The **xfp** package Floating Point Unit

The LATEX Project*

Released 2023-08-29

The two functions provided by this package are part of the IATEX format starting with 2022-06-01 release. This package is therefore no longer needed and only provided to be able to process older documents loading.

This package provides a LaTeX $2_{\mathcal{E}}$ document-level interface to the LaTeX3 floating point unit (part of expl3). It also provides a parallel integer expression interface for convenience.

\fpeval * The expandable command \fpeval takes as its argument a floating point expression and produces a result using the normal rules of mathematics. As this command is expandable it can be used where TFX requires a number and for example within a low-level \edge \frac{\end{a}}{\end{a}}

Briefly, the floating point expressions may comprise:

- Basic arithmetic: addition x + y, subtraction x y, multiplication x * y, division x/y, square root \sqrt{x} , and parentheses.
- Comparison operators: x < y, x <= y, x > ? y, x! = y etc.
- Boolean logic: sign sign x, negation !x, conjunction x && y, disjunction x || y, ternary operator x ? y : z.
- Exponentials: $\exp x$, $\ln x$, x^y .

operation to give a purely numerical result.

- Integer factorial: fact x.
- Trigonometry: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$ expecting their arguments in radians, and $\sin dx$, $\cos dx$, $\tan dx$, $\cot dx$, $\sec dx$, $\csc dx$ expecting their arguments in degrees.
- Inverse trigonometric functions: $a\sin x$, $a\cos x$, $a\tan x$, $a\cot x$, $a\sec x$, $a\csc x$ giving a result in radians, and $a\sin dx$, $a\cos dx$, $a\tan dx$, $a\cot dx$, $a\sec dx$, $a\sec dx$ giving a result in degrees.
- Extrema: $\max(x_1, x_2, ...), \min(x_1, x_2, ...), abs(x)$.
- Rounding functions, controlled by two optional values, n (number of places, 0 by default) and t (behavior on a tie, NaN by default):

^{*}E-mail: latex-team@latex-project.org

- $-\operatorname{trunc}(x,n)$ rounds towards zero,
- floor(x, n) rounds towards $-\infty$,
- $\operatorname{ceil}(x, n)$ rounds towards $+\infty$,
- round(x, n, t) rounds to the closest value, with ties rounded to an even value by default, towards zero if t = 0, towards $+\infty$ if t > 0 and towards $-\infty$ if t < 0.
- Random numbers: rand(), randint(m, n).
- Constants: pi, deg (one degree in radians).
- Dimensions, automatically expressed in points, e.g., pc is 12.
- Automatic conversion (no need for \number) of integer, dimension, and skip variables to floating points numbers, expressing dimensions in points and ignoring the stretch and shrink components of skips.
- Tuples: (x_1, \ldots, x_n) that can be added together, multiplied or divided by a floating point number, and nested.

An example of use could be the following.

 $\label{lambda} $$ \operatorname{Sin}(3.5)}{2} + 2\cdot 10^{-3} = \frac{\sin(3.5)}{2} + 2\cdot 10^{-3} = \frac{\sin(3.5)}{2} + 2e^{-3} $.$

\inteval * The expandable command \inteval takes as its argument an integer expression and produces a result using the normal rules of mathematics. The operations recognised are +, -, * and / plus parentheses. Division occurs with rounding, and ties are rounded away from zero. As this command is expandable it can be used where TeX requires a number

and for example within a low-level \edef operation to give a purely numerical result.

An example of use could be the following.

 $LaTeX{}$ can now compute: The sum of the numbers is $\int 1 + 2 + 3$.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

${f E}$			I	
\edef	1, 2	\inteval		. 2
F			N	
\fpeval	1	\numbor	11	o