmst@greek@upper@up\expandafter\endcsname
\csname ifmst@greek@\math@version @upper@up\endcsname
2183 \csname ifmst@greek@\math@version @upper@up \endcsnandafter\let\csname ifmst@greek@lower@up\expandafter\endcsname
\csname ifmst@greek@\math@version @lower@up\endcsname
2185 \MTcustomgreek
2187 \mst@nonsubduedhbar
2188 \mst@nonsubduedinodot
2189 \mst@nonsubduedmathaccents
2190 \mst@nonsubduedminus
$2191 \quad$ fi

2192 \fi
2193 \else
1.3 x addition for \MTcustomgreek under LGRgreek option.

2194 \expandafter\let\csname ifmst@greek@upper@up\expandafter\endcsname \csname ifmst@greek@\math@version @upper@up \endcsname
2195 \expandafter 21 let \csname ifmst@greek@lower@up\expandafter\endcsname \csname ifmst@greek@\math@version @lower@up \endcsname
$2197 \quad$ \csname ifmst@gre
2199 \mst@nonsubduedhbar
2200 \mst@nonsubduedinodot
2201 \mst@nonsubduedmathaccents
2202 \mst@nonsubduedminus
2203 \fi
2204 \}\% \MTversion@@
2205 \let $\backslash$ MathastextVersion \MTversion
2206 \let $\backslash$ Mathastextversion $\backslash M T v e r s i o n ~$
2207 \let $\backslash$ MTVersion \MTversion
2208 \let $\backslash$ mathastextversion \MTversion
\MTWillUse This is a preamble-only command, which can be used more than once, only the latest one counts.
Sets up the math fonts in the normal and bold versions, as does $\backslash$ Mathastext.

```
2209 \newcommand*\MTWillUse[5] [] {
2210 \MTencoding{#2}
2211 \MTfamily{#3}
2212 \MTseries{#4}
2213 \MTshape{#5}
2214 \ifmst@italic\MTlettershape{\itdefault}\fi % was missing in v 1.14 and prior
2215 \edef\mst@tmp{#1}
2216 \ifx\mst@tmp\empty\else\MTlettershape{#1}\fi
2 2 1 7 ~ \ M a t h a s t e x t \}
2218\let\MathastextWillUse\MTWillUse
2219\let\Mathastextwilluse\MTWillUse
```

\Mathastext The command \Mathastext can be used anywhere in the preamble and any number of time, the last one is the one that counts.

In version 1.1 we have two fonts: they only differ in shape. The mtletterfont is for letters, and the mtoperatorfont for digits and log-like operator names. The default is that both are upright.

Starting with version 1.12, an optional argument makes \Mathastext act as the declaration of a math version, to be later used in the document.

Versions $1.15 x$ brought some adaptations related to the subdued option.
$1.3 c$ adds a second optional parameter to inherit previous settings from another version; mostly done to inherit the bold version fonts for symbols and large symbols. This is done in \MTDeclareVersion.
$1.3 j$ moves the code related to $\backslash M T i c i n m a t h$ from $\backslash$ Mathastext@ to $\backslash$ AtBeginDocument (code depending on whether subdued option in use). But we omit for this from \MTicinmath the $\backslash$ MTmathactiveletters and issue the latter during loading of package, hence allowing \MTmathstandardletters to be effective in the preamble.

I forgot to document that under subdued option the \Mathastext command without optional parameter does not any \SetSymbolFont etc... but it has a few other tasks to complete nevertheless.
1.3u fixes some long-standing bug that $\backslash$ Mathastext did not repeat some font-encoding dependent things: they got done only once during package loading (things regarding the \hbar, \imath, the math accents and the minus sign). They are now part of the contents of \Mathastext macro itself (which is executed during package loading).
1.3x has refactored the LGRgreek associated math fonts.

```
2220 \def\Mathastext {\@ifnextchar [\Mathastext@declare\Mathastext@ }
2221 \def\Mathastext@declare [#1]{%
2222 \edef\mst@tmp{#1}%
2223 \ifx\mst@tmp\empty
2224 \expandafter\@firstoftwo
2225 \else\expandafter\@secondoftwo
2226 \fi
2227 \Mathastext@
2228 {\MTDeclareVersion[\mst@ltsh]{#1}{\mst@enc}{\mst@fam}{\mst@ser}{\mst@opsh}}%
2229 }% \Mathastext@declare
2230 \def\Mathastext@ {%
2231 \mst@update@greeksh
```

```
2232 \edef\mst@encoding@normal{\mst@enc}%
2233\\edef\mst@family@normal{\mst@fam}%
2234 \edef\mst@series@normal{\mst@ser}%
2235 \edef\mst@shape@normal{\mst@opsh}%
2236 \edef\mst@ltshape@normal{\mst@ltsh}%
2237 \edef\mst@itdefault@normal{\itdefault}%
2238 \edef\mst@rmdefault@normal{\rmdefault}%
2239 \edef\mst@sfdefault@normal{\sfdefault}%
2240 \edef\mst@ttdefault@normal{\ttdefault}%
2241 \edef\mst@boldvariant@normal{\mst@bold}%
2242 \edef\mst@exists@skip@normal{\mst@exists@skip}%
2243 \edef\mst@forall@skip@normal{\mst@forall@skip}%
2244 \edef\mst@prime@skip@normal{\mst@prime@skip}%
2245 \edef\mst@encoding@bold{\mst@enc}%
2246 \edef\mst@family@bold{\mst@fam}%
2247 \edef\mst@series@bold{\mst@bold}%
2248 \edef\mst@shape@bold{\mst@opsh}%
2249 \edef\mst@ltshape@bold{\mst@ltsh}%
2 2 5 0 \ \text { \edef\mst@boldvariant@bold\{\mst@bold\}\%}
2251 \edef\mst@itdefault@bold{\itdefault}%
2252 \edef\mst@rmdefault@bold{\rmdefault}%
2253 \edef\mst@sfdefault@bold{\sfdefault}%
2254 \edef\mst@ttdefault@bold{\ttdefault}%
2255 \edef\mst@exists@skip@bold{\mst@exists@skip}%
2256 \edef\mst@forall@skip@bold{\mst@forall@skip}%
2257 \edef\mst@prime@skip@bold{\mst@prime@skip}%
2258 \ifmst@subdued
```

