Intelligent brackets The ibrackets package*

Antoine Missier
antoine.missier@ac-toulouse.fr

December 19, 2022

1 Introduction

Open intervals are usually represented with parenthesis $(0,+\infty)$ but sometimes we find also brackets $] 0,+\infty$ [, for example in French mathematics. In that case the space around them is often unsuitable, e.g. $x \in] 0,+\infty[$. This small package redefines brackets symbols [and] for mathematical mode to get correct spacing: $x \in] 0,+\infty[$.

Originally implemented in the mismath package [1] and also in frenchmath [2] since version 2.1, our previous redefinitions produce however incorrect spacing when the left boundary of the interval begins with a sign - or + , which was then interpreted as a binary operation. Thus blank spaces surrounding the sign would have been too large. This problem was pointed out by Jean-François Burnol, and an easy solution, that has been documented, consisted to nest the operator or the left boundary within a pair of braces, e.g. \$x \in]\{-\}\infty, 0] \$, or use \left and \backslash right or even \backslash mathopen\{]\}.

Inspired by the icomma package [3] of Walter Schmidt, we now provide an improved bracket definition that works correctly without these pair of brackets.

Let us also mention other approaches e.g. \DeclarePairedDelimiters, a macro from the mathtools package [4], or the interval package [5] with his \interval macro. Nevertheless our solution is lighter.

2 Usage

You just have to type intervals in an easy way: \$x \in $] 0, \backslash \mathrm{pi}[$ cup $] 2 \backslash \mathrm{pi}, 3 \backslash \mathrm{pi}[\$$ produce

$$
x \in] 0, \pi[\cup] 2 \pi, 3 \pi[\quad \text { with ibrackets, }
$$

instead of

$$
x \in] 0, \pi[\cup] 2 \pi, 3 \pi[\text { without ibrackets. }
$$

[^0]Generally [and] symbols are not defined anymore as delimiters, but as ordinary characters. Thereby a line break could occur between the two brackets, but it is always possible to transform them into delimiters with \left and \right.

The problem of a sign following the first bracket is solved with this package, so the example in the introduction is simply obtained with $\$ \mathrm{x}$ \in]-\infty, 0]\$ which gives $x \in]-\infty, 0]$.

However, you don't have to leave a space between the first bracket and the sign: e.g. \$x \in] - \infty, 0]\$ yields $x \in]-\infty, 0$] with bad spacing around the minus sign. Contrariwise, when you want to write algebra on intervals then you must leave a blank space between the second bracket and the $+/$ - operations, e.g. $\$[\mathrm{a}, \mathrm{b}]+[\mathrm{c}, \mathrm{d}] \$$ yields $[a, b]+[c, d]$ but $\$[\mathrm{a}, \mathrm{b}]+[\mathrm{c}, \mathrm{d}] \$$ yields $[a, b]+[c, d]$. To summarize the new behavior of a bracket: it is an ordinary character, but an open delimiter when it is immediately followed by a + or - character.

3 Implementation

At \begin\{document\}, we memorize the \mathcode of the original brackets, in } the \math . . . bracket macros, and we make the brackets in math mode active:

```
1 \AtBeginDocument{%
    \mathchardef\mathopenbracket\mathcode'[%
    \mathcode'[="8000
    \mathchardef\mathclosebracket\mathcode`]%
    \mathcode`]="8000
```

The active brackets check the next input character. If this is a - or a + , the active brackets return \mathopen with the saved \backslash math . . . bracket so that no space will be added after the bracket; otherwise, \mathord \backslash math . . . bracket is returned :
6\}
7 \{\catcode'[=\active
\gdef [\{\futurelet\@next\sm@rtopenbracket\}
$9\}$
$0 \backslash$ def \backslash sm@rtopenbracket $\{\%$
\ifx\@next- \mathopen \else
\ifx\@next+ \mathopen \else
\backslash mathord $\backslash f i \backslash f i \backslash m a t h o p e n b r a c k e t\}$
\{\catcode‘]=\active
\gdef]\{\futurelet \@next\sm@rtclosebracket\}
17 \}
8 \def \sm@rtclosebracket\{\%
\ifx\@next- \mathopen \else
\ifx\@next+ \mathopen \else
\backslash mathord $\backslash f i \backslash f i \backslash m a t h c l o s e b r a c k e t\}$

We could have use the internal $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ command \@ifnextchar to skip blank spaces after the bracket, and look if there is a + or - after, but then it would become tricky when you really want to follow an interval with an operation plus or minus.

References

[1] mismath - