
The l3color package
Experimental color support

The LATEX Project∗

Released 2020-01-29

1 Color models
A color model is a way to represent sets of colors. Different models are particularly
suitable for different output methods, e.g. screen or print. Parameter-based models can
describe a very large number of unique colors, and have a varying number of axes which
define a color space. In contrast, various proprietary models are available which define
spot colors (more formally separations).

Core models are used to pass color information to output; these are “native” to
l3color. Core models use real numbers in the range [0, 1] to represent values. The core
models supported here are

• gray Grayscale color, with a single axis running from 0 (fully black) to 1 (fully
white)

• rgb Red-green-blue color, with three axes, one for each of the components

• cmyk Cyan-magenta-yellow-black color, with four axes, one for each of the compo-
nents

There are also interface models: these are convenient for users but have to be manipulated
before storing/passing to the backend. Interface models are primarily integer-based: see
below for more detail. The supported interface models are

• Gray Grayscale color, with a single axis running from 0 (fully black) to 15 (fully
white)

• hsb Hue-saturation-brightness color, with three axes,all real values in the range
[0, 1] for hue saturation and brightness

• Hsb Hue-saturation-brightness color, with three axes, integer in the range [0, 360]
for hue, real values in the range [0, 1] for saturation and brightness

• HSB Hue-saturation-brightness color, with three axes, integers in the range [0, 240]
for hue, saturation and brightness

• HTML HTML format representation of RGB color given as a single six-digit hexadec-
imal number

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

• RGB Red-green-blue color, with three axes, one for each of the components, values
as integers from 0 to 255

• wave Light wavelength, a real number in the range 380 to 780 (nanometres)

All interface models are internally stored as rgb.
To allow parsing of data from xcolor, any leading model up the first : will be

discarded; the approach of selecting an internal form for data is not used in l3color.
Additional models may be created to allow mixing of separation colors with each

other or with those from other models. See Section 8 for more detail of color support for
additional models.

When color is selected by model, the 〈values〉 given are specified as a comma-
separated list. The length of the list will therefore be determined by the detail of the
model involved.

Color models (and interconversion) are complex, and more details are given in the
manual to the LATEX2ε xcolor package and in the PostScript Language Reference Manual,
published by Addison–Wesley.

2 Color expressions
In addition to allowing specification of color by model and values, l3color also supports
color expressions. These are created by combining one or more color names, with the
amount of each specified as a percentage. The latter is given between ! symbols in the
expression. Thus for example

red!50!green

is a mixture of 50 % red and 50 % green. A trailing percentage is interpreted as implicitly
followed by white, and so

red!25

specifies 25 % red mixed with 75 % white.
Where the models for the mixed colors are different, the model of the first color is

used. Thus

red!50!cyan

will result in a color specification using the rgb model, made up of 50 % red and 50 % of
cyan expressed in rgb. As color model interconversion is not exact.

The one exception to the above is where the first model in an expression is gray. In
this case, the order of mixing is “swapped” internally, so that for example

black!50!red

has the same result as

red!50!black

(the predefined colors black and white use the gray model).
Where more than two colors are mixed in an expression, evaluation takes place in a

stepwise fashion. Thus in

cyan!50!magenta!10!yellow

2

the sub-expression

cyan!50!magenta

is first evaluated to give an intermediate color specification, before the second step

<intermediate>!10!yellow

where <intermediate> represents this transitory calculated value.
Within a color expression, . may be used to represent the color active for typesetting

(the current color). This allows for example

.!50

to mean a mixture of 50 % of current color with white.
(Color expressions supported here are a subset of those provided by the LATEX2ε

xcolor package. At present, only such features as are clearly useful have been added
here.)

3 Named colors
Color names are stored in a single namespace, which makes them accessible as part of
color expressions. Whilst they are not reserved in a technical sense, the names black,
white, red, green, blue, cyan, magenta and yellow have special meaning and should
not be redefined. Color names should be made up of letters, numbers and spaces only:
other characters are reserved for use in color expressions. In particular, . represents the
current color at the start of a color expression.

\color_set:nn {〈name〉} {〈color expression〉}

Evaluates the 〈color expression〉 and stores the resulting color specification as the 〈name〉.
\color_set:nn

\color_set:nnn {〈name〉} {〈model(s)〉} {〈value(s)〉}

Stores the color specification equivalent to the 〈model(s)〉 and 〈values〉 as the 〈name〉.
\color_set:nnn

\color_set_eq:nn {〈name1〉} {〈name2〉}

Copies the color specification in 〈name2 〉 to 〈name1 〉. The special name . may be used
to represent the current color, allowing it to be saved to a name.

\color_set_eq:nn

\color_show:n {〈name〉}

Displays the color specification stored in the 〈name〉 on the terminal.
\color_show:n

4 Selecting colors
General selection of color is safe when split across pages: a stack is used to ensure that
the correct color is re-selected on the new page.

\color_select:n {〈color expression〉}

Parses the 〈color expression〉 and then activates the resulting color specification for type-
set material.

\color_select:n

3

\color_select:nn {〈model(s)〉} {〈value(s)〉}

Activates the color specification equivalent to the 〈model(s)〉 and 〈value(s)〉 for typeset
material.

\color_select:nn

When this is set to a non-empty value, colors will be converted to the specified model
when they are selected. Note that included images and similar are not influenced by this
setting.

\l_color_fixed_model_tl

5 Colors for fills and strokes
Colors for drawing operations and so forth are split into strokes and fills (the latter may
also be referred to as non-stroke color). The fill color is used for text under normal
circumstances. Depending on the backend, stroke color may use a stack, in which case
it exhibits the same page breaking behavior as general color. However, dvips/dvisvgm
do not support this, and so color will need to be contained within a scope, such as
\draw_begin:/\draw_end:.

Note that the current color is the fill color, as this is used for running text.

\color_fill:n {〈color expression〉}

Parses the 〈color expression〉 and then activates the resulting color specification for filling
or stroking.

\color_fill:n
\color_stroke:n

\color_fill:nn {〈model(s)〉} {〈value(s)〉}

Activates the color specification equivalent to the 〈model(s)〉 and 〈value(s)〉 for filling or
stroking.

\color_fill:nn
\color_stroke:nn

When using dvips, this PostScript variables hold the stroke color.color.sc

6 Multiple color models
When selecting or setting a color with an explicit model, it is possible to give values for
more than one model at one time. This is particularly useful where automated conversion
between models does not give the desired outcome. To do this, the list of models and list
of values are both subdivided using / characters (as for the similar function in xcolor).
For example, to save a color with explicit cmyk and rgb values, one could use

\color_set:nnn { foo } { cmyk / rgb }
{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

The manually-specified conversion will be used in preference to automated calculation
whenever the model(s) listed are used: both in expressions and when a fixed model is
active.

Similarly, the same syntax can be applied to directly selecting a color.
\color_select:nn { cmyk / rgb }

{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

Again, this list is used when a fixed model is active: the first entry is used unless there
is a fixed model matching one of the other entries.

4

7 Exporting color specifications
The major use of color expressions is in setting typesetting output, but there are other
places in which some form of color information is required. These may need data in a
different format or using a different model to the internal representation. Thus a set of
functions are available to export colors in different formats.

Valid export targets are

• backend Two brace groups: the first containing the model, the second containing
space-separated values appropriate for the model; this is the format required by
backend functions of expl3

• HTML Uppercase two-digit hexadecimal values, expressing a red-green-blue color;
the digits are not separated

• space-sep-cmyk Space-separated cyan-magenta-yellow-black values

• space-sep-rgb Space-separated red-green-blue values suitable for use as a PDF
annotation color

\color_export:nnN {〈color expression〉} {〈format〉} {〈tl〉}

Parses the 〈color expression〉 as described earlier, then converts to the 〈format〉 specified
and assigns the data to the 〈tl〉.

\color_export:nnN

\color_export:nnnN {〈model〉} {〈value(s)〉} {〈format〉} {〈tl〉}

Expresses the combination of 〈model〉 and 〈value(s)〉 in an internal representation, then
converts to the 〈format〉 specified and assigns the data to the 〈tl〉.

\color_export:nnnN

8 Creating new color models
Additional color models are required to support specialist workflows, for example those in-
volving separations (see https://helpx.adobe.com/indesign/using/spot-process-colors.
html for details of the use of separations in print). Color models may be split into fami-
lies; for the standard device-based color models (DeviceCMYK, DeviceRGB, DeviceGray),
these are synonymous. This is not generally the case: see the PDF reference for more
details. (Note that l3color uses the shorter names cmyk, etc.)

\color_model_new:nnn {〈model〉} {〈family〉} {〈params〉}

Creates a new 〈model〉 which is derived from the color model 〈family〉. The latter should
be one of

• DeviceN

• Separation

(The 〈family〉 may be given in mixed case as-in the PDF reference: internally, case of
these strings is folded.) Depending on the 〈family〉, one or more 〈params〉 are mandatory
or optional.

\color_model_new:nnn

For a Separation space, there are three compulsory keys.

5

https://helpx.adobe.com/indesign/using/spot-process-colors.html
https://helpx.adobe.com/indesign/using/spot-process-colors.html

• name The name of the Separation, for example the formal name of a spot color ink.
Such a 〈name〉 may contain spaces, etc., which are not permitted in the 〈model〉.

• alternative-model An alternative device colorspace, one of cmyk, rgb, gray or
CIELAB. The three parameter-based models work as described above; see below for
details of CIELAB colors.

• alternative-values A comma-separated list of values appropriate to the alternative-model.
This information is used by the PDF application if the Separation is not available.

CIELAB color separations are created using the alternative-model = CIELAB set-
ting. These colors must also have an illuminant key, one of a, c, e, d50, d55, d65 or
d75. The alternative-values in this case are the three parameters L∗, a∗ and b∗ of
the CIELAB model. Full details of this device-independent color approach are given in
the documentation to the colorspace package.

CIELAB colors cannot be converted into other device-dependent color spaces, and
as such, mixing can only occur if colors set up using the CIELAB model are also given
with an alternative parameter-based model. If that is not the case, l3color will fallback
to using black as the colorant in any mixing.

For a DeviceN space, there is one compulsory key.

• names The names of the components of the DeviceN space. Each should be either
the 〈name〉 of a Separation model, a process color name (cyan, etc.) or the special
name none.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

C
color commands:

\color_export:nnN 5
\color_export:nnnN 5
\color_fill:n 4
\color_fill:nn 4
\l_color_fixed_model_tl 4
\color_model_new:nnn 5
\color_select:n 3
\color_select:nn 4
\color_set:nn 3

\color_set:nnn 3
\color_set_eq:nn 3
\color_show:n 3
\color_stroke:n 4
\color_stroke:nn 4

color.sc . 4

D
draw commands:

\draw_begin: 4
\draw_end: . 4

6

	1 Color models
	2 Color expressions
	3 Named colors
	4 Selecting colors
	5 Colors for fills and strokes
	6 Multiple color models
	7 Exporting color specifications
	8 Creating new color models
	Index
	C
	D

