
The l3build package
Checking and building packages

The LATEX Project∗

Released 2023-07-17

Contents
1 The l3build system 2

1.1 Introduction 2
1.2 The build.lua file 3
1.3 Main build targets 3
1.4 Example build scripts 9
1.5 Variables 9
1.6 Interaction between tests . . 13
1.7 Selective running of tests . . 13
1.8 Multiple sets of tests 13
1.9 Dependencies 14
1.10 Non-standard source layouts 14
1.11 Non-standard formats/bina-

ries 15
1.12 Output normalisation 16
1.13 Breaking changes 17

1.13.1 Release 2023-03-22 . . . 17

2 Writing test files 17
2.1 Metadata and structural

commands 18
2.2 Commands to help write tests 18
2.3 Showing box content 19
2.4 Testing entire pages 20
2.5 Pre-check hook 21
2.6 Additional test tasks 21
2.7 Instructions for rebuilding

test output 21
2.8 Epoch setting 22
2.9 Settings in texmf.cnf 22

3 Alternative test formats 22
3.1 Generating test files with

DocStrip 22
3.2 Specifying expectations . . . 22
3.3 PDF-based tests 23
3.4 Custom tests 24

4 Release-focussed features 24
4.1 Installation structure 24
4.2 Automatic tagging 25
4.3 Typesetting documentation . 25
4.4 Pre-typesetting hook 26
4.5 Non-standard typesetting . . 27
4.6 Automated upload to CTAN 27

5 Lua interfaces 28
5.1 Global variables 30
5.2 Utility functions 30
5.3 System-dependent strings . . 32
5.4 Components of l3build . . . 32
5.5 Typesetting functions 33
5.6 Customising the target and

option lists 33
5.7 Customising the manifest file 34

5.7.1 Custom manifest groups 34
5.7.2 Sorting within each

manifest group 35
5.7.3 File descriptions 36
5.7.4 Custom formatting . . . 36

Index 36
∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

1 The l3build system
1.1 Introduction
The l3build system is a Lua script for building TEX packages, with particular emphasis on
regression testing. It is written in cross-platform Lua code, so can be used by any modern
TEX distribution with the texlua interpreter. Wrapper functions/binaries are distributed
in the standard TEX distributions so that the script can be called using l3build on the
command line; run without arguments it prints a brief synopsis of its usage.

The l3build system is designed for packages written in any TEX dialect; its defaults
are set up for LATEX packages written in the DocStrip style. (Caveat: minimal testing
has yet been performed for non-LATEX packages.)

Test files are written as standalone TEX documents using the regression-test.tex
setup file; documentation on writing these tests is discussed in Section 2 on page 17.

Each package will define its own build.lua configuration file which both sets vari-
ables (such as the name of the package) and may also provide custom functions.

A standard package layout might look something like the following:

abc/
abc.dtx
abc.ins
build.lua
README.md
support/
testfiles/

Most of this should look fairly self-explanatory. The top level support/ directory (op-
tional) would contain any necessary files for compiling documentation, running regression
tests, and so on.

The l3build system is also capable of building and checking bundles of packages. To
avoid confusion, we refer to either a standalone package or a package within a bundle as
a module.

For example, within the LATEX project we have the l3packages bundle which contains
the xparse, xtemplate, etc., modules. These are all built and distributed as one bundle
for installation, distribution via CTAN and so forth.

Each module in a bundle will have its own build script, and a bundle build script
brings them all together. A standard bundle layout would contain the following structure.

mybundle/
build.lua
support/
yyy/ zoo/

build.lua build.lua
README.md README.md
testfiles/ testfiles/
yyy.dtx zoo.dtx
yyy.ins zoo.ins

All modules within a bundle must use the same build script name.
In a small number of cases, the name used by CTAN for a module or bundle is

different from that used in the installation tree. For example, the LATEX 2ε kernel is

2

called latex-base by CTAN but is located inside ⟨texmf⟩/tex/latex/base. This can be
handled by using ctanpkg for the name required by CTAN to override the standard value.

The testfiles/ folder is local to each module, and its layout consists of a series of
regression tests with their outputs.

testfiles/
test1.lvt
test1.tlg
...
support/

my-test.cls

Again, the support/ directory contains any files necessary to run some or all of these
tests.

When the build system runs, it creates a directory build/ for various unpacking,
compilation, and testing purposes. For a module, this build folder can be in the main
directory of the package itself, but for a bundle it should be common for the bundle
itself and for all modules within that bundle. A build/ folder can be safely deleted; all
material within is re-generated for each command of the l3build system.

1.2 The build.lua file
The build.lua file used to control l3build is a simple Lua file which is read during
execution. In the current release of l3build, build.lua is read automatically and can
access all of the global functions provided by the script. Thus it may contain a simple
list of variable settings or additional code to customize the build process.

The example scripts given in Section 1.4 on page 9 largely cover the required knowl-
edge in Lua programing. For a more advanced usage, one may consult general Lua
documentations including http://www.lua.org/manual/5.3/manual.html and for the
few texlua specific additions see section 4.2 of the LuaTEX manual available locally with
texdoc luatex command line or at https://www.pragma-ade.com/general/manuals/
luatex.pdf.

1.3 Main build targets
In the working directory of a bundle or module, l3build is run by executing

l3build ⟨target⟩ [⟨option(s)⟩]

where ⟨target⟩ can be one of the following:

• check
• check ⟨name(s)⟩
• clean
• ctan
• doc
• doc ⟨name(s)⟩
• install
• manifest
• save ⟨name(s)⟩
• tag [⟨tag name⟩]
• uninstall

3

http://www.lua.org/manual/5.3/manual.html
https://www.pragma-ade.com/general/manuals/luatex.pdf
https://www.pragma-ade.com/general/manuals/luatex.pdf

• unpack
• upload [⟨version⟩]

These targets are described below.
As well as these targets, the system recognises the options

• --config (-c) Configuration(s) to use for testing

• --date Date to use when tagging data

• --debug Runs the target in debug mode (not supported by all targets)

• --dirty Skip cleaning up of the test area

• --dry-run Runs the install target but does not copy any files: simply lists those
that would be installed

• --email Sets the email address for CTAN upload

• --engine (-e) Sets the engine to use for testing

• --epoch Sets the epoch for typesetting and testing

• --file (-F) Take the upload announcement from the given file

• --first Name of the first test to run

• --force (-f) Force checks to run even if sanity checks fail, e.g. when --engine is
not given in checkengines

• --full Instructs the install target to include the doc and source trees

• --halt-on-error (-H) Specifies that checks should stop as soon as possible, rather
than running all requested tests; the difference file is printed in the terminal directly
in the case of failure

• --last Name of the last test to run

• --message (-m) Text for upload announcement

• --quiet (-q) Suppresses output from unpacking

• --rerun Run tests without unpacking/set up

• --show-log-on-error To be used in addition to –halt-on-error and results in
the full .log file of a failed test to be shown on the console

• --show-saves (-S) When tests fail, print the l3build save commands needed to
regenerate the tests assuming that the failures were false negatives.

• --shuffle Shuffle the order in which tests run

• --texmfhome Sets the location of the user tree for installing

4

$ l3build check

The check command runs the entire test suite. This involves iterating through each .lvt
file in the test directory (specified by the testfiledir variable), compiling each test in
a “sandbox” (a directory specified by testdir), and comparing the output against each
matching predefined .tlg file.

If changes to the package or the typesetting environment have affected the results,
the check for that file fails. A diff of the expected to actual output should then be
inspected to determine the cause of the error; it is located in the testdir directory
(default builddir .. "/test").

On Windows, the diff program is not available and so fc is used instead (generating
an .fc file). Setting the environmental variables diffexe and diffext can be used to
adjust the choice of comparison made: the standard values are

Windows diffext = fc, diffexe = fc /n

*nix diffext = diff, diffexe = diff -c --strip-trailing-cr

The following files are moved into the “sandbox” for the check process:

• all installfiles after unpacking;

• all checkfiles after unpacking;

• any files in the directory testsuppdir;

• any files that match checksuppfiles in the supportdir.

The texmfdir is also made available to the tests (if defined and non-empty). This range
of possibilities allow sensible defaults but significant flexibility for defining your own test
setups.

Checking can be performed with any or all of the ‘engines’ pdftex, xetex, and
luatex. By default, each test is executed with all three, being compared against the .tlg
file produced from the pdftex engine (these defaults are controlled by the checkengines
and stdengine variable, respectively). The standard engine to use is typically chosen au-
tomatically as the first entry in checkengines, but may be set manually using stdengine.
Where multiple configurations are used and need adjustment to the standard engine, this
does need to be given explicitly using stdengine. The format used for tests can be al-
tered by setting checkformat: the default setting latex means that tests are run using
e.g. pdflatex, whereas setting to tex will run tests using e.g. pdftex. (Currently, this
should be one of latex or tex.) To perform the check, the engine typesets each test up
to checkruns times. More detail on this in the documentation on save. Options passed
to the binary are defined in the variable checkopts.

By default, texmf trees are searched for input files when checking. This can be
disabled by setting checksearch to false: isolation provides confidence that the tests
cannot accidentally be running with incorrect files installed in the main distribution or
hometexmf.

