
The l3draw package
Core drawing support

The LATEX3 Project∗

Released 2020-10-27

1 l3draw documentation
The l3draw package provides a set of tools for creating (vector) drawings in expl3. It is
heavily inspired by the pgf layer of the TikZ system, with many of the interfaces having
the same form. However, the code provided here is build entirely on core expl3 ideas and
uses the LATEX3 FPU for numerical support.

Numerical expressions in l3draw are handled as floating point expressions, unless
otherwise noted. This means that they may contain or omit explicit units. Where units
are omitted, they will automatically be taken as given in (TEX) points.

The code here is highly experimental.
∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

1.1 Drawings

\draw_begin:
...
\draw_end:

Each drawing should be created within a \draw_begin:/\draw_end: function pair. The
begin function sets up a number of key data structures for the rest of the functions here:
unless otherwise specified, use of \draw_... functions outside of this “environment” is
not supported.

The drawing created within the environment will be inserted into the typesetting
stream by the \draw_end: function, which will switch out of vertical mode if required.

\dim_new:N \l_mypos_dim
\draw_begin:

\draw_path_moveto:n { 0cm , \l_mypos_dim }
\draw_path_lineto:n { 1cm , \l_mypos_dim }
\dim_set:Nn \l_mypos_dim { 1cm }
\draw_path_lineto:n { 1cm , \l_mypos_dim }
\draw_path_close:
\draw_path_use_clear:n { stroke }

\draw_end:

Within a drawing, the only commands that should appear are those directly aimed
at drawing (from l3draw) and those which produce no typeset output. For example, it is
possible to include loops inside a drawing using \int_step_function:nnnn or similar.
On the other hand, text should not be included directly in drawings, but should rather
be inserted using the appropriate l3draw command.

The drawing environment sets the following standard behaviors

• Non-zero rule for fill overlaps

• Butt caps for lines

• Mitering for line joins with a miter factor of 10

• Solid line strokes

\draw_begin:
\draw_end:

Within a drawing, there are different ways of referring to a position. The co-ordinates
of a point are given relative to the current drawing axes. These can be manipulated and
tracked at the code level. Underlying this is the 〈canvas〉, which is at the draw level
essentially fixed and in line with the paper. Initially, the two sets of axes are coincident.
(It is possible to manipulate the canvas axes at the driver level: this is then “transparent”
to the draw level, and so should be used only when strictly required.)

2

\draw_suspend_begin:
...
\draw_suspend_end:

Suspends all of the drawing mechanisms to allow “normal” material to be created. Typ-
ically, this environment will be applied inside a box which may contain nested pictures.

This is normal text.More text.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\hbox_set:Nn \l_tmpa_box

{
\draw_suspend_begin:

This~is~normal~text.
\draw_begin: % A subpicture

\draw_path_moveto:n { 1cm , 0cm }
\draw_path_lineto:n { 1cm , 1cm }
\draw_path_use_clear:n { stroke }

\draw_end:
More~text.

\draw_suspend_end:
}

\draw_box_use:N \l_tmpa_box
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_use_clear:n { stroke }

\draw_end:

\draw_suspend_begin:
\draw_suspend_end:

1.2 Graphics state
Within the drawing environment, a number of functions control how drawings will appear.
Note that these all apply globally, though some are rest at the start of each drawing
(\draw_begin:).

\g_draw_linewidth_default_dim

The default value of the linewidth for stokes, set at the start of every drawing (\draw_-
begin:).

\draw_linewidth:n {〈width〉}

Sets the width to be used for stroking to the 〈width〉 (an 〈fp expr〉).
\draw_linewidth:n

3

\draw_dash_pattern:nn {〈pattern〉} {〈phase〉}

Specifies a dash pattern. The 〈pattern〉 itself is a comma-separated list of entries which
represent the “on” and “off” parts of the line. These are all 〈fp expr〉 and repeat as
required. Thus the 〈pattern〉 may be of arbitrary length. The 〈phase〉 specifies where
during the first “on” line the pattern should start.

\draw_begin:
\draw_dash_pattern:nn

{ 0.5cm , 0.5cm , 0.1cm , 0.2cm }
{ 0cm }

\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 2cm , 0cm }
\draw_path_use_clear:n { stroke }
\draw_dash_pattern:nn

{ 0.5cm , 0.5cm , 0.1cm , 0.2cm }
{ 0.1cm }

\draw_path_moveto:n { 0cm , 1mm }
\draw_path_lineto:n { 2cm , 1mm }
\draw_path_use_clear:n { stroke }
\draw_dash_pattern:nn

{ 0.5cm , 0.5cm , 0.1cm , 0.2cm }
{ 0.2cm }

\draw_path_moveto:n { 0cm , 2mm }
\draw_path_lineto:n { 2cm , 2mm }
\draw_path_use_clear:n { stroke }

\draw_end:

Setting an empty pattern will produce a solid line.
Note the 〈pattern〉 interface here is different from that in pgf: the list is comma-

separated not given in brace groups.

\draw_dash_pattern:nn

\draw_nonzero_rule:

Active either the non-zero winding number or the even-odd rule, respectively, for deter-
mining what is inside a fill or clip area. For technical reasons, these command are not
influenced by scoping and apply on an ongoing basis.

\draw_nonzero_rule:
\draw_evenodd_rule:

\draw_cap_butt:

Sets the style of terminal stroke position to one of butt, rectangle or round.
\draw_cap_butt:
\draw_cap_rectangle:
\draw_cap_round:

\draw_cap_butt:

Sets the style of stroke joins to one of bevel, miter or round.
\draw_join_bevel:
\draw_join_miter:
\draw_join_round:

\draw_miterlimit:n {〈factor〉}

Sets the miter 〈factor〉 of lines joined as a miter, as described in the PDF and PostScript
manuals. The 〈factor〉 is an 〈fp expr〉.

\draw_miterlimit:n

4

1.3 Scoping drawing elements
Scoping drawing elements is necessary to allowing nesting of subparts. These features
have specific use requirements: the preconditions must be met. In particular, each type
of drawing scope also constitutes a group (\group_begin:/\group_end: pair): as such,
they must be nested correctly.

\draw_scope_begin:
...
\draw_scope_end:

Creates a scope for localisation of state settings within a drawing. A scope forms a
TEX group but will also localise global state variables (such as \g_draw_linewidth_-
default_dim), and driver-level concepts such as the termination of lines.

\draw_begin:
\draw_scope_begin:

\group_begin:
\draw_linewidth:n { 2pt }
\draw_path_rectangle:nn { 0 , 0 } { 2ex , 2ex }
\draw_path_use:n { stroke }

\group_end:
\draw_path_rectangle:nn { 3ex , 0ex } { 2ex , 2ex }
\draw_path_use:n { stroke }

\draw_scope_end:
\draw_path_rectangle:nn { 6ex , 0ex } { 2ex , 2ex }
\draw_path_use_clear:n { stroke }

\draw_end:

Global graphical concepts restricted by scope are

• Line width

• Stroke and fill color

• Dash pattern

• Line joining and capping, including the miter limit

• Clipping paths

• Canvas (driver) transformations

\draw_scope_begin:
\draw_scope_end:

1.4 Points
Functions supporting the calculation of points (co-ordinates) are expandable and may
be used outside of the drawing environment. When used in this way, they all yield a
co-ordinate tuple, for example

\tl_set:Nx \l_tmpa_tl { \draw_point:nn { 1 } { 2 } }
\tl_show:N \l_tmpa_tl

gives

5

> \l_tmpa_tl=1pt,2pt.
<recently read> }

This output form is then suitable as input for subsequent point calculations,
i.e. where a 〈point〉 is required it may be given as a tuple. This may include units
and surrounding parentheses, for example

1,2
(1,2)
1cm,3pt
(1pt,2cm)
2 * sind(30), 2^4in

are all valid input forms. Notice that each part of the tuple may itself be a float point
expression.

Point co-ordinates are relative to the canvas axes, but can be transformed by \draw_-
point_transform:n. These manipulation is applied by many higher-level functions, for
example path construction, and allows parts of a drawing to be rotated, scaled or skewed.
This occurs before writing any data to the driver, and so such manipulations are tracked
by the drawing mechanisms. See \@@_backend_cm:nnnn for backend-level manipulation
of the canvas axes themselves.

Notice that in contrast to pgf it is possible to give the positions of points directly.

1.4.1 Basic point functions

\draw_point_polar:nn {〈radius〉} {〈angle〉}
\draw_point_polar:nnn {〈radius-a〉} {〈radius-b〉} {〈angle〉}

Gives the co-ordinates of the point at 〈angle〉 (an 〈fp expr〉 in degrees) and 〈radius〉. The
three-argument version accepts two radii of different lengths.

Note the interface here is somewhat different from that in pgf: the one- and two-radii
versions in l3draw use separate functions, whilst in pgf they use the same function and a
keyword.

\draw_point_polar:nn ?
\draw_point_polar:nnn ?

\draw_point_unit_vector:n {〈point〉}\draw_point_unit_vector:n ?

Expands to the co-ordinates of a unit vector in the direction of the 〈point〉 from the
origin. If the 〈point〉 is at the origin, a vertical unit vector is returned

\draw_point_transform:n {〈point〉}

Evaluates the position of the 〈point〉 subject to the current transformation matrix. This
operation is applied automatically by most higher-level functions (e.g. path manipula-
tions).

\draw_point_transform:n ?

1.4.2 Points on a vector basis

As well as giving explicit values, it is possible to describe points in terms of underlying
direction vectors. The latter are initially co-incident with the standard Cartesian axes,
but may be altered by the user.

6

\draw_xvec:n {〈point〉}

Defines the appropriate base vector to point toward the 〈point〉 on the canvas. The
standard settings for the x- and y-vectors are 1 cm along the relevant canvas axis, whilst
for the z-vector an appropriate direction is taken.

\draw_xvec:n
\draw_yvec:n
\draw_zvec:n

\draw_point_vec:nn {〈xscale〉} {〈yscale〉}
\draw_point_vec:nnn {〈xscale〉} {〈yscale〉} {〈zscale〉}

Expands to the co-ordinate of the point at 〈xscale〉 times the x-vector and 〈yscale〉 times
the y-vector. The three-argument version extends this to include the z-vector.

\draw_point_vec:nn ?
\draw_point_vec:nnn ?

\draw_point_vec_polar:nn {〈radius〉} {〈angle〉}
\draw_point_vec_polar:nnn {〈radius-a〉} {〈radius-b〉} {〈angle〉}

\draw_point_vec_polar:nn ?
\draw_point_vec_polar:nnn ?

Gives the co-ordinates of the point at 〈angle〉 (an 〈fp expr〉 in degrees) and 〈radius〉,
relative to the prevailing x- and y-vectors. The three-argument version accepts two radii
of different lengths.

Note the interface here is somewhat different from that in pgf: the one- and two-radii
versions in l3draw use separate functions, whilst in pgf they use the same function and a
keyword.

1.4.3 Intersections

\draw_point_intersect_lines:nnnn {〈point1〉} {〈point2〉} {〈point3〉}
{〈point4〉}

\draw_point_intersect_lines:nnnn ?

Evaluates the point at the intersection of one line, joining 〈point1 〉 and 〈point2 〉, and a
second line joining 〈point3 〉 and 〈point4 〉. If the lines do not intersect, or are coincident,
and error will occur.

\draw_point_intersect_circles:nnnnn
{〈center1〉} {〈radius1〉} {〈center2〉} {〈radius2〉} {〈root〉}

\draw_point_intersect_circles:nnnnn ?

Evaluates the point at the intersection of one circle with 〈center1 〉 and 〈radius1 〉, and
a second circle with 〈center2 〉 and 〈radius2 〉. If the circles do not intersect, or are
coincident, and error will occur.

Note the interface here has a different argument ordering from that in pgf, which
has the two centers then the two radii.

1.4.4 Interpolations

\draw_point_interpolate_line:nnn {〈part〉} {〈point1〉} {〈point2〉}\draw_point_interpolate_line:nnn ?

Expands to the point which is 〈part〉 way along the line joining 〈point1 〉 and 〈point2 〉.
The 〈part〉 may be an interpolation or an extrapolation, and is a floating point value
expressing a percentage along the line, e.g. a value of 0.5 would be half-way between the
two points.

\draw_point_interpolate_distance:nnn {〈distance〉} {〈point
expr1〉} {〈point expr2〉}

\draw_point_interpolate_distance:nnn ?

