
The knowledge package
[v1.20 — 2019/12/03]

Thomas Colcombet
thomas.colcombet@irif.fr

December 3, 2019

Abstract

The knowledge package offers automatic tools and commands for help-
ing the writer of a (scientific) document to have all notions (hyper)linked
to places where these are defined. Using the standard tools of LATEX for
doing that would be extremely tedious. Eventually, it is intended to use the
package for producing scientific semantic aware documents.

Status of this version
contact: thomas.colcombet@irif.fr
version: v1.20
date: 2019/12/03 (documentation produced December 3, 2019)
license: LaTeX Project Public License 1.2
web: https://www.irif.fr/~colcombe/knowledge_en.html
CTAN: https://www.ctan.org/pkg/knowledge

1

https://www.irif.fr/~colcombe/knowledge_en.html
https://www.ctan.org/pkg/knowledge

Contents
1 History 4

2 Quick start 7
2.1 Linking to outer documents/urls, and to labels 7
2.2 Linking inside a document . 9
2.3 Mathematics . 11

3 Usage of the knowledge package 13
3.1 Options and configuration . 13

3.1.1 Options at package loading 13
3.1.2 Writing mode . 13
3.1.3 Automatic loading of other packages 14
3.1.4 Configuring and \knowledgeconfigure 15

3.2 What is a knowledge? . 16
3.3 The \knowledge command and variations 16

3.3.1 General description of the \knowledge command 16
3.3.2 Targeting and the corresponding directives 17
3.3.3 General directives . 18
3.3.4 Knowledge styles and the \knowledgestyle command . . . 20
3.3.5 New directives: the \knowledgedirective command . . . 20
3.3.6 \knowledgestyle versus \knowledgedirective 21
3.3.7 Default directives: the \knowledgedefault command . . . 22

3.4 The \kl command . 22
3.4.1 The standard syntax . 22
3.4.2 The quotation notation . 23
3.4.3 Variants of \kl, \knowledgenewvariant, \knowledgevar-

iantmodifier . 24
3.4.4 Examples of variants of \kl 25

3.5 Scoping . 28
3.5.1 Principles of scoping . 28
3.5.2 Scoping by examples . 29
3.5.3 What is the structure of scopes in a document 30
3.5.4 How is chosen the scope of a knowledge? 30
3.5.5 Naming scopes: the \knowledgeimport, \knowledgescop-

e and label commands . 31
3.5.6 Managing scoping environments 32

3.6 Error handling . 33
3.7 The diagnose file . 34
3.8 Other packages . 35

3.8.1 The xcolor option . 35
3.8.2 The hyperref option . 35
3.8.3 The makeidx option . 40

3.9 Dealing with math . 40
3.10 Fixes . 40

2

3.11 Predefined configuration . 41
3.11.1 The notion directive . 41

4 Some questions and some answers 42
4.1 How to compile? . 42
4.2 Problem with \item parameters 42
4.3 Knowledges and moving arguments (table of contents, . . .). 42
4.4 Problems with tikzcd and other issues with the quotation notation 44
4.5 Problems with amsmath . 44
4.6 Hyperref complains . 45
4.7 Incorrect display . 45

4.7.1 Incorrect breaking at the end of lines (in Arxiv for instance) 45
4.7.2 Red boxes around links . 45

4.8 Problems with scope . 45
4.8.1 Problems in combination with \bibitem and thebibliography 45

4.9 Editors . 46
4.9.1 Emacs editor and quotes . 46

4.10 Others . 46

5 Resources 47
5.1 List of commands . 47
5.2 List of environments . 47
5.3 List of directives (to use with \knowledge) 47
5.4 List of configuration directives (to use with \knowledgeconfigure) 48

3

1 History
2016-06-07 \knowledgemacro is now renamed to \knowledgedirective.
2017-01-13 \AP has been recoded, and is now more properly aligned in the margin. The

visible anchor points option has also been made usable without the xcolor
package.

2017-01-13 The package scope option can now be omitted. This in particular avoid
clashes with the over-restriction on the structure of the document it entails. It
should be improved to stop overloading the \begin command.

2017-01-14 The overloading of \begin and \end was done as protected commands,
which should not be the case to be consistent with the behaviour of LaTeX (for
instance, this was giving an extra line in the title in the conference mode of the
class IEEEtran). Corrected: these commands are not protected anymore.

2017-01-15 A workaround for an incompatibility between the hyperref and the two-
column mode as been added in the macro \knowledgeFixHyperrefTwocolumn-
(thanks to Daniela Petrisan).

2017-01-15 Added the directive synonym.
2017-01-15 Added the noknowledge package for minimizing the effects of not having

knowledge activated.
2017-01-17 Changed the way options are handled, decoupling the package options (op-

tions of \usepackage) from the configuration options (see \knowledgeconfigure).
2017-01-17 Proper treatment of ‘final’ option and composition options.
2017-01-17 Added \IfKnowledgeFinalMode[TF] commands for the user.
2017-01-17 Added the option fix hyperref twocolumn as a shorthand for calling \k-

nowledgeFixHyperrefTwocolumn (thanks to Daniela Petrisan and Luca Reggio).
2017-01-18 Added the configuration option notion that offers a basic configuration

compatible with xcolor or not, and final and composition modes.
2017-01-19 Added \phantomintro and an explanation on how to deal with align*.
2017-02-20 Removed the warnings of latex for unknown labels in autoref.
2017-02-20 Removed nasty error making \AP not operative when anchor points were

not visible.
2017-02-21 Added the protect link directive.
2017-02-21 Added the hyperlinks= configuration.
2017-02-27 visible anchor points is active by default now.
2017-02-27 A simple example is now included.
2017-02-28 Minor changes on the documentation.
2017-02-28 Added the scope environment.
2017-02-28 Added the protect link and unprotect link configuration directives.
2017-02-28 Added the \knowledgeconfigureenvironment command.
2017-03-03 Added the breaklinks faq (thanks to Luca Reggio for the request).
2017-03-10 Added the "· · ·" and ""· · ·"" notations and the quotation mode (requested

by Gabriele Puppis and Andreas Krebs).
2017-03-11 Added the "· · ·@ · · ·" and ""· · ·@ · · ·"" notations.
2017-03-13 Corrected for being compatible with version of expl3 posterior to Mars 2015

(\c_sys_jobname_str does not exist anymore). (Thanks to Jean-Éric Pin).
2017-03-14 Corrected that the @ letter was left a letter after \knowledgeFixHyperre-

fTwocolumn.
2017-04-09 Internal change of code, for scope handling and for the quotation notation:

slowly going toward an extended quotation notation that can make the scope of
search explicit.

4

https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/xcolor

2017-04-09 Added the protect quotation configure option, that is given a list of en-
vironments, and deactivates automatically the quotation notation when in there
environments. This is a simple code for the moment. Typically, one can use
\knowledgeconfigure{protect quotation=tikzcd} . For the moment, it is not
explained in the document.

2017-04-19 Changed the display code such that nested knowledges behave properly:
before, the introduction would be performed for the object and the subobjects.

2017-04-20 The electronic mode has been added, and the ‘final mode’ is now re-
named into paper mode. The \knowledgepackagemode configuration variable is
also available for easier scripting.

2017-06-06 FAQ on deactivating the quote in Emacs (thanks to Sylvain Perifel).
2017-06-08 Removed the noknowledge package and all references to it.
2017-06-08 Removed the knowledgeutils.sty and scopearticle.sty which are now

integrated in the main file.
2017-06-08 The file knowledge-example.tex has been improved.
2017-06-09 First release of version 1.0 on CTAN.
2017-06-10 Corrected the quotation notation to make it expandable for avoiding prob-

lems in table of contents (the @ was not working).
2017-06-11 Corrected a bug linked to changes of expl3 on recent distributions (pointed

by Murray Eisenberg). Release of v1.01 on CTAN.
2017-06-27 Overloaded labels now perform an expansion of the argument (this was

causing problems with biblatex).
2017-06-28 Options log-declarations of xparse package removed (causing clash with

other packages, as pointed by Juliusz Chroboczek). Release of v1.02 on CTAN.
2017-06-30 added the field labelizable_bool to areas. Coded missing features of

scoping. Now the scope= directive works with as parameter an enclosing area, or
a label.

2017-06-30 Added in the source a Regression subdirectory containing files to be tested
(so far only one: regression-scope.tex)

2017-07-01 Corrected a conflict between the scope and makeidx option.
2017-07-03 Scoping becomes operational.
2017-07-04 The documentation for notion and intro notion are added (thanks to

Fabian Reiter).
2017-07-09 Added boolean environment_bool field to areas,in order to resolve an in-

compatibility with the package standalone noticed by Fabian Reiter.
2017-07-20 Scoping becomes fully operational, with the parenthesis notation of \kl

and \intro. The use of scope has been recoded. Now scope links reuse implicitly
the key as a link. Documentation updated.

2017-07-26 File and line numbers added in the kaux file. Added the option diagnose
line= to deactivate it.

2017-07-26 Corrections to the documentation. Version 1.03 on CTAN.
2017-07-28 Corrected a bug of scoping in the context of synonyms. Added ctan for

producing the ctan zip file.
2017-08-06 Now passes the compliance test check-declarations of expl3 (thanks to

Marc Zeitoun)
2017-09-12 The hidelinks option of hyperref is now always activated.
2017-09-25 Ancient version of xparse does not have \NewExpandableDocumentComma-

nd. Corrected. Version 1.05 on CTAN.
2017-10-10 Bug in the implementation of \knowledgenewvariant (that was invisible for

5

https://www.ctan.org/
https://www.ctan.org/pkg/xparse
https://www.ctan.org/pkg/standalone
https://www.ctan.org/pkg/expl3
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/xparse
https://www.ctan.org/

older versions of expl3). Found and corrected (thanks to Marc Zeitoun). Version
1.06 on CTAN.

2017-10-15 Diagnose extended (suggested by Fabian Reiter). Minor corrections. Ver-
sion 1.07 on CTAN.

2017-10-17 Added cyclic color and cyclic colors=. Reorganization of the structure
of the code for producing a better CTAN archive. Version 1.08 on CTAN.

2018-01-31 Added the strict configuration option.
2018-02-05 Added the smallcaps formatting directive.
2018-02-17 Corrected incompatibility with latest version of expl3. Version 1.10 on

CTAN.
2018-02-21 Bug correction concerning the activation of scopes.
2018-02-21 Documentation improvement for Emacs (thanks to Michaël Cadilhac).
2018-02-24 Documentation improvement for the environment thebibliography.
2018-05-17 Correction to be compatible with the latest version of expl3 (thanks to

Leo Stefanesco).
2018-07-26 Compatibility with utf8 symbols in labels (thanks to Yves Guiraud).
2018-11-22 Corrected bug for makeidx (thanks to Sylvain Schmitz). V1.14 on CTAN.
2019-01-27 Minor improvement of the doc, and hiding links in it. V1.15.
2019-02-15 Correction of a placement problem with \AP. V1.16.
2019-05-23 Adding of the ‘|’-notation for the \knowledge command. Explicit scopes

are introduced. Updating of the documentation. up directive in math mode now
silently does nothing, and \knowledgedirective now forbids redefinitions by de-
fault (thanks to Léo Stefanesco).