The texmfdir variable sets a directory which is made available for recursive searching
in addition to any files copied from supportdir. No subdivison of texmfdir is attempted,
thus it should not contain multiple files with the same name. The texmfdir is made
available both to checking and typesetting.

5

$ l3build check ⟨name(s)⟩

Checks only the test ⟨name(s)⟩.lvt. All engines specified by checkengines are tested
unless the command line option --engine (or -e) has been given to limit testing to a
single engine. Normally testing is preceded by unpacking source files and copying the
result plus any additional support to the test directory: this may be skipped using the
-s option.

$ l3build clean
This command removes all temporary files used for package bundling and regression test-
ing. In the standard layout, these are all files within the directories defined by localdir,
testdir, typesetdir and unpackdir, as well as all files defined in the cleanfiles vari-
able in the same directory as the script. The defaults are .pdf files from typesetting
(doc) and .zip files from bundling (ctan).

$ l3build ctan
Creates an archive of the package and its documentation, suitable for uploading to CTAN.
The archive is compiled in distribdir, and if the results are successful the resultant .zip
file is moved into the same directory as the build script. If packtdszip is set true then
the building process includes a .tds.zip file containing the ‘TEX Directory Structure’
layout of the package or bundle. The archive therefore may contain two ‘views’ of the
package:

abc.zip/
abc/

abc.dtx
abc.ins
abc.pdf
README.md

abc.tds.zip/
doc/latex/abc/

abc.pdf
README.md

source/latex/abc/
abc.dtx
abc.ins

tex/latex/abc/
abc.sty

The files copied into the archive are controlled by a number of variables. The ‘root’ of
the TDS structure is defined by tdsroot, which is "latex" by default. Plain users would
redefine this to "plain" (or perhaps "generic"), for example. The build process for a
.tds.zip file currently assumes a ‘standard’ structure in which all extracted files should
be placed inside the tex tree in a single directory, as shown above. If the module includes
any BibTEX or MakeIndex styles these will be placed in the appropriate subtrees.

The doc tree is constructed from:

• all files matched by demofiles,

• all files matched by docfiles,

• all files matched by typesetfiles with their extension replaced with .pdf,

6

• all files matched by textfiles,

• all files matched by bibfiles.

The source tree is constructed from all files matched by typesetfiles and sourcefiles.
The tex tree from all files matched by installfiles.

The special case ctanreadme is used to allow renaming of a local foo.xyz file to
README.xyz. The local foo.xyz should be listed in textfiles, and will be renamed as
part of constructing the CTAN structure. The file extension will be unchanged by this
process.

Files that should always be excluded from the archive are matched against the
excludefiles variable; by default this is {"*~"}, which match Emacs’ autosave files.

Binary files should be specified with the binaryfiles variable (default {"*.pdf",
"*.zip"}); these are added to the zip archive without normalising line endings (text files
are automatically converted to Unix-style line endings).

The intermediate build directories ctandir and tdsdir are used to construct the
archive.

$ l3build doc

Compiles documentation files in the typesetdir directory. In the absence of one or more
file names, all documentation is typeset; a file list may be given at the command line for
selective typesetting. If the compilation is successful the .pdf is moved back into the
main directory.

The documentation compilation is performed with the typesetexe binary (default
pdflatex), with options typesetopts. Additional TEX material defined in typesetcmds
is passed to the document (e.g., for writing \\PassOptionsToClass{l3doc}{letterpaper},
and so on—note that backslashes need to be escaped in Lua strings).

Files that match typesetsuppfiles in the support directory (supportdir) are
copied into the build/doc directory (typesetdir) for the typesetting compilation pro-
cess. Additional dependencies listed in the typesetdeps variable (empty by default) will
also be installed.

Source files specified in sourcefiles and typesetsourcefiles are unpacked before
the typesetting takes place. (In most cases typesetsourcefiles will be empty, but may
be used where there are files to unpack only for typesetting.)

If typesetsearch is true (default), standard texmf search trees are used in the
typesetting compilation. If set to false, all necessary files for compilation must be included
in the build/local sandbox.

$ l3build doc ⟨name(s)⟩

Typesets only the files with the ⟨name(s)⟩ given, which should be the basename without
any extension.

$ l3build install

Copies all package files (defined by installfiles) into the user’s home texmf tree in
the form of the TEX Directory Structure. The location of the user tree can be adjusted
using the --texmfhome switch: the standard setting is the location set as TEXMFHOME.

7

$ l3build save ⟨name(s)⟩

This command runs through the same execution as check for a specific test(s)
⟨name(s)⟩.lvt. This command saves the output of the test to a .tlg file. This file
is then used in all subsequent checks against the ⟨name⟩.lvt test.

If the --engine (or -e) is specified (one of pdftex, xetex, or luatex), the saved
output is stored in ⟨name⟩.⟨engine⟩.tlg. This is necessary if running the test through a
different engine produces a different output. A normalisation process is performed when
checking to avoid common differences such as register allocation; full details are listed in
Section 1.12 on page 16.

If the recordstatus variable is set true, additional information will be added to
the .tlg to record the “exit status” of the typesetting compilation of the .lvt file. If the
typesetting compilation completed without throwing an error (due to TEX programming
errors, for example), the “exit status” is zero, else non-zero.

$ l3build manifest

Generates a ‘manifest’ file which lists the files of the package as known to l3build. The file-
name of this file (by default "MANIFEST.md") can be set with the variable manifestfile.

The intended purpose of this manifest file is to include it within a package as meta-
data. This would allow, say, for the copyright statement for the package to refer to the
manifest file rather than requiring the author to manually keep a file list up-to-date in
multiple locations. The manifest file can be structured and documented with a degree of
flexibility. Additional information is described in Section 5.7 on page 34.

In order for manifest to detect derived and typeset files, it should be run after
running unpack and doc. If manifest is run after also running ctan it will include the
files included in the CTAN and TDS directories as well.

Presently, this means that if you wish to include an up-to-date manifest file as part
of a ctan release, you must run ctan / manifest / ctan. Improvements to this process
are planned for the future.

$ l3build tag [⟨tag name⟩]
Apply the Lua update_tag() function to modify the contents of files specified by
tagfiles to update the ‘release tag’ (or package version) and date. The tag is given
as the optional command line argument ⟨tag name⟩ and the date using --date (or -d).
If not given, the date will default to the current date in ISO format (YYYY-MM-DD).
If no ⟨tag name⟩ is given, the tag will default to nil. Both are passed as arguments to
the update_tag() function.

The standard setup does nothing unless tag update is set up by defining a custom
update_tag() function. See Section 4.2 on page 25 for full details on this feature.

$ l3build unpack

This is an internal target that is normally not needed on user level. It unpacks all files
into the directory defined by unpackdir. This occurs before other build commands such
as doc, check, etc.

The unpacking process is performed by executing the unpackexe (default pdftex)
with options unpackopts on all files defined by the unpackfiles variable; by default, all
files that match {"*.ins"}.

8

1 -- Build configuration for breqn
2

3 module = "breqn"
4

5 unpackfiles = {"*.dtx"}
6 excludefiles = {"*/breqn -abbr -test.pdf",
7 "*/ eqbreaks.pdf"}
8 unpackopts = "-interaction=batchmode"

Listing 1: The build configuration for the breqn package.

If additional support files are required for the unpacking process, these can be enu-
merated in the unpacksuppfiles variable. Dependencies for unpacking are defined with
unpackdeps.

By default this process allows files to be accessed in all standard texmf trees; this
can be disabled by setting unpacksearch to false.

$ l3build upload [⟨version⟩]

This target uses curl to upload the package zip file (created using ctan) to CTAN.
To control the metadata used to upload the package, the uploadconfig table should
be populated with a number of fields. These are documented in Table 2 on page 29.
Missing required fields will result in an interactive prompt for manual entry. When
given, ⟨version⟩ overrides uploadconfig.version.

See Section 4.6 on page 27 for full details on this feature.

1.4 Example build scripts
An example of a standalone build script for a package that uses self-contained .dtx files
is shown in Listing 1. Here, the module only is defined, and since it doesn’t use .ins files
so the variable unpackfiles is redefined to run tex on the .dtx files instead to generate
the necessary .sty files. There are some PDFs in the repository that shouldn’t be part of
a CTAN submission, so they’re explicitly excluded, and here unpacking is done ‘quietly’
to minimise console output when building the package.

An example of a bundle build script for l3packages is shown in Listing 2 on the
following page. Note for LATEX we use a common file to set all build variables in one
place, and the path to the l3build.lua script is hard-coded so we always use our own
most recent version of the script. An example of an accompanying module build script
is shown in Listing 3 on the next page.

A collection of full examples (source files in various layouts) are available at https:
//github.com/latex3/l3build/tree/master/examples.

1.5 Variables
This section lists all variables defined in the l3build.lua script that are available for
customisation.

9

https://github.com/latex3/l3build/tree/master/examples
https://github.com/latex3/l3build/tree/master/examples

1 -- Build script for LaTeX " l3packages " files
2

3 -- Identify the bundle : there is no module as this is the " driver "
4 bundle = "l3packages"
5

6 -- Location of main directory : use Unix -style path separators
7 maindir = ".."