Expands to the point which is 〈distance〉 way along the line joining 〈point1 〉 and 〈point2 〉.
The 〈distance〉 may be an interpolation or an extrapolation.

7

\draw_point_interpolate_curve:nnnnnn {〈part〉}
{〈start〉} {〈control1〉} {〈control2〉} {〈end〉}

\draw_point_interpolate_curve:nnnnnn ?

Expands to the point which is 〈part〉 way along the curve between 〈start〉 and 〈end〉
and defined by 〈control1 〉 and 〈control2 〉. The 〈part〉 may be an interpolation or an
extrapolation, and is a floating point value expressing a percentage along the curve,
e.g. a value of 0.5 would be half-way along the curve.

1.5 Paths
Paths are constructed by combining one or more operations before applying one or more
actions. Thus until a path is “used”, it may be manipulated or indeed discarded entirely.
Only one path is active at any one time, and the path is not affected by TEX grouping.

8

\draw_path_corner_arc:n {〈length1〉} {〈length2〉}

Sets the degree of rounding applied to corners in a path: the two 〈length〉 values are the
distances from the corner at which the curving should start. The first 〈length〉 applies to
the part of the path “leading in” to the corner (i.e. from the previous path operation),
and the second to that “leading out”. If both values are 0pt then corners will not be
rounded. The values apply within the scope of the current TEX group.

\draw_begin:
\draw_path_corner_arc:nn { 5mm } { 5mm }
\draw_path_rectangle_corners:nn

{ 0cm , 0cm } { 3cm , 2cm }
\draw_path_use_clear:n { stroke }

\draw_end:

\draw_begin:
\draw_path_corner_arc:nn { 10mm } { 5mm }
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 2cm }
\draw_path_lineto:n { 3cm , 2cm }
\draw_path_curveto:nnn

{ 3cm , 0cm } { 2cm , 0cm } { 1cm , 0cm }
\draw_path_use_clear:n { stroke }

\draw_end:

The corners created are quarter-circles for exact right-angles and close approximations
otherwise. Closing a path will result in rounding correctly.

\draw_begin:
\draw_path_corner_arc:nn { 4pt } { 4pt }
\draw_path_moveto:n

{ \draw_point_polar:nn { 1cm } { 0 } }
\int_step_inline:nnnn { 72 } { 72 } { 359 }

{
\draw_path_lineto:n

{ \draw_point_polar:nn { 1cm } { #1 } }
}

\draw_path_close:
\draw_path_use_clear:n { stroke }

\draw_end:

\draw_path_corner_arc:nn

\draw_path_close:

Closes the current part of the path by appending a straight line from the current point
to the starting point of the path. In general, any path to be filled should include a close
instructions.

\draw_path_close:

9

\draw_path_use:n {〈action(s)〉}

Inserts the current path, carrying out one ore more possible 〈actions〉 (a comma list):

• stroke Draws a line along the current path

• draw A synonym for stroke

• fill Fills the interior of the path with the current file color

• clip Clips any content outside of the path

Actions are applied in the order given irrespective of the input order. Note that whilst
it is possible to use a path without clearing it, the normal use case would be to clear the
path (this resets data structures at the macro level).

\draw_path_use:n
\draw_path_use_clear:n

1.5.1 Path operations on drawing axes

The standard path functions are all influenced by the active transformation matrix,
i.e. the work relative to the drawing axes rather than the canvas.

\draw_path_moveto:n {〈point〉}

Moves the reference point of the path to the 〈point〉, but will not join this to any previous
point.

\draw_path_moveto:n

\draw_path_lineto:n {〈point〉}

Joins the current path to the 〈point〉 with a straight line. In general, for reliable treatment
by viewers, a \draw_path_moveto:n operation should precede the first use of a \draw_-
path_lineto:n on a path.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 1cm , 1cm }
\draw_path_lineto:n { 2cm , 1cm }
\draw_path_lineto:n { 3cm , 0.5cm }
\draw_path_lineto:n { 3cm , 0cm }
\color_fill:n { yellow!80!black }
\draw_path_use_clear:n { fill , stroke }

\draw_end:

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 1cm , 1cm }
\draw_path_lineto:n { 2cm , 1cm }
\draw_path_moveto:n { 2cm , 1cm } % Begins a new part
\draw_path_lineto:n { 3cm , 0.5cm }
\draw_path_lineto:n { 3cm , 0cm }
\color_fill:n { yellow!80!black }
\draw_path_use_clear:n { fill , stroke }

\draw_end:

\draw_path_lineto:n

10

\draw_path_curveto:nnn {〈control1〉} {〈control2〉} {〈end〉}

Joins the current path to the 〈end〉 with a curved line defined by cubic Bézier points
〈control1 〉 and 〈control2 〉. The bounding box of the path (and image) will fully-contain
the curve and control points, i.e. it may be bigger than strictly necessary to contain the
curve alone.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_curveto:nnn

{ 1cm , 1cm } % First control
{ 2cm , 1cm } % Second control
{ 3cm , 0cm } % End

\color_fill:n { yellow!80!black }
\draw_path_use_clear:n { fill , stroke }

\draw_end:

\draw_path_curveto:nnn

\draw_path_curveto:nn {〈control〉} {〈end〉}

Joins the current path to the 〈end〉 with a curved line defined by quadratic Bézier point
〈control〉. The bounding box of the path (and image) will fully-contain the curve and
computed (cubic) control points, i.e. it may be bigger than strictly necessary to contain
the curve alone.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_curveto:nn

{ 1cm , 1cm }
{ 2cm , 0cm }

\color_fill:n { yellow!80!black }
\draw_path_use_clear:n { fill , stroke }

\draw_end:

\draw_path_curveto:nn

11

\draw_path_arc:nnn {〈angle1〉} {〈angle2〉} {〈radius〉}
\draw_path_arc:nnnn {〈angle1〉} {〈angle2〉} {〈radius-a〉} {〈radius-b〉}

Joins the current path with an arc between 〈angle1 〉 and 〈angle2 〉 and of 〈radius〉. The
four-argument version accepts two radii of different lengths.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_arc:nnn { 180 } { 90 } { 0.5cm }
\draw_path_lineto:n { 3cm , 1.5cm }
\draw_path_arc:nnn { 90 } { -45 } { 0.5cm }
\draw_path_use_clear:n { fill }

\draw_end:

Note the interface here has a different argument ordering from that in pgf, which
has the two centers then the two radii.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_arc:nnnn { 180 } { 45 } { 2cm } { 1cm }
\draw_path_use_clear:n { stroke }

\draw_end:

\draw_path_arc:nnn
\draw_path_arc:nnnn

\draw_path_arc_axes:nnn {〈angle1〉} {〈angle2〉} {〈vector1〉} {〈vector2〉}

Appends the portion of an ellipse from 〈angle1 〉 to 〈angle2 〉 of an ellipse with axes along
〈vector1 〉 and 〈vector2 〉 to the current path.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 2cm , 5mm }
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_moveto:n { 2cm , 5mm }
\draw_path_arc_axes:nnnn { 0 } { 90 }

{ 2cm , 5mm } { 0cm , 1cm }
\draw_path_use_clear:n { stroke }

\draw_end:

\draw_path_arc_axes:nnnn

12

\draw_path_ellipse:nnn {〈center〉} {〈vector1〉} {〈vector2〉}

Appends an ellipse at 〈center〉 with axes along 〈vector1 〉 and 〈vector2 〉 to the current
path. A new part is started if the path is already non-empty. Notice that the underlying
drawing is constructed from arcs with appropriate moves: the interfaces is a more efficient
convenience.

\draw_begin:
\draw_path_ellipse:nnn

{ 1cm , 0cm }
{ 1.5cm , 0cm }
{ 0cm , 1cm }

\draw_path_use_clear:n { stroke }
\color_select:n { red }
\draw_path_ellipse:nnn

{ 1cm , 0cm }
{ 1cm , 1cm }
{ -0.5cm , 0.5cm }

\draw_path_use_clear:n { stroke }
\draw_end:

Note that any transformation is applied to the completed ellipse rather than to the
axes.

\draw_path_ellipse:nnn

\draw_path_circle:nn {〈center〉} {〈radius〉}

Appends a circle of 〈radius〉 at 〈center〉 to the current path. This is a shortcut for
\draw_path_ellipse:nnn.