2019-07-02 Removing the ‘kl’ and ‘intro’ styles that prevented a proper configuration
of intro notion (thanks to Léo Stefanesco).

2019-10-03 Update of the documentation, and V1.17.
2019-10-27 Bug correction and added the ‘patch label’ configuration directive (thanks

to Rebecca Turner). V1.18.
2019-11-19 Now the labels are evaluated before being written to the kaux file in a

\KAuxNewLinkScopetagInstance command (bug fix). V1.19.
2019-11-29 Help added in the diagnose file. bar suggestion (still working) renamed

to diagnose bar, and activated by default. patch label is renamed into label
scope.

2019-12-02 The kaux file is now checked for completeness befre being used. This should
avoid errors when the previous compilation failed.

2019-12-03 Corrected bug in the scope access. V1.20

6

https://www.ctan.org/pkg/expl3
https://www.ctan.org/
https://www.ctan.org/
https://www.ctan.org/
https://www.ctan.org/
https://www.ctan.org/pkg/expl3
https://www.ctan.org/
https://www.ctan.org/pkg/expl3
https://www.ctan.org/pkg/makeidx
https://www.ctan.org/
https://becca.ooo/

2 Quick start
The knowledge package offers several capabilities for handling colors, changing
the display style, defining internal and external hyperlinks, producing an index,
etc... All these possibilities arise from defining explicitly or implicitly knowledges
associated to terms in plain english (or other languages).

We start by describing a certain number of problems/scenarii that a user may
be confronted to, and show how to solve them. In the subsequent sections, a more
detailed account of how the package works and can be parameterized is given.

There is also a file knowledge-example.tex that can be used as a starting
point.

2.1 Linking to outer documents/urls, and to labels

The problem 1 I have a lot of external url’s that I would like to [[very] often] have
a link to, but I do not want to always type the full url. I do not want to remember
weird labels/internal references/macro names either.

A solution is as follows. One first loads the knowledge package with option
hyperref using either:

Hint. You may use other
options like xcolor for al-
lowing debugging with colors
(for undefined knowledges).

\usepackage[hyperref,quotation]{knowledge}

or even better:
\usepackage[hidelinks]{hyperref}
\usepackage[quotationa]{knowledge}

aIf you want to use the "· · ·" notation.

Then, in the preamble (or in an external file), one uses commands of the form:

\knowledge{latex}{url={https://en.wikipedia.org/wiki/LaTeX}}

This configures the text ‘latex’ to be associated with the sole directive url=,
which means an hyperreference to this address.

Finally in the body of the paper, the sole extra command \kl (or the "-symbol
if the quotation option is activated) is used, with as parameter a text. This text is
searched for, and the directives attached to it (here url=), are used for formatting
its printing1. Hence:

Hint. If the knowledge is
not defined, this does not
make the compilation fail. In
fact, it is good practice to
use many \kl commands or
"· · ·" notations while writing
a text, and only resolve these
questions at the end (see also
the diagnose file).

This package has been written for use in \kl{latex}.

or, if the quotation option is activated,
This package has been written for use in "latex".

yields
1This resembles a lot a macro so far. It nevertheless differs in that: (a) if not defined, it does

not make the compilation fail as a macro would, and thus does not interfere with the writing
process, (b) any text can be used and not only alphabetic letters as in TEX, (c) you do not
have to care about the space after, and (d) in fact the machinery for resolving the meaning of a
knowledge is much more powerful than simple macro execution.

7

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref

This package has been written for use in latex.

Variation. But in fact, I would like ‘latex’ to also be properly typeset LATEX,
and in gray. This requires to load the package with the xcolor option (for being
able to use colors, obviously), or by loading the package xcolor before, and then
modify the \knowledge command using extra directives:

\knowledge{latex}{url=https://en.wikipedia.org/wiki/LaTeX,
text=\LaTeX, color=gray}

yields with the same text

This package has been written for use in LATEX.

The directives text= and color= have quite obvious meaning. Directives can
also control the style using emphasize, boldface, italic, typewriter and so on.
See Section 5.3 for a complete list of directives.

Variation (synonyms). It happens very often that there are several ways to
name a notion, because of capitalized letters, conjugacy, grammar, or simply be-
cause it is not explicitly named in the text. There are two ways to resolve this
issue. The first is to use the syntax

\kl[knowledge]{text } or "text @knowledge "

the result is that the text ‘text ’ is displayed, but urls, colors, etc from ‘knowledge’
are used.

Another more systematic way to do it is to declare synonyms. This can be
achieved using a ‘|’ separated list of texts in the optional parameter of the\know-
ledge command, it is possible to add a list of ‘synonyms’, such as in:

Hint. Another syntax
(called the ‘|’-notation) is:

\knowledge{url=...}
| Donald Ervin Knuth
| Donald Knuth
| D. Knuth
| Knuth

Other possibilities are to use
the synonym or link= direc-
tives.

\knowledge{latex}[LaTeX|Latex|LATEX]
{url=http://en.wikipedia.org/wiki/LaTeX,
text=\LaTeX, color=gray}

This is interesting for people’s name that can be displayed in various ways
depending on the context. Hence

\knowledge{Donald Ervin Knuth}[Donald Knuth|Knuth]
{url=https://fr.wikipedia.org/wiki/Donald_Knuth}

would allow

\kl{Knuth} as well as \kl{Donald Knuth} ,
or simply "Knuth" as well as "Donald Knuth" and so on

to all point to the same web address. It is even more convenient to use it for nouns
that are sometimes in plural form or at the beginning of a sentence. Hence:

\knowledge{group}[groups|Groups|group morphism
|group morphisms|Group morphisms]

{url=https://en.wikipedia.org/wiki/Group_(mathematics)}

8

https://en.wikipedia.org/wiki/LaTeX
https://www.ctan.org/pkg/xcolor
https://en.wikipedia.org/wiki/LaTeX

or the more readable and maintainable:
\knowledge{url=https://en.wikipedia.org/wiki/Group_(mathematics)}

| group
| groups
| Groups
| group morphism
| group morphisms
| Group morphisms

makes it possible to use the notions in many contexts:
"Groups" form a category when equipped with "group morphisms".

2.2 Linking inside a document
The problem 2 I am writing a long scientific document with many notions tied
together (typically, I have made all my best for clarifying but nevertheless it re-
mains obscure, or it is a long survey involving many subfields, or a book, or a PhD
thesis2). I would like all the notions to be linked inside the document for being able
in one click, whenever something is used, to jump to its definition. I also want to
easily write an index. However, I do not want it to be a hassle when writing.

A solution is as follows. First load the knowledge package in the preamble:

\usepackage[xcolor,hyperref,notion,quotation]{knowledge}

with suitable options: hyperref for links, xcolor for colors (if required, but always
advised), quotation for using the quotation notation and notion for automatic
configuration of the notion directive.

Then write the document using \intro (or ""· · ·"" if quotation is activated)
when a notion is defined/introduced, and \kl (or "· · ·" if quotation is activated)

Hint. Using an \AP com-
mand is strongly advised,
and allows to control more
precisely where the target of
hyperreferences is: at the be-
ginning of a paragraph is bet-
ter than the beginning of the
section several pages before...

when it is used. For instance:
\AP A \intro{semigroup} is an ordered pair (S,\cdot) where
\cdot is an associative binary operator over S.
[...]
\AP A \intro{monoid} $(M,\cdot,1)$ is a \kl{semigroup}
(M,\cdot) together with a neutral element 1.

or when the quotation notation is activated:

\AP A ""semigroup"" is an ordered pair (S,\cdot) where \cdot
is an associative binary operator over S.
[...]
\AP A ""monoid"" $(M,\cdot,1)$ is a "semigroup" (M,\cdot)
together with a neutral element 1.

This yieldsNote that the \AP command
is made visible thanks to a
red corner.

2Reviewers should appreciate...

9

A semigroup is an ordered pair (S, ·) where · is an associative
binary operator over S.
[...]
A monoid (M, ·, 1) is a semigroup (M, ·) together with a neutral
element 1.

Undefined knowledges are in brown (it is an important feature that the com-
pilation does not fail: undefined knowledges should not interfere with the writing
of the document, which is the main activity of the writer). One can now see the
list of such problems in the file ‘filename.diagnose’. One can in particular find in
the ‘Undefined knowledges’ section:

\knowledge{semigroup}{}
\knowledge{monoid}{}

Which means that both ‘monoid’ and ‘semigroup’ are unknown knowledges.
To solve this, let us copy these two (or more) lines in the paper3, adding the

notion directive (which is a configured version of the autoref directive, meaning
essentially that you want to use the features of the \intro command), i.e., in the
preamble:

\knowledge{semigroup}{notion}
\knowledge{monoid}{notion}

The result is then (after two compilations):

A semigroup is an ordered pair (S, ·) where · is an associative
binary operator over S. [...]
A monoid (M, ·, 1) is a semigroup (M, ·) together with a neutral
element 1.

Clicking on ‘semigroup’ now jumps to the place it was introduced, and very
precisely at the location of the red corner depicting the presence of the \AP-
-command. If now one adds the option electronic while loading the package,
then the red corners disappear as well as the brownish undefined knowledges which
become black. When using the option paper, the links are still there, but all texts
are in black.

It is very often the case that for plain english (or other languages) some terms
can be used in several forms; verbs can be conjugated; nouns can be plural, and
so on. So usually the lines added to the file look more like:

\knowledge{semigroup}[semigroups|Semigroups]{notion}
\knowledge{monoid}[monoid|Monoids]{notion}

or, using the modre readable ‘|’-notation:
3It is good practice to use a separate file, something like ‘paper-knowledge.tex’.

10

\knowledge{notion}
| semigroup
| semigroups
| Semigroups

\knowledge{notion}
| monoid
| monoids
| Monoids
Now, using a text like

"Monoids" are simply "semigroups" in which...

will properly be linked to the definition of a semigroup and a monoid.
Finally, in particular for large documents, it is good to have an index. For this,

one should load the package makeidx before knowledge. Then use it normally:
putting \makeindex in the preamble and \printindex at the end of the document.
The knowledge commands are not easily adapted:

\knowledge{notion,index=semigroup}
| semigroup
| semigroups
| Semigroups

\knowledge{notion,index=monoid}
| monoid
| monoids
| Monoids
See Section 3.8.3 for more details on making an index.

2.3 Mathematics
The examples above show various techniques for using knowledges for enhancing
the information associated to terms. In fact, these techniques are not incompatible
with mathematics. Imagine, for instance that you would like each time a macro
\monoid is met, to displayM, you would do for instance:

Hint. Defining new macros
is best done using \newr-
obustcmd (of the etoolbox
package), rather than \new-
command as usual in LATEX.
This remark is general in-
dependently of the use of
knowledge

.

\newrobustcmd\monoid{\mathcal M}
Imagine that furthermore, you would like to hyperlink to the definition of a
monoid. A standard \kl command does the job4:

\newrobustcmd\monoid{\kl[monoid]{\mathcal M}}
What is \monoid ?
would yield:

What isM ?

The problem 3 But I want more. I want to be able to introduce variables. Even
better, I would like to be able to have variables hyperlinking to the place of their

4It is highly advised to not use the quotation notation in math mode or macros.