Since 1.3 j this branch is actually almost superfluous, as entering normal or bold with $\backslash M T v e r$ sion does \MTnormalexists, \MTnormalforall, and \MTnormalprime. But some default values are needed if the user insists on issuing \MTexistsdoesskip, etc... nevertheless.
\def \mst@exists@skip@normal\{0mu\}\%
\def\mst@forall@skip@normal\{0mu\}\%
\def\mst@prime@skip@normal\{0mu\}\%
\def \mst@exists@skip@bold\{0mu\}\%
\def \mst@forall@skip@bold\{0mu\}\%
\def \mst@prime@skip@bold\{0mu\}\%
\else \% not subdued
\ifmst@italic
\ifmst@frenchmath
\mst@exists@muskip\mst@exists@skip\relax
\mst@forall@muskip\mst@forall@skip\relax
\mst@prime@muskip\mst@prime@skip\relax
\else
\def $\backslash m s t @ e x i s t s @ s k i p @ n o r m a l\{0 m u\} \%$
\def\mst@forall@skip@normal\{0mu\}\%
\def \mst@prime@skip@normal\{0mu\}\%
\def\mst@exists@skip@bold\{0mu\}\%
\def \mst@forall@skip@bold\{0mu\}\%
\def\mst@prime@skip@bold\{0mu\}\%

```
2278 \fi
2279 \else
2280
2281
2282
223
2284 \fi
```

Here and elsewhere 1.3za has removed usage of an \ifmst@nonormalbold conditional which was added at 1.15f.

```
\SetMathAlphabet{\Mathnormalbold}{normal}{\mst@encoding@normal}%
 {\mst@family@normal}%
 {\mst@boldvariant@normal}%
 {\mst@ltshape@normal}%
\SetMathAlphabet{\Mathnormalbold}{bold}{\mst@encoding@bold}%
 {\mst@family@bold}%
 {\mst@boldvariant@bold}%
 {\mst@ltshape@bold}%
\ifmst@subdued\else
 \SetSymbolFont{mtletterfont}{normal}{\mst@encoding@normal}%
 {\mst@family@normal}%
 {\mst@series@normal}%
 {\mst@ltshape@normal}%
\SetSymbolFont{mtletterfont}{bold} {\mst@encoding@bold}%
 {\mst@family@bold}%
 {\mst@series@bold}%
 {\mst@ltshape@bold}%
\SetSymbolFont{mtoperatorfont}{normal}{\mst@encoding@normal}%
 {\mst@family@normal}%
 {\mst@series@normal}%
 {\mst@shape@normal}%
\SetSymbolFont{mtoperatorfont}{bold} {\mst@encoding@bold}%
 {\mst@family@bold}%
 {\mst@series@bold}%
 {\mst@shape@bold}%
```

$1.3 z a$ removes the 1.15 f added conditional checks.
$2310 \backslash$ SetMathAlphabet $\{\backslash$ Mathbf $\}$ \{normal\} $\{\backslash$ mst@encoding@normal\}\%
\{\mst@family@normal\}\%
\{\mst@series@bold\}\%
$\{\backslash$ mst@shape@normal\}\%
\SetMathAlphabet $\{\backslash$ Mathbf $\}\{$ bold\} $\{\backslash$ mst@encoding@bold\}\%
$\{\backslash m s t @ f a m i l y @ b o l d\} \%$
\{\mst@series@bold\}\%
\{\mst@shape@bold\}\%
\SetMathAlphabet\{\Mathit\}\{normal\}\{\mst@encoding@normal\}\%
\{\mst@family@normal\}\%
\{\mst@series@normal\}\%
\{\mst@itdefault@normal\}\%
\SetMathAlphabet\{\Mathit\}\{bold\}\{\mst@encoding@bold\}\%

```
2323
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
```

    {\mst@family@bold}%
    ```
 {\mst@family@bold}%
2324 {\mst@series@bold}%
2324 {\mst@series@bold}%
```

    {\mst@itdefault@bold}%
    ```
 {\mst@itdefault@bold}%
 \SetMathAlphabet{\Mathsf}{normal}{\mst@encoding@normal}%
 \SetMathAlphabet{\Mathsf}{normal}{\mst@encoding@normal}%
 {\mst@sfdefault@normal}%
 {\mst@sfdefault@normal}%
 {\mst@series@normal}%
 {\mst@series@normal}%
 {\mst@shape@normal}%
 {\mst@shape@normal}%
 \SetMathAlphabet{\Mathsf}{bold}{\mst@encoding@bold}%
 \SetMathAlphabet{\Mathsf}{bold}{\mst@encoding@bold}%
 {\mst@sfdefault@bold}%
 {\mst@sfdefault@bold}%
 {\mst@series@bold}%
 {\mst@series@bold}%
 {\mst@shape@bold}%
 {\mst@shape@bold}%
 \SetMathAlphabet{\Mathtt}{normal}{\mst@encoding@normal}%
 \SetMathAlphabet{\Mathtt}{normal}{\mst@encoding@normal}%
 {\mst@ttdefault@normal}%
 {\mst@ttdefault@normal}%
 {\mst@series@normal}%
 {\mst@series@normal}%
 {\mst@shape@normal}%
 {\mst@shape@normal}%
 \SetMathAlphabet{\Mathtt}{bold}{\mst@encoding@bold}%
 \SetMathAlphabet{\Mathtt}{bold}{\mst@encoding@bold}%
 {\mst@ttdefault@bold}%
 {\mst@ttdefault@bold}%
 {\mst@series@bold}%
 {\mst@series@bold}%
 {\mst@shape@bold}%
 {\mst@shape@bold}%
\fi % de \ifmst@subdued
```

\fi % de \ifmst@subdued

```
\MathEulerBold 1.14c: We reset mteulervm and \MathEulerBold here as the variant for bold may have been changed by the user via \Mathastextboldvariant \(\{\mathrm{m}\}\); and we should keep this local to math versions.
\begin{tabular}{|c|c|}
\hline 2343 & \ifmst@needeuler \\
\hline 2344 & \SetSymbolFont\{mteulervm\} \{bold\} \{U\} \{zeur\} \{\mst@boldvariant@normal\}\{n\}\% \\
\hline 2345 & \(\backslash\) SetMathAlphabet \(\{\backslash\) MathEulerBold\} \{normal\}\% \\
\hline 2346 & \{U\} \{zeur\}\{\mst@boldvariant@normal\} \{n\}\% \\
\hline 2347 & \SetMathAlphabet \(\{\backslash\) MathEulerBold\} \{bold\}\% \\
\hline 2348 & \{U\}\{zeur\}\{\mst@boldvariant@bold\} \{n\}\% \\
\hline 2349 & \(\backslash f i\) \\
\hline 2350 & \ifmst@needsymbol\SetSymbolFont\{mtpsymbol\}\{bold\}\% \\
\hline 2351 & \{U\} \{psy\}\{\mst@boldvariant@bold\}\{n\}\% \\
\hline 2352 & \(\backslash f i\) \\
\hline
\end{tabular}

LGRgreek* LGRgreek, LGRgreeks, selfGreek, and selfGreeks options. selfGreek* \(\quad 1.3 x\) has refactored the LGRgreek associated math fonts.
\(1.3 z a\) adds the math alphabets \mathgreekitbold and \mathgreekupbold. And it executes this code also in subdued mode, because anyhow the symbolfonts mtgreekup and mtgreekit and associated alphabets have been declared also, at time of loading the package, so not doing it here means that effect of \MTgreekfont would be ignored; which was probably a bug. And by the way, documentation says \MTgreekfont has no effect under LGRgreeks and selfGreeks option so we need to enforce it here (for time being).
```

2353 \ifmst@LGRgreeks \edef\mst@greekfont{\mst@fam}\fi
2354 \ifmst@selfGreeks\edef\mst@greekfont{\mst@fam}\fi
2355 \ifmst@LGRgreek
2356 \SetSymbolFont{mtgreekup}{normal}{LGR}%
2357 {\mst@greekfont}{\mst@series@normal}{\MTgreekupdefault}%

```
\(1.3 z a\) adds the log message in case of selfGreek option.
```

2380 \ifmst@subdued
2381 \typeout\{** subdued mode applies to the 'normal \string' and `bold \(\backslash\) string' math ver-     sions\}\%     \else 2383 \typeout\{** Latin letters in the `normal\string' (resp. `bold\string') math ver-     sions are now^-J\%             ** set up to use the fonts                         \mst@encoding@normal/\mst@family@normal/\mst@series@normal\%                         (\mst@boldvariant@normal)/\mst@ltshape@normal             \}\%     \ifmst@LGRgreek\typeout\{** Greek letters (upper:             - \ifmst@greek@upper@up\MTgreekupdefault\else\MTgreekitdefault\fi\string',                                     lower:             - \ifmst@greek@lower@up\MTgreekupdefault\else\MTgreekitdefault\fi\string')             will use font family '\mst@greekfont\string' (LGR) \}\%             \else             \ifmst@selfGreek             \typeout\{** Capital Greek letters                                     (shape `\mst@greek@ush\string')
will use font family '\mst@greekfont $\backslash$ string' (OT1) \}\%
\fi
\fi
\ifmst@nodigits\else
\typeout\{** Other characters (digits, ...) and \protect\log-like names will be ${ }^{\text {- J\% }}$
** typeset with the \mst@shape@normal\space shape.\}\%

```
\begin{tabular}{|c|c|}
\hline 2403 & \fi \\
\hline 2404 & \(\backslash f i\) \\
\hline 2405 & \ifmst@nohbar\else \\
\hline 2406 & \typeout\{** \string\hbar\}\% \\
\hline 2407 & \mst@dothe@hbarstuff \\
\hline 2408 & \mst@hbar@mvnormal\mst@ltbar@mvnormal \mst@encoding@normal \\
\hline 2409 & \let\mst@hbar@mvbold\mst@hbar@mvnormal \\
\hline 2410 & \(\backslash f i\) \\
\hline 2411 & \(\backslash m s t @ d o t h e @ i n o d o t s t u f f \backslash i n o d o t \backslash j n o d o t \backslash m s t @ e n c o d i n g @ n o r m a l\) \\
\hline 2412 & \let\mst@inodot@mvnormal\inodot \\
\hline 2413 & \let\mst@inodot@mvbold\inodot \\
\hline 2414 & \let\mst@jnodot@mvnormal\jnodot \\
\hline 2415 & \let\mst@jnodot@mvbold\jnodot \\
\hline 2416 & \ifmst@mathaccents \\
\hline 2417 & \typeout\{** math accents\}\% \\
\hline 2418 & \mst@dothe@mathaccentsstuff \{normal\}\mst@encoding@normal \\
\hline 2419 & \(\backslash \mathrm{fi}\) \\
\hline 2420 & \ifmst@nominus\else \\
\hline 2421 & \typeout\{** minus as endash\}\% \\
\hline 2422 & \ifmst@endash \\
\hline 2423 & \mst@dothe@endashstuff \mst@minus@mvnormal\mst@varfam@minus@mvnormal \\
\hline 2424 & \mst@encoding@normal \\
\hline 2425 & \mst@dothe@endashstuff \mst@minus@mvbold\mst@varfam@minus@mvbold \\
\hline 2426 & \mst@encoding@normal \\
\hline 2427 & \else \\
\hline 2428 & \ifmst@emdash \\
\hline 2429 & \mst@dothe@emdashstuff mst@minus@mvnormal\mst@varfam@minus@mvnormal \(^{\text {a }}\) \\
\hline 2430 & \mst@encoding@normal \\
\hline 2431 & \mst@dothe@emdashstuff \mst@minus@mvbold\mst@varfam@minus@mvbold \\
\hline 2432 & \mst@encoding@normal \\
\hline 2433 & \else \\
\hline 2434 & \\
\hline 2435 & \let \mst@minus@mvbold\mst@minus@mvnormal \\
\hline 2436 & \let\mst@varfam@minus@mvbold\mst@varfam@minus@mvnormal \\
\hline 2437 & \fi \\
\hline 2438 & \(\backslash \mathrm{fi}\) \\
\hline 2439 & \(\backslash f i\) \\
\hline \multicolumn{2}{|l|}{2440 \}\% \Mathastext@} \\
\hline 2441 & et \mathastext \(\backslash\) Mathastext \\
\hline & Mathastext \\
\hline
\end{tabular}

Additional appropriate messages to the terminal and the log.
```