Listing 2: The build script for the l3packages bundle.

1 -- Build script for LaTeX " xparse " files
2

3 -- Identify the bundle and module :
4 bundle = "l3packages"
5 module = "xparse"
6

7 -- Location of main directory : use Unix -style path separators
8 -- Should match that defined by the bundle.
9 maindir = "../.."

Listing 3: The build script for the xparse module.

Variable Default Description

module "" The name of the module
bundle "" The name of the bundle in which the module belongs

(where relevant)
ctanpkg module/bundle Name of the CTAN package matching this module

modules {} The list of all modules in a bundle (when not
auto-detecting)

exclmodules {} Directories to be excluded from automatic module detection

maindir "." Top level directory for the module/bundle
docfiledir "." Directory containing documentation files
sourcefiledir "." Directory containing source files
supportdir maindir .. "/support" Directory containing general support files
testfiledir "./testfiles" Directory containing test files
testsuppdir testfiledir .. "/support" Directory containing test-specific support files
texmfdir maindir .. "/texmf" Directory containing support files in tree form
textfiledir "." Directory containing plain text files

builddir maindir .. "/build" Directory for building and testing
distribdir builddir .. "/distrib" Directory for generating distribution structure
localdir builddir .. "/local" Directory for extracted files in “sandboxed” TEX runs
resultdir builddir .. "/result" Directory for PDF files when using PDF-based tests
testdir builddir .. "/test" Directory for running tests
typesetdir builddir .. "/doc" Directory for building documentation
unpackdir builddir .. "/unpacked" Directory for unpacking sources

ctandir distribdir .. "/ctan" Directory for organising files for CTAN

10

Variable Default Description

tdsdir distribdir .. "/tds" Directory for organised files into TDS structure
tdsroot "latex" Root directory of the TDS structure for the bundle/module

to be installed into

auxfiles {"*.aux", "*.lof", "*.lot",
"*.toc"}

Secondary files to be saved as part of running tests

bibfiles {"*.bib"} BibTEX database files
binaryfiles {"*.pdf", "*.zip"} Files to be added in binary mode to zip files
bstfiles {"*.bst"} BibTEX style files
checkfiles { } Extra files unpacked purely for tests
checksuppfiles Files needed for performing regression tests
cleanfiles {"*.log", "*.pdf", "*.zip"} Files to delete when cleaning
demofiles {} Files which show how to use a module
docfiles {} Files which are part of the documentation but should not

be typeset
dynamicfiles { } Secondary files to cleared before each test is run
excludefiles {"*~"} Files to ignore entirely (default for Emacs backup files)
installfiles {"*.sty","*.cls"} Files to install to the tex area of the texmf tree
makeindexfiles {"*.ist"} MakeIndex files to be included in a TDS-style zip
scriptfiles { } Files to install to the scripts area of the texmf tree
scriptmanfiles { } Files to install to the doc/man area of the texmf tree
sourcefiles {"*.dtx", "*.ins",

"*-????-??-??.sty"}
Files to copy for unpacking

tagfiles {"*.dtx"} Files for automatic tagging
textfiles {"*.md", "*.txt"} Plain text files to send to CTAN as-is
typesetdemofiles {} Files to typeset before the documentation for inclusion in

main documentation files
typesetfiles {"*.dtx"} Files to typeset for documentation
typesetsuppfiles {} Files needed to support typesetting when “sandboxed”
typesetsourcefiles{} Files to copy to unpacking when typesetting
unpackfiles {"*.ins"} Files to run to perform unpacking
unpacksuppfiles {} Files needed to support unpacking when “sandboxed”

includetests {"*"} Test names to include when checking
excludetests {} Test names to exclude when checking

checkdeps {} List of dependencies for running checks
typesetdeps {} List of dependencies for typesetting docs
unpackdeps {} List of dependencies for unpacking

checkengines {"pdftex", "xetex", "luatex"} Engines to check with check by default
stdengine checkengines[1] or "pdftex" Engine to generate .tlg file from
checkformat "latex" Format to use for tests
specialformats ⟨table⟩ Non-standard engine/format combinations
test_types ⟨table⟩ Custom test variants
test_order {"log", "pdf"} Which kinds of tests to evaluate

checkconfigs {} Configurations to use for tests

typesetexe "pdflatex" Executable for compiling doc(s)
unpackexe "pdftex" Executable for running unpack
biberexe "biber" Biber executable

11

Variable Default Description

bibtexexe "bibtex8" BibTEX executable
makeindexexe "makeindex" MakeIndex executable
curlexe "curl" Curl executable for upload

checkopts "-interaction=nonstopmode" Options passed to engine when running checks
typesetopts "-interaction=nonstopmode" Options passed to engine when typesetting
unpackopts "" Options passed to engine when unpacking
biberopts "" Biber options
bibtexopts "-W" BibTEX options
makeindexopts "" MakeIndex options

checksearch true Switch to search the system texmf for during checking
typesetsearch true Switch to search the system texmf for during typesetting
unpacksearch true Switch to search the system texmf for during unpacking

glossarystyle "gglo.ist" MakeIndex style file for glossary/changes creation
indexstyle "gind.ist" MakeIndex style for index creation
specialtypesetting⟨table⟩ Non-standard typesetting combinations

forcecheckepoch "true" Force epoch when running tests
forcedocepoch "false" Force epoch when typesetting

asciiengines {"pdftex"} Engines which should log as pure ASCII
checkruns 1 Number of runs to complete for a test before comparing the

log
forcecheckruns false Always run checkruns runs and never stop early
ctanreadme "README.md" Name of the file to send to CTAN as README.⟨ext⟩
ctanzip ctanpkg ... "-ctan" Name of the zip file (without extension) created for upload

to CTAN
epoch 1463734800 Epoch (Unix date) to set for test runs
flatten true Switch to flatten any source structure when sending to

CTAN
flattentds true Switch to flatten any source structure when creating a TDS

structure
maxprintline 9999 Length of line to use in log files
packtdszip false Switch to build a TDS-style zip file for CTAN
ps2pdfopts "" Options for ps2pdf
typesetcmds "" Instructions to be passed to TEX when doing typesetting
typesetruns 3 Number of cycles of typesetting to carry out
recordstatus false Switch to include error level from test runs in .tlg files
manifestfile "MANIFEST.md" Filename to use for the manifest file

tdslocations { } Map for non-standard file installations
tdsdirs { } List of ready-to-use source locations

uploadconfig ⟨table⟩ Metadata to describe the package for CTAN (see Table 2
on page 29)

uploadconfig.pkg ctanpkg Name of the CTAN package

bakext ".bak" Extension of backup files
dviext ".dvi" Extension of DVI files
lvtext ".lvt" Extension of log-based test files
tlgext ".tlg" Extension of test file output

12

Variable Default Description

tpfext ".tpf" Extension of PDF-based test output
lveext ".lve" Extension of auto-generating test file output
logext ".log" Extension of checking output, before processing it into a

.tlg
pvtext ".pvt" Extension of PDF-based test files
pdfext ".pdf" Extension of PDF file for checking and saving
psext ".ps" Extension of PostScript files

1.6 Interaction between tests
Tests are run in a single directory, so whilst they are may be isolated from the system TEX
tree they do share files. This may be significant if installation-type files are generated
during a test, for example by a filecontents environment in LATEX. Typically, you
should set up your tests such that they do not use the same names for such files: this
may lead to variable outcomes depending on the order in which tests are run.

Where files need to be removed between different engine tests, they should be listed
in dynamicfiles. If the files are generated in a directory structure, e.g. by minted, then
a recursive glob will be needed, for example

dynamicfiles = {"_minted-*/**"}

1.7 Selective running of tests
The variables includetests and excludetests may be used to select which tests are run:
these variables take raw test names not full file names. The list of tests in excludetests
overrides any matches in includetests, meaning that tests can be disabled selectively.
It also makes it possible to disable test on for example a platform basis: the texlua
specific variable os.type may be used to set excludetests only on some systems.

1.8 Multiple sets of tests
In most cases, a single set of tests will be appropriate for the module, with a common
set of configuration settings applying. However, there are situations where you may need
entirely independent sets of tests which have different setting values, for example using
different formats or where the entire set will be engine-dependent. To support this, l3build
offers the possibility of using multiple configurations for tests. This is supported using
the checkconfigs table. This is used to list the names of each configuration (.lua file)
which will be used to run tests.

For example, for the core LATEX 2ε tests the main test files are contained in a di-
rectory testfiles. To test font loading for X ETEX and LuaTEX there are a second set
of tests in testfiles-TU which use the short build-TU.lua file shown in Listing 4 on
the next page. To run both sets of tests, the main build.lua file contains the setting
checkconfigs = {"build", "config-TU"}. This will cause l3build to run first using
no additional settings (i.e. reading the normal build.lua file alone), then running also
loading the settings from config-TU.lua.

To allow selection of one or more configurations, and to allow saving of .tlg files
in non-standard configurations, the --config (-c) option may be used. This works in
the same way as --engine: it takes a comma list of configurations to apply, overriding
checkconfigs.

