General index

1 Introduction 2
2 Conventions 2
3 Dependencies 2
4 Usage 3
5 In-depth usage 5
5.1 In-depth formatting 5
5.2 In-depth notation 8
5.2.1 option $<\mathrm{dc}\rangle$ 8
5.2.2 option <comma> 8
6 isphysicalmath url 10
7 Copyright 10

The isphysicalmath package*

Mario Fantini
marfant7@gmail.com

September 18, 2023

Abstract

This package helps user to write mathematical and physical formulas their numerical values, their measurement units, their factors, their dimensions - in a scientific way (international mainly), by an elegant formatting.

1 Introduction

${ }^{\mathrm{AA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is a powerful language, but to take advantage of it, to respect its quality and to observe the discipline of matters that $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ interacts with-it requires some devices.

If you are interested in math and physics, here comes isphysicalmath inside LATEX as far as international scientific notation and formatting of formulas, quantities, numerical values, factors, dimensions, measurement units.

The name isphysicalmath means either:

- Physics is Math's daughter;
- International System of units (SI) is observed.

2 Conventions

To have a clear doc text, I'll not refer to physical quantities dimensions every times; for them, the measurement units isphysicalmath acting is valid too.

3 Dependencies

isphysicalmath has not dependencies.
Internally, it uses standard $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ built-in commands like: \textnormal, \hspace\{\}; however, it performs its activity in complex math environment too.

[^0]
4 Usage

\ispm
$h p$ ．It is a jolly command．The default setting substitutes the famous $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ built－in command \textnormal，in other words \textnormal is the value of \ispm variable．So，if you are a developer you can modify this variable how and when you want．I use it for generic＂entities＂．
$t h$ ．Default setting：normal text rendering for a generic＂entity＂．
\ispm\｛〈generic＂entity＂in place of argument $\rangle\}$
$h p$ ．You have only a measurement unit．
th．Horizontal space between measurement unit and numerical value，and normal text rendering for the measurement unit．
\ispmone\｛ \langle measurement unit in place of argument $\rangle\}$

\ispmtwo

hp．Youhavetwomeasurementunits．th．Horizontalspacebetweenthefirstmeasurementunitandnumericalvalue，hor－izontalspacebetweenthefirstmeasurementunitandsecondmeasurementunit；normaltextrenderingforbothmeasurementunits．\ispmtwo\｛〈thefirstmeasurementunitinplaceoftheIargument$\rangle\}\{\langle$secondmeasurementunitinplaceofIIargument\rangle\}hp．Youhavethreemeasurementunits．th．Horizontalspacebetweenthefirstmeasurementunitandnumericalvalue，horizontalspacebetweenthefirstmeasurementunitandthesecondmeasurementunit，horizontalspacebetweenthesecondmeasurementunitandthirdmeasure－mentunit；normaltextrenderingforallthemeasurementunits．\ispmtwo\｛〈thefirstmeasurementunitinplaceoftheIargument$\rangle\}\{\langle$thesecondmeasurementunitinplaceoftheIIargument$\rangle\}\backslashispmthird\{\langle$thirdmeasurementunitinplaceofIIIargument）\}Or，e．g．ifyouhaveafraction［seeIn－depthformatting＇subsection5．1）］：\ispmone\｛〈thefirstmeasurementunitinplaceoftheIargument（numerator）$\rangle\}$\ispmone\｛〈thesecondmeasurementunitinplaceoftheIIargument（denominator）$\rangle\}$\ispmthird\｛〈thirdmeasurementunitinplaceofIIIargument$\rangle\}$optiondc\usepackage$[\langledc\rangle]$isphysicalmath$\}$$\forallx,y,\ldots\in\mathbb{N}:\ispmdc\langlex.y\rangle$commaoptioncommaไusepackage[〈comma$]$\{isphysicalmath\}$\foralla,b,c,d,e,f,g,h,i\in\mathbb{N}:\ispmnovem\langleabcdefghi\rangle\ispmocto\langleabcdefgh\rangle\ispmseptem\langleabcdefg\rangle\ispmsex\langleabcdef\rangle\ispmquinque\langleabcde\rangle\ispmquattuor\langleabcd\rangle$undefined

5 In-depth usage

5.1 In-depth formatting

isphysicalmath automatical settings:

- 0.5 mm between numerical value and first measurement unit, «first» if there are others.
- 0.15 mm between two or three measurement units, or between measurement units and their factors.
- Normal text for measurement unit.

Without isphysicalmath

- Without mathematical environment:

$$
\mathrm{F}=1 \mathrm{~N}
$$

I don't like this style, and it has not a logical meaning.

