The IXTEX3 Sources

The KTEX Project*
Released 2022-07-15

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document

1.1 Naming functions and variables
1.1.1 Scratch variableso oo
1.1.2 Terminological inexactitude

1.2 Documentation conventions

1.3 Formal language conventions which apply generally

1.4 TgX concepts not supported by BTEX3

II Bootstrapping

2

The 13bootstrap package: Bootstrap code
2.1 Using the BTEX3 modules

The 13names package: Namespace for primitives
3.1 Setting up the KTEX3 programming language

IIT Programming Flow

4

The 13basics package: Basic definitions
4.1 No operation functions
4.2 Grouping materialo oL
4.3 Control sequences and functions, .
4.3.1 Defining functions oo oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences Lo
4.3.5 Deleting control sequences oL Lo
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analysing control sequences oo
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionals.o
4.6.1 Tests on control sequences
4.6.2 Primitive conditionals oo 0oL
4.7 Starting a paragraph oL oL
4.8 Debugging support L e

ii

p—

N Ot ot ot N

The 13expan package: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants L L.
Introducing the variants L oo o
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.
Unbraced expansion oo
Preventing expansiono Lo Lo
Controlled expansion Lo
Internal functions oL L Lo

The I3sort package: Sorting functions

6.1

Controlling sorting L

The I3tl-analysis package: Analysing token lists

The 13regex package: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L o
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens o oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL L

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg package: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Scratch booleans
Boolean expressionso L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L Lo o
Nestable recursions and mappings
9.8.1 Simple mappingsot
Internal programming functions Lo

iii

30
30
31
32
34
36
36
37
38
39
42

43
43

45

46
47
47
48
48
49
50
52
52
54
99
96
57
59
99

10 The I3sys package: System/runtime functions

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

The name of the job
Date and time Lo Lo
Engine oo
Output format L.
Platform,
Random numbers Lo
Accesstotheshell,
Loading configuration data
10.8.1 Final settings

11 The I13msg package: Messages

11.1
11.2
11.3
11.4

11.5

Creating new messages
Customizable information for message modules . .
Contextual information for messages
Issuing messages L.
11.4.1 Messages for showing material
11.4.2 Expandable error messages
Redirecting messages

12 The I3file package: File and I/O operations

12.1

12.2

Input-output stream management
12.1.1 Reading from files
12.1.2 Writing to files
12.1.3 Wrapping lines in output
12.1.4 Constant input—output streams, and variables
12.1.5 Primitive conditionals

File operation functions

13 The I3luatex package: LuaTgX-specific functions

13.1
13.2

Breaking out to Lua
Lua interfaces

14 The I3legacy package: Interfaces to legacy concepts

IV Data types

15 The 13tl package: Token lists

15.1
15.2
15.3

15.4

15.5

Creating and initialising token list variables
Adding data to token list variables
Token list conditionals
15.3.1 Testing the first token
Working with token lists as a whole
15.4.1 Using token lists
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists
Manipulating items in token lists
15.5.1 Mapping over token lists
15.5.2 Head and tail of token lists

iv

72
72
72
73
73
74
74
74
(0]
76

77
(s
78
78
80
83
83
83

85
85
87
90
92
93
93
93

98
98
99

101

15.5.3 Items and ranges in token lists 115

15.5.4 Sorting token lists 117

15.6 Manipulating tokens in token lists 117
15.6.1 Replacing tokens Lo o 117
15.6.2 Reassigning category codes 118

15.7 Constant token lists L o 119
15.8 Scratch token lists oL 119
16 The I3str package: Strings 121
16.1 Creating and initialising string variables 122
16.2 Adding data to string variables 123
16.3 String conditionalso Lo 123
16.4 Mapping over strings Lo 125
16.5 Working with the content of strings 127
16.6 Modifying string variableso oo 130
16.7 String manipulation oL oL 131
16.8 Viewing strings L o 132
16.9 Constant strings oL e 133
16.10 Scratch strings Lo 133
17 The I3str-convert package: string encoding conversions 134
17.1 Encoding and escaping schemes 134
17.2 Conversion functions Lo o 136
17.3 Conversion by expansion (for PDF contexts) 136
17.4 Possibilities, and thingstodo 136
18 The I3quark package: Quarks 138
181 Quarks 138
18.2 Defining quarks oL 139
18.3 Quark tests 139
18.4 Recursion L e 140
18.4.1 An example of recursion with quarks 141

185 Scanmarks 142
19 The I3seq package: Sequences and stacks 143
19.1 Creating and initialising sequences 143
19.2 Appending data to sequences 145
19.3 Recovering items from sequences oL 145
19.4 Recovering values from sequences with branching 146
19.5 Modifying sequences L. e 148
19.6 Sequence conditionals L L Lo L 148
19.7 Mapping Over SEqUENCES . . . « « v« v e v v e e e e e e e 149
19.8 Using the content of sequences directly 151
19.9 Sequences asstacks L 152
19.10 Sequences as SEtsS i e e e e e e e e e 153
19.11 Constant and scratch sequences 154
19.12 Viewing sequences o v v v vt e e e e 155

20 The 13int package: Integers

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Integer expressions
Creating and initialising integers
Setting and incrementing integerso L
Using integers L e
Integer expression conditionals L.
Integer expression loops. L Lo o
Integer step functionso Lo
Formatting integers Lo
Converting from other formats to integers

20.10 Random integers Lo o
20.11 Viewing integers oL o e
20.12 Constant integers
20.13 Scratch integers
20.14 Direct number expansiono
20.15 Primitive conditionals oL L oo

21 The I13flag package: Expandable flags

21.1
21.2

Setting up flagso
Expandable flag commands 0 L.

22 The I3clist package: Comma separated lists

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Creating and initialising comma lists
Adding data to comma lists,
Modifying comma lists
Comma list conditionals
Mapping over comma listso
Using the content of comma lists directly
Comma listsasstacks L L
Using a singleitem Lo oo
Viewing comma lists L

22.10 Constant and scratch comma lists

23 The I3token package: Token manipulation

23.1
23.2
23.3
23.4
23.5
23.6
23.7

Creating character tokens
Manipulating and interrogating character tokens
Generic tokens L oL
Converting tokens oL L
Token conditionals Lo
Peeking ahead at the next token
Description of all possible tokens

vi

156
156
158
159
159
160
161
163
164
165
166
167
167
167
168
168

170
170
171

172
173
174
175
176
176
178
179
180
181
181

24 The 13prop package: Property lists

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10

Creating and initialising property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo o
Property list conditionals oo L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. o oo
Scratch property lists Lo o
Constants e

25 The I3skip package: Dimensions and skips

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17
25.18
25.19
25.20
25.21
25.22
25.23
25.24
25.25

Creating and initialising dim variables.
Setting dim variables L Lo L
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso 0oL
Using dim expressions and variables
Viewing dim variables L
Constant dimensions L0
Scratch dimensions
Creating and initialising skip variables
Setting skip variables L oL o
Skip expression conditionals L. 0oL 0oL oL
Using skip expressions and variables
Viewing skip variables oo o000
Constant skips
Scratch skips oL
Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables L Lo
Using muskip expressions and variables
Viewing muskip variables L Lo
Constant muskipso oL
Scratch muskips o
Primitive conditional oo oo

26 The I3keys package: Key—value interfaces

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10

Creating keys o
Sub-dividing keys
Choice and multiple choice keys Lo Lo
Key usage scope oo
Setting keys oL e
Handling of unknown keys
Selective key setting
Digesting keys Lo
Utility functions for keys oo oo
Low-level interface for parsing key—val lists

vii

199
199
200
201
202
202
203
204
205
206
206

207
207
208
208
209
211
212
213
214
215
215
215
216
217
217
217
218
218
218
219
219
220
220
221
221
221

27 The I3intarray package: fast global integer arrays 237

27.1 I3intarray documentationo Lo Lo 237
27.1.1 Implementation notes 238

28 The 13fp package: Floating points 239
28.1 Creating and initialising floating point variables 241
28.2 Setting floating point variableso 241
28.3 Using floating points Lo 242
28.4 Floating point conditionals Lo 243
28.5 Floating point expression loops L oL 245
28.6 Some useful constants, and scratch variables 247
28.7 Floating point exceptions Lo L oo 248
28.8 Viewing floating points oL Lo o 249
28.9 Floating point expressions Lo 250
28.9.1 Input of floating point numbers 250

28.9.2 Precedence of operators 251

28.9.3 Operations 251

28.10 Disclaimer and roadmapo 258

29 The I3fparray package: fast global floating point arrays 261
29.1 I3fparray documentation 261

30 The I13cctab package: Category code tables 262
30.1 Creating and initialising category code tables 262
30.2 Using category code tables 262
30.3 Category code table conditionals 263
30.4 Constant category code tables oL 0oL 263

V Text manipulation 264
31 The I3unicode package: Unicode support functions 265
32 The I3text package: text processing 266
32.1 Expanding text 266
32.2 Casechanging L 267
32.3 Removing formatting from text oo 269
32.4 Control variables 269
V1 Typesetting 270

viii

33 The I3box package: Boxes 271

33.1 Creating and initialising boxes 271
33.2 Using boxes 272
33.3 Measuring and setting box dimensions 0oL 273
33.4 Boxconditionals L e 274
33.5 The last box inserted L oo 274
33.6 Constant boxes 274
33.7 Scratch boxes e 274
33.8 Viewing box contents 0oL 275
33.9 Boxesandcolor 275
33.10 Horizontal mode boxes Lo 275
33.11 Vertical mode boxes L L 276
33.12 Using boxes efficiently o 278
33.13 Affine transformations 279
33.14 Primitive box conditionals o oo 282
34 The I3coffins package: Coffin code layer 283
34.1 Creating and initialising coffins 0oL 283
34.2 Setting coffin content and poles 284
34.3 Coffin affine transformations oo 285
34.4 Joining and using coffins L. oL oo oo 285
34.5 Measuring coffins 286
34.6 Coffin diagnostics L 286
34.7 Constants and variables. L 0oL 287

35 The I3color package: Color support 289
35.1 Colorin boxes e e e e e 289
35.2 Colormodels. 289
35.3 Color expressionso e 290
354 Named colors 291
35.5 Selecting colors 292
35.6 Colors for fills and strokes oL 292
35.6.1 Coloring math mode material 293

35.7 Multiple color models L 293
35.8 Exporting color specifications o000 oL 294
35.9 Creating new color models L L oL 294
35.9.1 Color profiles 295

36 The 13pdf package: Core PDF support 296
36.1 Objects o e e 296
36.2 Version e e e e e 297
36.3 Compression u i e e e e 298
36.4 Destinations L. L e e 298
VII Additions and removals 300

ix

37 The I3candidates package: Experimental additions to I3kernel

37.1
37.2
37.3
37.4
37.5
37.6
37.7
37.8
37.9
37.10
37.11
37.12
37.13
37.14

Important notice L L
Additions to I13box L L
Additions to I3expano
Additions to I3fp oL
Additions to I3file oL
Additions to 13flago
Additions to I3intarrayo o
Additions to I3msg
Additions to I3prg
Additions to I3prop
Additions to I13seqo
Additions to 13sys
Additions to I3t
Additions to 13tokeno

VIII Implementation

38 13bootstrap implementation

38.1
38.2
38.3
38.4
38.5
38.6

LuaTpX-specificcode
The \pdfstrcmp primitive in XgfTEX
Loading support Luacode
Engine requirementso oL oL

Extending allocators
The IMTEX3 code environment

39 13names implementation

40 I13kernel-functions: kernel-reserved functions

40.1
40.2

Internal kernel functions o
Kernel backend functions

41 13basics implementation

41.1
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9
41.10
41.11
41.12
41.13
41.14
41.15
41.16

Renaming some TEX primitives (again)
Defining some constants
Defining functions
Selecting tokenso oL
Gobbling tokens from input oL oL oL
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence L L.
Exist or free L
Preliminaries for new functions
Defining new functions oL 000 .
Copying definitions Lo
Undefining functions o
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions

311

312
312
312
313
313
314
315

318

41.17 Checking control sequence equality
41.18 Diagnostic functions.
41.19 Decomposing a macro definition oL 0oL
41.20 Doing nothing functions oL o oL
41.21 Breaking out of mapping functions Lo
41.22 Starting a paragrapho
42 13expan implementation
42.1 General expansion Lo Lo Lo
42.2 Hand-tuned definitions oL oL oo
42.3 Last-unbraced versions L oo
42.4 Preventing expansion Lo
42.5 Controlled expansion
42.6 Emulating e-type expansiono 0o
42.7 Defining function variants oL oL Lo
42.8 Definitions with the automated technique
43 13sort implementation
43.1 Variables oL
43.2 Finding available \toks registers
43.3 Protected user commands oL oL o
434 Merge sort . ..o oL Lo
43.5 Expandable sorting L o
43.6 MeSsages e
44 13tl-analysis implementation
44.1 Imternal functions Lo
44.2 Internal format Lo
44.3 Variables and helper functions
444 Planof attack
44.5 Disabling active characters L oL oL
44.6 First passo e e
44.7 Second PASS . .o . i e e e e e e e e e e e
44.8 Mapping through the analysis L.
44.9 Showing the results oL o
44.10 Peeking ahead
4411 MeSsageso
45 13regex implementation
45.1 Planof attack
45.2 Helpers
45.2.1 Constants and variables 0L
45.2.2 Testing characters L oo
45.2.3 Internal auxiliaries L Lo oo
45.2.4 Character property tests
45.2.5 Simple character escape
45.3 Compiling e
45.3.1 Variables used when compiling
45.3.2 Generic helpers used when compiling
45.3.3 Mode L

Xi

382
382
386
389
391
392
393
400
410

412
412
413
415
417
420
425

428
428
428
429
431
432
433
438
441
441
444
449

45.3.4 Framework e 472

45.3.5 Quantifiers 475
45.3.6 Raw characters L 478
45.3.7 Character properties 480
45.3.8 Anchoring and simple assertions 481
45.3.9 Character classes L e 481
45.3.10 Groups and alternations 485
45.3.11 Catcodes and csnames oo 487
45.3.12Raw token lists with \u 491
45.3.130ther 495
45.3.14Showing regexeso .o e e 495

45.4 Buildingo 502
45.4.1 Variables used while building 502
45.4.2 Framework 503
45.4.3 Helpers for building an NFA oL L. 506
45.4.4 Building classeso L L 507
45.4.5 Building groupso Lo 509
45.4.6 Others oL 513

45.5 Matching Lo 515
45.5.1 Variables used when matching 515
45.5.2 Matching: framework o oL 518
45.5.3 Using states of the NFA o oo 521
45.5.4 Actions when matching, 522

45.6 Replacement L 524
45.6.1 Variables and helpers used in replacement 524
45.6.2 Query and brace balance L0000 526
45.6.3 Framework oL 527
45.6.4 Submatches L L 530
45.6.5 Csnames in replacement 532
45.6.6 Characters in replacement 533
45.6.7 Anerror e 537

45.7 User functions oL L 537
45.7.1 Variables and helpers for user functions 540
45.7.2 Matching e 542
45.7.3 Extracting submatcheso Lo oo 543
45.7.4 Replacement oo 548
45.7.5 Peeking ahead oL o oo 551

45.8 MeSsages o e 557
45.9 Code for tracingo 563
46 13prg implementation 565
46.1 Primitive conditionals L oo 565
46.2 Defining a set of conditional functions 565
46.3 The boolean data typeo Lo 565
46.4 Internal auxiliaries 567
46.5 Boolean expressionso o e 568
46.6 Logical loops 573
46.7 Producing multiple copieso L oL 574
46.8 Detecting TEX’smode Lo 576
46.9 Internal programming functions oL 0oL 576

xii

47 13sys implementation

47.1

47.2

47.3

Kernel code
47.1.1 Detecting the engineo
47.1.2 Randomness e
47.1.3 Platform e
47.1.4 Configurationso
47.1.5 Accesstotheshell

Dynamic (every job) code L o
47.2.1 The name of thejob
47.2.2 Time and date
47.2.3 Random numbers
47.2.4 Accesstotheshell o
47.2.5 Held over from I3file,

Last-minute code
47.3.1 Detecting the output L oo
47.3.2 Configurations L Lo o

48 13msg implementation

48.1
48.2
48.3
48.4
48.5
48.6
48.7
48.8
48.9

Internal auxiliaries Lo
Creating messages o v vt i e e
Messages: support functions and text
Showing messages: low level mechanism
Displaying messages« o .o o e e e e
Kernel-specific functions Lo 000
Internal messages e e
Expandable errors
Message formatting

49 13file implementation

49.1

49.2

49.3

49.4

49.5
49.6
49.7
49.8

Input operations L
49.1.1 Variables and constants 0L
49.1.2 Stream managemento e e
49.1.3 Reading input Lo

Output operations L L
49.2.1 Variables and constants L L oo
49.2.2 Internal auxiliaries L Lo Lo

Stream management oL Lo
49.3.1 Deferred writing L o o
49.3.2 Immediate writing Lo oo oo
49.3.3 Special characters for writingo 000
49.3.4 Hard-wrapping lines to a character count

File operations L
49.4.1 Internal auxiliaries

GetldInfo oL

Checking the version of kernel dependencies

MeESSAZES « v v v v e e e e e e e e e e e e e e e

Functions delayed from earlier modules

xiii

50 13luatex implementation 658
50.1 BreakingouttoLua. L 658
50.2 Messages 659
50.3 Lua functions for internal use 660
50.4 Preserving iniTeX Lua data for runs 665

51 I3legacy Implementation 667

52 13tl implementation 669
52.1 Functions. e 669
52.2 Constant token lists oL 671
52.3 Adding to token list variables o000 671
52.4 Internal quarks and quark-query functions 674
52.5 Reassigning token list category codes 674
52.6 Modifying token list variables o000 677
52.7 Token list conditionals L. 681
52.8 Mapping over token lists 0oL 686
52.9 Using token lists L 688
52.10 Working with the contents of token lists 689
52.11 The first token from a token list 692
52.12 Token by token changes. oo oL 697
52.13 Using a single item L L 699
52.14 Viewing token lists L o oo 702
52.15 Internal scan markso L Lo 704
52.16 Scratch token lists o 704

53 13str implementation 705
53.1 Internal auxiliaries L Lo 705
53.2 Creating and setting string variables 706
53.3 Modifying string variableso 0oL o oL 707
53.4 String comparisons o 708
53.5 Mapping over strings Lo L Lo 711
53.6 Accessing specific characters in a stringo L. 713
53.7 Counting characters L 718
53.8 The first character in a string 719
53.9 String manipulation oL Lo 720
53.10 Viewing strings Lo 723

54 I3str-convert implementation 725
54.1 Helpers 725

54.1.1 Variables and constants 725
54.2 String conditionals Lo 727
54.3 Conversions o 728
54.3.1 Producing one byte or character 728
54.3.2 Mapping functions for conversions 729
54.3.3 Error-reporting during conversion. 730
54.3.4 Framework for conversions oL 731
54.3.5 Byte unescape and escapeo 735
54.3.6 Native strings 736
54.3.7 clist e e 737

Xiv

54.3.8 8-bit encodings Lo

544 MESSAZES « v v v e e e e e e e e e e e e e
54.5 Escaping definitions L oL Lo
54.5.1 Unescape methods
54.5.2 Escape methods Lo L.
54.6 Encoding definitions L 0oL
54.6.1 UTF-8 support o o e e
54.6.2 UTF-16 support o . o v v i
54.6.3 UTF-32 support« . o v i i e
54.7 PDF names and strings by expansion
54.7.1 18O 8859 support
55 13quark implementation
55.1 Quarks
55.2 Scanmarkso
56 13seq implementation
56.1 Allocation and initialisation L.
56.2 Appending data to eitherend oL oL 0oL
56.3 Modifying sequences
56.4 Sequence conditionals
56.5 Recovering data from sequences
56.6 Mapping over SeqUENCES . . .« . .« v e e e e e e e e e e
56.7 Using sequences o .ttt e e
56.8 Sequence stacks oL oL
56.9 Viewing sequenceso e e e e e e e
56.10 Scratch sequences e e e e
57 13int implementation
57.1 Integer expressionso e
57.2 Creating and initialising integers L oL
57.3 Setting and incrementing integers oL
57.4 Using integers oL
57.5 Integer expression conditionals L Lo L.
57.6 Integer expression loops. L Lo e
57.7 Integer step functions
57.8 Formatting integerso L Lo
57.9 Converting from other formats to integers
57.10 Viewing integer o e
57.11 Random integers e e
57.12 Constant integers L
57.13 Scratch integers L L
57.14 Integers for earlier modules Lo
58 13flag implementation
58.1 Nomn-expandable flag commands
58.2 Expandable flag commandso 0oL oL

XV

779
779
787

789
790
793
794
796
798
802
806
807
808
809

810
811
813
815
816
816
820
821
823
828
831
832
832
832
833

59 13clist implementation
59.1 Removing spaces around items oL
59.2 Allocation and initialisation
59.3 Adding data to comma lists oo
59.4 Comma listsasstacks oL oo
59.5 Modifying comma listso Lo
59.6 Comma list conditionals
59.7 Mapping over comma lists L o L oo
59.8 Using comma lists L oL
59.9 Using asingleitem Lo
59.10 Viewing comma lists L L oo
59.11 Scratch comma lists L

60 13token implementation
60.1 Internal auxiliaries L Lo
60.2 Manipulating and interrogating character tokens
60.3 Creating character tokens
60.4 Generic tokens L e e e
60.5 Token conditionals o
60.6 Peeking ahead at the next token oL

61 13prop implementation
61.1 Internal auxiliaries L o
61.2 Allocation and initialisation Lo
61.3 Accessing data in property lists L oL
61.4 Property list conditionals L oo
61.5 Recovering values from property lists with branching
61.6 Mapping over property lists Lo
61.7 Viewing property lists. Lo oo

62 13skip implementation
62.1 Length primitives renamed oL
62.2 Internal auxiliaries L L o
62.3 Creating and initialising dim variables.
62.4 Setting dim variables L L oL
62.5 Utilities for dimension calculations
62.6 Dimension expression conditionals 0oL
62.7 Dimension expression loops. L oL
62.8 Dimension step functions oL oL oo
62.9 Using dim expressions and variableso 0L
62.10 Viewing dim variables Lo oo
62.11 Constant dimensions o
62.12 Scratch dimensions L L
62.13 Creating and initialising skip variables
62.14 Setting skip variables L L o
62.15 Skip expression conditionals
62.16 Using skip expressions and variables
62.17 Inserting skips into the output oL 0oL
62.18 Viewing skip variables oL oL oL
62.19 Constant skips oL

XVi

837
838
839
841
842
844
847
848
852
854
856
857

858
858
858
861
869
870
880

887
888
889
891
896
897
898
899

62.20 Scratch skips oL 915
62.21 Creating and initialising muskip variables 915
62.22 Setting muskip variableso oo 916
62.23 Using muskip expressions and variables 917
62.24 Viewing muskip variables oL oL oo 917
62.25 Constant muskips 918
62.26 Scratch muskips 918
63 13keys Implementation 919
63.1 Low-level interface L 919
63.2 Constants and variables. L oL 926
63.2.1 Internal auxiliaries oo oo 928

63.3 The key defining mechanism 0oL 929
63.4 Turning properties into actions oL 931
63.5 Creating key properties Lo o 938
63.6 Setting keys 944
63.7 Utilities e e e e 953
63.8 Messageso 955
64 13intarray implementation 957
64.1 Lua implementation L L Lo 957
64.1.1 Allocating arrays o e 957
64.1.2 Array items 960
64.1.3 Working with contents of integer arrays 962

64.2 Font dimension based implementationo 963
64.2.1 Allocating arrays 964
64.2.2 Array items e 965
64.2.3 Working with contents of integer arrays 967

64.3 Common partso e e 969
64.3.1 Random arrayso 969

65 13fp implementation 971
66 13fp-aux implementation 972
66.1 Access to primitives Lo 972
66.2 Internal representation L oL 972
66.3 Using arguments and semicolons oL 973
66.4 Constants, and structure of floating points 974
66.5 Overflow, underflow, and exact zero 977
66.6 Expanding after a floating point number00 977
66.7 Other floating point types o oL 978
66.8 Packing digits 981
66.9 Decimate (dividing by a power of 10) 984
66.10 Functions for use within primitive conditional branches 986
66.11 Integer floating points L Lo 987
66.12 Small integer floating points L 0oL 988
66.13 Fast string comparison L oo 989
66.14 Name of a function from its I13fp-parse name 989
66.15 MeESSAZES « .« v v e e e e e e e e e e e e e e 989

xXvii

67 13fp-traps Implementation 990

67.1 Flags o o e 990
67.2 Traps o o e e 990
67.3 Errorso e e 994
67.4 MeSSages . .« v v v i e e e e e e e e 994
68 13fp-round implementation 996
68.1 Rounding tools 996
68.2 The round function 1000
69 13fp-parse implementation 1005
69.1 Work plan 1005
69.1.1 Storing results Lo 1006
69.1.2 Precedence and infix operators 1007
69.1.3 Prefix operators, parentheses, and functions 1010
69.1.4 Numbers and reading tokens one by one 1011
69.2 Main auxiliary functions oo Lo 1013
69.3 Helpers L 1014
69.4 Parsing one number Lo 1015
69.4.1 Numbers: trimming leading zeros 1021
69.4.2 Number: small significand 1022
69.4.3 Number: large significand 1024
69.4.4 Number: beyond 16 digits, rounding 1026
69.4.5 Number: finding the exponent 1029
69.5 Constants, functions and prefix operators 1032
69.5.1 Prefix operators 1032
69.5.2 Constants 1035
69.5.3 Functions L 1036
69.6 Main functions.o Lo 1037
69.7 Infix operatorso 1039
69.7.1 Closing parentheses and commas 1040
69.7.2 Usual infix operators L. 1042
69.7.3 Juxtapositiono 1043
69.7.4 Multi-character cases Lo oL 1043
69.7.5 Ternary operator Lo Lo o 1044
69.7.6 CompariSons i e e e 1044

69.8 Tools for functions 1046
69.9 Messages 1049
70 13fp-assign implementation 1050
70.1 Assigning values 1050
70.2 Updating values 1051
70.3 Showing values L 1051
70.4 Some useful constants and scratch variables L. 1052

xXviii

71 13fp-logic Implementation
71.1 Syntax of internal functions
T1.2 Tests . . . o o o e e
71.3 Comparison e
71.4 Floating point expression loops
715 Extremao e
71.6 Boolean operations e
71.7 Ternary operator Lo e

72 13fp-basics Implementation
72.1 Addition and subtraction oL oo oo
72.1.1 Sign, exponent, and special numbers
72.1.2 Absolute additiono
72.1.3 Absolute subtractiono Lo
72.2 Multiplication Lo
72.2.1 Signs, and special numbers
72.2.2 Absolute multiplication
72.3 Division e e e e e
72.3.1 Signs, and special numberso
7232 Workplan oL L
72.3.3 Implementing the significand division
T2.4 Square Tooto e e e e e e
72.5 About the sign and exponento
72.6 Operations on tuples L

73 13fp-extended implementation
73.1 Description of fixed point numbers
73.2 Helpers for numbers with extended precision
73.3 Multiplying a fixed point number by a short one
73.4 Dividing a fixed point number by a small integer
73.5 Adding and subtracting fixed points L.
73.6 Multiplying fixed points L o o
73.7 Combining product and sum of fixed points
73.8 Extended-precision floating point numberso
73.9 Dividing extended-precision numberso
73.10 Inverse square root of extended precision numbers
73.11 Converting from fixed point to floating point

74 13fp-expo implementation
74.1 Logarithm e
74.1.1 Workplan
74.1.2 Some constants e e
74.1.3 Sign, exponent, and special numberso
74.1.4 AbsoluteIn
74.2 Exponential
74.2.1 Sign, exponent, and special numbers
T4.3 Power. e e e e e
74.4 Factorial e e

Xix

75

76

77

78

79

80

81

13fp-trig Implementation 1137
75.1 Direct trigonometric functions 1138
75.1.1 Filtering special caseso oL 1138
75.1.2 Distinguishing small and large arguments 1141
75.1.3 Small arguments oL Lo 1142
75.1.4 Argument reduction in degrees 1142
75.1.5 Argument reduction in radians 1143
75.1.6 Computing the power series 1151
75.2 Inverse trigonometric functions oL 1153
75.2.1 Arctangent and arccotangent 1154
75.2.2 Arcsine and arccosineo oo 1159
75.2.3 Arccosecant and arcsecanto 1161
13fp-convert implementation 1163
76.1 Dealing with tuples L oo oo 1163
76.2 Trimming trailing zeros Lo oo 1163
76.3 Scientific notation 1164
76.4 Decimal representationo 1165
76.5 Token list representation oo 1167
76.6 Formatting L e 1168
76.7 Convert to dimension or integer oL 1168
76.8 Convert from a dimension L L oL 1169
76.9 Useandeval 1170
76.10 Convert an array of floating points to a comma list 1171
13fp-random Implementation 1173
77.1 Engine supporto 1173
77.2 Random floating pointo oL o 1177
77.3 Random integer 1177
I13fparray implementation 1183
78.1 Allocating arrays 1183
78.2 Array items 1184
13cctab implementation 1188
79.1 Variables 1188
79.2 Allocating category code tables 1189
79.3 Saving category code tables L o oL 1190
79.4 Using category code tables L. 1191
79.5 Category code table conditionals 1196
79.6 Constant category code tables oL 1197
T9.7 MeSSAZES « . v v v e e e e e e e e e 1199
13unicode implementation 1201
I13text implementation 1205
81.1 Imternal auxiliaries 1205
81.2 Utilities o . 1206
81.3 Configuration variables o o0 1209
81.4 Expansion to formatted text L oL 1210

82 I13text-case implementation
82.1 Casechanging e
82.2 Case changing data for 8-bit engines
83 13text-purify implementation
83.1 Purifying text
83.2 Accent and letter-like data for purifying text
84 I13box implementation
84.1 Support code e e
84.2 Creating and initialising boxes oo
84.3 Measuring and setting box dimensions00
84.4 Using boxes
84.5 Box conditionals L
84.6 The last box insertedo L Lo
84.7 Constant boxes
84.8 Scratch boxes
84.9 Viewing box contents L oo
84.10 Horizontal mode boxes L L o
84.11 Vertical mode boxeso o
84.12 Affine transformations e
85 13coffins Implementation
85.1 Coflins: data structures and general variables
85.2 Basic coffin functions L
85.3 Measuring coffins oL o L
85.4 Coffins: handle and pole management
85.5 Coffins: calculation of pole intersections
85.6 Affine transformations oL L oL
85.7 Aligning and typesetting of coffins
85.8 Coflin diagnostics L
85.9 Messages
86 13color Implementation
86.1 Basics e
86.2 Predefined color nameso oL
86.3 Setup e
86.4 Utility functions
86.5 Model conversion e
86.6 Color expressions
86.7 Selecting colors (and color models) L.
86.8 Mathcolor
86.9 Fill and stroke color Lo L
86.10 Defining named colors Lo
86.11 Exporting colors Lo
86.12 Additional color models
86.13 Applying profiles
86.14 Diagnostics. Lo
86.15 MeESSAZES « .« v v v e e e e e e e e e e e e e e

XX1

87 13pdf implementation 1365

87.1 Compression v v v v v e e e e e e e e e 1365
87.2 Objects o o e 1366
87.3 Version e e e e 1366
87.4 Destinations e 1368
88 I3candidates Implementation 1369
88.1 Additions to I3box 1369
88.1.1 Viewing part of abox L. 1369
88.2 Additionsto I3flag 1371
88.3 Additions to I3msg 1372
88.4 Additions to I3prg 1373
88.5 Additions to I3prop L 1374
88.6 Additions to I3seq 1374
88.7 Additions to I3sys 1379
88.8 Additions to I3fileo 1380
88.9 Additions to I3tl 1380
88.9.1 Building a token list L L. 1380
88.9.2 Other additions to I3tl oo 0oL 1384
88.10 Additions to I3token 1384
89 13deprecation implementation 1387
89.1 Patching definitions to deprecate 0L 1387
89.2 Removed functions Lo L 1389
89.3 Deprecated I3basics functions oL oL oL 1393
89.4 Deprecated I3str functions 1393
89.5 Deprecated I3seq functions o 1394
89.6 Deprecated I3sys functions oo Lo 1394
89.7 Deprecated I3tl functionso oo 1394
89.8 Deprecated [3token functions Lo 1395
Index 1397

xxii

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for exhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but with a very different imple-
mentation. Functions which feature an e-type argument may be expandable. The
drawback is that e is extremely slow (often more than 200 times slower) in older
engines, more precisely in non-LuaTgX engines older than 2019.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1l_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf?.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

LIf a primitive offers a functionality not yet in the kernel, programmers and users are encouraged
to write to the LaTeX-L mailing list (mailto:LATEX-L@listserv.uni-heidelberg.de) describing their
use-case and intended behaviour, so that a possible interface can be discussed. Temporarily, while an
interface is not provided, programmers may use the procedure described in the 13styleguide.pdf.

mailto:LATEX-L@listserv.uni-heidelberg.de

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module? name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1l Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

2The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_(type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.> On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

3TgEXnically, functions with no arguments are \long while token list variables are not.

\seq_new:N
\seq_new:c

\cs_to_str:N %

\seq_map_function:NN v

\sys_if_engine_xetex:TF *

\1_tmpa_t1l

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {(true code)} {(false code)}
The underlining and italic of TF indicates that three functions are available:

e \sys_if_engine_xetex:T

e \sys_if_engine_xetex:F

e \sys_if_engine_xetex:TF
Usually, the illustration will use the TF variant, and so both (true code) and (false code)
will be shown. The two variant forms T and F take only (true code) and (false code),
respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wunless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BETEX3

The TEX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

Chapter 2

The I3bootstrap package
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2: and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
BTEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/{day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then it will be prefixed with v in the
package identifier line.

\GetIdInfo

Updated: 2012-06-04

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The I13names package
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part 111
Programming Flow

12

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

13

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the \showgroups primitive.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

14

\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npx
cpx

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npx
cpx

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npx
cpx

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or or e-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

15

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

16

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or e-type argument. The definition is global
and an error results if the {function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}
\cs_new_protected_nopar: (cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

17

\cs_set_nopar:Nn
\cs_set_nopar: (cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected: (cn|Nx|cx)

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {<code>}
\cs_set_protected_nopar:(cn|Nx|cx)

\cs_gset:Nn
\cs_gset:(cn|Nx|cx)

\cs_gset_nopar:Nn
\cs_gset_nopar: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

18

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {{code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

\cs_new_eq:NN
\cs_new_eq: (Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|ec)

Uses the (creator) function (which should have signature Npn, for example \c¢s_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)

\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)

\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (csi) (cs2)

\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

19

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N *
\cs_meaning:c *

Updated: 2011-12-22

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

4.3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

4.3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1._my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

20

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

*
*
*
*

New: 2012-11-10

\cs:w
\cs_end:

\cs_to_str:N

*
*

*

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc }
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

21

\cs_split_function:N *

New: 2018-04-06

\cs_prefix_spec:N *

New: 2019-02-27

\cs_parameter_spec:N =%

New: 2022-06-24

4.4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

22

\cs_replacement_spec:N * \cs_replacement_spec:N (token)

New: 2019-02-27 If the (token) is a macro, this function leaves the replacement text in input stream as

\use:n
\use:nn
\use:nnn
\use :nnnn

*
*
*
*

a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (token) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {{group1)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn {(group:)} {(group:)} {(groups)} {{groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } %}
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

23

\use_i:nn *
\use_ii:nn *

\use_i:nnn *
\use_ii:nnn *
\use_iii:nnn *

\use_i:nnnn *
\use_ii:nnnn *
\use_iii:nnnn *
\use_iv:nnnn *

\use_i_ii:nnn x

\use_ii_i:nn *

New: 2019-06-02

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

TEXhackers note: These are equivalent to EXTEX 2¢’s \@firstoftwo and \@secondoftwo.

\use_i:nnn {(argi)} {(arg:)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(arg:)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }
i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(arg:)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

24

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn

nnn

nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn

*
*
*
*
*
nnnnnnnnn %

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_none:n {(group:)}

* These functions absorb between one and nine groups from the input stream, leaving

nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

hackers note: These are equivalent to & 2¢’s \@gobble, \@gobbbletwo, etc.
g g

\use:e {(expandable tokens)}
Fully expands the (token list) in an x-type manner, but the function remains fully ex-

pandable, and parameter character (usually #) need not be doubled.

TEXhackers note: \use:e is a wrapper around the primitive \expanded where it is avail-
able: it requires two expansions to complete its action. When \expanded is not available this
function is very slow.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q nil:w * \use_none_delimit_by_q_nil:w <balanced text) \q_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w <balanced text) \q_stop
\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced text)

\q_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw * \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
\use_i_delimit_by_q_stop:nw * \g_nil
\use_i_delimit_by_q_recursion_stop:nw x \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6 Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

25

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (¢rue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original

concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

\c_true_bool (Constants that represent true and false, respectively. Used to implement predicates.

\c_false_bool

26

\cs_if_eq_p:NN «*
\cs_if_eq:NNTF *

\cs_if_exist_p:N «*
\cs_if_exist_p:c *
\cs_if_exist:NTF x
\cs_if_exist:cTF %

\cs_if_free_p:N «x
\cs_if_free_p:c =
\cs_if_free:NTF x
\cs_if free:cTF %

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *

\if_meaning:w x

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (csi1) (cs2)

\cs_if_eq:NNTF (csi) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of (control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:NTF).