13

1 -- Special config for these tests
2 checksearch = true
3 checkengines = {"xetex","luatex"}
4 testfiledir = "testfiles -TU"

Listing 4: Example of using additional (or overriding) settings for configuring tests in a
different subdirectory.

1.9 Dependencies
If you have multiple packages that are developed separately but still interact in some
way, it’s often desirable to integrate them when performing regression tests. For LATEX,
for example, when we make changes to l3kernel it’s important to check that the tests for
l3packages still run correctly, so it’s necessary to include the l3kernel files in the build
process for l3packages.

In other words, l3packages is dependent on l3kernel, and this is specified in l3build
by setting appropriately the variables checkdeps, typesetdeps, and unpackdeps. The
relevant parts of the LATEX repository is structured as the following.

l3/
l3kernel/

build.lua
expl3.dtx
expl3.ins
...
testfiles/

l3packages/
build.lua
xparse/

build.lua
testfiles/
xparse.dtx
xparse.ins

support/

For LATEX build files, maindir is defined as top level folder l3, so all support files are lo-
cated here, and the build directories will be created there. To set l3kernel as a dependency
of l3package, within l3packages/xparse/build.lua the equivalent of the following is
set:

maindir = "../.."
checkdeps = {maindir .. "/l3kernel"}

This ensures that the l3kernel code is included in all processes involved in unpacking
and checking and so on. The name of the script file in the dependency is set with the
scriptname variable; by default these are "build.lua".

1.10 Non-standard source layouts
A variety of source layouts are supported. In general, a “flat” layout with all source
files “here” is most convenient. However, l3build supports placement of both code and

14

documentation source files in other locations using the sourcefiledir, docfiledir and
textfiledir variables. For pre-built trees, the glob syntax **/*.⟨ext⟩ may be useful
in these cases: this enables recursive searching in the appropriate tree locations. With
the standard settings, this structure will be removed when creating a CTAN release: the
variable flatten may be used to control this behavior. The flattentds setting controls
the same concept for TDS creation.

Notice that text files are treated separately from documentation files when splitting
trees: this is to allow for the common case where files such as README and LICENSE are
at the top level even when other documentation files are in a sub-directory.

A series of example layouts and matching build.lua files are available from https:
//github.com/latex3/l3build/tree/master/examples.

For more complex layouts in which sources are laid out in TDS format and should
be used directly, the table tdsdirs is available. Each entry is a source directory and the
matching installation target, for example

tdsdirs = {sources = "tex"}

This would enable a directory sources in the development area to be used for testing and
typesetting, and for it to be installed into the tex tree when building a release. When
this method is used, the sources are not copied into the local tree: like texmfdir, they
are added directly to the areas accessible during a testing or typesetting run. When using
this approach, the files listed in typesetfiles must still be included in docfiles: they
have to be directly visible to l3build, not found by kpsewhich searching.

1.11 Non-standard formats/binaries
The standard approach used by l3build is to use a combination of engine and
checkformat to generate the binary and format combination used for tests. For ex-
ample, when pdftex is the engine and latex is the checkformat, the system call used
is

pdftex --fmt=pdflatex

i.e. the binary names is the same as the engine, and the format is a simple substitution
of the checkformat into engine, replacing tex.

For more complex set ups, specialformats should be used. This is a table with one
entry per checkformat. Each entry is itself a table, and these contain a list of engines and
settings for binary, format and options. For example, for ConTEXt and appropriate
set up is

specialformats.context = {
luatex = {binary = "context", format = ""},
pdftex = {binary = "texexec", format = ""},
xetex = {binary = "texexec", format = "", options = "--xetex"}

}

Additional tokens can also be injected before the loading of a test file using the tokens
entry: this might for example be used to select a graphics driver with a DVI-based route.

15

https://github.com/latex3/l3build/tree/master/examples
https://github.com/latex3/l3build/tree/master/examples

1.12 Output normalisation
To allow test files to be used between different systems (e.g. when multiple developers
are involved in a project), the log files are normalised before comparison during checking.
This removes some system-dependent data but also some variations due to different
engines. This normalisation consists of two parts: removing (“ignoring”) some lines and
modifying others to give consistent test. Currently, the following types of line are ignored:

• Lines before the \START, after the \END and within \OMIT/\TIMO blocks

• Entirely blank lines, including those consisting only of spaces.

• Lines related to loading .fd files (from (⟨name⟩.fd to the matching)).

• Lines starting \openin or \openout.

Modifications made in lines are:

• Removal spaces at the start of lines.

• Removal of ./ at start of file names.

• Standardisation of the list of units known to TEX (pdfTEX and LuaTEX add a small
number of additional units which are not known to TEX90 or X ETEX, (u)pTEX adds
some additional non-standard ones)

• Standardisation of \csname\endcsname␣ to \csname\endcsname (the former is for-
mally correct, but the latter was produced for many years due to a TEX bug).

• Conversion of on line ⟨number⟩ to on line ... to allow flexibility in changes to
test files.

• Conversion of file dates to-..-.., and any version numbers on the same lines
to v....

• Conversion of register numbers in assignment lines \⟨register⟩=\⟨type⟩⟨number⟩
to \⟨type⟩⟨...⟩

• Conversion of box numbers in \show lines > \box⟨number⟩= to > \box...=

• Conversion of Lua data reference ids <lua data reference ⟨number⟩> to <lua
data reference ...>

• Removal of some (u)pTEX data where it is equivalent to pdfTEX (yoko direction,
\displace 0.0)

• Removal of various \special lines inserted due to the build process

LuaTEX makes several additional changes to the log file. As normalising these may
not be desirable in all cases, they are handled separately. When creating LuaTEX-specific
test files (either with LuaTEX as the standard engine or saving a LuaTEX-specific .tlg file)
no further normalisation is undertaken. On the other hand, for cross-engine comparison
the following normalisation is applied:

• Removal of additional (unused) \discretionary points.

• Normalisation of some \discretionary data to a TEX90 form.

16

• Removal of U+... notation for missing characters.

• Removal of display for display math boxes (included by TEX90/pdfTEX/X ETEX).

• Removal of Omega-like direction TLT information.

• Removal of additional whatsit containing local paragraph information (\localinterlinepenalty,
etc.).

• Rounding of glue set to four decimal places (glue set may be slightly different in
LuaTEX compared to other engines).

• Conversion of low chars (0 to 31) to ^^ notation.

When making comparisons between 8-bit and Unicode engines it is useful to format
the top half of the 8-bit range such that it appears in the log as ^^⟨char⟩ (the exact
nature of the 8-bit output is otherwise dependent on the active code page). This may be
controlled using the asciiengines option. Any engines named here will use a .tcx file
to produce only ASCII chars in the log output, whilst for other engines normalisation is
carried out from UTF-8 to ASCII. If the option is set to an empty table the latter process
is skipped: suitable for cases where only Unicode engines are in use.

1.13 Breaking changes
Very occasionally, it is necessary to make changes to l3build that change the .tlg file
results. This is typically when additional normalisation is required. When this is the
case, you should first verify that .tlg files pass with the older l3build, then update only
l3build, re-check the files and save the results. Where possible, we provide a mechanism
to run with older setting to allow this process to take place smoothly.

1.13.1 Release 2023-03-22

This release changes the standard value of maxprintline from 79 to 9999, to suppress
line wrapping in the log. This makes normalisation of for example file paths more reliable.
To check that .tlg files are correct, you can set maxprintline in your build.lua file
explicitly to the old default, check that tests pass, then remove this line and re-check.

2 Writing test files
Test files are written in a TEX dialect using the support file regression-test.tex,
which should be \input at the very beginning of each test. Additional customisations
to this driver can be included in a local regression-test.cfg file, which will be loaded
automatically if found.

The macros loaded by regression-test.tex set up the test system and provide a
number of commands to aid the production of a structured test suite. The basis of the test
suite is to output material into the .log file, from which a normalised test output (.tlg)
file is produced by the build command save. A number of commands are provided for
this; they are all written in uppercase to help avoid possible conflicts with other package
commands.

17

2.1 Metadata and structural commands
Any commands that write content to the .log file that should be ignored can be sur-
rounded by \OMIT . . . \TIMO. At the appropriate location in the document where the .log
comparisons should start (say, after \begin{document}), the test suite must contain the
\START macro.

The \END command signals the end of the test (but read on). Some additional
diagnostic information is printed at this time to debug if the test did not complete
‘properly’ in terms of mismatched brace groups or \if. . . \fi groups.

In a LATEX document, \end{document} will implicitly call \END at the very end of
the compilation process. If \END is used directly (replacing \end{document} in the test),
the compilation will halt almost immediately, and various tasks that \end{document}
usually performs will not occur (such as potentially writing to the various .toc files, and
so on). This can be an advantage if there is additional material printed to the log file in
this stage that you wish to ignore, but it is a disadvantage if the test relies on various
auxiliary data for a subsequent typesetting run. (See the checkruns variable for how
these tests would be test up.)