2443 \ifmst@eulergreek
2444 \typeout{** Greek letters will use the Euler font. Use \protect\MathastextEulerScale{
2445 font.}%
2446 \ifmst@subdued{\typeout{** (subdued mode: `normal\string' and `bold\string' math
2447 version with default Greek letters.)}}\fi
2448 \else
2449 \ifmst@symbolgreek

```
\(2450 \quad\) ttypeout\{** Greek letters will use the PostScript Symbol font. Use \({ }^{\text {- J J\% }}\)
** \protect \(\backslash\) MathastextSymbolScale\{<factor>\} to scale the font. \(\} \%\)
2452 \ifmst@subdued\{\typeout\{** (subdued mode: `normal\string' and `bold\string' math
2453 version with default Greek letters.)\}\}\fi
\(2454 \backslash f i \backslash f i\)
Math sizes I took the code for \Huge and \HUGE from the moresize package of Christian Cornelssen
2455 \ifmst@defaultsizes \(\backslash e l\) se
2456 \providecommand \@xxxpt\{29.86\}
2457 \providecommand\@xxxvipt\{35.83\}
2458 \ifmst@twelve
2459 \def \Huge\{\@setfontsize\Huge\@xxxpt\{36\}\}
2460 \def \(\backslash H U G E\{\backslash @ s e t f o n t s i z e \backslash H U G E \backslash @ x x x v i p t\{43\}\}\)
2461 \typeout \(\{* * \backslash\) protect \(\backslash\) Huge \(\backslash\) space and \(\backslash\) protect \(\backslash H U G E \backslash\) space have been (re)-defined.\}
2462 \else
2463 \def\HUGE\{\@setfontsize\HUGE\@xxxpt\{36\}\}
2464 \typeout\{** \protect\HUGE\space has been (re)-defined.\}
2465 \fi
I choose rather big subscripts.
2466 \def \defaultscriptratio\{.8333\}
2467 \def \defaultscriptscriptratio\{.7\}
2468 \DeclareMathSizes \(\{9\}\{9\}\{7\}\{5\}\)
2469 \DeclareMathSizes \(\{\backslash @ x p t\}\{\backslash @ x p t\}\{8\}\{6\}\)
2470 \DeclareMathSizes \(\{\backslash @ x i p t\}\{\backslash @ x i p t\}\{9\}\{7\}\)
2471 \DeclareMathSizes\{\@xiipt\}\{\@xiipt\}\{10\}\{8\}
2472 \DeclareMathSizes \(\{\backslash @ x i v p t\}\{\backslash @ x i v p t\}\{\backslash @ x i i p t\}\{10\}\)
2473 \DeclareMathSizes\{\@xviipt\}\{\@xviipt\}\{\@xivpt\}\{\@xiipt\}
2474 \DeclareMathSizes \(\{\backslash @ x x p t\}\{\backslash @ x x p t\}\{\backslash @ x v i i p t\}\{\backslash @ x i v p t\}\)
2475 \DeclareMathSizes \(\{\backslash @ x x v p t\}\{\backslash @ x x v p t\}\{\backslash @ x x p t\}\{\backslash @ x v i i p t\}\)
2476 \DeclareMathSizes \(\{\backslash @ x x x p t\}\{\backslash @ x x x p t\}\{\backslash @ x x v p t\}\{\backslash @ x x p t\}\)
2477 \DeclareMathSizes \(\{\backslash @ x x x v i p t\}\{\backslash @ x x x v i p t\}\{\backslash @ x x x p t\}\{\backslash @ x x v p t\}\)
2478 \typeout\{** mathastext has declared larger sizes for subscripts. \({ }^{-}\)J\%
2479 ** To keep LaTeX defaults, use option `defaultmathsizes \(\backslash\) string'.\}
2480 \fi
\MTeverymathoff \(1.3 i\) 2016/01/06 Compatibility patch with \url from url.sty and \url/\nolinkurl from hyperref.sty.
\(1.3 j 2016 / 01 / 15\) renamed the macro from \MTactivemathoff to \MTeverymathoff, as it is not exclusively a matter of math active characters due to \MTeasynonlettersdonotobeymathxx. 1.30 2016/05/03 adds \MTdonotfixfonts. Operant with LuaIATEX only.

2481 \newcommand*\MTeverymathoff \(\{\%\)
2482 \MTnormalasterisk
2483 \MTnormalprime
2484 \MTnonlettersdonotobeymathxx
2485 \MTeasynonlettersdonotobeymathxx
2486 \MTmathstandardletters
2487 \MTdonotfixfonts
2488 \}\%
2489 \AtBeginDocument \{\%
```

2400 \@ifpackageloaded{hyperref}
2491 {\def\Hurl{\begingroup\MTeverymathoff\Url}}
2492 {\@ifpackageloaded{url}{\DeclareUrlCommand[\MTeverymathoff](\MTeverymathoff)}{}}%
2493 }%

```

MTeverymathdefault
1.3j 2016/01/15 Customizable command which gets executed by \(\backslash\) MTversion except when switching to normal/bold if option subdued. The included \MTicinmath does \MTmathactiveletters which will also activate the math skips around letters.

The \MTeverymathdefault does not include \MTmathoperatorsobeymathxx as the latter does not correspond to something done during execution of \the \everymath.

During the loading, the (non subdued) package does \MTactiveasterisk (if option asterisk), \MTprimedoesskip, \MTeasynonlettersobeymathxx and \MTmathactiveletters. There is some code at begin document for decisions about italic corrections, this code does not emit again \MTmathactiveletters, hence a \MTmathstandardletters in the preamble is not overruled. Furthermore the at begin document code will not overrule user emitted \MTnoicinmath etc... commands in the preamble.

And user can employ \MTnormalexists, etc..., from inside the preamble, it will not be overruled (as it is delayed at begin document to after mathastext dealings).
1.3o 2016/05/03 adds \MTfixfonts. Operant with LuaIATEX only.

2494 \newcommand*\MTeverymathdefault \{\%
2495 \MTactiveasterisk
2496 \MTprimedoesskip
2497 \MTeasynonlettersobeymathxx
2498 \MTicinmath
2499 \MTfixfonts
2500 \}\%
Things to do last "at begin document"
2501 \AtBeginDocument\{\%
2502 \everymath \expandafter\{\the\everymath
\(2503 \backslash\) \mst@the\mst@do@nonletters \let\mst@the\@gobble
2504 \mst@theeasy\mst@do@easynonletters \let\mst@theeasy\@gobble
\(2505 \backslash m s t @ t h e f \backslash m s t @ d o @ a z ~ \ l e t \backslash m s t @ t h e f \backslash @ g o b b l e\)
\(2506 \backslash \mathrm{mst@theF} \backslash \mathrm{mst@do@AZ} \mathrm{\ let} \mathrm{\backslash mst@theF} \mathrm{\backslash @gobble} \mathrm{\}} \mathrm{\%}\)
2507 \everydisplay\expandafter\{\the\everydisplay
\(2508 \backslash\) \mst@the\mst@do@nonletters \let\mst@the\@gobble
\(2509 \backslash m s t @ t h e e a s y \backslash m s t @ d o @ e a s y n o n l e t t e r s \quad \backslash l e t \backslash m s t @ t h e e a s y \backslash @ g o b b l e\)
\(2510 \backslash\) mst@thef \(\backslash m s t @ d o @ a z ~ \ l e t \backslash m s t @ t h e f \backslash @ g o b b l e\)
\(2511 \backslash m s t @ t h e F \backslash m s t @ d o @ A Z \backslash l e t \backslash m s t @ t h e F \backslash @ g o b b l e\} \%\)
\(1.3 \mathrm{j}:\) moved here to be executed at begin document (and not from inside \Mathastext@.) The \MTeverymathoff does: \MTnormalasterisk, \MTnormalprime, \MTnonlettersdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTmathstandardletters.
1.3 m : doing \MTmathactiveletters in subdued mode immediately after \begin\{document\} } resulted in errors because \mst@itcorr had been left undefined. We thus add \MTnoicinmath to the subdued initialization.
 at begin document. Thus we have wrapped the whole thing in \AtEndOfPackage (at \(1.3 u\) whole code directly moved at end of package).

And 1.3 p adds here \(\backslash\) MTcustomizenewmcodes which had been regrettably forgotten by 1.3 n . \(1.3 t\) adds some extras to handle correctly the minus sign and dotless i and \(j\) in subdued mode, even in case of usage with fontspec.
\(1.3 u\) similarly lets math accents be correctly subdued.
1.3 v adapts to \hbar and math accents now being robust with \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 or later.
1.3 w pays attention to the fact that \hbar may well be a \mathchar and not a robust macro!

And no need to worry about \hbar<space> finally in revised code.
```

