
LATEX3 News
Issue 8, July 2012

Extended floating point support

Bruno Le Floch has been re-writing the floating point
module to function in an ‘expandable’ manner. This
allows floating point calculations to be computed far
more flexibly and efficiently than before. The expand-
able nature of the new code allows its use inside oper-
ations such as writing to external files, for which pre-
viously any such calculations would have to be pre-
calculated before any of the writing operations began.
Bruno’s work on the floating point module has been
officially released into the main svn repository for
l3kernel; TEX Live 2012 will contain the ‘old’ code for
stability while this year is spent testing the new code in
production environments and ironing out any wrinkles.
Here’s a neat example as suggested in the documenta-
tion, which produces ‘6.278 400 000 000 000× 102’:

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }

{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff

\calcnum {

round (200 pi * sin (2.3 ^ 5) , 2)

}

This feature is invaluable for simple (and not-so-simple)
calculations in document and package authoring, and
has been lacking a robust solution for many years.
While LuaLATEX can perform similar tasks within its
Lua environment, the floating point support is writ-
ten using the expl3 programming language only, and is
thus available in pdfLATEX and X ELATEX as well.

Regular expressions in TEX

As if expandable floating point support wasn’t enough,
Bruno has also written a complete regular expression
engine in expl3 as well. Many reading this will be fa-
miliar with the quote attributed to Jamie Zawinski:

Some people, when confronted with a problem,
think “I know, I’ll use regular expressions.”
Now they have two problems.

And as humorous as the saying is, it’s still fair to say
that regular expressions are a great tool for manipulat-
ing streams of text. We desperately hope that people
will not start using the regex code to do things like
parse xml documents; however, for general search–
replace duties, there’s never been anything like l3regex

for the LATEX world. As a trivial example, there are
23 instances of the word ‘We’ or ‘we’ in this document
(including those two). This value is counted automati-
cally in two lines of code.

And again, it is available for pdfLATEX and X ELATEX
users as well as LuaLATEX ones; it also bears noting
that this provides an easy solution for applying regu-
lar expression processing to LATEX documents and text
data even on the Windows operating system that does
not have native support for such things.

Separating internal and external code

LATEX packages are written by a wide range of package
authors and consist of code and commands for various
purposes. Some of these commands will be intended for
use by document authors (such as \pbox from the pbox
package); others are intended for use by other package
writers (such as \@ifmtarg from the ifmtarg package).

However, a large portion of them are internal, i.e., are
intended to be used only within the package or within
the LATEX kernel and should not be used elsewhere.
For example, \@float is the LATEX kernel interface
for floats to be used in class files, but the actual work
is done by a command called \@xfloat which should
not be used directly. Unfortunately the LATEX2ε lan-
guage makes no clear distinction between the two, so it
is tempting for programmers to directly call the latter
to save some “unnecessary” parsing activity.

The downside of this is that the “internal” commands
suddenly act as interfaces and a reimplementation or
fix in any of them would then break add-on packages as
they rely on internal behavior. Over the course of the
last twenty years probably 80% of such “internal” com-
mands have found their way into one or another pack-
age. The consequences of this is that nowadays it is
next to impossible to change anything in the LATEX2ε
kernel (even if it is clearly just an internal command)
without breaking something.

In LATEX3 we hope to improve this situation drastically
by clearly separating public interfaces (that extension
packages can use and rely on) and private functions and
variables (that should not appear outside of their mod-
ule). There is (nearly) no way to enforce this without
severe computing overhead, so we implement it only
through a naming convention, and some support mech-
anisms. However, we think that this naming conven-
tion is easy to understand and to follow, so that we are

LATEX3 News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2012, all rights reserved.

confident that this will be adopted and provides the
desired results.

Naming convention for internals
We’ve been throwing around some ideas for this for a
number of years but nothing quite fit; the issue comes
down to the fact that TEX does not have a ‘name-
spacing’ mechanism so any internal command needs
to have a specific prefix to avoid clashing with other
packages’ commands. The prefix we have finally de-
cided on for expl3 code is a double underscore, such
that functions like \seq_count:N are intended for ex-
ternal use and __seq_item:n is an internal command
that should not be used or relied upon by others.
All this is well and good, but it can be inconvenient
to type long prefixes such as __seq_ before all com-
mand names, especially in a package for which nearly
all package functions are internal.
We therefore also extended DocStrip slightly by adding
a ‘shorthand’ for internal package prefixes. Commands
and variables in .dtx code may now contain @@ which
is expanded to the function prefix when the .sty file is
extracted. As an example, writing

%<@@=seq>

\cs_new:Npn \@@_item:n

...

is equivalent to

\cs_new:Npn __seq_item:n

...

There are clear advantages to this syntax. Function
names are shorter and therefore easier to type, and
code can still be prototyped using the @@ syntax (e.g.,
pasting code between a .dtx file and a regular .tex
document). Most importantly, it is explicitly clear from
the code source which commands are intended to be
used externally and which should be avoided.
We hope that this syntax will prove popular; in our
initial experiments we think it works very well. In fact
we found a good number of smaller errors when being
forced to think about what is internal and what is an
external function.

Continual revolution—the ‘small bang’

In addition to the major additions introduced above,
Frank Mittelbach has been examining expl3 with a
fresh eye to resolve any outstanding issues in the con-
sistency or logic of the names of functions.
We are very mindful of the fact that for people to
find expl3 a useful tool, it must have a stable inter-
face. This said, there are still some musty corners that
we can show where people simply haven’t been using
certain functions. In select cases, we’re re-assessing
whether all of the (sometimes esoteric) odds and ends
that have been added to expl3 really belong; in other

cases, it’s now clear that some naming or behaviour
choices weren’t correct the first time around.
To address this tarnish, we’re carefully making some
minor changes to parts of the expl3 interface and we’d
like to allay any fears that expl3 isn’t stable. The
expl3 language now offers a wide range of functions
plus their variants, and we’re talking about changing
but a very small percentage of these, and not common
ones at that. We don’t want it to become a mess, so we
think it’s better to tidy things up as we go. Follow the
LaTeX-L mailing list for such details as they arise.

–2

	Extended floating point support
	Regular expressions in TeX
	Separating internal and external code
	Naming convention for internals

	Continual revolution—the `small bang'