2.2 Commands to help write tests
\TYPE is used to write material to the .log file, like LATEX’s \typeout, but it allows
‘long’ input. The following commands are defined to use \TYPE to output strings to the
.log file.

• \SEPARATOR inserts a long line of = symbols to break up the log output.

• \NEWLINE inserts a linebreak into the log file.

• \TRUE, \FALSE, \YES, \NO output those strings to the log file.

• \ERROR is not defined but is commonly used to indicate a code path that should
never be reached.

• The \TEST{⟨title⟩}{⟨contents⟩} command runs its ⟨contents⟩ in a group and sur-
rounds the generated log lines with some \SEPARATORs and a ⟨title⟩.

• \TESTEXP{⟨title⟩}{⟨contents⟩} surrounds its ⟨contents⟩ with \TYPE and formatting
to match \TEST; this can be used as a shorthand to test expandable commands.

• \BEGINTEST{⟨title⟩} . . . \ENDTEST is an environment form of \TEST, allowing ver-
batim material, etc. to appear.

• \SHOWFILE (ε-TEX only) Shows the content of the file given as an argument.

• \ASSERT and \ASSERTSTR Asserts if the full expansion of the two required arguments
are the same: the \ASSERT function is token-based, the \ASSERTSTR works on a
string basis.

An example of some of these commands is shown following.

\TEST{bool_set,~lazy~evaluation}
{
\bool_set:Nn \l_tmpa_bool
{

18

\int_compare_p:nNn 1=1
&& \bool_lazy_any_p:n
{
{ \int_compare_p:nNn 2=3 }
{ \int_compare_p:nNn 4=4 }
{ \int_compare_p:nNn 1=\ERROR } % is skipped

}
&& \int_compare_p:nNn 2=2

}
\bool_if:NTF \l_tmpa_bool \TRUE \FALSE
}

This test will produce the following in the output.

==
TEST 8: bool_set, lazy evaluation
==
TRUE
==

(Only if it’s the eighth test in the file of course, and assuming expl3 coding conventions
are active.)

2.3 Showing box content
The commands introduced above are only useful for checking algorithmic or logical cor-
rectness. Many packages should be tested based on their typeset output instead; TEX
provides a mechanism for this by printing the contents of a box to the log file. The
regression-test.tex driver file sets up the relevant TEX parameters to produce as
much output as possible when showing box output.

A plain TEX example of showing box content follows.

\input regression-test.tex\relax
\START
\setbox0=\hbox{\rm hello \it world $a=b+c$}
\showbox0
\END

This produces the output shown in Figure 1 on the following page (left side). It is clear
that if the definitions used to typeset the material in the box changes, the log output will
differ and the test will no longer pass.

The equivalent test in LATEX 2ε using expl3 is similar.

\input{regression-test.tex}
\documentclass{article}
\usepackage{expl3}
\START
\ExplSyntaxOn
\box_new:N \l_tmp_box
\hbox_set:Nn \l_tmp_box {hello~ \emph{world}~ $a=b+c$}
\box_show:N \l_tmp_box
\ExplSyntaxOff
\END

19

> \box0=
\hbox(6.94444+0.83333)x90.56589
.\tenrm h
.\tenrm e
.\tenrm l
.\tenrm l
.\tenrm o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenit w
.\tenit o
.\tenit r
.\tenit l
.\tenit d

.\glue 3.57774 plus 1.53333 minus 1.0222

.\mathon

.\teni a

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\tenrm =

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\teni b

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\tenrm +

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\teni c

.\mathoff

! OK.
l.9 \showbox0

> \box71=
\hbox(6.94444+0.83333)x91.35481
.\OT1/cmr/m/n/10 h
.\OT1/cmr/m/n/10 e
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\OT1/cmr/m/it/10 w
.\OT1/cmr/m/it/10 o
.\OT1/cmr/m/it/10 r
.\OT1/cmr/m/it/10 l
.\OT1/cmr/m/it/10 d
.\kern 1.03334
.\glue 3.33333 plus 1.66666 minus 1.11111
.\mathon
.\OML/cmm/m/it/10 a
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OT1/cmr/m/n/10 =
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OML/cmm/m/it/10 b
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OML/cmm/m/it/10 c
.\mathoff

! OK.
<argument> \l_tmp_box

l.12 \box_show:N \l_tmp_box

Figure 1: Output from displaying the contents of a simple box to the log file, using plain
TEX (left) and expl3 (right). Some blank lines have been added to the plain TEX version
to help with the comparison.

The output from this test is shown in Figure 1 (right side). There is marginal difference
(mostly related to font selection and different logging settings in LATEX) between the plain
and expl3 versions.

When examples are not self-contained enough to be typeset into boxes, it is possible
to ask TEX to output the entire contents of a page. Insert \showoutput for LATEX or
set \tracingoutput positive for plain TEX; ensure that the test ends with \newpage or
equivalent because TEX waits until the entire page is finished before outputting it.

TODO: should we add something like \TRACEPAGES to be format-agnostic here?
Should this perhaps even be active by default?

2.4 Testing entire pages
There may be occasions where creating entire test pages is necessary to observe the test
output required. That is best achieved by applying \showoutput and forcing a complete
page to be produced, for example

20

1 function runtest_tasks(name ,run)
2 if run == 1 then
3 return "biber␣" .. name
4 else
5 return ""
6 end
7 end

Listing 5: Example runtest_tasks function.

\input{regression-test.tex}
\documentclass{article}
\usepackage{expl3}
\START
\showoutput
% Test content here
\vfil\break
\END

2.5 Pre-check hook
To allow complex set up for tests, a hook checkinit_hook() is available to be executed
once all standard set up is complete but before any tests are run. This should return an
integer value: 0 indicates no error.

2.6 Additional test tasks
A standard test will run the file ⟨name⟩.lvt using one or more engines, but will not carry
out any additional processing. For some tests, for example bibliography generation, it
may be desirable to call one or more tools in addition to the engine. This can be arranged
by defining runtest_tasks, a function taking two arguments, the name of the current
test (this is equivalent to TEX’s \jobname, i.e. it lacks an extension) and the current
run number. The function runtest_tasks is run after the main call to the engine for
a test cycle. It should return an errorlevel value. If more than one task is required,
these should be separated by use of os_concat, a string variable defined by l3build as the
correct concatenation marker for the system. An example of runtest_tasks suitable for
calling Biber is shown in Listing 5.

2.7 Instructions for rebuilding test output
Sometimes changes to fundamental parts of the code can cause a lot of tests to fail even
though the actually tested systems are still working correctly. This is especially common
when the logging and error reporting systems changes and therefore all log file based
tests using the component fail with these changes.

In these cases, the option --show-saves can be passed to l3build check in or-
der to generate a list of l3build save commands which can be executed to regenerate
the expected output of all tests which fail. Additionally it sometimes prints a list of
l3build check commands for tests which might still fail due to engine differences after

21

running the save commands. After running all these l3build check commands and all
l3build save commands listed by them, all tests will succeed.

When bundles are used l3build check --show-saves has to be executed separately
for every module in the bundle.

This option is potentially dangerous and therefore should only be used with care. It
can easily hide valid test failures between a bunch of spurious changes. Therefore you
should always take a close look at the difference files generated by l3build check before
running the generated l3build save commands. Additionally it should only be used
when you are aware of the reason why a large number of tests failed and the change
causing the failures has been tested separately to have no unintended side effects.

2.8 Epoch setting
To produce predictable output when using dates, the test system offers the ability to set
the epoch to a known value. The epoch variable may be given as a raw value (a simple
integer) or as a date in ISO format. The two flags forcecheckepoch and forcedocepoch
then determine whether this is applied in testing and typesetting, respectively.

The epoch may also be given as a command line option, -E, which again takes either
a date or raw epoch. When given, this will automatically activate forcing of the epoch
in both testing and typesetting.

2.9 Settings in texmf.cnf

To allow application of non-standard TEX trees or similar non-standard settings, l3build
enables searching for a texmf.cnf file by setting the envirnmental variable TEXMFCNF.
This might for example be used with a file containing

TEXMFAUXTREES = ../../texmf,

for adding a local tree within the development repository (assuming the typical l3build
layout).

3 Alternative test formats
3.1 Generating test files with DocStrip
It is possible to pack tests inside source files. Tests generated during the unpacking
process will be available to the check and save commands as if they were stored in the
testfiledir. Any explicit test files inside testfiledir take priority over generated
ones with the same names.

3.2 Specifying expectations
Regression tests check whether changes introduced in the code modify the test output.
Especially while developing a complex package there is not yet a baseline to save a test
goal with. It might then be easier to formulate the expected effects and outputs of tests
directly. To achieve this, you may create an .lve instead of a .tlg file.1 It is processed
exactly like the .lvt to generate the expected outcome. The test fails when both differ.

1Mnemonic: lvt: test, lve: expectation

22

1 \input regression -test.tex\relax
2 \START
3 \TEST{counter -math}{
4 % <*test >
5 \OMIT
6 \newcounter{numbers}
7 \setcounter{numbers }{2}
8 \addtocounter{numbers }{2}
9 \stepcounter{numbers}

10 \TIMO
11 \typeout {\ arabic{numbers }}
12 % </test >
13 %<expect > \ typeout {5}
14 }
15 \END

Listing 6: Test and expectation can be specified side-by-side in a single .dtx file.

1 \generate {\file{\ jobname.lvt}{\ from{\ jobname.dtx}{test}}
2 \file{\ jobname.lve}{\ from{\ jobname.dtx}{ expect }}}

Listing 7: Test and expectation are generated from a .dtx file of the same name.

Combining both features enables contrasting the test with its expected outcome in
a compact format. Listing 6 exemplary tests TEXs counters. Listing 7 shows the relevant
part of an .ins file to generate it.

3.3 PDF-based tests
In most cases, testing is best handled by using the text-based methods outlined above.
However, there are cases where the detail of output structure is important. This can only
be fully tested by comparing PDF structure. To support this, l3build can be instructed to
build and compare PDF files by setting up tests in .pvt files. The following normalization
takes place:

• Replacement of binary streams by the marker [BINARY STREAM]

• Replacement of /ID values by ID-STRING

• Removal of blank lines

• Removal of comment (%%) lines

After this normalization takes place, the file can not usually be rendered properly.
To check if the build system has produced a correct PDF, the pre-normalization PDF
can be found in the build folder.

To allow platform-independence, PDF-based tests must use only Type 1 or Open-
Type fonts: Type3 fonts are system-dependent. PDF files are engine-specific, thus one
.tpf file should be stored per engine to be tested.

23

3.4 Custom tests
If neither the text-based methods nor PDF-based tests are sufficient, there is the addi-
tional option of defining custom variants with individual normalization rules.

For this, the variant has to be registered in the test_types table and then activated
in test_order.

Every element in test_types is a table with fields test (the extension of the test
file), reference (the extension of the file the output is compared with), generated (ex-
tension of the analyzed LATEX output file) and rewrite (A Lua function for normalizing
the output file, taking as parameters the name of the unnormalized LATEX output file to
be read, the name of the normalized file to be written, the engine name and a potential
errorcode).

For example:

test_types = {
mytest = {
test = ".mylvt",
reference = ".mytlg",
generated = ".log",
rewrite = function(source, normalized, engine, errorcode)
-- In this example we just copy the logfile without any normalization
os.execute(string.format("cp %s %s", source, normalized)

end,
},

}
test_order = {"mylvt", "log", "pdf"}

4 Release-focussed features
4.1 Installation structure
With the standard settings, l3build will install files within the TEX directory structure
(TDS) as follows

• installfiles within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside tex/⟨format⟩

• sourcefiles within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside source/⟨format⟩

• Typeset PDFs within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside doc/⟨format⟩

• bstfiles within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside bibtex/bst

• bibfiles within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside bibtex/bib

• makeindexfiles within a ⟨bundle⟩/⟨module⟩ (or ⟨module⟩) directory inside
makeindex

For more complex set ups, this can be customised using the tdslocations table.
Each entry there should be a glob specifying the TDS position of a file or files. Any files
not specified in the table will use the standard locations above. For example, to place
some files in the generic tree, some in the plain TEX tree and some in the LATEX tree, one
might use the set up shown in Listing 8 on the next page.

The table is read in order, and thus specific file names should come before potential
wild-card matches.

24

1 tdslocations =
2 {
3 "tex/generic/mypkg /* .generic.tex" ,
4 "tex/plain/mypkg /* .plain.tex" ,
5 "tex/latex/mypkg /* .latex.tex"
6 }

Listing 8: Example tdslocations table.

1 -- Detail how to set the version automatically
2 function update_tag(file ,content ,tagname ,tagdate)
3 if string.match(file , "%.dtx$") then
4 return string.gsub(content ,
5 "\n%%␣\\date{Released␣%d%d%d%d/%d%d/%d%d}\n",
6 "\n%%␣\\date{Released␣" .. tagname .. "}\n")
7 elseif string.match(file , "%.md$") then
8 return string.gsub(content ,
9 "\nRelease␣%d%d%d%d/%d%d/%d%d\n",

10 "\nRelease␣" .. tagname .. "\n")
11 elseif string.match(file , "%.lua$") then
12 return string.gsub(content ,
13 ’\nrelease_date␣=␣"%d%d%d%d/%d%d/%d%d"\n’,
14 ’\nrelease_date␣=␣"’ .. tagname .. ’"\n’)
15 end
16 return content
17 end

Listing 9: Example update_tag function.

4.2 Automatic tagging
The tag target can automatically edit source files to modify date and release tag name.
As standard, no automatic replacement takes place, but setting up a update_tag()
function will allow this to happen. This function takes four input arguments:

1. file name
2. full content of the file
3. tag name
4. tag date

The update_tag() function should return the (modified) contents for writing to disk.
For example, the function used by l3build itself is shown in Listing 9.

To allow more complex tasks to take place, a hook tag_hook() is also available. It
will receive the tag name and date as arguments, and may be used to carry out arbitrary
tasks after all files have been updated. For example, this can be used to set a version
control tag for an entire repository.

4.3 Typesetting documentation
As part of the overall build process, l3build will create PDF documentation as described
earlier. The standard build process for PDFs will attempt to run Biber, BibTEX and

25

1 #!/usr/bin/env texlua
2

3 -- Build script with custom PDF route
4

5 module = "mymodule"
6

7 function typeset(file)
8 local name = jobname(file)
9 local errorlevel = tex (file)

10 if errorlevel == 0 then
11 -- Return a non -zero errorlevel if anything goes wrong
12 errorlevel =(
13 bibtex(name) +
14 tex(file) +
15 bibtex(name) +
16 tex(file) +
17 tex(file)
18)
19 end
20 return errorlevel
21 end

Listing 10: A customised PDF creation script.

MakeIndex as appropriate (the exact binaries used are defined by biberexe, bibtexexe
and makeindexexe). However, there is no attempt to create an entire PDF creation
system in the style of latexmk or similar.

For package authors who have more complex requirements than those covered by the
standard set up, the Lua script offers the possibility for customisation. The Lua function
typeset may be defined before reading l3build.lua and should take one argument, the
name of the file to be typeset. Within this function, the auxiliary Lua functions biber,
bibtex, makeindex and tex can be used, along with custom code, to define a PDF
typesetting pathway. The functions biber and bibtex take a single argument: the name
of the file to work with minus any extension. The tex takes as an argument the full name
of the file. The most complex function makeindex requires the name, input extension,
output extension, log extension and style name. For example, Listing 10 shows a simple
script which might apply to a case where multiple BibTEX runs are needed (perhaps
where citations can appear within other references).

Where there are complex requirements for pre-compiled demonstration files, the
hook typeset_demo_tasks() is available: it runs after copying files to the typesetting
location but before the main typesetting run. This may be used for example to script a
very large number of demonstrations using a single source (see the beamer package for an
example of this). Note that this hook is intended for use files not listed in typesetfiles
or typesetdemofiles.

4.4 Pre-typesetting hook
To allow complex set up for typesetting, a hook docinit_hook() is available to be
executed once all standard set up is complete but before any typesetting is run.

26

4.5 Non-standard typesetting
To allow non-standard typesetting combinations, for example per-file choice of engines,
the table specialtypesetting may be used. This is a table with one entry per file.
Each entry is itself a table, and these contain a list of engines and settings for cmd and
func. For example, to choose to use LuaTEX for one file when typesetexe is pdftex

specialtypesetting = specialtypesetting or {}
specialtypesetting["foo.tex"] = {cmd = "luatex -interaction=nonstopmode"}

or to select an entirely different typesetting function

specialtypesetting = specialtypesetting or {}
specialtypesetting["foo.tex"] = {func = typeset_foo}

4.6 Automated upload to CTAN
The CTAN upload process is backed by an API, which l3build can use to send zip files for
release. Along with the file, a variety of metadata must be specified about the package,
including the version, license, and so on, explained at https://www.ctan.org/upload.
A description of this metadata is outlined in Table 2 on page 29, and a simple example
of an extract from a build.lua file using this is shown in Listing 11 on the next page.

Note that the upload target will not execute the ctan target first.
This upload facility assumes availablity of curl on your system. In the case of

Windows, the system curl will not be available if you are using a 32 bit TEX im-
plementation. Curl executables are available for a variety of operating systems from
https://curl.haxx.se/download.html.

Announcement text It can be convenient not to include the announcement text
within the build.lua file directly. The command line argument --message (-m) allows
the announcement to be included as part of the l3build arguments, and --file (-F)
reads the announcement from a specified file. The build.lua file may also specify that
this text is to be taken from the file specified by uploadconfig.announcement_file,
this allows the release-specific announcement to be specified outside the main build.lua
file. If uploadconfig.announcement_file is nil or specifies a file that can not be read,
and no announcement is provided by the announcement field or commandline arguments,
l3build will interactively prompt for text (which may be empty).

Note that if the announcement text is empty a ‘silent update’ is performed; this
should usually be performed for minor bug or documentation fixes only.

Note text This optional field is for passing notes to the CTAN maintainers. As for
announcements, the text may be set in uploadconfig.note or perhaps more usefully, if
uploadconfig.note_file is the filename of a readable file the file text is used as the
note.