2512 \MTcustomizenewmcodes
2 5 1 3 ~ \ l e t \ m s t @ o r i g i n a l @ h b a r \ h b a r ~
2 5 1 4 ~ \ l e t \ m s t @ o r i g i n a l @ i m a t h \ i m a t h ~
2515 \let\mst@original@jmath\jmath
2516 \@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
2517 {dot}{ddot}{mathring}{hat}{tilde}%
2518 \do
2519 {\expandafter\let\csname mst@original@\@tempa\expandafter\endcsname
\csname \@tempa\endcsname
2521 \expandafter\let\csname mst@original@\@tempa\space\expandafter\endcsname
\csname \@tempa\space\endcsname
}%
\ifmst@XeOrLua
\edef\mst@subduedminus
{\mst@Umathcodenum`\noexpand\-=\the\mst@Umathcodenum`\-\relax}%
\else
\edef\mst@subduedminus{\mathcode`\noexpand\-=\the\mathcode`\-\relax}%
\i
\ifmst@subdued
\MTeverymathoff
\MTresetnewmcodes
\MTnoicinmath
\MTmathoperatorsdonotobeymathxx
%\mst@subduedhbar
\let\inodot\imath
\let\jnodot\jmath
%\mst@subduedmathaccents
\mst@subduedminus
\else
\mst@nonsubduedhbar

```
 \(1.3 v\) needs this \mst@nonsubduedmathaccents to get executed later (see code comments for
 \mst@dothe@mathaccentsstuff).
 \% \mst@nonsubduedmathaccents \% will get executed later
\(\begin{array}{ll}2542 & \text { \% \mst@nonsubduedmat } \\ 2543 & \text { \mst@nonsubduedminus }\end{array}\)
\(1.3 \mathrm{j}:\) an earlier version of this code was earlier part of \(\backslash\) Mathastext@. As we are now in \(\backslash A t B e g i n D o c u m e n t ~ w e ~ t r y ~ t o ~ b e ~ c a r e f u l ~ n o t ~ t o ~ o v e r w r i t e ~ \ M T i c i n m a t h, ~ \ M T n o i c i n m a t h, ~ \ M T i-~ . ~\) calsoinmathxx, ... if issued by the user in the preamble, though. And we do not execute \(\backslash\) MTmathactiveletters, it is issued by the package at loading time in order to allow user to cancel it if desired from inside the preamble.
```

2544 \ifx\mst@itcorr\@undefined
2545<br>def\mst@itcorr{\ifnum\fam=\m@ne\/\fi}%

```
 {\ifx\mst@tmp\mst@ltshape@normal\let\mst@itcorr\@empty\fi }%
 \fi
 \ifx\mst@ITcorr\@undefined
 \let\mst@ITcorr\mst@itcorr
 \ifmst@frenchmath
 \def\mst@ITcorr{\ifnum\fam=\m@ne\/\fi}%
 \@for\mst@tmp:=it,sl\do
 {\ifx\mst@tmp\mst@shape@normal\let\mst@ITcorr\@empty\fi }%
 \i
 \fi
 \i
2558 }% \AtBeginDocument
2559\AtEndOfPackage{\AtBeginDocument{\ifmst@subdued\else\mst@nonsubduedmathaccents\fi}}%
```

subdued 1.15: The subdued code was initiated in May 2011. I returned to mathastext on Sep 24, 2012, and decided to complete what I had started then, but in the mean time I had forgotten almost all of the little I knew about $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ macro programming.

The point was to extract the data about how are 'letters' and 'operators' in the normal and bold versions, through obtaining the math families of 'a' and ' 1 ', respectively ${ }^{1}$. Due to the reassignements done for characters by mathastext I also had decided in 2011 that the OT1 encoding, if detected, should be replaced by T1
${ }^{1}$ but the euler package for example assigns the digits to the letters symbol font...
1.15d: Oct 13, 2012. The \mathcode thing has to be used with care under Unicode engines. Unfortunately the \luatexUmathcode macro is helpless as it is not possible to know if it will return a legacy mathcode or a Unicode mathcode. On the other hand the much saner $\backslash$ XeTeXmathcodenum always return a Unicode mathcode.

UPDATE for mathastext $1.3(2013 / 09 / 02)$ : since the release of lualatex as included in TL2013, \luatexUmathcodenum behaves as \XeTeXmathcodenum so mathastext 1.3 treats identically under both unicode engines the equal and minus signs (and the vertical bar).
1.15e: Oct 22, 2012. I add the necessary things to also subdue the \mathbf, \mathit, \mathsf and \mathtt macros (previous version only took care of the symbol alphabets \mathnormal and \mathrm.) [update: 1.15 f does that in a completely different and much simpler way] Notice that the package defines a \mathnormalbold macro, but it will not be subdued in the normal and bold math versions.
1.15f: Oct 23,2012 . The previous version of the code queried the math family of a, respectively 1 , to guess and then extract the fonts to be reassigned to mtletterfont and mtoperatorfont (which is done at the end of this .sty file). The present code simply directly uses letters and operators (so mathastext could not subdue itself... if it was somehow cloned), but obtains indeed the corresponding font specifications in normal and bold in a cleaner manner. But it is so much shorter (and avoids the LualATEX problem with \luatexUmathcode). Anyhow, for example the euler package puts the digits in the letters math family! so the previous method was also error prone. In fact there is no way to do this subdued mechanism on the basis of the legacy code of mathastext. The only way is to rewrite entirely the package to query all mathcodes of things it changes in order to be able to revert these changes (and one would have to do even more hacking for \mathversion\{normal\} and not only \MTversion\{normal\} to work).
1.15f: and also I take this opportunity to do the subdued math alphabets things in a much much easier way, see below.
1.3s 2018/08/21: I have half-forgotten the reasons for modifiying the font encoding to current
\encodingdefault, but at any rate this should not be done in a fontspec context, encoding default being (now) TU it is very unlikely modifying from TU or to TU from something else will do any good.I add workaround here for case of fontspec being detected via the \encodingdefault setting.
$1.3 t 2018 / 08 / 22$ : the 1.3 s fix erroneously removed the OT1->T1 replacement in TU context. 1.3u: the whole thing will only get executed At Begin Document.