\draw_path_circle:nn

\draw_path_rectangle:nn {〈lower-left〉} {〈displacement〉}
\draw_path_rectangle_corners:nn {〈lower-left〉} {〈top-right〉}

\draw_path_rectangle:nn
\draw_path_rectangle_corners:nn

Appends a rectangle starting at 〈lower-left〉 to the current path, with the size of the
rectangle determined either by a 〈displacement〉 or the position of the 〈top-right〉.

\draw_begin:
\draw_path_rectangle:nn

{ 1cm , 0cm }
{ 1.5cm , 1cm }

\draw_path_rectangle:nn
{ 1.5cm , 0.25cm }
{ 1.5cm , 1cm }

\draw_path_rectangle:nn
{ 2cm , 0.5cm }
{ 1.5cm , 1cm }

\draw_path_use_clear:n { draw }
\draw_end:

\draw_begin:
\draw_path_rectangle_corners:nn

{ 1cm , 0cm }
{ 1.5cm , 1cm }

\draw_path_use_clear:n { draw }
\draw_end:

13

\draw_path_grid:nnnn {〈xstep〉} {〈ystep〉} {〈lower-left〉} {〈upper-right〉}

Constructs a grid of 〈xstep〉 and 〈ystep〉 inside the rectangle defined by the 〈lower-left〉
and the 〈upper-right〉, and appends this to the current path. The grid will be aligned
such that grid lines pass through the origin, which may result in “protruding” ends if the
start/end positions do not fully align.

\draw_begin:
\draw_linewidth:n { 0.8pt }
\draw_path_grid:nnnn

{ 1cm } { 1cm }
{ -3mm , -3mm }
{ 33mm , 23mm }

\draw_path_use_clear:n { stroke }
\draw_linewidth:n { 0.4pt }
\draw_path_grid:nnnn

{ 1mm } { 1mm }
{ -1.5mm , -1.5mm }
{ 31.5mm , 21.5mm }

\draw_path_use_clear:n { stroke }
\draw_end:

Any transformation is applied to the finished grid.

\draw_begin:
\draw_transform_rotate:n { 10 }
\draw_path_grid:nnnn

{ 1mm } { 2mm }
{ 0mm , 0mm }
{ 30mm , 30mm }

\draw_path_use_clear:n { stroke }
\draw_end:

\draw_path_grid:nnnn

1.5.2 Path scope

\draw_path_scope_begin:
...
\draw_path_scope_end:

Suspends (and saves) the current (partial) path, initialising a new path within the scope.
Path operations are written to output only when used, so the scoped path is stored at
the expl3 level, not in the output.

\draw_path_scope_begin:
\draw_path_scope_end:

1.5.3 Path operations on canvas axes

For specialist work, a small number of functions are provided which work relative to the
canvas axes, i.e. these functions ignore the transformation matrix.

\draw_path_canvas_moveto:n {〈canvas point〉}

Moves the reference point of the path to the 〈canvas point〉, but will not join this to any
previous point.

\draw_path_canvas_moveto:n

14

\draw_path_canvas_lineto:n {〈canvas point〉}

Joins the current path to the 〈canvas point〉 with a straight line.
\draw_path_canvas_lineto:n

\draw_path_canvas_curveto:nnn {〈control1〉} {〈control2〉} {〈end〉}\draw_path_canvas_curveto:nnn

Joins the current path to the 〈end〉 with a curved line defined by cubic Bézier points
〈control1 〉 and 〈control2 〉. These positions are given as canvas points.

1.6 Bounding box

All functions automatically update the bounding box of the image, unless specified oth-
erwise. This behavior is selectable using the \l_draw_bb_update_bool boolean.

\l_draw_bb_update_bool

1.7 Boxes and coffins

\draw_box_use:N 〈box〉

Inserts the 〈box〉 into a drawing, taking account of the current transformation matrix
and shift, and adjusting the drawing bounding box to contain the (apparent) size of the
box if this is active (see \l_draw_bb_update_bool).

This is text.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_use_clear:n { stroke }
\hbox_set:Nn \l_tmpa_box

{ This~is~text. }
\draw_box_use:N \l_tmpa_box

\draw_end:

\draw_begin:
\draw_transform_matrix_absolute:nnnn { 2 } { 0 } { 1 } { 2 }
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_use_clear:n { stroke }
\hbox_set:Nn \l_tmpa_box

{ This~is~text. }
\draw_box_use:N \l_tmpa_box

\draw_end:

This is text.