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (argz) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg,) and (arge) are the same, otherwise it
executes (false code). (arg;) and {args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

27

\if:w *
\if _charcode:w *
\if_catcode:w *

\if_cs_exist:N x
\if _cs_exist:w *

\if_mode_horizontal:
\if_mode_vertical:
\if_mode_math:
\if_mode_inner:

\mode_leave_vertical:

New: 2017-07-04

\if:w (token:) (tokenz) (true code) \else: (false code) \fi:
\if _catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the ETEX 2¢
\leavevmode approach, no box is used by the method implemented here.

28

\debug_on:n
\debug_off:n

New: 2017-07-16
Updated: 2017-08-02

\debug_suspend:
\debug_resume:

New: 2017-11-28

4.8 Debugging support

\debug_on:n { (comma-separated list) }

\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (list) are

o check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes soon-to-be-deprecated commands produce errors;
o log-functions that logs function definitions;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing. These functions can only be used in BTEX 2¢ package mode loaded
with enable-debug or another option implying it.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors or warnings. These pairs of commands can be nested. This can be used around
pieces of code that are known to fail checks, if such failures should be ignored. See for
instance 13coffins.

29

Chapter 5

The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

30

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

31

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
if these are not already defined. For each (variant) given, a function is created that
expands its arguments as detailed and passes them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function can only be applied if the (parent control sequence) is already de-
fined. If the (parent control sequence) is protected or if the (variant) involves any x ar-
gument, then the (variant control sequence) is also protected. The (variant) is created
globally, as is any \exp_args:N(variant) function needed to carry out the expansion.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only

32

when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It was added in May 2018. In recent enough engines (starting around 2019) it relies
on the primitive \expanded hence is fast. In older engines it is very much slower. As
a result it should only be used in performance critical code if typical users will have a
recent installation of the TEX ecosystem.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }

33

and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is). The draw-
back is that e expansion is very much slower in old engines (before 2019). Consider
using f expansion if that type of expansion is sufficient to perform the required
expansion, or x expansion if the variant will not itself need to be expandable.

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

o Arguments that should consist of single tokens N, c, V, or v should come first among
these.

o Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, c, V, and v, and, in the last
position, o, f, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:Nc * \exp_args:Nc (function) {(tokens)}

\eXP_aTgsicc * Tyis function absorbs two arguments (the (function) name and the (tokens)). The

(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

34

\exp_args:No *

\exp_args:NV x

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf *

\exp_args:Nx

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

TEXhackers note: This relies on the \expanded primitive when available (in LuaTEX and
starting around 2019 in other engines). Otherwise it uses some fall-back code that is very much
slower. As a result it should only be used in performance-critical code if typical users have a
recent installation of the TEX ecosystem.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

35

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNc
NNo
NNV
NNv
NNe
NNf
Ncc
Nco
NcV
Ncv
Ncf
NVV

b S S . TR iR R b S S o

Updated: 20

18-05-15

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nno
NnV
Nnv
Nne
Nnf
Noc
Noo
Nof
NVo
Nfo
Nff
Nee

b R D D S S S D S . P P o

Updated: 20

18-05-15

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
Nccc
NcNc
NcNo
Ncco

* % ot o X o X

5.5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokens:)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokenz) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

36

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVVv
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo
Neee

X X X > b ot ot X X X X o ok o Xt X

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx
NNnx
NNox
Nccx
Ncnx
Nnnx
Nnox
Noox

New: 2015-08-12

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NNf
Nco
NcV
Nno
Noo
Nfo

NNNo
NNNV
NNNfE
NnNo

b . P D T S S D D . D S i i

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

5.7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokens:)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

37

\exp_last_unbraced:Nx

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

\exp_not:N =

\exp_not:c *

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out using
an appropriate argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument or the first token in an o or e or £ argument.

TEXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an £-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

38

\exp_not:n *

\exp_not:o *

\exp_not:V *

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_f: «*

Updated: 2011-06-03

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npx), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type or e-type expansion, it retains its form, but when
typeset it produces the underlying space ().

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to

39

\exp:w *
\exp_end: *

New: 2015-08-23

calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w (expandable tokens) \exp_end:

Expands (exzpandable-tokens) until reaching \exp_end: at which point expansion stops.
The full expansion of (expandable tokens) has to be empty. If any token in {expandable
tokens) or any token generated by expanding the tokens therein is not expandable the
expansion will end prematurely and as a result \exp_end: will be misinterpreted later
on.*

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you

may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (ezpandable tokens), but this should
not be relied upon.

4Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

40

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all £-type expansions a space ending the expansion gets removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.”

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_£f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

5In this particular case you may get a character into the output as well as an error message.

41

P

PP P A Y

TddNthooad =8B

::0_unbraced
::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced

::V_unbraced

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
ITREX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general INTEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

42

Chapter 6

The I13sort package
Sorting functions

6.1 Controlling sorting

ETEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

43

\sort_return_same: \seq_sort:Nn (seq Var)
\sort_return_swapped: { ... \sort_return_same: or \sort_return_swapped: ... }

New: 2017-02-06 Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

44

Chapter 7

The I13tl-analysis package:
Analysing token lists

This module provides functions that are particularly useful in the I3regex module for
mapping through a token list one (token) at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in I3token finds tokens in the input stream instead. In both cases the user
provides (inline code) that receives three arguments for each (token):

o (tokens), which both o-expand and x-expand to the (token). The detailed form of
(tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if it
is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the (token)
(0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: alignment tab,
6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other, D: active).
This can be converted to an integer by writing "(catcode).

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:N \tl_analysis_show:n {(token list)}
\tl_analysis_show:n \tl_analysis_log:n {(token list)}
\tl_analysis_log:N

, Displays to the terminal (or log) the detailed decomposition of the (token list) into tokens,
\tl_analysis_log:n

showing the category code of each character token, the meaning of control sequences and
New: 2021-05-11 active characters, and the value of registers.

\tl_analysis_map_inline:nn \tl_analysis_map_inline:nn {(token list)} {(inline function)}
\tl_analysis_map_inline:Nn

Applies the (inline function) to each individual (token) in the (token list). The (inline

New: 2018-04-09 fynction) receives three arguments as explained above. As all other mappings the map-
Updated: 2022-03-26 ping js done at the current group level, i.e. any local assignments made by the (inline
function) remain in effect after the loop.

45

Chapter 8

The 13regex package: Regular
expressions in TEpX

The 13regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \1_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \1_foo_regex
\regex_set:Nn \1_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \1_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] . *), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

46

8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

[abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

[A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

\c{[A-Za-z] *} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]1?\d+ matches an explicit integer with at most one sign.

I\N+H\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

I\NH\-\UT* (\d@+1\d*\ .\d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

O\H\-\T* (\d+ I \d*x\ . \d+) _*x ((?i)pt |in| [cemlm|ex| [bslp| [dnld| [pcnlc) \ *
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

O\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\L*ke [\+\-_I*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

\+\-\1* (\d+|\cC.) \L* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
NN\ O NG\ * CON\=%/] [\+\=-\ (1 *\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

47

8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

o mnon-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(; \), \?, \.; \");

« spaces should always be escaped (even in character classes);

« any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regex)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character types.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \~"I]: space and tab.

\s Any space character, equivalent to [\ \""I\""J\""L\""M].

48

\v Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.
\H Any token not matched by \h.
\N Any token other than the \n character (hex 0A).
\S Any token not matched by \s.
\V Any token not matched by \v.
\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
x-y Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:"(name):] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is 1 then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).
? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.

+ 1 or more, greedy.

49

+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|BIC Either one of A, B, or C, investigating A first.
(...) Capturing group.
(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
e B for begin-group tokens;

e E for end-group tokens;

50

e M for math shift;
o T for alignment tab tokens;
o P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
« S for spaces;
e L for letters;
e 0 for others; and
o A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \c0(abc) matches abc where each character has category other.°

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LS0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [*0]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches abxcd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(var name)} matches the exact contents (both character codes and cate-
gory codes) of the variable \(var name), which are obtained by applying \exp_not:v
{(var name)} at the time the regular expression is compiled. Within a \c{. ..} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{1_tmpa_regex}D matches the tokens A and

6This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\c0(?7:abc).

o1

D separated by something that matches the regular expression \1_tmpa_regex. This
behaves as if a non-capturing group were surrounding \1_tmpa_regex, and any group
contained in \1_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \1_tmpa_regex has value B|C, then A\ur{1_tmpa_regex}D is equiv-
alent to A(?7:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \1_-
mymodule_BC_t1 contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_t1} D }
\regex_show:n{ AB | CD }

8.1.6 Miscellaneous
Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (identifying A-Z with a—z; no
Unicode support yet). This applies until the end of the group in which it appears,
and can be reverted using (7-i). For instance, in (?7i) (a(?-i)blc)d, the letters a
and d are affected by the i option. Characters within ranges and classes are affected
individually: (?71i) [Y-\\] is equivalent to [YZ\[\\yz], and (7i) [Taeiou] matches any
character which is not a vowel. Neither character properties, nor \c{...} nor \u{...}
are affected by the i option.

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

¢ \0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

52

o \c{(cs name)} inserts a control sequence;
o \c(category){character) (see below);
o \u{(tl var name)?} inserts the contents of the (¢ var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?llo) . } { (\0O--\1) } \1l_my_tl

results in \1_my_t1 holding H(ell--el) (0,--0) w(or--o) (1d--1)!

The submatches are numbered according to the order in which the opening paren-
thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code regime at the time where the replacement is made,
with two exceptions:

« space characters (with character code 32) inserted with \,, or \x20 or \x{20} have
category code 10 regardless of the prevailing category code regime;

o if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{(text)} Produces the control sequence with csname (text). The (text) may contain refer-
ences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{(var name)} allows to insert the contents of the variable with
name (var name) directly into the replacement, giving an easier control of category codes.
When nested in \c{...} and \u{...} constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { [7,]+ } { \u{l_my_\O_t1} } \1_my_tl

53

\regex_new:N

New: 2017-05-26

\regex_set:Nn
\regex_gset:Nn

New: 2017-05-26

\regex_const:Nn

New: 2017-05-26

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26
Updated: 2021-04-29

results in \1_my_t1 holding first, \emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary
category codes. For instance

\tl_clear:N \1_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \1_tmpa_tl

results in \1_tmpa_t1 containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the [3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declaration
is global. The (regex var) is initially such that it never matches.

\regex_set:Nn (regex var) {(regex)}
Stores a compiled version of the (regular expression) in the (regex var). The assignment

is local for \regex_set:Nn and global for \regex_gset:Nn. For instance, this function
can be used as

\regex_new:N \1_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

\regex_const:Nn (regex var) {(regex)}

Creates a new constant (regez var) or raises an error if the name is already taken. The
value of the (regex var) is set globally to the compiled version of the (reqular expression).

\regex_show:n {(regex)}

\regex_log:n {(regex)}

Displays in the terminal or writes in the log file (respectively) how I3regex interprets the
(regex). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)
+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

54

\regex_match:nnTF
\regex_match:NnTF

New: 2017-05-26

\regex_count :nnN
\regex_count :NnN

New: 2017-05-26

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

8.4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_match:nnTF {(regex)} {(token 1list)} {(true code)} {(false code)}

Tests whether the (reqular expression) matches any part of the (token list). For instance,

\regex_match:nnTF { b [cdel* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dgq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_count:nnN {(regex)} {(token list)} (int var)

Sets (int var) within the current TEX group level equal to the number of times (regular
expression) appears in (token list). The search starts by finding the left-most longest
match, respecting greedy and lazy (non-greedy) operators. Then the search starts again
from the character following the last character of the previous match, until reaching the
end of the token list. Infinite loops are prevented in the case where the regular expression
can match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

\regex_match_case:nnTF
{

{(regex1)

{(regex2)

} {(code case1)}

} {(code cases)?}
{(regexn)} {{code casen)}

} {(token list)}

{(true code)} {(false code)}

Determines which of the (regular expressions) matches at the earliest point in the (token
list), and leaves the corresponding (code;) followed by the (true code) in the input stream.
If several (regex) match starting at the same point, then the first one in the list is selected
and the others are discarded. If none of the (regex) match, the (false code) is left in the
input stream. Each (regex) can either be given as a regex variable or as an explicit regular
expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then the corresponding (code) is used and everything else
is discarded, while if none of the (regez) match at a given position then the next starting
position is attempted. If none of the (regex) match anywhere in the (token list) then
nothing is left in the input stream. Note that this differs from nested \regex_match:nnTF
statements since all (regezr) are attempted at each position rather than attempting to
match (regex;) at every position before moving on to (regezs).