Uploader details The CTAN team use the uploader email address as a form of low-
security sanity check that the upload is coming from a reputable source. Therefore, it is
advisable not to store this information within a public build.lua file. It can be set on the
command line with the --email option to l3build; alternatively, a private configuration
file could be used to add this information at upload time.

27

https://www.ctan.org/upload
https://curl.haxx.se/download.html

1 uploadconfig = {
2 pkg = "vertbars",
3 version = "v1.0c",
4 author = "Peter␣R␣Wilson;␣Will␣Robertson",
5 license = "lppl1.3c",
6 summary = "Mark␣vertical␣rules␣in␣margin␣of␣text",
7 ctanPath = "/macros/latex/contrib/vertbars",
8 repository = "https :// github.com/wspr/herries -press/",
9 update = true ,

10 }

Listing 11: Example of uploadconfig from the vertbars package.

The update field In most scenarios the update field does not need to be explicitly
set. By default l3build assumes that the package being uploaded already exists on CTAN
(update=true). If it does not, this is caught in the validation process before uploading
and automatically corrected. If you set update explicitly this will be passed directly to
CTAN in all circumstances, leading to errors if you attempt to update a non-existing
package or if you attempt to upload a new package with the same name as a pre-existing
one.

The curl options file The l3build upload options are passed to curl by writing the
fields to a text file with a default name being ⟨package⟩-ctan.curlopt. This is then
passed to curl using its --config commandline option. (Using an intermediate file helps
keep l3build portable between systems using different commandline quoting conventions.
Any backslashes are doubled when writing to this file, so they do not need to be doubled
in announcement and note texts.)

By default the file is written into the current directory alongside the zip file to
be uploaded. You may wish to specify that this file is ignored by any version con-
trol in that directory (using .gitignore or similar). Or alternatively you can use the
uploadconfig.curlopt_file field in the build.lua file to specify an alternative name
or location for this file.

Validating To validate your upload but not actually submit to CTAN, you may use
the --dry-run command-line option.

Debugging If you have have difficulty with the upload process, add the option --debug
to divert the request from CTAN to a service that redirects the input back again so it
can be examined. It can also be useful to check the contents of the curlopts file which
has a record of the options passed to curl.

5 Lua interfaces
Whilst for the majority of users the simple variable-based control methods outlined above
will suffice, for more advanced applications there will be a need to adjust behavior by using
interfaces within the Lua code. This section details the global variables and functions
provided.

28

Table 2: Fields used in the uploadconfig setup table. The first section of fields are
required and if they are omitted the user will be interactively prompted for further input.
Most commands take string input, but those that are indicated with ‘Multi’ accept more
than one entry using an array of strings. Most of the fields correspond directly to the
fields in the CTAN upload API, the last group relate to file use by l3build.

Field Req. Multi Description
announcement • Announcement text
author • Author name (semicolon-separated for multiple)
ctanPath • CTAN path
email • Email address of uploader
license • • Package license(s)a

pkg • Package name
summary • One-line summary
uploader • Name of uploader
version • Package version
bugtracker • URL(s) of bug tracker
description Short description/abstract
development • URL(s) of development channels
home • URL(s) of home page
note Internal note to CTAN
repository • URL(s) of source repositories
support • URL(s) of support channels
topic • Topic(s)b

update Boolean true for an update, false for a new package
announcement_file Announcement text file
note_file Note text file
curlopt_file The filename containing the options passed to curl

aSee https://ctan.org/license
bSee https://ctan.org/topics/highscore

29

https://ctan.org/license
https://ctan.org/topics/highscore

5.1 Global variables

The options table holds the values passed to l3build at the command line. The possible
entries in the table are given in the table below.

Entry Type
config Table
date String
dirty Boolean
dry-run Boolean
email String
engine Table
epoch String
file string
first Boolean
force Boolean
full Boolean
halt-on-error Boolean
help Boolean
message string
names Table
quiet Boolean
rerun Boolean
shuffle Boolean
texmfhome String

options

5.2 Utility functions
The utility functions are largely focussed on file operations, though a small number of
others are provided. File paths should be given in Unix style (using / as a path separator).
File operations take place relative to the path from which l3build is called. File operation
syntax is largely modelled on Unix command line commands but reflect the need to work
on Windows in a flexible way.

abspath(⟨target⟩)

Returns a string which gives the absolute location of the ⟨target⟩ directory.
abspath()

dirname(⟨file⟩)

Returns a string comprising the path to a ⟨file⟩ with the name removed (i.e. up to the
last /). Where the ⟨file⟩ has no path data, "." is returned.

dirname()

basename(⟨file⟩)

Returns a string comprising the full name of the ⟨file⟩ with the path removed (i.e. from
the last / onward).

basename()

30

cleandir(⟨dir⟩)

Removes any content within the ⟨dir⟩; returns an error level.
cleandir()

cp(⟨glob⟩, ⟨source⟩, ⟨destination⟩)

Copies files matching the ⟨glob⟩ from the ⟨source⟩ directory to the ⟨destination⟩; returns
an error level.

cp()

direxists(⟨dir⟩)

Tests if the ⟨dir⟩ exists; returns a boolean value.
direxists()

fileexists(⟨file⟩)

Tests if the ⟨file⟩ exists and is readable; returns a boolean value.
fileexists()

filelist(⟨path⟩, [⟨glob⟩])

Returns a table containing all of the files with the ⟨path⟩ which match the ⟨glob⟩; if the
latter is absent returns a list of all files in the ⟨path⟩.

filelist()

ordered_filelist(⟨path⟩, [⟨glob⟩])

Like filelist() but returning a sorted table.
ordered_filelist()

glob_to_pattern(⟨glob⟩)

Returns the ⟨glob⟩ converted to a Lua pattern.
glob_to_pattern()

jobname(⟨file⟩)

Returns a string comprising the jobname of the file with the path and extension removed
(i.e. from the last / up to the last .).

jobname()

mkdir(⟨dir⟩)

Creates the ⟨dir⟩; returns an error level.
mkdir()

ren(⟨dir⟩, ⟨source⟩, ⟨destination⟩)

Renames the ⟨source⟩ file to the ⟨destination⟩ name within the ⟨dir⟩; returns an error
level.

ren()

rm(⟨dir⟩, ⟨glob⟩)

Removes files in the ⟨dir⟩ matching the ⟨glob⟩; returns an error level.
rm()

run(⟨dir⟩, ⟨cmd⟩)

Executes the ⟨cmd⟩, starting it in the ⟨dir⟩; returns an error level.
run()

splitpath(⟨file⟩)

Returns two strings split at the last /: the dirname() and the basename().
splitpath()

normalize_path(⟨path⟩)

When called on Windows, returns a string comprising the ⟨path⟩ with / characters re-
placed by \\. In other cases returns the path unchanged.

normalize_path()

31

5.3 System-dependent strings
To support creation of additional functionality, the following low-level strings are exposed
by l3build: these all have system-dependent definitions and avoid the need to test os.type
during the construction of system calls.

The concatenation operation for using multiple commands in one system call, e.g.

os.execute("tex " .. file .. os_concat .. "tex " .. file)

os_concat

The location to redirect commands which should produce no output at the terminal:
almost always used preceded by >, e.g.

os.execute("tex " .. file .. " > " .. os_null)

os_null

The separator used when setting an environment variable to multiple paths, e.g.

os.execute(os_setenv .. " PATH=../a" .. os_pathsep .. "../b")

os_pathsep

The command to set an environmental variable, e.g.

os.execute(os_setenv .. " PATH=../a")

os_setenv

DEPRECATED A command to generate a series of 300 lines each containing the
character y: this is useful as the Unix yes command cannot be used inside os.execute
(it does not terminate).

Rather than use this function, we recommend the replacement construct

io.popen(<cmd>,"w"):write(string.rep("y\n", 300)):close()

os_yes

5.4 Components of l3build

call(⟨dirs⟩, ⟨target⟩, [⟨options⟩])

Runs the l3build ⟨target⟩ (a string) for each directory in the ⟨dirs⟩ (a table). This will
pass command line options for the parent script to the child processes. The ⟨options⟩
table should take the same form as the global ⟨options⟩, described above. If it is absent
then the global list is used. Note that any entry for the target in this table is ignored.

call()

install_files(⟨target⟩,⟨full⟩,⟨dry-run⟩)

Installs the files from the module into the TDS root ⟨target⟩. If ⟨full⟩ is true, all files
are copied: if it is false, the doc and source trees are skipped. If ⟨dry-run⟩ is true, no
files are copied, but instead the files which would be copied are reported.

install_files()

32

5.5 Typesetting functions
All typesetting functions return 0 on a successful completion.

biber(⟨name⟩,⟨dir⟩)

Runs Biber on the ⟨name⟩ (i.e. a jobname lacking any extension) inside the ⟨dir⟩. If
there is no .bcf file then no action is taken with a return value of 0.

biber()

bibtex(⟨name⟩,⟨dir⟩)

Runs BibTEX on the ⟨name⟩ (i.e. a jobname lacking any extension) inside the ⟨dir⟩. If
there are no \citation lines in the .aux file then no action is taken with a return value
of 0.