\draw_box_use:N

15

\draw_coffin_use:N 〈coffin〉 {〈hpole〉} {〈vpole〉}

Inserts the 〈coffin〉 into a drawing, taking account of the current transformation matrix
and shift, and adjusting the drawing bounding box to contain the (apparent) size of the
box if this is active (see \l_draw_bb_update_bool). The alignment point of the coffin
to the origin is specified by the intersection of the 〈hpole〉 and the 〈vpole〉.

This is text.

\draw_begin:
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 0cm , 1cm }
\draw_path_use_clear:n { stroke }
\hcoffin_set:Nn \l_tmpa_coffin

{ This~is~text. }
\draw_coffin_use:Nnn \l_tmpa_coffin { hc } { vc }

\draw_end:

\draw_coffin_use:Nnn

1.8 Transformations
Points are normally used unchanged relative to the canvas axes. This can be modified
by applying a transformation matrix. The canvas axes themselves may be adjusted using
\driver_draw_cm:nnnn: note that this is transparent to the drawing code so is not
tracked.

\draw_transform_matrix:nnnn
{〈a〉} {〈b〉} {〈c〉} {〈d〉}

\draw_transform_matrix:nnnn
\draw_transform_matrix_absolute:nnnn

Applies the transformation matrix [〈a〉〈b〉〈c〉〈d〉]. The basic applies the transformation
in addition to those active; the absolute version overwrites any active transformation.
This assignment is local.

\draw_transform_shift:n {〈vector〉}\draw_transform_shift:n
\draw_transform_shift_absolute:n

Applies the transformation 〈vector〉 to points. The basic applies the vector in addition
to those active; the absolute version overwrites any active vector. This assignment is
local.

\draw_transform_triangle:nnn
{〈origin〉} {〈point1〉} {〈point2〉}

\draw_transform_triangle:nnn

Applies a transformation such that the co-ordinates (0, 0), (1, 0) and (0, 1) are given by
the 〈origin〉, 〈point1 〉 and 〈point2 〉, respectively. This assignment is local.

\draw_transform_rotate:n {〈angle〉}

Applies a rotation by the 〈angle〉, measured anti-clockwise in degrees. This rotation is
additional to any prevailing transformation. This assignment is local.

\draw_transform_rotate:n

\draw_transform_scale:n {〈scale〉}

Applies the 〈scale〉 in either x or y (or both). This scale is added to any prevailing
transformation. This assignment is local.

\draw_transform_scale:n
\draw_transform_xscale:n
\draw_transform_yscale:n

16

\draw_transform_xshift:n {〈xshift〉}

Applies an 〈xshift〉 or 〈yshift〉, as appropriate. This shift is added to any prevailing one.
This assignment is local.

\draw_transform_xshift:n
\draw_transform_yshift:n

\draw_transform_xslant:n {〈slant〉}

Applies the 〈slant〉 (a factor) in either x or y. This slant is added to any prevailing
transformation. This assignment is local.

\draw_transform_xslant:n
\draw_transform_yslant:n

\draw_transform_matrix_invert:\draw_transform_matrix_invert:
\draw_transform_shift_invert:

Inverts the current transformation matrix or shift vector, as appropriate. This assignment
is local.

\draw_transform_matrix_reset:\draw_transform_matrix_reset:
\draw_transform_shift_reset:

Resets the current transformation matrix or shift vector, as appropriate. This assignment
is local.

1.9 Layers
Drawing layers may be used to alter the way in which elements are stacked on top of one
another. In particular, they are useful when the nature of an element depends on another,
but where it needs to be behind it’s “parent”. A classic example is a filled background:
this needs to know the size of the material it is behind.

All drawings feature a layer called main. This layer should always be present, and
is the one which “non-layered” content is added to.

\draw_layer_new:n {〈layer〉}

Creates a new 〈layer〉 which can then be used in drawing. The layer main is pre-defined.
\draw_layer_new:n

\draw_layer_begin:n {〈layer〉}
...
\draw_layer_end:

Begin and end collection of material for the 〈layer〉, which should previously have been
created (and which cannot be main). Material collected for the layer is available globally
within the current drawing.