55

\regex_extract_once:nnN
\regex_extract_once:nnNTF
\regex_extract_once:NnN
\regex_extract_once:NnNTF

New: 2017-05-26

\regex_extract_all:nnN
\regex_extract_all:nnNTF
\regex_extract_all:NnN
\regex_extract_all:NnNTF

New: 2017-05-26

8.5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token 1list)} (seq var) {(true code)} {(false
code)}

Finds the first match of the (regular expression) in the (token list). If it exists, the match
is stored as the first item of the {seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. The (seq var) is assigned locally. If
there is no match, the (seq var) is cleared. The testing versions insert the (true code)
into the input stream if a match was found, and the (false code) otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \1_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \1_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n — 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds all matches of the (regular expression) in the (token list), and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The (seq var) is assigned locally. If there is no match, the
(seq var) is cleared. The testing versions insert the (true code) into the input stream if
a match was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

56

\regex_split:nnN
\regex_split:nnNTF
\regex_split:NnN
\regex_split:NnNTF

New: 2017-05-26

\regex_replace_once:nnN
\regex_replace_once:nnNTF
\regex_replace_once:NnN
\regex_replace_once:NnNTF

New: 2017-05-26

\regex_replace_all:nnN
\regex_replace_all:nnNTF
\regex_replace_all:NnN
\regex_replace_all:NnNTF

New: 2017-05-26

\regex_split:nnN {(regular expression)} {(token list)} (seq var)
\regex_split:nnNTF {(regular expression)} {(token list)} (seq var) {(true code)}
{(false code)}

Splits the (token list) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to (seq var) is
local. If no match is found the resulting (seq var) has the (token list) as its sole item. If
the (regular expression) matches the empty token list, then the (token list) is split into
single tokens. The testing versions insert the (¢true code) into the input stream if a match
was found, and the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1l_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

8.6 Replacement

\regex_replace_once:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regular expression)} {(replacement)} (tl1 var) {(true
code)} {(false code)}

Searches for the (regular expression) in the contents of the (¢l var) and replaces the first
match with the (replacement). In the (replacement), \O represents the full match, \1
represent the contents of the first capturing group, \2 of the second, etc. The result is
assigned locally to (tl var).

\regex_replace_all:nnN {(regular expression)} {(replacement)} (tl1 var)
\regex_replace_all:nnNTF {(regular expression)} {(replacement)} (t1 var) {(true
code)} {(false code)’}

Replaces all occurrences of the (regular expression) in the contents of the (¢ wvar) by
the (replacement), where \O represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (¢l var).

57

\regex_replace_case_once:nN \regex_replace_case_once:nNTF
\regex_replace_case_once:nNTF {

Now: 2022-01-10 {(regexﬁi E(replacementl)}

{(regex2)} {(replacements)}

:[<'1;egexn>} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces the earliest match of the regular expression (7| (regez;)|... |(regex,)) in the
(token list variable) by the (replacement) corresponding to which (regex;) matched, then
leaves the (true code) in the input stream. If none of the (regex) match, then the (¢l var)
is not modified, and the (false code) is left in the input stream. Each (regex) can either
be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement) as
described for \regex_replace_once:nnN. This is equivalent to checking with \regex_-
match_case:nn which (regez) matches, then performing the replacement with \regex_-
replace_once:nnN.

\regex_replace_case_all:nN \regex_replace_case_all:nNTF
\regex_replace_case_all:nNTF {

{(regex1)} {(replacementq)}

————— A
New: 2022-01-10 {(regex2)} {(replacements)}

{(regexn)} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces all occurrences of all {regex) in the (token list) by the corresponding (replacement).
Every match is treated independently, and matches cannot overlap. The result is assigned
locally to (¢l var), and the {true code) or (false code) is left in the input stream depending
on whether any replacement was made or not.

In detail, for each starting position in the (token list), each of the (regez) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement),
and the search resumes at the position that follows this match (and replacement). For
instance

\tl_set:Nn \1_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN

{
{ [A-Za-z]+ } { “\0’’ }
{\vo}r{-——-—-1%
{ .3 { N0l }
} \1_tmpa_tl
results in \1_tmpa_t1 having the contents ¢ ‘Hello’’---[,]1[,] ¢ ‘world’’---[!]. Note

in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

58

\1_tmpa_regex
\1_tmpb_regex

New: 2017-12-11

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

8.7 Scratch regular expressions

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any I¥TX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8.8 Bugs, misfeatures, future work, and other possi-
bilities
The following need to be done now.
e Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Clean up the use of messages.
e Cleaner error reporting in the replacement phase.
e Add tracing information.
e Detect attempts to use back-references and other non-implemented syntax.
o Test for the maximum register \c_max_register_int.

e Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

o Shift arrays so that the useful information starts at position 1.

e Only build \c{. ..} once.

o Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

o If possible, when a state is reused by the same thread, kill other subthreads.

59

Use an array rather than \g__regex_balance_t1 to build the function __regex_-
replacement_balance_one_match:n.

Reduce the number of epsilon-transitions in alternatives.

Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

Optimize groups with no alternative.
Optimize states with a single __regex_action_free:n.

Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

Optimize the use of \int_step_. .. functions.

Groups don’t capture within regexes for csnames; optimize and document.
Better “show” for anchors, properties, and catcode tests.

Does \K really need a new state for itself?

When compiling, use a boolean in_cs and less magic numbers.

Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]>
(x..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ~, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of PCRE or Perl may or may not be implemented.

e Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \t1_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

60

o Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

e Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

e Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

e Recursion: this is a non-regular feature.

e Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

e Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

e Backtracking control verbs: intrinsically tied to backtracking.

e \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, ...), making it harder to produce useful error message.

o \cx, similar to TEX’s own \~"x.
e Comments: TEX already has its own system for comments.

e \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

e \C single byte in UTF-8 mode: XHTEX and LuaTgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

61

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn

Updated: 2012-02-06

Chapter 9

The 13prg package
Control structures

Conditional processing in ITEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if _predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {({code)}
\prg_new_conditional:Nnn \(name):{arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions check for
existing definitions and perform assignments globally (c¢f. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of (conditions), which should be
one or more of p, T, F and TF.

62

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):({arg spec) (parameters)
\prg_set_protected_conditional:Npnn {(conditions)} {(code)}

\prg_new_protected_conditional:Nnn \prg_new_protected_conditional:Nnn \(name):({arg spec)
\prg_set_protected_conditional:Nnn {(conditions)} {(code)}

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version
check for existing definitions and perform assignments globally (¢f. \cs_new:Npn) whereas
the set version do not (c¢f. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of (conditions), which should be one or more of T, F and TF (not

p)-
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

o \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

o \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

o \(name):(arg spec)F — a function with one more argument than the original {(arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if_meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

63

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the {conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(names):(arg specsa)
\prg_set_eq_conditional:NNn {(conditions)}

\prg_return_true: x
\prg_return_false: x

These functions copy a family of conditionals. The new version checks for existing defin-
itions (cf. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn \(name):{arg spec)

variant argument specifiers condition specifiers
New: 2017-12-12 U 8 P 1 D)33

Defines argument-specifier variants of conditionals. This is equivalent to running \cs_-
generate_variant:Nn (conditional) {{variant argument specifiers)} on each (conditional)
described by the (condition specifiers). These base-form (conditionals) are obtained
from the (name) and (arg spec) as described for \prg_new_conditional :Npnn, and they
should be defined.

9.2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if _false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, efc. which can then be used on both the boolean
type and predicate functions.

64

\bool_new:N
\bool_new:c

\bool_const:Nn

\bool_const:cn

New: 2017-11-28

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN
\bool_set_eq: (cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_if p:N «*
\bool_if_p:c «*
\bool_if:NTF *
\bool_ if:cTF %

Updated: 2017-07-15

\bool_to_str:N %
\bool to_str:c *
\bool_to_str:n *

New: 2021-11-01

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, I¥TEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

\bool_const:Nn (boolean) {(boolexpr)}

Creates a new constant (boolean) or raises an error if the name is already taken. The
value of the (boolean) is set globally to the result of evaluating the (boolexpr).

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (boolean;) (booleany)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_to_str:N (boolean)
\bool_to_str:n (boolean expression)

Expands to the letters true or false depending on the logical truth of the (boolean) or
(boolean expression).

65

\bool_show:N
\bool_show:c

New: 2012-02-09
Updated: 2021-04-29

\bool_show:n

New: 2012-02-09
Updated: 2017-07-15

\bool_log:N
\bool_log:c

New: 2014-08-22
Updated: 2021-04-29

\bool_log:n

New: 2014-08-22
Updated: 2017-07-15

\bool_if_exist_p:N
\bool_if_exist_p:c
\bool_if_exist:NTF

*
*
*
\bool_if_ exist:cTF *

New: 2012-03-03

\1_tmpa_bool
\1_tmpb_bool

\g_tmpa_bool
\g_tmpb_bool

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.

\bool_if_exist_p:N (boolean)
\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

9.2.1 Scratch booleans

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any I¥TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

9.3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

66

\bool_if_p:n *
\bool_if:nTF *

Updated: 2017-07-15

\int_compare_p:n { 1 =1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and | | evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq_meaning_p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_ -
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } % skipped
}
}

{ ! \int_compare_p:n { 2 =4 } }

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}

\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

67

\bool_lazy_all_p:n =
\bool_lazy_all:nTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_any_p:n x
\bool_lazy_any:nTF x

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_or_p:nn
\bool_lazy_or:nnTF =%

New: 2015-11-15
Updated: 2017-07-15

\bool_not_p:n *

Updated: 2017-07-15

\bool_xor_p:nn *
\bool_xor:nnTF x

New: 2018-05-09

\bool_do_until:Nn 3
\bool_do_until:cn ¢

Updated: 2017-07-15

{(boolexprn)
{(boolexpry)

(boolexprs)} ---
(boolexprs)} ---

\bool_lazy_all_p:n { {(boolexpri)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)}

e T}
Ao } ¥ {(true code)}
Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean
expressions).

\bool_lazy_and_p:nn {(boolexpri)} {(boolexpr:)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexpr:)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolezprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

{(boolexpry)
{(boolexprn)

(boolexpra)} ---
(boolexprs)} ---

\bool_lazy_any_p:n { {(boolexpr;)
\bool_lazy_any:nTF { {(boolexpri)
{(false code)?}

Ao 3}

Ao } ¥} {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two (boolean
expressions).

\bool_lazy_or_p:nn {(boolexpri)} {(boolexprs)}

\bool_lazy_or:nnTF {(boolexpri)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ({boolean expression)) within a boolean expression.

\bool_xor_p:nn {(boolexpr:)} {(boolexprs)}
\bool_xor:nnTF {(boolexpri)} {(boolexprs)} {(true code)} {(false code)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

9.4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

68

\bool_do_while:Nn
\bool_do_while:cn 3¢

Updated: 2017-07-15

\bool_until_do:Nn ¥
\bool until _do:cn 3%

Updated: 2017-07-15

\bool_while_do:Nn 3¢
\bool_while_do:cn 3¢

Updated: 2017-07-15

\bool_do_until:nn %

Updated: 2017-07-15

\bool_do_while:nn 3

Updated: 2017-07-15

\bool_until_do:nn 3

Updated: 2017-07-15

\bool_while_do:nn

Updated: 2017-07-15

\prg_replicate:nn x

Updated: 2011-07-04

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream again
and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {{code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {(boolean expression) is true.

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {boolean expression) is false.

9.5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

69

\mode_if_horizontal_p: *
\mode_if_horizontal:TF x

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF *

Updated: 2011-09-05

\mode_if_vertical_p: *
\mode_if_vertical:TF =

\if_predicate:w *

\if_bool:N *

\prg_break_point:Nn *

New: 2018-03-26

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

9.7 Primitive conditionals

\if _predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

9.8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \(type)_map_break: {(code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break:
and \(type)_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the (code) is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

70

\prg_map_break:Nn *

\prg_map_break:Nn \(type)_map_break: {(user code)}

New: 2018-03-26 |

\prg_break_point: *

New: 2018-03-27

\prg_break: «x
\prg_break:n *

New: 2018-03-27

\group_align_safe_begin: «*

\group_align_safe_end: * .

Updated: 2011-08-11

\prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
(type).

For types with mappings defined in the kernel, \(type)_map_break: and \(type)_-
map_break:n are defined as \prg_map_break:Nn \(type)_map_break: {} and the same
with {} omitted.

9.8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break:n {(code)} ... \prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts the (code) in the input stream.

9.9 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

71

Chapter 10

The 13sys package:
System /runtime functions

10.1 The name of the job

\c_sys_jobname_str Constant that gets the “job name” assigned when TEX starts.