11

https://www.ctan.org/pkg/makeidx
https://www.ctan.org/pkg/etoolbox

introduction, knowing that the same variable name may mean different things de-
pending on the lemma or proof we are in. Hence, I want to properly control the
scope of knowledges.

To be done, this requires to use scoping. The principle of scoping is that a
knowledge can be attached to a particular context. This is particularly true when
typesetting mathematics: a variable is meaningful inside a statement, and inside
the proof of the statement. Furthermore, the same variable name may reappear
elsewhere with a different meaning.

The following code gives an idea of what is possible using scoping:

\knowledgeconfigureenvironment{theorem,lemma,proof}{}
[...]
\begin{lemma}\label{theorem:main}

\knowledge{n}{notion}
For all number $\intro n$, [...]

\end{lemma}
[...]
Here $\kl n$ is an undefined knowledge.
[...]
\begin{proof}[Proof of theorem˜{theorem:main}]

\knowledgeimport{theorem:main}
Inside the proof, $\kl n$ is hyperlinked to the theorem...

\end{proof}

More on scoping can be found in Section 3.5.
The use of variants of \kl is also useful for typesetting mathematics. It allows

for instance, to implicitly execute the \knowledge command at the same time of
the introduction. See 3.4.3 for more detail.

12

3 Usage of the knowledge package

3.1 Options and configuration
Options are used to activate some capabilities. Some options have to be used
when loading the knowledge package, while some others can also be used inside
the document thanks to the use of \knowledgeconfigure. In this section, we
review these package options.

3.1.1 Options at package loading

The options that can be used in the optional parameter of \usepackage when
loading the knowledge package belong to the following classes:
Writing mode The paper, electronic or composition modes are possible

(composition is by default) (see Section 3.1.2 for more details). These
modes change several rendering settings.

Other packages some of the options concern the loading and the use of other
packages (hyperref, xcolor, makeidx, . . .). Note that these package can
also be loaded before knowledge. This is explained in Section 3.1.3.

Configuration options as used by the command \knowledgeconfigure can be
used when loading the package.

Scoping The scope option makes the package aware at a fine level of the struc-
ture of the document (see Section 3.5 for explanations). This provides, for
instance, the possibility to define pieces of knowledge that are attached to a
sections of the document.

3.1.2 Writing mode

There are three writing modes usable when loading the package knowledge:

• In paper mode, the paper is rendered as for printing: in particular, no
informative colors are visible. Hyperlinks are nevertheless present.

• In electronic mode, the document has some colors witnessing the existence
of the links for the reader to know that clicking is available.

• In composition mode, the document has colors helping the writing: un-
defined knowledges appear explicitly, anchor points are displayed, and so
on.

Activating the modes is obtained either at load time using one of:
\usepackage[paper]{knowledge}

or \usepackage[electronic]{knowledge}

or \usepackage[composition]{knowledge}
or by setting before loading the variable \knowledgepackagemode as in:

\def\knowledgepackagemode{paper}

13

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/makeidx

The idea is that this can be used in automatic compilation scripts. For instance,
using in a terminal:

pdflatex "\def\knowledgepackagemode{electronic}\input{file.tex}"

would result in compiling ‘file.tex’ using knowledge in electronic mode.
The following primitives are available to the user for writing mode-sensitive

configuration:

\IfKnowledgePaperModeTF{true code}{false code}
\ifKnowledgePaperMode true code [\else false code] \fi
\IfKnowledgeElectronicModeTF{true code}{false code}
\ifKnowledgeElectronicMode true code [\else false code] \fi
\IfKnowledgeCompositionModeTF{true code}{false code}
\ifKnowledgeCompositionMode true code [\else false code] \fi

3.1.3 Automatic loading of other packages

A certain number of package options coincide with the loading of other packages.
For the moment, the packages that are concerned are hyperref, xcolor, and
makeidx.

For activating these functionalities, it is sufficient, either to load the package be-
fore the knowledge package, or to name it explicitly as an option for knowledge.
Loading separately the package is convenient for setting options for it. For in-
stance, a typical preamble may look like:

\documentclass{article}
\usepackage[svgnames]{xcolor}
\usepackage[draft]{hyperref}
\usepackage[makeidx]{knowledge}

Such a sequence will activate the knowledge package using the features related
to xcolor configured with svgnames option, to hyperref configured with draft
option, and to makeidx with its standard configuration.

In fact, the syntax when a package is loaded as an option of knowledge is of
the form ‘package=choice’ in which choice can take the following values:

active The package will be loaded, and all the capabilities that it triggers are
activated. This is the implicit meaning when nothing more is specified.

inactive The package is not loaded, and no capabilities are activated (even if it
had been loaded previously by another \usepackage command).

compatibility The package is not loaded. The directives it used do not cause
any error, but have no effect.

auto If the package was loaded before, then the associated capabilities are acti-
vated. This is the default behavior when the package is not named while
loading.

14

https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/makeidx
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/makeidx

Currently, the packages that can be loaded are:

hyperref which activates all the (auto)referencing capabilities.

xcolor which activates coloring commands.

makeidx for handling the index automatically.

3.1.4 Configuring and \knowledgeconfigure

Some part of the configuration can be done outside of the \usepackage command
that loads the knowledge package. This is done using the \knowledgeconfigure
command:

\knowledgeconfigure{configuration directives}

Note that by default, the configuration directives used by \knowledgeconfig-
ure can be used in the optional parameter of \usepackage when loading the
knowledge package, but the converse is not true. Configuration directives consists
of a comma separated list of elements that can take the following values:

diagnose bar= (de)activates the ‘|’-notation in the diagnose file. True by default.

diagnose help= can be set to true or false. It activates or deactivates the help
in the diagnose file. True by default.

diagnose line= can be set to true or false. It activates or deactivates the line
numbering in the diagnose file. False by default.

fix hyperref twocolumn triggers a hack that solves a known problem that may
occur when hyperref is used in two-columns mode.

label scope enables or disables the redefined \label command, which helps
automatically define scopes (default is true).

notion configures the notion directive which is a refined version of autoref.

protect quotation= is followed by a comma separated list of environments in
which the quotation notation will be automatically deactivated (surrounded
by braces if more than one item in the list).

protect link and unprotect link starts and ends respectively a zone in which
the knowledge package do not create hyperlinks. These can be nested. This
is typically useful around, e.g. the table of contents.

quotation activates the quotation notation, which allows to use "· · ·", "· · ·@ · · ·"
and "· · ·@ · · ·@ · · ·" instead of \kl commands and ""· · ·"", ""· · ·@ · · ·"" and
""· · ·@ · · ·@ · · ·"" instead of the \intro command.

strict is a Boolean option which, when activated, turns some warnings (for in-
stance when a knowledge is redefined) into errors.

15

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/makeidx
https://www.ctan.org/pkg/hyperref

visible anchor points is an option that makes visible or invisible the anchor
points of the \AP and \itemAP commands. Usually, this is automatically set
to true when the composition mode is used (the default), and to false when
the paper mode or the electronic mode are used.

3.2 What is a knowledge?
A knowledge is often informally used in this document. Essentially, it captures
what is an elementary concept in the document. Internally, a knowledge is iden-
tified by three components:
The knowledge name is a TEX string that has almost no limitation (but being

well balanced, and containing no]). It is the text entered by the user for
defining and using the knowledge.

The scope which is a simple string identifying where the knowledge is usable.
The scopes are generated by the system. For instance, internally, each sec-
tion will be uniquely named ‘section-1’, ‘section-2’, and so on (this is
invisible for the user). Each knowledge is primarily valid in exactly one such
scope. Knowledges defined in the preamble are given the scope ‘document’.
Usually, the user refers to scope using, for instance, labels.

The namespace is a simple string that is used for avoiding clashes. It is most
of the time simply ‘default’. It is ‘style’ for styles (that are internally as
knowledges). It is a possibility available to a developer to, when developing
a new set of functionalities, use a different namespace for avoiding clashes of
names (for instance if one wants a french and an english set of knowledges
that should not conflict, and would use separate sets of macros). Usually, a
normal user does not see namespaces.

3.3 The \knowledge command and variations
In this section, we describe the main commands that create knowledges. The main
one is \knowledge. It can also be used in combination with \knowledgedirect-
ive, \knowledgestyle and \knowledgedefault.

3.3.1 General description of the \knowledge command

The key command for introducing knowledges is \knowledge. There are two
syntaxes. The standard one is:

\knowledge{knowledge name}[synonym 1|synonym 2|...]{directives}

The second one is the ‘|’-notation5:

5This is a non-standard LATEX syntax. The rule is that each knowledge appears in a distin-
guished line that starts with some spaces and a ‘|’, and ends at the end of the line. Detecting
the end of the line requires to change the catcode of the end of line character; this is not robust
for being used in an argument or a macro.

16

\knowledge{directives}
| knowledge name@optional scope
| synonym 1@optional scope
| synonym 2@optional scope

· · ·
The knowledge name as well as the synonyms are plain text strings describing

the knowledge. It may contain any combination of symbols, including accents or
special characters as long as it well bracketted. This string will be used to fetch the
knowledge. Note (and this is a standard TEX behavior) that several consecutive
spaces is the same as one or a line feed. In the normal syntax, synonyms are given
in a ‘|’ separated list, while in the ‘|’-notation each of them has to be in a distinct
line. In the ‘|’-notation, an optional scope can be given after each knowledge
name/synonym.

The directives consists of ‘key=value’ statements in a comma separated list.
There are many directives. A list of them can be found in Section 5.3. New ones
can be defined using the \knowledgedirective command.

The principle of the \knowledge command is to introduce a new knowledge,
ready for being used. However, what it does exactly depends a lot on the situ-
ations. First, the directives (a comma separated list of ‘key=value’ commands)
are parsed, and from it, the namespace and scope of the knowledge are deter-
mined, and it is decided if it will be defined immediately or postponed to the next
compilation phase (using the kaux file).

3.3.2 Targeting and the corresponding directives

The \knowledge has to decide what to do when defining something. The basic
behaviour is as follows.

• If the \knowledge command is used in the preamble, then the knowledge
given as argument is defined immediately (the same effect can be obtained
using the now directive), and is accessible in the first compilation phase
everywhere in the document (one extra phase is nevertheless required if
autoref or ref= directives are used, for the hyperref to do its job, or if
scope= is used). This is the simplest way to use \knowledge.

• Otherwise, the knowledge is written in an external file (the jobname.kaux
file), and the knowledge will be really usable in the next compilation phase.
This is particularly useful in conjunction with the scope option: the knowl-
edge will have a scope depending on where it is introduced (for instance the
document, or a theorem, or a lemma). The same knowledge name can then
point to different knowledges depending on where it is used.

• Exporting (not implemented) furthermore writes a document containing a
list of \knowledge commands giving access to its content. This is to be
imported by another document.

The targeting directives refine the above defined behaviour:

17

https://www.ctan.org/pkg/hyperref

scope= or ‘@’ in the ‘|’-notation When using a directive ‘scope=name’ or
‘@name’ in the ‘|’-notation, the scope of the definition can be modified.
\knowledge will first check if there is an outer area of this name (theorem,
section, . . .), that accepts knowledge (only scope environments are sub-
ject to this unless \knowledgeconfigureenvironment is used, or the scope
package option is used when loading the package). If this is the case, the
knowledge will be associated to the corresponding instance. For instance, in-
side a theorem, by default, the scope is the theorem, but adding the directive
‘scope=section’, the knowledge becomes available in the whole section.

If no scope is found using the above search, an explicit scope of the given
name is used.

export= (not implemented) When using this directive, the knowledge will be (fur-
thermore) written to another file, ready for being used in another document.
In particular, the knowledge (in the other document) will point to the present
one. The details on how this is supposed to work is to be specified.

namespace= Allows to change the namespace. In itself, this is useless. It has to
be used in conjunction with new forms of \kl-like commands.

now requires the knowledge to be defined immediately. This may save one com-
pilation phase. The drawback is that the knowledge cannot be accessed
before the \knowledge command that has been introduced. It may help for
modularity considerations. (for instance a knowledge is used inside a proof,
it makes no sense to make it available elsewhere, and it is better style to
locally define it). This is implicit if the \knowledge command happens in
the preamble.

also now requires the knowledge to be defined immediately as well as delayed
to the next compilation phase. This is in particular how auto references
should be handled. See the use of \knowledgenewvariant for more exam-
ples.

3.3.3 General directives

We give here the list of display directives that are available without loading any
sub packages. A certain number of Boolean directives are available without any
options. These most of the time are used for typesetting the output. Each
of these can be used as ‘bool=true’ (or shortly just ‘bool’), ‘bool=false’ or
‘bool=default’ (that leaves it in the default state, or the one determined by
surrounding knowledges). The general boolean directives are the following:

emphasize forces the text to be emphasized using ‘\emph’,

italic/up forces/unforces italic (up does nothing in math mode),

boldface/md forces/unforces boldface (be it in math or text mode),

smallcaps forces small capitals,

18

underline forces the text to be emphasized using ‘\underline’,

fbox puts a box around the text,

typewriter puts in typewriter font (be it in math or text mode),

ensuretext guarantees that text mode is used (using the ‘\text’ macro, thus in
a way consistent with the surrounding style),

ensuremath guarantees that math mode is used,

mathord, mathop, mathbin, mathrel, mathopen, mathclose, mathpunct yield the
corresponding standard TEX spacing features in math mode,

mathord for an ordinary mathematical object,
mathop for a large operator (such as

∑
,
∏
, . . .),

mathbin for a binary operation (such as +, −, or ⊗, . . .),
mathrel for a binary relation (such as =, <, ≤, . . .),
mathopen for an opening bracket, parenthesis, . . .
mathclose for an closing bracket, parenthesis, . . .
mathpunct for a punctuation symbol.

lowercase puts the content in lowercase,

uppercase puts the content in uppercase,

detokenize detokenizes the content, i.e., instead of executing it provides a string
that displays it (this is useful for commands),

remove space removes the spaces from the text

invisible prevents the rendering of the knowledge.

The non-boolean general directives are the following:
text={text} will execute the LATEX code ‘text’ instead of the key used for calling

\kl. For instance, \knowledge{latex}{text=\LaTeX} will typeset ‘LATEX’
properly when used. Surrounding braces can be omitted if there are no
commas. Be careful when linking to such knowledges, since the substitution
of meaning will happen for all the knowledges linking to it, and this may not
be the expected behaviour.

link={knowledge} will continue searching the for linked knowledge. Surrounding
braces can be omitted if there are no commas. This directive is often by-
passed by the use of the optional argument of \knowledge defining synonyms
or the synonym directive.

link scope={label} will continue searching in the scope identified by the label.
Surrounding braces can be omitted if there are no commas. If no directive
link= is given, then the same key is searched for.
This directive is often bypassed by the use of the optional argument of \k-
nowledge defining synonyms or the synonym directive.

19

synonym defines the knowledge as a link to the previously defined knowledge (in
fact, the most recently defined that was not using synonym). For instance

\knowledge{Leslie Lamport}
{ref={https://fr.wikipedia.org/wiki/Leslie_Lamport}}

\knowledge{L. Lamport}{synonym}
\knowledge{Lamport}{synonym}

results in the two subsequent knowledge names to point to the first one.
style={knowledge style} will adopt the styling option of the knowledge style.

Surrounding braces can be omitted if there are no commas.
wrap=\token will execute the macro ‘\token ’ with as argument the knowledge

text before displaying it. For instance, wrap=\robustdisplay, (where \r-
obustdisplay is a variant of \tl_to_str:n removing the trailing space) is
used in this document for typesetting the commands.

3.3.4 Knowledge styles and the \knowledgestyle command

Styles are formatting pieces of information, as for knowledges, but that can be
used by other knowledges. In some respect, this is very similar to macro directives
(see below), but the difference lies in that styles are dynamically resolved, while
macro directives are statically resolved. Styles in particular offer the access to
some configuration features of the system. For instance, changing the intro style
changes the way the \intro command is displayed. See below for some instances.

The central command is \knowledgestyle, that has the following syntax:

\knowledgestyle*{style name}{directives}

The optional star * permits to overload an existing style (otherwise, this results
in an error). The directives follow the same structure as for a normal \knowl-
edge command. When defined, a style can be used in a \knowledge command
using the directives ‘style=style name’ (it will be used when a \kl command calls
for the knowledge) or ‘intro style=style name’ (that will be used by \intro
commands).

A certain number of default styles are also offered, that in particular includes
warning styles. The list is as follows:
kl is the default style for macros using \kl. It can be modified dynamically using

the ‘style=’ directive.
kl unknown and kl unknown cont are the default styles used when an undefined

knowledge is met.
intro and is the default style for macros using \intro. It can be modified

dynamically using the ‘intro style=’ directive.
intro unknown and intro unknown cont are the default styles used when an

undefined knowledge is met.

3.3.5 New directives: the \knowledgedirective command

When defining knowledges, it is often the case that the same sequence of directives
are used. Macro directives are here for simplifying this situation (see also \know-

20

ledgedefault and \knowledgestyle). This is achieved using the \knowledged-
irective directive:

Hint. This should not be
confused with styles which
offer another way to control
the display.

\knowledgedirective*{name}[optional parameter]{directives}

After such a command has been issued, ‘name’ becomes a directive usable in \kno-
wledge commands, that amounts to execute the comma separated list ‘directives’.
The newly created directive may receive a value, that is accessible as #1 in ‘direc-
tives’. By default, it does not allow the redefinition of a directive. This can be
forced using the optional *. The ‘optional parameter’ gives a default value. For
instance:
\knowledgedirective{highlight}[brown]{color={#1},emphasize,md}
[...]
\knowledge{notion A}{highlight}
\knowledge{notion B}{highlight}
\knowledge{notion C}{highlight}
\knowledge{important notion D}{highlight=red}
[...]
We shall now see \kl{notion A}, \kl{notion B}, \kl{notion C}, as
well as the \kl{important notion D}.

yields

We shall now see notion A, notion B, notion C, as well
as the important notion D.

3.3.6 \knowledgestyle versus \knowledgedirective

The two commands \knowledgestyle and \knowledgedirective offer ways to
systematize the writing of knowledges. These can seem redundant. This is not
the case, and for understanding it, it is necessary to understand a bit the way the
\knowledge command works.

In general when a \knowledge (or \knowledgestyle) command is found, the
directives are parsed and a new internal form of the \knowledge command is
written in the kaux file, that will be executed during the next compilation of the
document. In this phase, some first operations are performed. For instance, in an
autoref directive, an internal label name is constructed.

The postponed command is then executed during the next compilation phase
(or immediately if we are in the preamble, or if the now directive is used). The
execution effectively stores the knowledge in the system. This is only at that
moment that the knowledge becomes available to be used by \kl and similar
commands.

When a \kl command (or similar) is met, it is ‘executed’, and display infor-
mations are considered, and in particular styles are called.

Somes consequences of this kind of this are as follows:

21

• autoref directives should not be used in the definition of a style, since this
would mean that there would be one anchor point for all the knowledges
that use this style. This is usually not the kind of behavior that we expect.

• configuring the default displays of the system (such as the intro style= in
particular) has to be done through the style mechanism.

• styles use less memory than macros.

3.3.7 Default directives: the \knowledgedefault command

It may happen that a sequence of consecutive \knowledge commands have to
share the same list of directives. The macro directives can help solving this issue.
The default directives also go in this direction, using the \knowledgedefault-
command:

\knowledgedefault*{directives}

When such a command is applied, then from that point, all \knowledge commands
will use the given directives as default. This will stop when another \knowledg-
edefault command is met or the current group is closed. The optional star does
not reset the default directives but simply add new ones.

3.4 The \kl command
3.4.1 The standard syntax

Hint. Note that the \kl-
command can often be re-
placed by the "· · ·" notation,
activated by the quotation
option.

The \kl command has one of the following syntaxes:

\kl(optional scope)[optional knowledge name]{text}

or \kl[optional knowledge name](optional scope){text} .

Its meaning is to search for the ‘optional knowledge name’ if present, or for ‘text’
otherwise. How this is exactly performed depends on the presence of the optional
label. The search process is as follows:
• if an optional label is given, the knowledge is searched in the corresponding

scope.
• otherwise, the stack of visible scope instances is processed through (starting

from the inner most) until a knowledge of name ‘knowledge name’ or ‘text’, of
namespace ‘default’ and this scope is found.
If the ‘knowledge name/text’ has not been found, the style ‘kl unknown’ (or similar
styles, as defined by the unknown style= or unknown style cont=) is used, and
the text displayed.
• Otherwise, the knowledge is executed. If it is a link= or synonym defined

knowledge, the link is followed, and the process continues.
• Finally, all the definitions involved in the knowledge are processed, following

a style= if defined, the knowledge is updated (essentially incrementing the counter
of use), and the knowledge is displayed.
This general mechanism is used also by other commands that are variations around
\kl such as in particular \intro.

22

3.4.2 The quotation notation

When activated, the quotation mode activates shorthand notations for the \kl
and \intro macros. Possible syntaxes are as follows:

"text" uses the knowledge pointed to by ‘text’. Equivalent to \kl{text}.

"text@knowledge" uses the knowledge pointed to by ‘knowledge to display
‘text’. Equivalent to \kl[knowledge]{text}.

"text@@scope" uses the knowledge pointed to by ‘text’ in scope ‘scope’ to dis-
play ‘text’. Equivalent to \kl(scope){text}.

"text@knowledge@scope" uses the knowledge pointed to by ‘knowledge in scope
‘scope’ to display ‘text’. Equivalent to \kl[knowledge](scope){text}.

""text"" introduces the knowledge pointed to by ‘text’. Equivalent to \intr-
o{text}.

""text@knowledge"" introduces the knowledge pointed to by ‘knowledge while
displaying ‘text’. Equivalent to \intro[knowledge]{text}.

""text@@scope"" introduces the knowledge pointed by ‘text’ in scope ‘scope’.
Equivalent to \intro(scope){text}.

""text@knowledge@scope"" introduces the knowledge pointed to by ‘knowledge
in scope ‘scope’ while displaying ‘text’.
Equivalent to \intro[knowledge](scope){text}.

Activating the quotation notation is obtained using:

\knowledgeconfigure{quotation} ,

and deactivating it is obtained using:

\knowledgeconfigure{quotation=false} .

It can also be activated while loading the package.
It is sometimes the case that some packages do use the quote symbol, usually

in some environment (this is the case of the tikzcd environment). The knowledge
package can be configured to deactivate always the quotation notation when en-
tering the environment. This is obtained using the configuration option protect
quotation= followed by a list of environments to be protected:

\knowledgeconfigure{protect quotation={env1,env2,...}}

Note that the braces surrounding the list of environments can be omitted if
the list contains only one item.

There are nevertheless some situations in which one would prefer to use the
original \kl notation:

23

• When nesting of knowledges is involved, or the knowledge includes the sym-
bol ",

• when quotation is deactivated (or not activated) because of a conflict

• in particular, this should be avoided in macros, in particular for the math
mode, since these may be used one day or another in a tikzcd or similar
environment for instance.

3.4.3 Variants of \kl, \knowledgenewvariant, \knowledgevariantmodifi-
er

It may happen for several reasons that we may want to define new variants of the
\kl macros, that essentially perform the same task, but are configured differently.
Typical examples may be:

• several sets of knowledges may intersect but should use different namespace,

• some knowledges involve macros and for this reason should be non-expanded
even if the \knowledge command is not met,

• the \knowledge command should be called implicitly,

• activate or deactivate the warnings or messages in the diagnose file.

In fact, several macros in this document are instantiation of this mechanism. This
is the case for for instance for \intro, \phantomintro, \reintro or \mathkl etc...

The macro for introducing a new variant of \kl is:

\knowledgenewvariant\variant{variant directives}

and is similar to the one for modifying the behavior of a variant of \kl:

\knowledgesetvariant\variant{variant directives} .

These command define/modify a/the macro \variant that uses the same syntax
as \kl. The variant directives consist of a comma separated list of directives as
follows:
namespace=namespace declares in which namespace (a string) the knowledges

are to be searched. This means in particular that the \knowledge concerned
should be defined using the the proper namespace= directive.

default style=, unknown style=, unknown style cont={list of style names}
declares the style name to be used (1) by default when the knowledge is
found, (2) when it is not found for the first time, and (3) the subsequent
times.

style directive={directive names list} defines a list (comma separated) of
directives that can be used in a \knowledge command to modify the aspect
(for instance, the \intro behavior is modified by the intro style= direc-
tive, while the \kl command is configured using the style= directive). If
the directives do not exist, these are created.

24

auto knowledge={directives} declares that the use of \variant should auto-
matically execute a \knowledge command, and what should be the directives
it uses. See examples below.

unknown warning=true/false activates or deactivates the warnings when a knowl-
edge is not found (for instance, these are deactivated in paper mode). True
by default.

unknown diagnose=true/false activates or deactivates the corresponding mes-
sages in the diagnose file. True by default.

suggestion={directives} configures the directives to be suggested in the diag-
nose file when the knowledge is unknown.

PDF string={code} gives a substitute text for hyperref to use for producing
the bookmarks. This code has to be expandable. The code may use three
parameters;]1 is the main text of the command,]2 is the optional parameter,
and]3 is the scope. The macro \IfNoValueTF of the package xparse can be
used to test if the second and third arguments are present. By default, the
code is {]1}. Note that the star syntax cannot be used in this context. It the
expected result cannot be achieved using this directive, the less convenient
macro \texorpdfstring of the hyperref package should be used.

The second feature is to use modifiers. These correspond to the stared version
of the command. For instance, one expects ‘\intro*\kl’ to reduce to ‘\intro’.
For this, one has to declare explicitly the reduction using:

\knowledgevariantmodifier{stared sequence}\variant ,

in which the stared sequence is of the form ‘variant1*variant2*. . . *vari-
antk’. This sequence is declared to reduce to \variant. For instance,
\knowledgevariantmodifier{\intro*\kl}\intro declares ‘\intro*\kl’ to re-
duce to ‘\intro’.

3.4.4 Examples of variants of \kl

The best way for introducing new variants is to look at examples. We provide two
of them now. the first one is the configuration of the \kl and \intro commands
as defined in the package. The second one is the code used in this documentation
for displaying macros, defining the macros \cs and \csintro.

The configuration of \kl and \intro It is also interesting to see this code
since it gives more ideas on how to modify the standard behaviour of these com-
mands correctly.

25

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/xparse
https://www.ctan.org/pkg/hyperref

\knowledgestyle{autoref link}{autoref link}
\knowledgestyle{autoref target}{autoref target}
\knowledgestyle{invisible}{invisible}
\knowledgenewvariant\kl{

namespace=default,
default style={kl,autoref link},
unknown style= kl unknown,
unknown style cont= kl unknown cont,
style directive= style

}
\knowledgenewvariant\intro{

namespace= default,
default style= {intro,autoref target},
unknown style= intro unknown,
unknown style cont= intro unknown cont,
style directive= intro style

}
\knowledgevariantmodifier{\intro*\kl}\intro

Note that \reintro and \phantomintro are defined using similar code.

Displaying control sequences The second code example is used in this doc-
ument (the documentation of the package) and consists of two macros \cs and
\csintro which have the following semantics:

• these have the same syntax as \kl and \intro respectively.

• these are used to display control sequences without executing it,

• if \csintro is never used, it appears in black,

• is \csintro is used, then it is in color blue, and the calls to \cs are in
dark blue, and furthermore, the \cs calls possess an hyperlink to the call to
\csintro.

• no \knowledge command is necessary, and no warnings are issued.

26

\knowledgestyle{cs}
{detokenize,remove space,typewriter,up,md,color=NavyBlue}

\knowledgestyle{cs unknown}
{detokenize,remove space,typewriter,up,md,color=black}

\knowledgenewvariant\cs{
namespace=cs,
default style={autoref link,cs},
unknown style=cs unknown,
unknown style cont=cs unknown,
unknown warning=false,
unknown diagnose=false,
suggestion=cs

}
\knowledgestyle{csintro}

{detokenize,remove space,typewriter,up,md,color=blue}
\knowledgestyle{csintro unknown}

{detokenize,remove space,typewriter,up,md,color=black}
\knowledgenewvariant\csintro{

namespace=cs,
auto knowledge={autoref,scope=document,also now},
default style={autoref target,csintro},
unknown style=csintro unknown,
unknown style cont=csintro unknown,

}
\knowledgevariantmodifier{\intro*\cs}\csintro
\knowledgevariantmodifier{\csintro*\cs}\csintro
\knowledgevariantmodifier{\cs*\kl}\cs
\knowledgevariantmodifier{\csintro*\kl}\csintro

Several things can be noted about this code:
• the directives detokenize and remove space prevent the execution of the

argument, and instead display its name, this is important since the argument is a
control sequence,
• the directives typewriter, up and md give a uniform aspect (no italic, no

boldface) to the result in all contexts,
• the namespace is set to be different from the default one, avoiding possible

clashes with \kl,
• when a \csintro command is met, the corresponding \knowledge command

is automatically issued, in particular with ‘scope=document’ for guaranteeing the
visibility of each command everywhere in the document,
• the also now directive is necessary for the compilation to (possibly) stabilize

in two iterations, since it uses the proper \label already at the first iteration
(without also now, it would be performed on the second one only, and with just
now, it would be visible only by the uses after the introduction).
• warnings and diagnose information is explicitly eliminated.

27

3.5 Scoping
3.5.1 Principles of scoping

When writing long documents, one often wants knowledges to be isolated in some
subparts. For instance, one may want a temporary definition in a proof to not
leak elsewhere in the document where the same term could be used with a dif-
ferent meaning. Some definitions may be only meaningful in, say, the current
section/part.

Two separate things have to be understood: how to define knowledge in a given
scope (and create scopes), and how to access knowledge from a given scope.

Accessing knowledge attached to a given scope This can be done directly
either using the parenthesis notations of \kl and the second @ of the quotation
notation:

\kl(scope name){knowledge} or \kl(scope name)[knowledge]{displayed text}
"knowledge@@scope" or "displayed text@knowledge@scope"

It works also for \intro and with double quotes.
Another option is to import the scope locally, using:

\knowledgeimport{scope name 1,scope name 2, ...}

After this command, the knowledges will be searched automatically in the
imported scopes. The import stops at the end of the current scoping environment.

Attaching knowledge to a given scope This can be done directly using the
scope= directive, for instance in:

\knowledge{knowledge}{scope=scope name,directives }

or, this is obtained usint the ‘|’-notation using ‘@’ :

\knowledge{directives }
| knowledge@scope name 1
| synonym@scope name 2
...

...

The other possibility is to define a knowledge inside a scope environment:

\begin{scope}\label{label}
\knowledge{knowledge 1}{directives }
...

\end{scope}

In such a code, the knowledge defined is automatically visible in the environment,
and from outside, using the scope name label. Indeed, the \label is overloaded
for doing automatically a \knowledgescope command.

In fact, it is possible to do even more: other environments can be defined to
behave like scope.

28

3.5.2 Scoping by examples

Explicit scoping consists in attaching a precise scope name to a knowledge using
the scope= directive:

\knowledge{thing}{scope=s1,color=red}
\knowledge{thing}{scope=s2,color=green}

Here, "thing" and \kl{thing} are unknown.
But "thing@@s1" and \kl(s1){thing} are in red,
and "thing@@s2" and \kl(s2){thing} are in green.

The ‘|’-notation can also be used for explicit scoping. This is convenient, in
particular for having synonyms in different scopes:

\knowledge{color=red}
| abelian group
| abelian groups
| Abelian groups
| group@abelian
| groups@abelian
| Groups@abelian

Here, general "groups" are not defined but "groups@@abelian" are,
and correspond to "abelian groups".
\begin{scope}\knowledgeimport{abelian}
Her, all "groups" here are abelian.

\end{scope}

Scopes can also be attached to areas in the code. It is convenient to use the
usual \label command to name them (though a priori two different spaces of
naming are used).

% We declare first in the preamble the environments that can have
% knowledges attached to them.
\knowledgeconfigureenvironment{theorem,lemma,proof}{}

% and now in the main body of the document.
\begin{theorem}\label{theorem:main}

\knowledge{rabbit}[rabbits]{notion}
In every hat, there is a \kl{rabbit},
\AP in which a \intro{rabbit} is a small animal with long ears.

\end{theorem}
Here a "rabbit" is an unknown knowledge.
But "rabbits@@theorem:main" point to Theorem \ref{theorem:main}.
\begin{proof}\knowledgeimport{theorem:main}

Now, "rabbit" is hyperlinked to Theorem \ref{theorem:main}.
\end{proof}

29

3.5.3 What is the structure of scopes in a document

To start with, one needs to understand what are the possible scopes. Scopes are
aggregation of zones in the document.

• By default, all the body of the document belongs to a scope called
‘document’. The user can open new scopes using the scope environment:

\begin{scope}
\knowledge{local notion}{color=green}
Here is a \kl{local notion} that appears in green.

\end{scope}
But here the \kl{local notion} is undefined.

Note that scoping is independent from the grouping mechanism of LATEX.
The user can also declare environments such as lemma, theorem, remark or
proof to behave like scope. This is achieved using using \knowledgeconf-
igureenvironment command.

• The use of the scope configuration option goes one step further, and attaches
scopes to sections, subsections, itemize, items, and so on. But be cautious,
this feature, though working, may cause some compiling document to not
compile anymore if some weird (and unnatural) nesting of scopes are used
(this is the case for instance when using \bibitem and \thebibliography,
and this has to be corrected by hand).

3.5.4 How is chosen the scope of a knowledge?

In general, when a \knowledge command is used, the system tries to figure out
what should be its scope:

• If the command occurs in the preamble, then the default scope will be ‘doc-
ument’.

• Otherwise, the information is searched for in the stack of visible scope in-
stances which means that the knowledge will be defined at the level of the in-
nermost surrounding scope that ‘attracts knowledges’. If the scope option
is not activated (and the user did not perform its own configuration), this
is the inner most scope environment (or similar environment if \knowled-
geconfigureenvironment has been used), or ‘document’ if the declaration
is not in the scope. If the scope option is used, this will be the innermost
lemma, proof, or theorem in the context.

• This default behavior can be modified using the scope= directive. The
scope= directive can be followed with a scope level, such as ‘section’, ‘sub-
section’, ’chapter’ or ‘itemize’ (in particular in combination with the scope
option), that will be looked for in the current context and will receive the
knowledge. The directive can also be followed by a label name, and the
active scope at the moment of this label will be used.

30

The following code (that requires the scope option for being functional)
should be self explanatory:

\section{First section}
\label{section:first}
\knowledge{one}{scope=section,color=green}
\knowledge{two}{scope=some label,color=green}

\begin{scope}\label{some label}
Here \kl{one} and \kl{two} are defined.

\end{scope}
Here \kl{one} is defined but \kl{two} isn’t.

\section{Second section}
Here neither \kl{one} nor \kl{two} is defined. However, I
can still use them using \kl(section:first){one} and \kl(some
label){two} (or "one@@section:first" and "two@@some label", or
using the \knowledgeimport{section:first}).

3.5.5 Naming scopes: the \knowledgeimport, \knowledgescope and lab-
el commands

It is often the case in a text, that one has to locally break the nesting structure
of a document, and refer to a object local in an environment. For instance, a
comment may refer to a variables/concept that has been locally used in the proof.
The knowledge provides suitable mechanisms for complex referencing of scopes.
Let us explain this through an example:

% We declare first in the preamble the environments that use
knowledge.
\knowledgeconfigureenvironment{definition}{knowledge=attracts}
[...]
\begin{definition}\label{somewhere}
\knowledge{something}{notion}
Here, \intro{something} is a notion internal to the definition.

\end{definition}
Note here that what is important is the location of the \knowledge command,

irrespective of the location ofthe \intro command.
The \label command is used to name the scope. In fact, the real command is

\knowledgescope{scope name}

which associates a scope name to the surrounding environment (providing it has
been declared possible to do it using \knowledgeconfigureenvironment). The
standard LATEX command \label is overloaded and performs implicitly a call to
\knowledgescope (this behavior can be deactivated/reactivated using the label
scope={true,false} directive). The result is that the same string of characters

31

can be used in order to name the scope, and at the same time is used as a standard
LATEX label.

Something important is missing so far: one rapidly wants to access to knowl-
edges that do not exist in the current scope. For instance, a notion is used in a
section of a document, and one would like to refer to it in the introduction. Another
case is that of a notion or a mathematic variable that is introduced in the state-
ment of a theorem, and should be accessible inside the proof. There are essentially
two ways to access such distant knowledges: either use the \kl(label){text}
command (or the equivalent "· · ·@ · · ·@ · · ·" notation), or use the \knowledge-
import command. We describe the second possibility now. The syntax is:

\knowledgeimport{label}

The result is that the knowledges in the scope identified by the label are now
accessible until the closure of the current scope.

For instance:
\knowledgeconfigureenvironment{theorem,proof}{}
[...]
\begin{theorem}\label{theorem:1}
\knowledge\alpha{autoref,color=red}
Let $\intro\alpha$ be an integer [...]

\end{theorem}
[...]
Here $\kl\alpha$ is unknown.
[...]
\begin{proof}
\knowledgeimport{theorem:1}
But now $\kl\alpha$ points to its definition.

\end{proof}

3.5.6 Managing scoping environments

The user can also declare an environment to behave like scope using the command
\knowledgeconfigureenvironment, as well as adapt some of its characteristics
using scope directives.

\knowledgeconfigureenvironment{environments}{scope directives}

For instance:
\knowledgeconfigureenvironment{lemma,theorem,fact,proof}

{knowledge=attracts}

will induce the corresponding environments to have internal knowledges.
Most of the times, it is not necessary to use scope directives.

Remark 1 Note that (in the current implementation) it is necessary to use the
commands \begin and \end. Hence \proof. . .\endproof would not trigger a
scoping environment while \begin{proof}. . .\end{proof} would.

32

The scope directives are low level and advanced features. These should not be
used in general. The list is the following:
scope=true/false tells whether an environment should induce a scope. For the

moment, this is not used (as soon as configured, it always behaves like a
scope).

label=none/accepts tells whether a \label command can refer to an instance
of this area,

environment=true/false should be set to true if the scope has to be opened
whenever an environment of same name is opened using the \begin and
\end commands of LATEX.

autoclose=true/false means that the closure is triggered by another event (clo-
sure of another enclosing instance, or pushing of an area that requires its
closure). It should be true for LATEX environments, and false when con-
figuring, e.g, \section to open an scope (since the end of the section is
automatic: when another section is opened, or some higher level sectioning
command).

parents={area1,area2,. . . } takes a comma separated list of areas that are al-
lowed as parent. For opening the area, some enclosing instances may be
automatically closed for reaching such a parent (if their autoclose= direc-
tive is set to true).

push code={code} defines the code to be executed when the area is pushed (each
time, these are added).

pop code={code} defines the code to be exected when the are is popped (added
too).

occurrences=once/multiple/recursive can be one of ‘once’ if the area can
only have one instance in the document, ‘multiple’ if there can be several
instances, but not nested, and ‘recursive’, if there is no restriction.

forces=area requires a specific area as an ancestor of this area. This ancestor is
implicitly pushed if necessary.

3.6 Error handling
By default, the knowledge package tries to not stop the compilation unless a
serious problem has been found. In particular, it is possible to write an entire
document using \intro and \kl commands or the quotation notation without
ever introducing a knowledge, and only in the end provide this information. This
is a feature: as opposed to normal macros, not defining a knowledge should not
stop the real work, which is the writing of the document.

Very often there is some undefined knowledge. Such knowledges are displayed
using kl unknown and kl unknown cont) styles when issued by \kl; using intro
unknown and intro unknown cont when issued by \intro. The detail of the
problems are then gathered in the diagnose file.

33

3.7 The diagnose file
The diagnose file is a file that is created when the knowledge package is used (note
that another file, jobname.kaux is also created by the knowledge package, for in-
ternal use). It enormously eases the use of the package, and it is important to look
into it when finalizing a document. It gathers a certain number of informations,
that can be warning, code to be used, or simply information. This file has the
name of the tex document with the extension .diagnose. Its content is divided
into clearly identified parts. Depending on the used options, some of these parts
may appear or disappear.

Undefined knowledges in this section are listed all the knowledges that have
been unsuccessfully searched for. These are given in lines either of the form

\knowledge{suggested directives }
| undefined knowledge[@scope]

...

or of the form

\knowledge{undefined knowledge}{suggested directives }

Switching from one mode to another is obtained using the configuration
directive diagnose bar={true,false} (default is true). The intent is that
copying the content of this section to the document itself will solve all prob-
lems of undefined knowledges. It is an efficient way, when one has written
a document without caring so much about knowledges to copy the content
of this section, and then modify it/reorganize it, in order to suit ones pur-
poses. By default, no suggestion is offered, or notion is suggested if the
notion directive has been used. Suggestion can be automatically configured
using the suggestion= directive of the macros \knowledgenewvariant and
\knowledgesetvariant.

For instance, using:

\knowledgesetvariant\kl{notion}

the directive notion is suggested for more directly copying the content.

Autoref not introduced This section lists all knowledges that were declared us-
ing the autoref directive (this can be the case indirectly using, e.g. notion),
but have not been introduced in the document . When a document reaches
its final states, this section should be empty. Usually, one should add the
corresponding \intro or \phantomintro command somewhere in the text.

Autoref introduced twice In this section, all knowledges that were declared us-
ing the autoref directive and introduced using \intro or \nointro more
than once are listed. When a document reaches its final states, this section
should be empty. Consider using \kl or \reintro for solving the problem.

34

Note that this may be caused by an \intro used in some title (and repeated
in the table of contents).

By default, the diagnose file does not give the file and the line of the messages.
This can be activated using the diagnose line boolean option:

\knowledgeconfigure{diagnose line=true}

By default, the diagnose file gives suggestions to be used with the normal \know-
ledge syntax. A ‘|’-notation suggestion can be activated using:

\knowledgeconfigure{diagnose bar=true}

3.8 Other packages
3.8.1 The xcolor option

The xcolor option is used if one wants to change colors. It is good to always load
it since it also triggers coloring for debugging. It triggers colors in the warning
styles that can be useful in debugging. It also offers two new directives:

color= where in ‘color=name’, name is a color description following the syntax
of the xcolor package.

cyclic color similar to ‘color=’, but selects the color automatically in a a cyclic
list of colors. This can be convenient for debugging. The cyclic list of colors
can be chosen using the configuration directive cyclic colors=:

\knowledgeconfigure{cyclic colors={color1,color2,...}}

Note that no spaces are allowed between colors, and that at least two colors
are required.

The default cyclic color list is:

{red,green,blue,cyan,magenta,yellow,gray,brown,lime,
olive,orange,pink,purple,teal,violet}

colorbox= surrounds the text with a colorbox of given color (following the syntax
of the xcolor package).

Loading the package before is necessary for changing the options of the xcolor
package (for instance for using svgnames).

3.8.2 The hyperref option

Activating the hyperref option The hyperref option loads the hyperref
and triggers a certain number of link-related features. This is done either by the
command:

Hint. The hyperref sur-
rounds by default links by
boxes that are graphically
heavy (this are visible in
some viewers, and not in
some others): this is de-
activated by the knowledge
package using the hidelinks
option of hyperref.

35

https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref

\usepackage[hyperref]{knowledge}

or by loading the hyperref before the knowledge package.
The directives activated by the package are:

url= for hyperlinking to an external document
ref= for hyperlinking inside document
protect link it a boolean for protecting from the creation of nested hyperlinks,
autoref for relating objects with their definition
autorefhere similar, and used implicitely for math

The package comes also with the configuration directive hyperlinks= which
is a boolean deactivates or reactivates the links.

Functionnalities triggered by the hyperref option

ref= {label} puts an hyperlink pointing toward a label inside the document (the
braces can be omitted when there is no comma).

protect link disables the inside hyperlinks,

url= {url address} puts an hyperlink to an (external) url (the braces can be
omitted when there is no comma).

Hint. You may have to use
\˜ instead of ˜ in url’s ad-
dresses.

autoref activates the ability to introduce once, use several times an instance.
This is very convenient when writing scientific documents with many notions.
This is the basic directive activating the features of the \intro command.

autorefhere puts immediately a label at the location of the definition, and makes
all \kl occurrences of this knowledge hyperlink to this location.

Hint. It is usually easier
to use the ‘notion’ directive
than simply the autoref di-
rective. Its use it already
configured.

The autoref directive The autoref directive is among the most useful offered
by the knowledge package. When set, the knowledge should be used with both
\intro (exactly once) – or the ""· · ·"" and ""· · ·@ · · ·"" notations (and variants)
if quotation is active – and \kl (possibly several times) – or the "· · ·" notation if
quotation is active. The use of \kl will hyperlink to the location of the \intro.
The syntax of \intro is the same as for \kl:

\intro[optional knowledge name]{knowledge name}

See \AP below for improving the result.
A typical use looks as follows:

Hint. Though the \intro-
command can be used in the
title of, e.g. sections, without
any errors, this may cause a
warning when a table of con-
tents is used: the command
is executed twice, once in the
table of contents, and once in
the document itself.

36

https://www.ctan.org/pkg/hyperref

\knowledge{house}[Houses|houses]{autoref}
[...]
\begin{document}
[...]
In this document, we will see the very important notion of
"houses".
[...]
\AP
Let us define a ""house"" to be a building that functions as a
home.
[...]
\end{document}
yields

[...]
In this document, we will see the very important notion
of houses.
[...]
Let us define a house to be a building that functions as
a home.
[...]

The variant \intro* makes the next \kl command behave like \intro. This
is useful in particular in math mode:

\newcommand\monoid{\kl[\monoid]{\mathcalM}}
\knowledge\monoid{autoref}
[...]
\AP
Let now $\intro*\monoid$ be a monoid.
[...]
Remember now who is \monoid.

Hint. This does not work
in align* and similar envi-
ronments. Section 4.5 gives
some solutions.

Let nowM be a monoid.
[...]
Remember now who isM.

The \phantomintro version:

\phantomintro(optional label){knowledge}

takes a knowledge, and introduces it at the current location, without displaying
anything. This is behaves like an invisible intro, i.e., essentially an abbreviation
for \intro[knowledge]{} . This can be used as a workaround in environment
like align* that do not allow the use of labels (see Section 4.5).

The \nointro command:

37

\nointro{knowledge}

does not display anything and silently prevents the knowledge from issuing warn-
ings because it is not introduced.

The \reintro command:

\reintro[optional knowledge]{knowledge}

is displayed as for \intro, but without being an anchor for hyperlinks, and without
counting as a real \intro. It is used if there are for some reason several places that
should look like an introduction (typically in the same paragraph), but count as
a single target. There is a variant \reintro* that makes the next \kl command
behave like a \reintro (similar to \intro* with respect to \intro).

Knowledges that use this directive can be parameterized by modifying the style
intro.

For modifying the display of knowledges introduced by \intro, there are new
directives:

intro style= that takes the name of a style as argument. This style will be used
when the knowledge is used in a \intro or \reintro command.

autoref target declares the knowledge to be the target of the autoref (this is
implicit when using \intro).

autoref link requires a link to the target of the autoref to be produced (this is
implicit when using \kl).

See the use of \knowledgesetvariant for examples of configuration.

The autorefhere directive The autorefhere directive silently introduces an
anchor point at the location of the \knowledge command invoking it. Uses of \kl
commands will be hyperlinked to this location.

In some sense, an autorefhere directive can be understood as the sequence of a
autoref directive that would be immediately followed by the corresponding \int-
ro command. This is a bit better since using autoref in the body of the document
requires three phases of compilation (two only if in the preamble). However, the
autorefhere directive does only require two (as for normal labels).

In fact, this autorefhere directive is what is used underneath when introduc-
ing mathematical variables, and should be used for implementing similar behav-
iors.

Using anchor points The directives autoref and autorefhere use underneath
the hyperref package. This means that it puts à label at the place of the \intro
command, and then points to it. However, the semantics in this case, is to jump
to the beginning of the surrounding ‘region’. If the \intro happens in a ‘section’
(but not inside a theorem-like envionment) then the \kl command will point at
the beginning of the section, possibly 10 pages above the definition itself.

38

https://www.ctan.org/pkg/hyperref

The standard solution in the hyperref package is to use the \phantomsecti-
on. This means defining anchor points in the document that will be the target of
hyperlinks.

We offer here new commands for helping using this feature:
\AP declares an anchor point at the left of the current column, at the height of

the current line. If the configuration option visible anchor points is set
(and this is the case by default), a mark will show the precise location of
the target. Be careful: it does not work in some situations, like for instance
inside the optional argument of an \item command (but this is ok elsewhere
in an itemize environment), or inside a some macros in mathmode (e.g.
fractions). In the particular case of \item, one should use instead:

\itemAP Similar to \AP, but to be used instead of an \item.
Usually putting an \AP (a standard command of the hyperref) at the begin-

ning of every paragraph, and replacing \item by \itemAP in itemize-like environ-
ments is most of the time good and safe option.

For instance:
\AP
In order to describe what is a \kl{monoid}, let us us first define
a \intro{product} to be an associative binary operator, and a \int-
ro{unit} to be [...]

\begin{description}
\itemAP[A \intro{semigroup}] is a set equipped with a \kl{product}.
\itemAP[A \intro{monoid}] is a \kl{semigroup} that has a \kl{unit}.
\end{description}

yields

In order to describe what is a monoid, let us us first define
a product to be an associative binary operator, and a unit
to be [...]

A semigroup is a set equipped with a product.

A monoid is a semigroup that has a unit.

One can check that the different knowledges are properly hyperlinked, and that
precise targets are the one described by \AP and \itemAP. For helping debugging
the anchor points, these are by default made visible as (red) corners on output.
When the knowledge package is loaded with the paper option this graphical help
disappears. This can also be desactivated using:

\knowledgeconfigure{visible anchor points=false}

39

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref

3.8.3 The makeidx option

Activating the makeidx option The makeidx option loads the makeidx pack-
age and triggers a certain number of link-related features. This is done either by
the command:

\usepackage[makeidx]{knowledge}

or by loading the makeidx before the knowledge package.

Features When activated, it becomes possible to trigger the \index command
when a \kl command is used. The following directives are to be used:

index= is the text typeset in the index. It uses the standard syntax of the \index
command. By default, it is the knowledge name itself. You can use the full
syntax of \index in it, i.e. using ‘ !’ and ‘@’.

index key= takes as argument the index key: a text that is used for identifying
the index entry (usually an accent free version of it). You can use ‘ !’ in it,
as long as it does not clash with index= in order to avoid clashes.

index parent key= makes the index entry be a subentry of the given main index
entry (a replacement of ‘ !’). Once more, it should not clash with index=
and index key=.

index style= is followed by a token (without the scape character) that will be
used for displaying the number (e.g. index style=textbf). Usually, this
is to be used in order to typeset in a particular manner the knowledges in
the index when introduced. Thus, by default, the \intro, \reintro and
\phantomintro command use the command \knowledgeIntroIndexStyle.
Hence, you can use for instance:

\def\knowledgeIntroIndexStyle#1{\fbox{#1}}

3.9 Dealing with math
This part is under development.

3.10 Fixes
In this section, we present some fixes that have been added to help the user solve
problems.

Hyperref and twocolumn It happens that the hyperref and two-column
mode yields a fatal error. This happens when a link spans across the bound-
ary between two pages. This is an issue which is not related to the knowledge
package, but becomes severely more annoying when more links have to be used.
A workaround can be tried by using using

40

https://www.ctan.org/pkg/makeidx
https://www.ctan.org/pkg/makeidx
https://www.ctan.org/pkg/hyperref

\knowledgeconfigure{fix hyperref twocolumn} .

I do not know to which extend it is compatible with various classes...

3.11 Predefined configuration
3.11.1 The notion directive

The configuration option notion is activated using:

\knowledgeconfigure{notion}

It automatically configures a directive notion which is an autoref displayed prop-
erly:

• In paper mode, the \intro commands (not in math mode) are emphasized,
while the \kl commands are displayed as normal. It has the aspect of a
normal paper.

• In electronic mode and composition mode (with the xcolor package),
notions are furthermore typeset in blue when introduced, and in dark blue
when used. Without the xcolor package, underlining draw the attention to
the knowledges (not in math mode).

The behavior of the notion directive is to activate autoref, and to configure the
following two styles:

• the style notion is used for normal use,

• the style intro notion is used for introduction.

A typical document using notion could start by the following commands:

\documentclass{article}
\usepackage{xcolor}
\usepackage[hidelinks]{hyperref}
\usepackage[electronic]{knowledge}
\knowledgeconfigure{notion}
[...]
\knowledge{some text}{notion}

Then the paper is displayed in a colorful way.

41

https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/xcolor
https://www.ctan.org/pkg/hyperref

4 Some questions and some answers

4.1 How to compile?
As usual with LATEX, a certain number of compilation phases are necessary for
reaching a document in final form. The problematic point is of course the use
of labels, and in particular the \intro command. When it is used, and all the
\knowledge commands are in the preamble, then two phases are necessary. When
\knowledge commands are used in the body of the documents, then one extra
phase is required, meaning three with autoref definitions. This is also the case
when scoping is used.

4.2 Problem with \item parameters
The use of \AP inside the optional parameter of \item does not work.
Do not use \AP inside the optional argument of \item, and rather use the command
\itemAP.

Argument of \kl has an extra ‘}’. This is a problem of using optional pa-
rameters inside optional parameters such as in \item[\kl[test]{Test}] . You
can surround the content of the optional parameter by two level of curly braces as
in \item[{{\kl[test]{Test}}}] . The notation "· · ·" does not have this issue.

4.3 Knowledges and moving arguments (table of contents,
. . .).

The use of \kl does not work in (e.g.) the table of content. When
the knowledge name contains expandable macros, or accentuated letters, then
these are not copied in the table of content as the exact same text, but are ex-
panded/translated. Thus, when the table of content is displayed, the \kl com-
mand complains of not knowing the knowledge. For instance6:

6with \usepackage[utf8]{inputenc} and, for instance \usepackage[T1]{fontenc} for the
accents.

42

\newcommand\Ltwo {\ensuremath{Lˆ2}}
\knowledge{\Ltwo -space}[\Ltwo -spaces]{autoref}
\knowledge{étale topology}[Étale topology]

{url={https://en.wikipedia.org/wiki/Étale_topology}}
[...]
\begin{document}
\tableofcontents
\section{On \kl{\Ltwo -spaces}
[...]
\section{On the \kl{étale topology}}
[...]
\end{document}

will result in that both knowledges are considered unknown in the table of contents.
For the first one, this is due to the expansion of \Ltwo . For the second, this is
due to an implicit translation of the accentuated letter into an internal sequence of
commands (for instance ‘é’ is translated into the internal sequence ‘\IeC {\’e}’).
Some solutions are as follows:

• Make the macros non-expandable, for instance using \newrobustcmd (of the
etoolbox package) or \NewDocumentCommand (of the xparse package, with
a different handling of arguments) instead of \newcommand. Hence:

\newrobustcmd\Ltwo {\ensuremath{Lˆ2}}

solves the first problem.

• Using an equivalent text that does not have the problem:

\knowledge{\’etale topology}{link=étale topology}
[...]
\section{On the \kl{\’etale topology}}

• Both problems can be solved using synonyms/links that have no problem.
For instance:

\knowledge{Ltwo-space}{link=\Ltwo -space}
\knowledge{etale topology}{link=étale topology}
[...]
\section{On \kl[Ltwo-space]{\Ltwo -spaces}}
\section{On the \kl[etale topology]{étale topology}}

• Other solutions? None so far. I am trying to systematize the treatment of
these problems.

43

https://www.ctan.org/pkg/etoolbox
https://www.ctan.org/pkg/xparse

Using \intro in a section title causes introducing the knowledge twice.
Do not use \intro in titles, but rather \reintro. If you want the section to be
the target of the knowledge, then put after the section a \pantomintro command.

\section{On \intro{topology}} \section{On \reintro{topology}}
\phantomintro{topology}

Problematic code A solution

4.4 Problems with tikzcd and other issues with the quota-
tion notation

The package tikzcd uses (heavily) the quotes. Thus, it conflicts with the quotation
notation. Some other packages may do the same. For solving this issue, the only
thingd to do are:

• be sure to load these packages before knowledge, or at least be sure that the
quotation notation is not active when you do so, and

• to temporarily deactivate the quotation notation when in a context where
the package may use the quotes.

This can be done either explicitly using before each figure:

\knowledgeconfigure{quotation=false}

and after the figure:

\knowledgeconfigure{quotation}

Another possibility is to force some environment to deactivate systematically
the quotation notation when used. For instance

\knowledgeconfigure{protect quotation={tikzcd}}

will deactivate the quotation notation in all the tikzcd environments.

4.5 Problems with amsmath

The \intro command does not work in align* or similar environments
It happens that in stared environment (i.e., unnumbered), the package amsmath
deactivates the labels. As a consequence the command \intro, which internally
uses \label (at least so far), does not work. For the moment, there is no real
solution, but a workaround which consists in introducing the knowledge before the
incriminated environment using \phantomsection, and then use \reintro inside
the environment. Imagine for instance a command \SomeCommand , that inside
uses \kl[\Somecommand], then:

does not work works
\begin{align*}
\intro*\SomeCommand
\end{align*}

\phantomintro\SomeCommand
\begin{align*}
\reintro*\SomeCommand
\end{align*}

44

https://www.ctan.org/pkg/tikz-cd
https://www.ctan.org/pkg/tikz-cd
https://www.ctan.org/pkg/amsmath
https://www.ctan.org/pkg/amsmath

4.6 Hyperref complains
A fatal error occurs in twocolumn mode. A workaround is to use
\knowledgeconfigure{fix hyperref twocolumn} .

4.7 Incorrect display
4.7.1 Incorrect breaking at the end of lines (in Arxiv for instance)

It may happen that some hyperlinks generated by knowledge are not broken prop-
erly at the end of lines. This is an issue with the hyperref package. This happens
in particular for files compiled by the Arxiv system while the file on the local
computer was not having any problem. A workaround is to use the breaklinks
option of hyperref. If you need this for Arxiv, then you also have to force the
use of \pdflatex (because the breaklinks option does not work if compiled via
the ancestral sequence TEX→DVI→PS→PDF). This can be obtained by adding
\pdfoutput=1 within the five first lines of the preamble.

The preamble thus looks like:

\documentclass{[...]}
\pdfoutput=1
[...]
\usepackage[breaklinks]{hyperref}
[...]
\usepackage{knowledge}
[...]

4.7.2 Red boxes around links

This is an annoying feature of the hyperref package to surround all links by red
boxes (that may appear or not depending on the viewer). This is very heavy in
document with many links. The solution is to load the hyperref package with
the hidelinks option. Hence the preamble may look like:

\usepackage[hidelinks]{hyperref}
\usepackage{knowledge}

4.8 Problems with scope
4.8.1 Problems in combination with \bibitem and thebibliography

The scope option of the package triggers some analysis of the code, and restrains
the structure of the code (in particular, this is because scopes have to be nested,
and thus some not so well nested parts of LATEX yield errors). In particular, the
scope option does not allow to have a \section command inside a list. However,
this is what does the environment thebibliography, yielding a scoping error.

A simple hack to treat this situation:

45

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref

\let\section\SUPERsection
\begin{thebibliography}
\bibitem...
[...]
\end{thebibliography}
\let\section\NEWsection

The result is to revert to the original version of the macro \section , which
does not make any structural test, and then reactivate the modified version of the
command.

Another solution is to reconfigure the environment thebibliography using in
the preamble:

\ScopeConfigure{thebibliography}
{push code=\let\section\SUPERsection,
pop code=\let\section\NEWsection}

4.9 Editors
4.9.1 Emacs editor and quotes

The AucTex mode in Emacs binds the quote symbol to other characters, cycling
through ‘‘, ", and "". This is not convenient when using the knowledge package.

This behavior can be deactivated temporarily using:

M-x local-unset-key RET " RET

or definitively using:

(defun my-hook () (local-unset-key "\""))
(add-hook ’LaTeX-mode-hook ’my-hook)

Alternatively, this can be changed so as to cycle through ", ‘‘, and "", which
is slightly more convenient than the default. This is achieved by customizing
TeX-quote-after-quote:

M-x customize-set-variable RET TeX-quote-after-quote RET y

4.10 Others
If other kind of problems occur, report them to thomas.colcombet@irif.fr.

46

5 Resources

5.1 List of commands
\AP introduces an anchor point.
\intro searches for a knowledge and put an anchor to it (to be used with the

autoref directive).
\kl searches for a knowledge and displays it accordingly.
\knowledge defines new knowledges.
\knowledgeconfigure configures the package.
\knowledgedirective defines a new directive.
\knowledgedefault declares the default directives to be automatically used in

\knowledge commands.
\knowledgeimport gives access to knowledges existing in other scopes.
\knowledgenewvariant defines a new variant of \kl.
\knowledgesetvariant configures a variant of \kl.
\knowledgestyle defines a new style.
\knowledgevariantmodifier declares a meaning of * in variants of \kl.
\nointro declares that the knowledge will never be introduced (does not work

properly yet).
\phantomintro performs an invisible \intro.
\reintro uses the display style of \intro without introducing an anchor.

5.2 List of environments
export (not implemented) requires exportation of the content.
import (not implemented) declares external resources.
scope Defines a scope in which knowledges are internal.

5.3 List of directives (to use with \knowledge)
autoref Activates the \intro feature (requires the hyperref).
autoref link activates an hyperlink to the target.
autoref target puts a target for a hyperlink.
autorefhere creates an anchor point that points to the \knowledge command

(Requires the hyperref option).
boldface Displays the knowledge in boldface.
color= Displays the knowledge is the given color (resquires xcolor).
colorbox= Displays the knowledge in a box of the given color (requires xcolor).
cyclic color Displays in a color among a cyclic list (requires xcolor).
detokenize Avoids evaluation of the text.
emphasize Emphasizes the displayed output.
ensuretext Guarantees that the output will be displayed in text mode.
ensuremath Guarantees that the output will be displayed in math mode.
export= (not implemented)
invisible= no display

47

https://www.ctan.org/pkg/hyperref

italic= displays in italic
fbox Surround the text with a box.
md Removes boldface typesetting.
notion
index= Chooses the text to be displayed in the index=.
index key= the key used to choose the place in the index.
index style= the style to be used to display in the index.
index parent key= the parent key in the index.
intro style= Chooses the typesetting in case of an intro.
italic Typesets the output in italic.
link= Follow with the search the linked knowledge.
link scope= Follow the search in the corresponding scope, using the same key,

or the one provided by link= if present.
lowercase Put all letters of the output in lowercase.
mathord, mathop, mathbin, mathrel, mathopen, mathclose, mathpunct Selects a

spacing behaviour in math mode.
protect link Disables the hyperlinks inside the link.
ref= Links to a label inside the document.
scope= Choose the scope of the definition.
smallcaps Forces the use of small capitals.
style= Links to a style.
synonym Is a synonym of the lastly defined knowledge.
text= Changes the output text.
remove space removes the spaces from the input
typewriter Typeset in as with \texttt.
underline Underlines the text.
up Removes italic typesetting.
uppercase Put all letters of the output in uppercase.
url= An url to point to (uses the hyperref).
wrap= A macro used to process the displayed text.

5.4 List of configuration directives (to use with \knowledg-
econfigure)

diagnose bar={true,false} activates the ‘|’-notation in the diagnose file (default
is false)

composition switches to composition mode,
cyclic colors= fixes the cyclic list of colors used by the directive cyclic color.
diagnose line={true,false} activates or deactivates the line numbering in the

diagnose file.
electronic switches to electronic mode,
fix hyperref twocolumn fixes a known problem between hyperref and the two

column mode.
hyperlinks={true,false} activates or deactivates the hyperlinks.
notion activates the notion directive
paper switches to paper mode,

48

https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref

label scope={true,false} enables or disables the redefined \label command,
which helps automatically define scopes (default is true).

protect link and unprotect link starts and ends respectively a zone in which
the knowledge package does not create hyperlinks.

protect quotation={environment list} declares a list of environment in which
the quotation notation should be deactivated

quotation={true,false} activates or deactivates the quotation notation.
strict is a Boolean which, when true, makes the compilation more restrictive by

turning some of the warnings into errors (in particular in case of redefinition
of knowledges).

visible anchor points={true,false} makes the anchor points either visible or
invisible

49

List of default styles
intro
kl unknown, kl unknown cont
intro unknown, intro unknown cont
notion (if notion is activated)
intro notion (if notion is activated)

50

	History
	Quick start
	Linking to outer documents/urls, and to labels
	Linking inside a document
	Mathematics

	Usage of the knowledge package
	Options and configuration
	Options at package loading
	Writing mode
	Automatic loading of other packages
	Configuring and knowledgeconfigure

	What is a knowledge?
	The knowledge command and variations
	General description of the knowledge command
	Targeting and the corresponding directives
	General directives
	Knowledge styles and the knowledgestyle command
	New directives: the knowledgedirective command
	knowledgestyle versus knowledgedirective
	Default directives: the knowledgedefault command

	The kl command
	The standard syntax
	The *quotation notation
	Variants of kl , knowledgenewvariant , knowledgevariantmodifier
	Examples of variants of kl

	Scoping
	Principles of scoping
	Scoping by examples
	What is the structure of scopes in a document
	How is chosen the scope of a knowledge?
	Naming *scopes: the knowledgeimport , knowledgescope and label commands
	Managing scoping environments

	Error handling
	The diagnose file
	Other packages
	The xcolor option
	The hyperref option
	The makeidx option

	Dealing with math
	Fixes
	Predefined configuration
	The *notion directive

	Some questions and some answers
	How to compile?
	Problem with item parameters
	Knowledges and moving arguments (table of contents, …).
	Problems with *tikzcd and other issues with the *quotation notation
	Problems with amsmath
	Hyperref complains
	Incorrect display
	Incorrect breaking at the end of lines (in Arxiv for instance)
	Red boxes around links

	Problems with scope
	Problems in combination with �ibitem and *thebibliography

	Editors
	*Emacs editor and quotes

	Others

	Resources
	List of commands
	List of environments
	List of directives (to use with knowledge)
	List of configuration directives (to use with knowledgeconfigure)