2560 \ifmst@subdued
2561 \AtBeginDocument\{\%
2562 \def\mst@reserved\#1\getanddefine@fonts\symletters\#2\#3\@nil\{\%
2563 \def\mst@normalmv@letter\{\#2\}\}\%
2564 \expandafter\mst@reserved $\backslash m v @ n o r m a l \ @ n i l$
2565 \def \mst@reserved\#1\getanddefine@fonts\symletters\#2\#3\@nil\{\%
\def \mst@boldmv@letter\{\#2\}\}\%
2566 \expandafter 2567 mst@reserved $\backslash$ mv@bold $\backslash @$ nil
2568 \def\mst@reserved\#1\getanddefine@fonts\symoperators\#2\#3\@nil\{\%
\def\mst@normalmv@operator\{\#2\}\}\%
2570 \expandafter\mst@reserved\mv@normal\@nil
2571 \def\mst@reserved\#1\getanddefine@fonts\symoperators\#2\#3\@nil\{\%
\def \mst@boldmv@operator\{\#2\}\}\%
2572 \expandafter 2573 mst@reserved $\backslash$ mv@bold $\backslash$ @nil
2574 \edef\mst@tmp@enc\{\mst@encoding@normal\}\%
2575 \def\mst@reserved\#1/\#2/\#3/\#4/\{\gdef\mst@debut\{\#1\}\gdef\mst@reste\{\#2/\#3/\#4\}\}\%
2576 \begingroup\escapechar\m@ne
2577 \xdef\mst@funnyoti\{\expandafter\string\csname OT1\endcsname\}\%
2578 \expandafter $\backslash$ expandafter $\backslash$ expandafter
2579

2581 \ifx\mst@debut\mst@funnyoti\ifx\mst@tmp@enc\mst@oti\def\mst@tmp@enc\{T1\}\fi\fi
2582 \edef \mst@normalmv@operator\{\expandafter\noexpand\csname
2583
2584

2600 \typeout\{** ...entering subdued mode...\}\%
2601 \expandafter\SetSymbolFont@ \expandafter\mv@normal\mst@normalmv@letter\symmtletterfont
 2604 \expandafter\SetSymbolFont@ \expandafter\mv@bold\mst@boldmv@operator\symmtoperatorfont 2605 \typeout\{** . . .done.\}\%
2606 \}\% \AtBeginDocument
2607 \fi \% \ifmst@subdued
Preamble-only... "Only preamble" restrictions. I was way too much obedient back in 2011, particularly taking into account how much of a pain it has been and still is that things such as \DeclareMathSymbol or \DeclareMathAccent are preamble-only. But keeping this for time being, however not using \@onlypreamble which breaks one's heart when tracing to see how much place it takes, so we do it in one go.
2608 \expandafter \gdef \expandafter \@preamblecmds \expandafter \{\@preamblecmds
2609 \do\MTitgreek
2610 \do\MTupgreek
2611 \do\MTitGreek
2612 \do\MTitGreek
2613 \do\Mathastextitgreek
2614 \do\Mathastextupgreek
2615 \do\MathastextitGreek
2616 \do\MathastextitGreek
2617 \do\MTgreekfont
2618 \do\Mathastextgreekfont
2619 \do\MTgreekupdefault
2620 \do\MTgreekitdefault
2621 \do\MTDeclareVersion
2622 \do\MathastextDeclareVersion
2623 \do \MTWillUse
2624 \do\MathastextWillUse
2625 \do\Mathastextwilluse
2626 \do\Mathastext
2627 \do\mathastext
2628 \}
2629 \endinput


[^0]:    Documentation generated from the source file with Time-stamp: <21-12-2023 at 13:22:21 CET>.

[^1]:    ${ }^{1}$ let's do as if we did not know the excellent txfonts package which employs Times for text and has a very complete math support, including many additional mathematical glyphs in comparison to the CM fonts. This was written many years ago, nowadays, newtx is the successor of txfonts.
    ${ }^{2}$ To the experts: there is a long story here that \newmcodes@ hardcodes the font, that it was not compatible with Unicode engines, that during some time (2013-2016) lualatex-math fixed that and very recently amsopn.sty 2016/03/08 v2.02 also, so now lualatex-math 1.6 does nothing as it is already fixed "upstream" in amsopn.sty, but anyhow in both cases, this still hardcoded the font, so finally mathastext does the right thing from its point of view. See the code comments for more, there is an issue here with LualATEX not applying the curly right quote contrarily to $\mathrm{X}_{3}{ }^{A} \mathrm{~T}_{\mathrm{E}} \mathrm{E}$.

[^2]:    ${ }^{3}$ Since 1.12 it also redefined $\backslash \mathrm{i}$ and $\backslash \mathrm{j}$ for usability both in text and math modes, but this has been dropped at 1.3 t . Breaking change!
    ${ }^{4}$ with the option symbolmisc, the asterisk is picked from the Symbol font, and the amount of lowering is non-customizable; however if a math alphabet command is used, the asterisk is then again from a text font and the lowering will be as specified by $\backslash M T l o w e r a s t$.
    ${ }^{5}$ in a hopefully safe way, for example $\$ \backslash$ label $\{$ eq*1\} $\$$ is ok.

[^3]:    ${ }^{6}$ this costs a math family, as I never came back to this to try to do otherwise.

[^4]:    ${ }^{7}$ The code will raise low-level $T_{E X}$ errors if the user attempts to use an 8bits font encoding whose $\angle A T_{E} X$ definition file is lacking the suitable uses of \DeclareTextAccent or if the low level $A T_{E} X$ macro implementation of text accents changes significantly; in such cases please report the problem to the author, so that it can be documented in future releases!
    ${ }^{8}$ I.e., the \grave etc... control sequences will, in math versions with an OpenType mathastext-ified font, expand to macros holding their initial meanings, unmodified by mathastext, which was in force at the \begin\{document\}.

[^5]:    ${ }^{9}$ Bob TEnNENT, Support for using Libertinus fonts with $A T_{E} X / p d f L T_{E} X$, https://ctan.org/pkg/ libertinus-type1.
    ${ }^{10}$ Michael Sharpe, A Type 1 font and $A T_{E} X$ support for Libertinus Math, https://ctan.org/pkg/ libertinust1math.

[^6]:    ${ }^{11}$ Bob Tennent, Support for using Libertinus fonts with $A T_{E} X / p d f A T_{E} X$, https://ctan.org/pkg/ libertinus-type1.