New: 2015-09-19

Updated: 2019-10-27 TEXhackers note: This copies the contents of the primitive \jobname. For technical

reasons, the string here is not of the same internal form as other, but may be manipulated using

normal string functions.

10.2 Date and time

\c_sys_minute_int The date and time at which the current job was started: these are all reported as integers.
\c_sys_hour_int

\c_sys_day_int TEXhackers note: Whilst the underlying primitives can be altered by the user, this
\c_sys_month_int interface to the time and date is intended to be the “real” values.

\c_sys_year_int

New: 2015-09-22

72

\sys_if_engine_luatex_p:
\sys_if_engine_luatex:TF
\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF
\sys_if_engine_ptex_p:
\sys_if_engine_ptex:TF
\sys_if_engine_uptex_p:
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p:

*
*
*
*
*
*
*
*
*
\sys_if_engine_xetex:TF x

New: 2015-09-07

\c_sys_engine_str

New: 2015-09-19

\c_sys_engine_exec_str

New: 2020-08-20

\c_sys_engine_format_str

New: 2020-08-20

\sys_timer: =

New: 2020-09-24

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:

*
*
*

\sys_if_output_pdf:TF x

New: 2015-09-19

\c_sys_output_str

New: 2015-09-19

10.3 Engine

\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u) ptex tests are for e-pIEX and e-uplpX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pIEX but false for e-upIeX.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex
for TEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e. the \fmtname).

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2716 seconds).

10.4 Output format

\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

The current output mode given as a lower case string: one of dvi or pdf.

73

10.5 Platform

\sys_if_platform_unix_p: * \sys_if_platform_unix:TF {(true code)} {(false code)}
\sys_if_platform_unix:TF *
\sys_if_platform_windows_p: *
\sys_if_platform_windows:TF =

New: 2018-07-27

\c_sys_platform_str

New: 2018-07-27

\sys_rand_seed: *

New: 2017-05-27

\sys_gset_rand_seed:n

New: 2017-05-27

\sys_get_shell:nnN
\sys_get_shell :nnNTF

New: 2019-09-20

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, i.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_gset_rand_seed:n {(intexpr)}

Globally sets the seed for the engine’s pseudo-random number generator to the (integer
expression). This random seed affects all \. . ._rand functions (such as \int_rand:nn or
\clist_rand_item:n) as well as other packages relying on the engine’s random number
generator. In engines without random number support this produces an error.

TEXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute

228

value is used and any number beyond is divided by an appropriate power of 2. We recommend

using an integer in [0,2%% — 1].

10.7 Access to the shell

\sys_get_shell:nnN {(shell command)} {(setup)} (t1 var)
\sys_get_shell:nnNTF {(shell command)} {(setup)} (t1 var) {(true code)} {(false
code)}

Defines (tl var) to the text returned by the (shell command). The (shell command) is
converted to a string using \tl_to_str:n. Category codes may need to be set appro-
priately via the (setup) argument, which is run just before running the (shell command)
(in a group). If shell escape is disabled, the (¢l var) will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the (shell
command). The \sys_get_shell:nnNTF conditional inserts the true code if the shell
is available and no quote is detected, and the false code otherwise.

74

\c_sys_shell_escape_int

New: 2017-05-27

\sys_if_shell_p: «*
\sys_if_shell:TF

New: 2017-05-27

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled
1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\sys_if_shell _p:

\sys_if_shell:TF {(true code)} {(false code)}

Performs a check for whether shell escape is enabled. This returns true if either of
restricted or unrestricted shell escape is enabled.

\sys_if_shell_unrestricted_p: * \sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF x \sys_if_shell_unrestricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restricted_p: * \sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF x \sys_if_shell_restricted:TF {(true code)} {(false code)}

New: 2017-05-27

\sys_shell_now:n
\sys_shell_now:x

New: 2017-05-27

\sys_shell_shipout:n
\sys_shell_shipout:x

New: 2017-05-27

\sys_load_backend:n

New: 2019-09-12

\c_sys_backend_str

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:.

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

10.8 Loading configuration data

\sys_load_backend:n {(backend)}

Loads the additional configuration file needed for backend support. If the (backend) is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

Set to the name of the backend in use by \sys_load_backend:n when issued.

0]

\sys_load_debug: \sys_load_debug:

New: 2019-09-12 Looad the additional configuration file for debugging support.

10.8.1 Final settings

\sys_finalise: \sys_finalise:

New: 2019-10-06 Finalises all system-dependent functionality: required before loading a backend.

76

Chapter 11

The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by 13msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

11.1 Creating new messages

All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the IXTEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.

7

\msg_new:nnnn
\msg_new:nnn

Updated: 2011-08-16

\msg_set :nnnn
\msg_set :nnn

\msg_gset :nnnn
\msg_gset:nnn

\msg_if_exist_p:nn *
\msg_if_exist:nnTF *

New: 2012-03-03

\msg_module_name:n x*

New: 2018-10-10

\msg_module_type:n *

New: 2018-10-10

\g_msg_module_name_prop

New: 2018-10-10

\g_msg_module_type_prop

New: 2018-10-10

\msg_line_context:

\msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a (message) for a given (module). The message is defined to first give (text) and
then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error is raised if the
(message) already exists.

\msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a (message) for a given (module). The message is defined to first
give (text) and then (more text) if the user requests it. If no (more text) is available then
a standard text is given instead. Within (texzt) and (more text) four parameters (#1 to
#4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

Tests whether the (message) for the (module) is currently defined.

11.2 Customizable information for message modules

\msg_module_name:n {(module)}

Expands to the public name of the (module) as defined by \g_msg_module_name_prop
(or otherwise leaves the (module) unchanged).

\msg_module_type:n {(module)}

Expands to the description which applies to the (module), for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

Provides a mapping between the module name used for messages, and that for documen-
tation. For example, I¥TEX3 core messages are stored in the reserved LaTeX tree, but are
printed as LaTeX3.

Provides a mapping between the module name used for messages, and that type of
module. For example, for IATEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

78

\msg_line_number: *

\msg_fatal_text:n x

\msg_critical_text:n *

\msg_error_text:n *

\msg_warning_text:n *

\msg_info_text:n *

\msg_line_number:

Prints the current line number when a message is given.

\msg_fatal_text:n {(module)}
Produces the standard text
Fatal Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}
Produces the standard text
Critical Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the {(module) to be included.

\msg_error_text:n {(module)}

Produces the standard text
Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_warning_text:n {(module)}

Produces the standard text
Package (module) Warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

\msg_info_text:n {(module)}
Produces the standard text:
Package (module) Info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

79

\msg_see_documentation_text:n * \msg_see_documentation_text:n {(module)}

Updated: 2018-09-30

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The name of the (module) is produced
using \msg_module_name:n.

11.4 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the x-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

o fatal, ending the TEX run;
e critical, ending the file being input;
e error, interrupting the TEX run without ending it;

e warning, written to terminal and log file, for important messages that may require
corrections by the user;

o note (less common than info) for important information messages written to the
terminal and log file;

e info for normal information messages written to the log file only;

e term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

e none for suppressed messages.

\msg_fatal:nnnnnn \msg_fatal:nnnnnn {(module)} {(message)} {(arg omne)} {(arg two)} {(arg three)}

\msg_fatal :nnxxxx
\msg_fatal:nnnnn
\msg_fatal:nnxxx
\msg_fatal:nnnn
\msg_fatal :nnxx
\msg_fatal:nnn
\msg_fatal:nnx
\msg_fatal:nn

Updated: 2012-08-11

{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

80

\msg_critical:nnnnnn
\msg_critical :nnxxxx
\msg_critical :nnnnn
\msg_critical :nnxxx
\msg_critical:nnnn
\msg_critical :nnxx
\msg_critical:nnn
\msg_critical:nnx
\msg_critical:nn

Updated: 2012-08-11

\msg_error:nnnnnn
\mSg_error :NNXXXX
\msg_error :nnnnn
\msg_error :nnxxx
\msg_error:nnnn
\msg_error :nnxx
\msg_error:nnn
\msg_error:nnx
\msg_error:nn

Updated: 2012-08-11

\msg_warning:nnnnnn
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nnxxx
\msg_warning:nnnn
\msg_warning:nnxx
\msg_warning:nnn
\msg_warning:nnx
\msg_warning:nn

Updated: 2012-08-11

\msg_critical:nnnnnn {(module)} {(message)} {(arg ome)} {({arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

\msg_warning:nnxxxx {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) warning (message), passing (arg one) to (arg four) to the text-creating
functions. The warning text is added to the log file and the terminal, but the TEX run
is not interrupted.

81

\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn
nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

New: 2021-05-18

\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

\msg_log:nnnnnn
\msg_log:nnxxxx
\msg_log:nnnnn
\msg_log:nnxxx
\msg_log:nnnn
\msg_log:nnxx
\msg_log:nnn
\msg_log:nnx
\msg_log:nn

Updated: 2012-08-11

\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

Updated: 2012-08-11

\msg_note:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

\msg_info:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. For the more common \msg_info:nnnnnn, the information text is added to
the log file only, while \msg_note:nnnnnn adds the info text to both the log file and the
terminal. The TEX run is not interrupted.

\msg_term:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

\msg_log:nnnnnn {(module)} {(message)} {(arg omne)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The output is briefer than \msg_info:nnnnnn, omitting for instance the mod-
ule name. It is added to the log file by \msg_log:nnnnnn while \msg_term:nnnnnn also
prints it on the terminal.

\msg_none:nnnnnn {({module)} {(message)} {(arg omne)} {(arg two)} {(arg three)} {(arg
four)}

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

82

11.4.1 Messages for showing material

\msg_show:nnnnnn \msg_show:nnnnnn {{module)} {(message)} {({arg ome)} {(arg two)} {(arg three)} {(arg
\msg_show:nnxxxx four)}

\msg_show:nnnnn
\msg_show:nnxxx
\msg_show:nnnn

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text is shown on the terminal and the TEX run is interrupted
\msg_show: nnxx in a manner similar to \t1_show:n. This is used in conjunction with \msg_show_item:n
\msg:show:nnn and similar functions to print complex variable contents completely. If the formatted
\msg_show:nnx text does not contain >~ at the start of a line, an additional line >~. will be put at the
\msg_show:nn end. In addition, a final period is added if not present.

New: 2017-12-04

11.4.2 Expandable error messages

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

\msg_expandable_error:nnnnnn * \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg
\msg_expandable_error:nnffff x two)} {(arg three)} {(arg four)}

\msg_expandable_error:nnnnn *

\msg_expandable_error:nnfff
\msg_expandable_error:nnnn
\msg_expandable_error:nnff
\msg_expandable_error:nnn
\msg_expandable_error:nnf

*
*
*
*
*
\msg_expandable_error:nn *

New: 2015-08-06
Updated: 2019-02-28

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\: :error then prints “! (module): ”({error message), which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }

83

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C — A in this order, then the A — B redirection is
cancelled.

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two). Each (class) can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_module:nnn {(module)} {(class ome)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

84

Chapter 12

The 13file package
File and I/0O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \1_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input—output stream management

As TgX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in I¥TEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that 1/O operations are global: streams should all be declared with global
names and treated accordingly.

85

\ior_new:
\ior_new:
\iow_new:
\iow_new:

o =0 =

New: 2011-09-26
Updated: 2011-12-27

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

\iow_open:Nn
\iow_open:cn

Updated: 2012-02-09

\ior_close:
\ior_close:
\iow_close:
\iow_close:

o =0 =

Updated: 2012-07-31

\ior_show:N
\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N
\iow_log:c

New: 2021-05-11

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. ...

\ior_open:Nn (stream) {(file name)}

Opeuns (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. If the file is not found, an error is
raised.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The (¢rue code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing clears any
existing content in the file (i.e. writing is not additive).

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_show:N (stream)
\ior_log:N (stream)
\iow_show:N (stream)
\iow_log:N (stream)

Display (to the terminal or log file) the file name associated to the (read or write) (stream).