- By mathematical environment:

$$
F=1 N
$$

I don't like this style, and it has not a logical meaning.
The code:
$\backslash[\mathrm{F}=1 \mathrm{~N} \backslash]$

By isphysicalmath

- With one measurement unit.

$$
F=1 \mathrm{~N}
$$

The code:

$$
F = 1 \ispmone \(\{\mathrm{N}\}\)
$$

- With two measurement units (a).

$$
L=1 \mathrm{Nm}
$$

The code:

$$
\(\mathrm{L}=1\) \ispmtwo \(\{\mathrm{N}\}\{\mathrm{m}\}\)
$$

- With two measurement units and a factor for the last unit.

$$
L=1 \mathrm{Nmm}\left(10^{-3}\right)
$$

The code:

```
\[
L = 1 \ispmtwo{N}{mm}\ispmthird{(10$^{-3}$)}
\]
```

- With three measurement units.

$$
V=8 \mathrm{mmm}
$$

The code:

```
\[
V = 8 \ispmtwo{m}{m}\ispmthird{m}
\]
```

- With a declared additional inner \textnormal, with inner \tiny environment, and with inner mathematical environment (a).

$$
m=\gamma V=1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \mathrm{~m}^{3}
$$

The code:

$$
\(\mathrm{m}=\backslash\) gamma \(\mathrm{V}=1 \backslash \mathrm{frac}\{\backslash\) ispmone \(\{\mathrm{kg}\}\}\)
\(\{\backslash i\) ispmone\{m\$^\{\textnormal\{\tiny 3\}\}\$\}\}\ispmthird\{m\$^3\$\}
$$

- With inner mathematical environment (b).

$$
m=\gamma V=1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \mathrm{~m}^{3}
$$

The code:

$$
\(\mathrm{m}=\backslash\) gamma \(\mathrm{V}=1\) \frac \(\{\backslash\) ispmone\{kg \(\}\)
\(\{\backslash i s p m o n e\{m \$ \sim 3 \$\}\} \backslash i s p m t h i r d\{m \$ \sim 3 \$\}\)
$$

- With inner mathematical environment (c) and \large, \normalsize environments.

$$
m=\gamma V=1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \mathrm{~m}^{3}
$$

The code:

$$
\(\mathrm{m}=\) \gamma V = 1 \large\frac\{\ispmone\{kg\}\}
\{\ispmone\{m\$^3\$\}\}\normalsize\ispmthird\{m\$~3\$\}
$$

- With inner mathematical environments (d).

The following is a trascendental physical example, but it could be useful like material for some mathematical need; however, this case demonstrates $\mathrm{IAT}_{\mathrm{E}}$ power and isphysicalmath.

$$
u=7 \alpha \mathrm{~m} \beta \mathrm{~m}^{2} \delta \mathrm{~s}
$$

The code:

$$
\(u=7\) \ispmtwo\{\$\alpha\$m\}\{\$\beta\$m\$^2\$\}
\ispmthird\{\$\delta\$s\}
$$

- About physical quantities dimensions.
e.g.

$$
F=m a=[\mathrm{M}][\mathrm{L}]\left[\mathrm{T}^{-2}\right]
$$

The code:
$\mathrm{F}=\mathrm{m} \mathrm{a}=\backslash \mathrm{ispmtwo}\{[\mathrm{M}]\}\{[\mathrm{L}]\}$ ispmthird\{[T\$~\{-2\}\$]\}

5.2 In-depth notation

Option dc and option comma are compatible, you can use both in the same document; e.g.:
a,dc]\{isphysicalmath\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

1,234
1,234,567
The code:
\ispmdc 1.234

\ispmseptem 1234567

5.2.1 option < dc> age:\usepackage[dc]\{isphysicalmath\}undefinedundefinedundefinedundefinedundefinedundefined

The code of this option is not mine, it already exists in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ literature, I discovered it in https:///en.wikibooks.org/wiki/LaTex.

This option changes dots in commas. It is useful for some users who don't use scientific international notation. It is convenient for users who respect scientific international notation, so they change dots in commas to select thousands and not to separate the unit from negative numbers.

e.g.

$$
1.234 \text { becomes } 1,234
$$

The code:
\ispmdc 1.234

5.2.2 option <comma>

Usage: \{usepackage\}[comma]\{isphysicalmath\}}Itaddscommaaftereverythreedigits,accordingtointernationalscientificnotation.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

For this task there are six ispm commands, in the next isphysicalmath version I'll automate this goal introducing one single ispm command.
$100,000,000$
$10,000,000$
$1,000,000$
100,000
10,000
1,000

The code:
\ispmnovem 100000000

\ispmocto 10000000

\ispmseptem 1000000

\ispmsex 100000

\ispmquinque 10000

\ispmquattuor 1000

6 isphysicalmath url

Package home URL: hhttps://github.com/MartDiVenus/LaTex/tree//isphysicalmath

7 Copyright

Copyright (C) 2023 by Mario Fantini marfant7@gmail.com
This file may be distributed and/or modified under the conditions of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ Project Public License, either version 1.3 of this license or (at your option) any later version. The latest version of this license is in:
http://www.latex-project.org/lppl.txt
and version 1.3 or later is part of all distributions of $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ version 2005/12/01 or later.

This work has the LPPL maintenance status 'maintained'.
The Current Maintainer of this work is Mario Fantini.
This work consists of the files isphysicalmath.dtx and isphysicalmath.ins and the derived file isphysicalmath.sty.

Change History

```
v1.0.0
```

General: Initial version 1

[^0]: * This document corresponds to isphysicalmath v1.0.0, dated 2023/09/18.