bibtex()

makeindex(⟨name⟩,⟨dir⟩,⟨inext⟩,⟨outext⟩,⟨logext⟩,⟨style⟩)

Runs MakeIndex on the ⟨name⟩ (i.e. a jobname lacking any extension) inside the ⟨dir⟩.
The various extensions and the ⟨style⟩ should normally be given as it standard for MakeIn-
dex.

makeindex()

tex(⟨file⟩,⟨dir⟩,⟨cmd⟩)

Runs ⟨cmd⟩ (by default "pdflatex" "-interaction=nonstopmode") on the ⟨name⟩ in-
side the ⟨dir⟩.

tex()

runcmd(⟨cmd⟩,⟨dir⟩,{⟨envvars⟩})

A generic function which runs the ⟨cmd⟩ in the ⟨dir⟩, first setting up all of the environ-
mental variables specified to point to the local and working directories. This function
is useful when creating non-standard typesetting steps.

runcmd()

5.6 Customising the target and option lists
The targets known to l3build are stored in the global table target_list. Each entry
should have at least a func, pointing to the function used to implement the target. This
function will receive the list of names given at the command line as a table argument.
In most cases, targets will also have a desc, used to construct help() automatically. In
addition, the following may also be used:

• bundle_func A variant of func used when at the top level of a bundle

• bundle_target A boolean to specify that when passing the target name in a bundle,
it should have bundle prepended.

• pre A function executed before the main function, and receiving the names as an
argument; this allows checking of the name data without impact on the main func.

The functions func, bundle_func and pre must return 0 on success.
The list of options (switches) is controlled by the option_list table. The name of

each entry in the table is the “long” version of the option. Each entry requires a type, one
of boolean, string or table. As for targets, each entry should have a desc to construct
the help(). It is also possible to provide a short name for the option: this should be a
single letter.

33

5.7 Customising the manifest file
The default setup for the manifest file creating with the manifest target attempt to
reflect the defaults for l3build itself. The groups (and hence the files) displayed can be
completely customised by defining a new setup function which creates a Lua table with
the appropriate settings (Section 5.7.1).

The formatting within the manifest file can be customised by redefining a number
of Lua functions. This includes how the files are sorted within each group (Section 5.7.2
on the next page), the inclusion of one-line descriptions for each file (Section 5.7.3 on
page 36), and the details of the formatting of each entry (Section 5.7.4 on page 36).

To perform such customisations, either include the re-definitions directly within your
package’s build.lua file, or make a copy of l3build-manifest-setup.lua, rename it,
and load it within your build.lua using dofile().

5.7.1 Custom manifest groups

The setup code for defining each group of files within the manifest looks something like
the following:

manifest_setup = function()
local groups = {
{

subheading = "Repository files",
description = [[

Files located in the package development repository.
]],

},
{

name = "Source files",
description = [[

These are source files generating the package files.
]],
files = {sourcefiles},

},
{

name = "Typeset documentation source files",
description = [[

These files are typeset using LaTeX to produce the PDF documentation for the package.
]],
files = {typesetfiles,typesetsourcefiles,typesetdemofiles},

},
...

}
return groups

end

The groups variable is an ordered array of tables which contain the metadata about
each ‘group’ in the manifest listing. The keys supported in these tables are outlined in
Tables 3 on the following page and 4 on the next page. See the complete setup code in
l3build-manifest-setup.lua for examples of these in use.

34

Table 3: Table entries used in the manifest setup table for a group.
Entry Description
name The heading of the group
description The description printed below the heading
files Files to include in this group
exclude Files to exclude (default {excludefiles})
dir The directory to search (default maindir)
rename An array with a gsub redefinition for the filename
skipfiledescription Whether to extract file descriptions from these files

(default false)

Table 4: Table entries used in the manifest setup table for a subheading.
Entry Description
subheading The subheading
description The description printed below the subheading

5.7.2 Sorting within each manifest group

Within a single group in the manifest listing, files can be matched against multiple
variables. For example, for sourcefiles={*.dtx,*.ins} the following (unsorted) file
listing might result:

• foo.dtx
• bar.dtx
• foo.ins
• bar.ins

This listing can be sorted using two separate functions by the default manifest code. The
first, default, is to sort alphabetically within a single variable match. This keeps all files
of a single extension contiguous in the listing. To edit how this sort is performed, redefine
the manifest_sort_within_match function.

The second approach to sorting is to apply a sorting function to the entire set of
matched files. (This happens after any sorting is applied for each match.) By default this
is a no-op but can be edited by redefining the manifest_sort_within_group function.
For example:

manifest_sort_within_group = function(files)
local f = files
table.sort(f)
return f

end

This will produce an alphabetical listing of files:

• bar.dtx

• bar.ins

• foo.dtx

• foo.ins

35

5.7.3 File descriptions

By default the manifest contains lists of files, and with a small addition these
lists can be augmented with a one-line summary of each file. If the Lua function
manifest_extract_filedesc is defined, it will be used to search the contents of each
file to extract a description for that file. For example, perhaps you are using multiple
.dtx files for a project and the argument to the first \section in each can be used as a
file description:

manifest_extract_filedesc = function(filehandle,filename)

local all_file = filehandle:read("*all")
local matchstr = "\\section{(.-)}"

filedesc = string.match(all_file,matchstr)

return filedesc
end

(Note the matchstr above is only an example and doesn’t handle nested braces.)

5.7.4 Custom formatting

After the manifest code has built a complete listing of files to print, a series of file writing
operations are performed which create the manifest file. The following functions can be
re-defined to change the formatting of the manifest file:

• manifest_write_opening: Write the heading of the manifest file and its opening
paragraph.

• manifest_write_subheading: Write a subheading and description

• manifest_write_group_heading: Write the section heading of the manifest group
and the group description

• manifest_write_group_file: Write the filename (when not writing file descrip-
tions)

• manifest_write_group_file_descr: Write the filename and the file description

Full descriptions of their usage and arguments can be found within the l3build-manifest-setup.lua
code itself.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

\⟨register⟩ . 16

\⟨type⟩ . 16

A
abspath() . 30
\ASSERT . 18
\ASSERTSTR . 18

36

B
basename() . 30
\BEGINTEST . 18
biber() . 33
bibtex() . 33
\box . 16

C
call() . 32
cleandir() . 31
cp() . 31

D
direxists() . 31
dirname() . 30

E
\END . 16
\ENDTEST . 18
\ERROR . 18

F
\FALSE . 18
\fi . 18
fileexists() 31
filelist() . 31

G
glob commands:

glob_to_pattern() 31

I
\if . 18
install commands:

install_files() 32

J
\jobname . 21
jobname() . 31

M
makeindex() . 33
mkdir() . 31

N
\NEWLINE . 18

\newpage . 20
\NO . 18
normalize commands:

normalize_path() 31

O
\OMIT . 16
\openin . 16
\openout . 16
options . 30
ordered commands:

ordered_filelist() 31
os commands:

os_concat 32
os_null . 32
os_pathsep 32
os_setenv 32
os_yes . 32

R
ren() . 31
rm() . 31
run() . 31
runcmd() . 33

S
\SEPARATOR . 18
\SHOWFILE . 18
\showoutput . 20
splitpath() . 31
\START . 16

T
\TEST . 18
\TESTEXP . 18
tex() . 33
\TIMO . 16
\TRACEPAGES . 20
\tracingoutput 20
\TRUE . 18
\TYPE . 18
\typeout . 18

Y
\YES . 18

37

	Contents
	1 The l3build system
	1.1 Introduction
	1.2 The build.lua file
	1.3 Main build targets
	1.4 Example build scripts
	1.5 Variables
	1.6 Interaction between tests
	1.7 Selective running of tests
	1.8 Multiple sets of tests
	1.9 Dependencies
	1.10 Non-standard source layouts
	1.11 Non-standard formats/binaries
	1.12 Output normalisation
	1.13 Breaking changes
	1.13.1 Release 2023-03-22

	2 Writing test files
	2.1 Metadata and structural commands
	2.2 Commands to help write tests
	2.3 Showing box content
	2.4 Testing entire pages
	2.5 Pre-check hook
	2.6 Additional test tasks
	2.7 Instructions for rebuilding test output
	2.8 Epoch setting
	2.9 Settings in texmf.cnf

	3 Alternative test formats
	3.1 Generating test files with DocStrip
	3.2 Specifying expectations
	3.3 PDF-based tests
	3.4 Custom tests

	4 Release-focussed features
	4.1 Installation structure
	4.2 Automatic tagging
	4.3 Typesetting documentation
	4.4 Pre-typesetting hook
	4.5 Non-standard typesetting
	4.6 Automated upload to CTAN

	5 Lua interfaces
	5.1 Global variables
	5.2 Utility functions
	5.3 System-dependent strings
	5.4 Components of l3build
	5.5 Typesetting functions
	5.6 Customising the target and option lists
	5.7 Customising the manifest file
	5.7.1 Custom manifest groups
	5.7.2 Sorting within each manifest group
	5.7.3 File descriptions
	5.7.4 Custom formatting

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	R
	S
	T
	Y