86

\ior_show_list:

\ior_log_list:
\iow_show_list:

\iow_log_list:

New: 2017-06-27

\ior_get:NN

\ior_get:NNTF

New: 2012-06-24

Updated: 2019-03-23

\ior_show_list:

\ior_log_list:

\iow_show_list:

\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

12.1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

\ior_get:NN (stream) (token list variable)
\ior_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input (stream) and stores the result locally in the (token list) variable.
The material read from the (stream) is tokenized by TEX according to the category codes
and \endlinechar in force when the function is used. Assuming normal settings, any
lines which do not end in a comment character % have the line ending converted to a
space, so for example input

ab c

results in a token list a b ,c,. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the (stream) is not open
the (¢l var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

87

\ior_str_get:NN

\ior_str_get:NN (stream) (token list variable)

\ior_str_get:NNTF \ior_str_get:NNTF (stream) (token list variable) (true code) (false code)

New: 2016-12-04
Updated: 2019-03-23

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_variable:NNn

New: 2019-01-13

Function that reads one line from the file input (stream) and stores the result locally in
the (token list) variable. The material is read from the (stream) as a series of tokens with
category code 12 (other), with the exception of space characters which are given category
code 10 (space). Multiple whitespace characters are retained by this process. It always
only reads one line and any blank lines in the input result in the (token list variable)
being empty. Unlike \ior_get:NN, line ends do not receive any special treatment. Thus
input

ab c

results in a token list a b ¢ with the letters a, b, and ¢ having category code 12. In the
non-branching version, where the(stream) is not open the (¢! var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

All mappings are done at the current group level, i.e. any local assignments made
by the (function) or (code) discussed below remain in effect after the loop.

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (lines) obtained by calling \ior_get : NN until
reaching the end of the file. TEX ignores any trailing new-line marker from the file it
reads. The (inline function) should consist of code which receives the (line) as #1.

\ior_str_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which receives the (line) as #1. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads.

\ior_map_variable:NNn (stream) (tl1 var) {{code)}

For each set of (lines) obtained by calling \ior_get :NN until reaching the end of the file,
stores the (lines) in the (¢l var) then applies the (code). The {code) will usually make use
of the (variable), but this is not enforced. The assignments to the (variable) are local.
Its value after the loop is the last set of (lines), or its original value if the (stream) is
empty. TEX ignores any trailing new-line marker from the file it reads. This function is
typically faster than \ior_map_inline:Nn.

88

\ior_str_map_variable:NNn \ior_str_map_variable:NNn (stream) (variable) {(code)}

New: 2019-01-13 For each (line) in the (stream), stores the (line) in the (variable) then applies the {code).
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). The
(code) will usually make use of the (variable), but this is not enforced. The assignments to
the (variable) are local. Its value after the loop is the last (line), or its original value if the
(stream) is empty. Note that TEX removes trailing space and tab characters (character
codes 32 and 9) from every line upon input. TEX also ignores any trailing new-line marker
from the file it reads. This function is typically faster than \ior_str_map_inline:Nn.

\ior_map_break: \ior_map_break:

New: 2012-06-29 Used to terminate a \ior_map_. .. function before all lines from the (stream) have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \1_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\ior_map_break:n \ior_map_break:n {(code)}

New: 2012-06-290 Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

89

\ior_if_eof_p:N *
\ior_if_eof:NTF x

Updated: 2012-02-10

\iow_now:Nn
\iow_now:(Nx|cn|cx)

Updated: 2012-06-05

\iow_log:n
\iow_log:x

\iow_term:n
\iow_term:x

\iow_shipout:Nn
\iow_shipout:(Nx|cn|cx)

\iow_shipout_x:Nn
\iow_shipout_x:(Nx|cn|cx)

Updated: 2012-09-08

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a file (stream) has been reached during a reading operation. The test
also returns a true value if the (stream) is not open.

12.1.2 Writing to files

\iow_now:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_term:n {(tokens)}

This function writes the given (fokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_shipout:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (cf. \iow_shipout_-
x:Nn).

TEXhackers note: When using expl3 with a format other than KTEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout_x:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than ITEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

90

\iow_char:N «x \iow_char:N \(char)

\iow_newline:

*

Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than ETEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn and direct
uses of primitive operations.

91

\iow_wrap:nnnN
\iow_wrap:nxnN

New: 2012-06-28

Updated: 2017-12-04

\iow_indent:n

New: 2011-09-21

\1_iow_line_count_int

New: 2012-06-24

12.1.3 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function wraps the (text) to a fixed number of characters per line. At the start
of each line which is wrapped, the (run-on text) is inserted. The line character count
targeted is the value of \1_iow_line_count_int minus the number of characters in the
(run-on text) for all lines except the first, for which the target number of characters is
simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

e \\ or \iow_newline: may be used to force a new line,

o \U may be used to represent a forced space (for example after a control sequence),

\#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_allow_break: may be used to allow a line-break without inserting a space
(this is experimental),

e \iow_indent:n may be used to indent a part of the (text) (not the (run-on text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which is typically a wrapper around a write operation. The output of \iow_-
wrap:nnnN (7.e. the argument passed to the (function)) consists of characters of category
“other” (category code 12), with the exception of spaces which have category “space”
(category code 10). This means that the output does not expand further when written
to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTgX systems.

92

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

\c_log_iow
\c_term_iow

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

\if_eof:w *

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

12.1.4 Constant input—output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

12.1.5 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

12.2 File operation functions

Contain the directory, name and extension of the current file. The directory is empty if
the file was loaded without an explicit path (i.e. if it is in the TEX search path), and does
not end in / other than the case that it is exactly equal to the root directory. The (name)
and (ext) parts together make up the file name, thus the (name) part may be thought of
as the “job name” for the current file. Note that TEX does not provide information on
the (ext) part for the main (top level) file and that this file always has an empty (dir)
component. Also, the (name) here will be equal to \c_sys_jobname_str, which may be
different from the real file name (if set using --jobname, for example).

93

\1_file_search_path_seq

New: 2017-06-18

\file_if_exist:nTF

Updated: 2012-02-10

\file_get:nnN
\file_get :nnNTF

New: 2019-01-16
Updated: 2019-02-16

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VNTF

Updated: 2019-02-16

\file_full_name:n 5
\file_full_name:V 3¢

New: 2019-09-03

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and should not include the trailing slash. The entries
are not expanded when used so may contain active characters but should not feature any
variable content. Spaces need not be quoted.

TEXhackers note: When working as a package in EXTEX 2¢, expl3 will automatically
append the current \input@path to the set of values from \1_file_search_path_seq

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq.

\file_get:nnN {(filename)} {(setup)} (tl)
\file_get:nnNTF {(filename)} {(setup)} (t1) {(true code)} {(false code)}

Defines (tl) to the contents of (filename). Category codes may need to be set appropri-
ately via the (setup) argument. The non-branching version sets the (¢/) to \q_no_value
if the file is not found. The branching version runs the (true code) after the assignment
to (¢l) if the file is found, and (false code) otherwise.

\file_get_full_name:nN {(file name)} (tI)
\file_get_full_name:nNTF {(file name)} (t1) {(true code)} {(false code)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢ var) the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given (file name) has no extension but the file found
has that extension. In the non-branching version, the (¢l var) will be set to \q_no_value
in the case that the file does not exist.

\file_full_name:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream.
This includes an extension .tex when the given (file name) has no extension but the file
found has that extension. If the file is not found on the path, the expansion is empty.

94

\file_parse_full_name:nNNN
\file_parse_full_name:VNNN

New: 2017-06-23
Updated: 2020-06-24

\file_parse_full_name:n *

New: 2020-06-24

\file_parse_full_name:nNNN {(full name)} (dir) (name) (ext)

Parses the (full name) and splits it into three parts, each of which is returned by setting
the appropriate local string variable:

o The (dir): everything up to the last / (path separator) in the (file path). As with
system PATH variables and related functions, the (dir) does not include the trailing
/ unless it points to the root directory. If there is no path (only a file name), {dir)
is empty.

e The (name): everything after the last / up to the last ., where both of those
characters are optional. The (name) may contain multiple . characters. It is
empty if (full name) consists only of a directory name.

o The (ext): everything after the last . (including the dot). The (ext) is empty if
there is no . after the last /.

Before parsing, the (full name) is expanded until only non-expandable tokens remain,
except that active characters are also not expanded. Quotes (") are invalid in file names
and are discarded from the input.

\file_parse_full_name:n {(full name)}

Parses the (full name) as described for \file_parse_full_name:nNNN, and leaves (dir),
(name), and {ext) in the input stream, each inside a pair of braces.

\file_parse_full_name_apply:nN * \file_parse_full_name_apply:nN {(full name)} (function)

New: 2020-06-24

\file_hex_dump:n pxe
\file_hex_dump:nnn

New: 2019-11-19

\file_get_hex_dump:nN
\file_get_hex_dump:nNTF
\file_get_hex_dump:nnnN
\file_get_hex_dump:nnnNTF

New: 2019-11-19

Parses the (full name) as described for \file_parse_full_name:nNNN, and passes (dir),
(name), and (ext) as arguments to (function), as an n-type argument each, in this order.

\file_hex_dump:n {(file name)}

\file_hex_dump:nnn {(file name)} {(start index)} {(end index)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the hexadecimal
dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {(start index)} and {(end index)} values work as
described for \str_range:nnn.

\file_get_hex_dump:nN {(file name)} (tl var)
\file_get_hex_dump:nnnN {(file name)} {(start index)} {(end index)} (tl var)

Sets the (¢l var) to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the (file). If the file is not found, the (¢! var) will be set to \q_no_value.

95

\file_mdfive_hash:n 3

New: 2019-09-03

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:nNTF

New: 2017-07-11
Updated: 2019-02-16

\file_size:n w

New: 2019-09-03

\file_get_size:nN
\file_get_size:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_timestamp:n ¥

New: 2019-09-03

\file_get_timestamp:nN
\file_get_timestamp:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_mdfive_hash:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths con-
trolled by \1_file_search_path_seq. It then expands to leave the MD5 sum generated
from the contents of the file in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty.

\file_get_mdfive_hash:nN {(file name)} (tl var)

Sets the (tl var) to the result of applying \file_mdfive_hash:n to the (file). If the file
is not found, the (¢ var) will be set to \q_no_value.

\file_size:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:nN {(file name)} (tl var)

Sets the (¢l var) to the result of applying \file_size:n to the (file). If the file is not
found, the (¢l var) will be set to \q_no_value. This is not available in older versions of

XATEX.

\file_timestamp:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the modifica-
tion timestamp of the file in the input stream. The timestamp is of the form
D: (year)(month){day) (hour){minute)(second)(offset), where the latter may be z (UTC)
or (plus-minus){hours)’ (minutes)’. When the file is not found, the result of expansion
is empty. This is not available in older versions of XHTEX.

\file_get_timestamp:nN {(file name)} (tl1 var)

Sets the (tl var) to the result of applying \file_timestamp:n to the (file). If the file is
not found, the (¢l var) will be set to \q_no_value. This is not available in older versions

of XgTEX.

96

\file_compare_timest
\file_compare_timest

amp_p:nNn x \file_compare_timestamp:nNn {(file-1)} (comparator) {(file-2)} {(true
amp:nNnTF x code)} {(false code)}

Upda

New: 2019-05-13
ted: 2019-09-20

\file_input:n

Updated: 2017-06-26

\file_if_exist_input:n
\file_if_exist_input:nF

New: 2014-07-02

\file_input_stop:

New: 2017-07-07

\file_show_list:
\file_log_list:

Compares the file stamps on the two (files) as indicated by the (comparator), and inserts
either the (true code) or (false case) as required. A file which is not found is treated as
older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different. This is not available in older versions of XHTEX.

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IXTEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nF {(file name)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
included in \1_file_search_path_seq. If found then reads in the file as additional
BTEX source as described for \file_input:n, otherwise inserts the (false code). Note
that these functions do not raise an error if the file is not found, in contrast to \file_-
input:n.

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TgXhackers note: This function must be used on a line on its own: TgEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_show_list:
\file_log_list:

These functions list all files loaded by IATEX 2¢ commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

97

\lua_now:n *
\lua_now:e *

New: 2018-06-18

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

Chapter 13

The 13luatex package:
LuaTgX-specific functions

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pIEX, uplEX or XHIEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTgEX engine are given in the LualTEX manual.

13.1 Breaking out to Lua

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter for processing. Each \lua_now:n
block is treated by Lua as a separate chunk. The Lua interpreter executes the (Lua
input) immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTgX is
in use two expansions are required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter when the current page is finalised
(i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate chunk.
The Lua interpreter will execute the (Lua input) during the page-building routine: no
TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TpX level, the (Lua input) is stored as a “whatsit”.

98

\lua_escape:n *
\lua_escape:e *

New: 2015-06-29

\lua_load_module:n

New: 2022-05-14

1tx.utils

ltx.utils.filedump

ltx.utils.filemd5sum

ltx.utils.filemoddate

\lua_escape:n {(token list)}

Converts the (token list) such that it can safely be passed to Lua: embedded backslashes,
double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTgX is in use two expansions are required to yield the result of the Lua code.

\lua_load_module:n {(Lua module name)}

Loads a Lua module into the Lua interpreter.

\lua_now:n passes its {(token list)} argument to the Lua interpreter as a single line,
with characters interpreted under the current catcode regime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TgXhackers note: This is a wrapper around the Lua call require ’(module)’.