[^7]:    ${ }^{12}$ The document used the cmtt, cmss, txr, as well as LibertinusSerif-TLF font families in LGR encoding. The first two are available (with no need to load explicitly any package in the document) if the $\mathbb{A T}_{\mathrm{E}} \mathrm{EX}$ installation provides the cbfonts (or cbgreek-complete) \& babel packages, and the LGR encoded txr font (again no package loading is necessary) is part of the files of the txfontsb package. For LibertinusSerif-TLF, the files of the libertinus-type1 package must be present.
    ${ }^{13}$ Daniel Benjamin Miller, A blacker Type 1 version of Computer Modern, with multilingual support, https://ctan.org/pkg/mlmodern. I have added to the preamble
    \DeclareEncodingSubset\{TS1\}\{mlmtt\}\{0\}
    to circumvent some $\operatorname{LAT} T_{E}$ X complaints about \textasciigrave (this is a widespread problem when not using default fonts) related to occurrences of the backtick character in verbatim displays.
    ${ }^{14}$ Bob Tennent, Support for using Libertinus fonts with $\Delta T_{E} X / p d f\left\lfloor T_{E} X\right.$, https://ctan.org/pkg/ libertinus-type1.
    ${ }^{15}$ Michael Sharpe, A Type 1 font and $\mathrm{AT} T_{E} X$ support for Libertinus Math,

[^8]:    https://ctan.org/pkg/libertinust1math. Note that it is then highly advantageous to use latex+dvipdfmx and not pdflatex for reasons of PDF file size.
    ${ }^{16}$ this means "more then one."
    ${ }^{17}$ I thank in particular Tariq Perwez and Kevin Klement for their kind remarks (chronological order).
    ${ }^{18}$ more precisely stated, the value of \itdefault is used.
    ${ }^{19}$ more precisely stated, the value of \shapedefault is used.

[^9]:    ${ }^{20}$ The minus sign is now perfectly subdued, because its original mathcode is stored and restored; this was only way to handle the case with Unicode engines where the math operator font is in a classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ encoding, but the minus sign is configured by mathastext to use a Unicode en-dash or minus character in non-subdued math versions.
    ${ }^{21}$ The subdued mode does extinguish in the normal and bold math versions the action of options selfGreek, eulergreek, and symbolgreek (previously only LGRgreek was subdue-able).
    ${ }^{22}$ The \imath and \jmath now obey the subdued regime.
    ${ }^{23}$ Also \hbar and the math accents (see mathaccents option) obey the subdued regime.
    ${ }^{24}$ For example the default CM and its replacement Latin Modern for european languages are (transparently to the user) extended with LGR encoded fonts from the cbfonts (cbgreek-complete) package.

[^10]:    ${ }^{25} \mathrm{v} 1.2$ adds a customizable tiny space before ' to separate it from the previous letter, this is really needed when using upright letters in math mode with the $C M$ derivative glyph.Compare $f^{\prime}$ with $f^{\prime}$.
    ${ }^{26}$ see the unicodeminus option if using an OpenType font.
    ${ }^{27}$ the amount of lowering can be customized.

[^11]:    ${ }^{28}$ Till Tantau, Joseph Wright, Vedran Miletić, A ATEX class for producing presentations and slides, https://ctan.org/pkg/beamer.

[^12]:    ${ }^{29}$ the subdued option, described next, acts a bit otherwise, it forces, contrarily to its usual low-key character, the replacement of OT1 by T1 for the fonts ultimately used with letters and digits in math mode.
    ${ }^{30}$ Antoine MISSIER, Typesetting mathematics according to French rules, https://ctan.org/pkg/ frenchmath.
    ${ }^{31}$ Morten HøGHOLM, Lars MADSEN and the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 3$ project, Mathematical tools to use with amsmath, https://ctan.org/pkg/mathtools. As explained elsewhere in this documentation always load mathastext after mathtools.

[^13]:    ${ }^{32}$ math versions are discussed in the document fntguide.pdf from your $T_{E} X$ distribution.
    ${ }^{33}$ When not using math versions at all (so not using subdued mode either) another way to achieve distinct fonts in text and math is naturally to modify the document text font after having loaded mathastext (or after last usage of \Mathastext without optional argument). Another way is to
     call to \Mathastext which will configure math fonts without having modified the document text
    

[^14]:    ${ }^{34}$ may typically give a 'too many math alphabets' error message.
    ${ }^{35}$ sometimes one needs to look in the . sty file of the font package to figure out the font name (it is rarely as epigrafica, the same as the package name), and, if one does not know the arcanes of finding .fd files in one's $T_{E X}$ distribution, one should look at the log file of a test document to see if for example T1 is available for that font; for epigrafica it is not, only OT1 and LGR are possible.

[^15]:    ${ }^{36}$ Technically, formerly two symbol fonts were declared, one for the lowercase Greek letters and one for the uppercase Greek letters; now those are dropped and replaced by two symbol fonts, one for 'italic' Greek letters, the other for 'upright' Greek letters.

[^16]:    ${ }^{37}$ let's be honest, we are lying here about what exactly the first of these is bounding; this is explained later!
    ${ }^{38}$ we used simply $\$ \backslash$ mathit $\{f(x)\} \$$.
    ${ }^{39}$ these values are for the Latin Modern fonts of course.
    ${ }^{40}$ here we give correctly the bounding box for the math italic $f \ldots$ without its italic correction!

[^17]:    ${ }^{41}$ there are also some tiny vertical displacements of the sub- and superscripts.
    ${ }^{42}$ we just use $\$ \backslash$ mathrm $\{f$ _i^i $i\} \$$.

[^18]:    ${ }^{43}$ the situation is rather ironical! by the way, the warnings in section 1.11 with $\$ \mathrm{x}^{\wedge} ? \$$ or similar are less of an issue here, because the letter is only followed by $\backslash /$ and anyhow the whole is put by mathastext within group braces, so no surprises with $\$ x^{\wedge} y \$$ or $\$ \backslash$ mathbin $x \$$. Nevertheless it is still true that (in math mode only) the letters a-z, A-Z, expand to composite objects, something which could surprise other packages. The command $\backslash$ MTmathstandardletters cancels this mechanism.
    ${ }^{44}$ Formerly, italic corrections were added to the \mathnormal arguments.

[^19]:    ${ }^{45} 2016 / 11 / 04:$ the situation hasn't changed, at least on current TL2016. 2022/10/29: no change with current TL2022.
    ${ }^{46}$ the derivative glyph from the txfonts math symbols adapts itself better to an upright letter, no skip seems to be needed then.
    ${ }^{47}$ Formerly, skips of zero widths were inserted. (1.3j)

[^20]:    ${ }^{48}$ contrarily to the next feature, this one is not likely to create incompatibilities with other packages, so it is activated by default.
    ${ }^{49}$ of course some of them are input preceded by a backslash, and the backslash itself is input as \backslash.
    ${ }^{50} \# \$ \% \&$ obey the math alphabets since the initial version of mathastext; the dot ., the slash /, the vertical bar \| and the backslash \ do not have specific spacings inserted by $T_{E} X$ around them, and the procedure is then activated by default since 1.2 for these characters as they are 'easy non-letters'. But for \mid and \setminus which are $\mid$ and $\backslash$ with special spacing (of type \mathrel and \mathbin resp.) the procedure has some constraints explained in the framed box on next page and the activation requires \MTnonlettersobeymathxx.
    ${ }^{51}$ these commands are to be used outside of math mode. Their scope is limited to the current ATEX environment or group. They use the \everymath and \everydisplay mechanism so if the document needs to modify these token lists it has to do so in a responsible manner, extending not annihilating their previous contents.