\draw_layer_begin:n
\draw_layer_end:

The list of active layers: may be given anywhere before \draw_end:. The main layer
should always be included.

\l_draw_layers_clist

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
@@ commands:

\@@_backend_cm:nnnn 6
17

D
draw commands:

\l_draw_bb_update_bool 15, 15, 16
\draw_begin: 2, 3, 3
\draw_box_use:N 15
\draw_cap_butt: 4, 4
\draw_cap_rectangle: 4
\draw_cap_round: 4
\draw_coffin_use:N 16
\draw_coffin_use:Nnn 16
\draw_dash_pattern:nn 4
\draw_end: 2, 17
\draw_evenodd_rule: 4
\draw_join_bevel: 4
\draw_join_miter: 4
\draw_join_round: 4
\draw_layer_begin:n 17
\draw_layer_end: 17
\draw_layer_new:n 17
\l_draw_layers_clist 17
\draw_linewidth:n 3
\g_draw_linewidth_default_dim . . 3, 5
\draw_miterlimit:n 4
\draw_nonzero_rule: 4
\draw_path_arc:nnn 12
\draw_path_arc:nnnn 12
\draw_path_arc_axes:nnn 12
\draw_path_arc_axes:nnnn 12
\draw_path_canvas_curveto:nnn . . . 15
\draw_path_canvas_lineto:n 15
\draw_path_canvas_moveto:n 14
\draw_path_circle:nn 13
\draw_path_close: 9
\draw_path_corner_arc:n 9
\draw_path_corner_arc:nn 9
\draw_path_curveto:nn 11
\draw_path_curveto:nnn 11
\draw_path_ellipse:nnn 13, 13
\draw_path_grid:nnnn 14
\draw_path_lineto:n 10
\draw_path_moveto:n 10, 10
\draw_path_rectangle:nn 13
\draw_path_rectangle_corners:nn . 13
\draw_path_scope_begin: 14
\draw_path_scope_end: 14
\draw_path_use:n 10
\draw_path_use_clear:n 10

\draw_point_interpolate_curve:nnnnnn
. 8

\draw_point_interpolate_distance:nnn
. 7

\draw_point_interpolate_line:nnn . 7
\draw_point_intersect_circles:nnnnn

. 7
\draw_point_intersect_lines:nnnn . 7
\draw_point_polar:nn 6
\draw_point_polar:nnn 6
\draw_point_transform:n 6, 6
\draw_point_unit_vector:n 6
\draw_point_vec:nn 7
\draw_point_vec:nnn 7
\draw_point_vec_polar:nn 7
\draw_point_vec_polar:nnn 7
\draw_scope_begin: 5
\draw_scope_end: 5
\draw_suspend_begin: 3
\draw_suspend_end: 3
\draw_transform_matrix:nnnn 16
\draw_transform_matrix_absolute:nnnn

. 16
\draw_transform_matrix_invert: . . 17
\draw_transform_matrix_reset: . . . 17
\draw_transform_rotate:n 16
\draw_transform_scale:n 16
\draw_transform_shift:n 16
\draw_transform_shift_absolute:n 16
\draw_transform_shift_invert: . . . 17
\draw_transform_shift_reset: . . . 17
\draw_transform_triangle:nnn . . . 16
\draw_transform_xscale:n 16
\draw_transform_xshift:n 17
\draw_transform_xslant:n 17
\draw_transform_yscale:n 16
\draw_transform_yshift:n 17
\draw_transform_yslant:n 17
\draw_xvec:n 7
\draw_yvec:n 7
\draw_zvec:n 7

driver commands:
\driver_draw_cm:nnnn 16

G
group commands:

\group_begin: 5
\group_end: 5

18

	1 l3draw documentation
	1.1 Drawings
	1.2 Graphics state
	1.3 Scoping drawing elements
	1.4 Points
	1.4.1 Basic point functions
	1.4.2 Points on a vector basis
	1.4.3 Intersections
	1.4.4 Interpolations

	1.5 Paths
	1.5.1 Path operations on drawing axes
	1.5.2 Path scope
	1.5.3 Path operations on canvas axes

	1.6 Bounding box
	1.7 Boxes and coffins
	1.8 Transformations
	1.9 Layers

	Index
	Symbols
	D
	G