13.2 Lua interfaces

As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the 1tx.utils table.

(dump) = ltx.utils.filedump((file),({offset),(length))

Returns the uppercase hexadecimal representation of the content of the (file) read as
bytes. If the (length) is given, only this part of the file is returned; similarly, one may
specify the (offset) from the start of the file. If the (length) is not given, the entire file is
read starting at the (offset).

(hash) = ltx.utils.filemd5sum((file))

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behaviour.
If the (file) is not found, nothing is returned with no error raised.

(date) = ltx.utils.filemoddate({file))
Returns the date/time of last modification of the (file) in the format

D: (year)(month){day)(hour){minute)(second) offset)

where the latter may be Z (UTC) or (plus-minus)(hours)’ (minutes)’. If the (file) is not
found, nothing is returned with no error raised.

99

ltx.utils.filesize size = ltx.utils.filesize((file))

Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned with
no error raised.

100

Chapter 14

The 13legacy package
Interfaces to legacy concepts

There are a small number of TEX or I'TEX 2¢ concepts which are not used in expl3 code
but which need to be manipulated when working as a BTEX 2¢ package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n = \legacy_if:nTF {(name)} {(true code)} {(false code)}

\Megacy if:nlF * Tests if the IWTEX 2¢ /plain TEX conditional (generated by \newif) if true or false and
branches accordingly. The (name) of the conditional should omit the leading if.

\legacy_if_set_true:n \legacy_if_set_true:n {(name)}
\legacy_if_set_false:n \legacy_if_set_false:n {(name)}

\legacy_::Lf_gset_true:n Sets the IWTEX 2¢/plain TEX conditional \if(name) (generated by \newif) to be true
\legacy_if_gset_false:n or false

New: 2021-05-10

\legacy_if_set:nn \legacy_if_set:nn {(name)} {(boolexpr)}

\Megacy if_gsetimn g iy, KTEX 2¢ /plain TEX conditional \if(name) (generated by \newif) to the result
New: 2021-05-10 of evaluating the (boolean expression).

101

Part IV
Data types

102

\tl_new:N
\tl_new:c

Chapter 15

The 13tl package
Token lists

TEX works with tokens, and I TEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_t1l

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ., {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, ., w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initialising token list variables

\tl_new:N (tl1 var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (tl var) is initially empty.

103

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN
\tl_concat:ccc
\t1l_gconcat:NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N
\tl_if_exist_p:c
\tl_if_exist:NTF

*
*
*
\tl_if exist:cTF %

New: 2012-03-03

\tl_const:Nn (tl1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (¢l var) is set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (¢l var).

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (tl var;) equal to that of (¢l vary).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

15.2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

\tl_set:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|ct|cx)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cE|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl var) {(tokens)}

\tl_put_left:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var).

104

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

\tl_put_right:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

\tl_if_blank_p:n *
\tl_if_blank_p:(e|V|o) =
\tl_if_blank:nTF *
\tl_if_blank:(e|V|o)TF *

Updated: 2019-09-04

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

L T I

\tl_if_empty_p:n *
\tl_if_empty_p:(V|o) =
\tl_if_empty:nTF *
\tl_if_empty:(V|o)TEF *

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN *
\tl_if_eq_p:(Nc|cN|cc) *
\tl_if_eq:NNTF *
\tl_if_eq:(Nc|cN|ce)TF *

\tl_if_eq:NnTF
\tl_if_eq:cnTF

New: 2020-07-14

Appends (tokens) to the right side of the current content of (¢ var).

15.3 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {({token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)

\tl_if_eq:NNTF (tl1 vari) (tl vars) {{true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_t1l \1_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq:NnTF (t1 var;) {(token lists)} {(true code)} {(false code)}

Tests if the (token list variable;) and the (token listz) contain the same list of tokens, both
in respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

105

\tl_if_eq:nnIE

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_novalue_p:n *
\tl_if_novalue:nTF x

New: 2017-11-14

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF

*
*
*
\tl_if_single:cTF *

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_if_single_token_p:n %
\tl_if_single_token:nTF *

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes. This conditional is not expandable: see \t1l_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6). The search does not enter
brace (category code 1/2) groups.

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1l marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (tl var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single (item), i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \t1l_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one (item), i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}
\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single normal token. Token groups ({...}) are not single tokens.

106

\tl_case:
\tl_case:

\tl_case
\tl_case

Nn
cn
:NnTF
:cnTF

* \tl_case:NnTF (test token list variable)

* A
* (token list variable casei) {(code case;)}
* (token list variable cases) {(code casez)}

New: 2013-07-24

(token list variable case,) {(code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1l_if_eq:NNTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \t1l_case:Nn, which does nothing if there is no match, is also available.

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN
\tl_if_head_eq_catcode_p:oN
\tl_if_head_eq_catcode:nNTF
\tl_if_head_eq_catcode:oNTF

\tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

} (test token)
} (test token)

*
*
*
*

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN x \tl_if_head_eq_charcode_p:nN {(token list)
\tl_if_head_eq_charcode_p:fN x \tl_if_head_eq_charcode:nNTF {(token list)

(test token)

}
} (test token)

\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_charcode:fNTF x

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN x \tl_if_head_eq_meaning p:nN {(token list)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n = \tl_if_head_is_group_p:n {(token list)}
\tl_if_head_is_group:nTF x \tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08 Tests if the first (token) in the (token list) is an explicit begin-group character (with

category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

107

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

\tl_to_str:n *
\tl to_str:V «%

\tl_to_str:N *
\tl _to_str:c =

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a normal first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

15.4 Working with token lists as a whole

15.4.1 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space). This function requires only a single
expansion. Its argument must be braced.

TEXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list) to
a (string) yields a concatenation of the string representations of every token in the (token list).
The string representation of a control sequence is
o an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

o the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (tl var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

108

\tl_use:N *
\tl_use:c *

\tl_count:n *
\tl_count:(V|o) =

New: 2012-05-13

\tl_count:N %
\tl_count:c *

New: 2012-05-13

\tl_count_tokens:n *

New: 2019-02-25

\tl_reverse:n *
\tl_reverse:(V|o) %

Updated: 2012-01-08

\tl_reverse:N

\tl_reverse:c
\tl_greverse:N

\tl_greverse:c

Updated: 2012-01-08

\tl_use:N (tl1 var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

15.4.2 Counting and reversing token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

\tl_count:N (tl1 var)

Counts the number of (items) in the (tl var) and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({...2}). This
process ignores any unprotected spaces within the (¢ var). See also \t1_count:n. This
function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (itemns) in the (token list), so that (itemy)(items)(items)
... {itemy,) becomes (item,). .. (items)(items)(item;). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_reverse:N (tl1 var)

Sets the (#l var) to contain the result of reversing the order of its (items), so that
(itemq) (itemg) (items) ... (item,) becomes (item,). .. (itemgs)(items){itemn;). This process
preserves unprotected spaces within the (token list variable). Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

109

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n *
\tl_trim_spaces:o *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces_apply:nN x
\tl_trim_spaces_apply:oN =

New: 2018-04-12

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\tl_show:N
\tl_show:c

Updated: 2021-04-29

\tl_show:n

Updated: 2015-08-07

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item) (items)H (items)}
... {(item,,)} becomes {(item,)} ... {{items)}{(items)}{(item;)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_trim_spaces_apply:nN {(token 1list)} (function)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the (function)
as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Sets the (tl var) to contain the result of removing any leading and trailing explicit space
characters (explicit tokens with character code 32 and category code 10) from its contents.

15.4.3 Viewing token lists

\tl_show:N (tl1 var)

Displays the content of the (¢ var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

110

\tl_log:N
\tl_log:c

New: 2014-08-22
Updated: 2021-04-29

\tl_log:n

New: 2014-08-22
Updated: 2015-08-07

\tl_map_function:NN ¥
\tl_map_function:cN w

Updated: 2012-06-29

\tl_map_function:nN ¥

Updated: 2012-06-29

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_log:N (tl1 var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

15.5 Manipulating items in token lists

15.5.1 Mapping over token lists

All mappings are done at the current group level, i.e. any local assignments made by the
(function) or {code) discussed below remain in effect after the loop.

\tl_map_function:NN (tl var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (itern) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (tl var) {(inline function)}

Applies the (inline function) to every (item) stored within the (tl var). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

\tl_map_inline:nn {(token 1list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

111

\tl_map_tokens:Nn 3%
\tl_map_tokens:cn ¥
\tl_map_tokens:nn ¥

New: 2019-09-02

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break:

Updated: 2012-06-29

\tl_map_tokens:Nn (t1 var) {(code)}
\tl_map_tokens:nn {(tokens)} {(code)}

Analogue of \t1l_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each (item) in the (¢l var) or in (tokens) as a trailing brace
group. For instance,

\tl_map_tokens:Nn \1_my_tl { \prg_replicate:nn { 2 } }

expands to twice each (item) in the (tl var): for each (item) in \1_my_t1 the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn (tl var) (variable) {(code)}

Stores each (item) of the (¢l var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢ var) is blank. See also \t1_map_inline:Nn.

\tl_map_variable:nNn {(token list)} (variable) {{code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢l var) is blank. See also \t1_map_inline:nn.

\tl_map_break:

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

112

\tl_map_break:n w

Updated: 2012-06-29

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) =

Updated: 2012-09-09

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

15.5.2 Head and tail of token lists
Functions which deal with either only the very first item (balanced text or single normal

token) in a token list, or the remaining tokens.

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields _ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TEXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

113

\tl_head:w *

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|f) =

Updated: 2012-09-01

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1l_head:n should be preferred if the number of expansions is
not critical.

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

If you wish to handle token lists where the first token may be a space, and this
needs to be treated as the head/tail, this can be accomplished using \t1_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }
\cs_new:Npn \mypkg_tl_head_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{~1
{ \tl_head:n {#1} }
}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }

114

\tl_item:nn *
\tl_item:Nn *
\tl item:cn *

New: 2014-07-17

\tl_rand_item:N %
\tl_rand_item:c *
\tl_rand_item:n x

New: 2016-12-06

15.5.3 Items and ranges in token lists

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

\tl_rand_item:N (tl var)
\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is not available in older versions of XHTEX.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

115

\tl_range:Nnn *
\tl_range:nnn *

New: 2017-02-17
Updated: 2017-07-15

\tl_range:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the {(end index) inclusive.
Spaces and braces are preserved between the items returned (but never at either end
of the list). Here (start index) and (end indezx) should be (integer expressions). For
describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let [be the count
of the token list.

The actual start point is determined as M = mif m >0andas M =1+ m+ 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1
{1

B e
-~ A
=~

-

\tl_range:nnn { abcd~{e{}}fg 2}
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

\iow_term:x { \tl_range:nnn { 511}
\iow_term:x { \tl_range:nnn {
\iow_term:x { \tl_range:nnn {

\iow_term:x { \tl_range:nnn {

abcd{e{}}fg P A{
abcd{e{}}fg }{-33r1}
abcd{e{}}fg 6> {521}
abcd{e{}}fg } { -6 > { -3 } 2

Y {2
P {2
P L

are all equivalent and will print becd{e{}} on the terminal; similarly

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} {23+ {51} }

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg ¥} {23} { -3} 1}
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} { 6 >} { 5} }
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3} }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } {2} {4}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list <t1>, the
call is \t1l_range:nnn { <t1> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <t1> } {1 } { -2 }.

For better performance, see \t1_range_braced:nnn and \tl_range_unbraced:nnn.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

116

\tl_sort:Nn
\tl _sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN *

New: 2017-02-06

\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn

Updated: 2011-08-11

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Updated: 2011-08-11

15.5.4 Sorting token lists

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢l var) according to the (comparison code), and assigns the result
to (tl var). The details of sorting comparison are described in Section 6.1.

\tl_sort:nN {(token 1ist)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 6.1.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

15.6 Manipulating tokens in token lists

15.6.1 Replacing tokens

Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a categroy code 1/2 pair).

\tl_replace_once:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of {old tokens) in the (¢l var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (tl var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

117

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Updated: 2011-08-11

\tl_remove_all:Nn (t1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_tl {abbccd} \tl_remove_all:Nn \1_tmpa_tl {bc}

results in \1_tmpa_t1 containing abcd.

15.6.2 Reassigning category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (tl var) {(setup)} {(tokens)}

\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (¢ var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain any
valid input, although only changes in category codes, such as uses of \cctab_select:N,
are relevant. See also \t1l_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

118

\tl_rescan:nn

Updated: 2015-08-11

\c_empty_tl

\c_novalue_t1l

New: 2017-11-14

\c_space_t1l

\1_tmpa_tl
\1_tmpb_tl

\tl_resc