[^21]:    ${ }^{52}$ this last example uses the \mathnormalbold additional alphabet defined by mathastext.
    ${ }^{53}$ Let me recall that braces will anyhow not be handled at all by mathastext if the document font encoding is OT1, except under option alldelims.

[^22]:    ${ }^{54}$ Conrad Kosowsky, Use TrueType and OpenType fonts in math mode https://ctan.org/pkg/ mathfont.
    ${ }^{55}$ Andrew Gilbert Moschou, Specify arbitrary fonts for mathematics in $X_{\exists} T_{E} X$ https://ctan.org/ pkg/mathspec.

[^23]:    ${ }^{56}$ Will Robertson, et al., Unicode mathematics with support for XeTeX and LuaTeX https://ctan. org/pkg/unicode-math.

[^24]:    ${ }^{57}$ Thanks to Tobias BRINK who asked for this feature.
    ${ }^{58}$ A tex mathastext. dtx (in a temporary repertory) on a copy of kpsewhich mathastext. dtx will extract extended versions of these examples as test files.

[^25]:    ${ }^{59}$ italic correction insertion for the latin letters, receptivity to the math alphabet action for the other characters.

[^26]:    ${ }^{60}$ only the characters ; , : ! ? $+-=<>()[] *$ mentioned in section 1.11 as 'difficult non letters' (and the right quote ') and the latin letters are concerned here; it seems highly unprobable that a latin letter $\in\{a-z, A-Z\}$ will have been made globally active (only letters never being used in command names are possible candidates), but mathastext has been designed to cope with it, should it happen ...
    ${ }^{61}$ This seems to still be the case with Babel 3.9f and frenchb.ldf 2.6e, as tested on Sep. 2, 2013. Again tested with up-to-date TL2015 Jan. 15, 2016 with same result.

[^27]:    ${ }^{62} \backslash$ Mathastext updates also the font and shapes for the Greek letters（LGRgreek option），and the skips to be inserted after the symbols $\forall$ and $\exists$ ，see infra．
    ${ }^{63}$ The allowed version names are as for the ATEX \DeclareMathVersion macro．Do not use \Mathastext［foo］with foo equal to＂normal＂or＂bold＂；this is already taken care of by the initial loading of the package or a later command \Mathastext without any optional argument． And it will be rejected．

[^28]:    ${ }^{64}$ These commands exist also with long names：\Mathastextencoding，etc．．The same applies to the other commands mentioned in this section．

[^29]:    ${ }^{65}$ I do not especially recommend to use this in real life！
    ${ }^{66}$ more precisely，the shape is the latest value passed in one of the previously used package commands to specify the shape of letters，or the \itdefault of the time of loading the package．

[^30]:    ${ }^{67}$ The horizontal skips for letter $h$ from $\backslash$ MTsetmathskips are ignored for $\backslash$ hbar. Formerly, a positive "before" skip was not properly taken into account for the horizontal positioning of the accent and thus gave a bad result. The user can extend the package $\backslash$ hbar definition to add skips.
    ${ }^{68}$ The \hbar redefinition is canceled in normal and bold math versions under the subdued option.

[^31]:    ${ }^{69}$ Formerly (i.e. since 1.12 ) mathastext redefined the $\backslash i$ and $\backslash j$ as robust commands usable both in text and math mode and using the above macros in the latter. I have decided it wasn't such a good idea and there is from now on 1.3 t no such redefinition of $\backslash \mathrm{i}$ and $\backslash \mathrm{j}$ !
    ${ }^{70}$ option asterisk is also required to treat the $*$. Recall from subsection 1.11 that the asterisk in math mode (also when using the control sequence \ast) appears then to $T_{E X}$ to be a composite object.

[^32]:    ${ }^{71}$ Formerly，it was set to 0 mu ．
    ${ }^{72}$ Formerly，it was set to 0mu．
    ${ }^{73}$ Formerly，it was set to 0mu．

[^33]:    ${ }^{74}$ Formerly, it was also executed from each \Mathastext in the preamble.
    ${ }^{75}$ the mathcode's are only modified at the time of execution of \everymath, \everydisplay.
    ${ }^{76}$ Formerly, italic corrections were added to the (non-oblique) letters of $\backslash$ mathnormal arguments.

[^34]:    ${ }^{77}$ It is even better if compiled via latex＋dvipdfmx．
    ${ }^{78}$ Christian CornelsSen，Allows font sizes up to $35.83 p t$ ，https：／／ctan．org／pkg／moresize．

[^35]:    ${ }^{79}$ Under this option \MTversion\{normal\} and \MTversion\{bold\} execute automatically $\backslash$ MTmathoperatorsdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTnonlettersdonotobeymathxx, \MTmathstandardletters.
    ${ }^{80}$ Since 1.3 x , in presence of the LGRgreek option in addition to italic, the $\backslash \mathrm{MTgreekitdefault}$ shape is then used for lowercase Greek letters and $\backslash M T g r e e k u p d e f a u l t$ for uppercase.

[^36]:    ${ }^{81}$ If under control of the package.
    ${ }^{82}$ Under LGRgreek and since 1.3 x , the $\backslash M T g r e e k u p d e f a u l t$ is used for Greek letters if no other option such as itgreek was employed.
    ${ }^{83}$ Alexander I. Rozhenko, Use comma as decimal separator in mathematics, https://ctan.org/ pkg/ncccomma.
    ${ }^{84}$ There is a 'feature' of babel-french that the effect of package ncccomma is canceled if one switches from French to English; and switching back to French does not reenact it. For background on this issue see https://github.com/latex3/babel/issues/190.

[^37]:    ${ }^{85}$ in this very special situation of option nosmalldelims, the braces are an exception to this rule and they require both of \MTnonlettersobeymathxx and \MTexplicitbracesobeymathxx for being picked up from the text font when not used as delimiters.
    ${ }^{86}$ You can check the documentation of the https://ctan.org/pkg/lgrmath package for how to find out systematically which fonts are available on your system in LGR encoding.

[^38]:    1601 \def \mst@define@lowergreekletter\#1\#2\{\%

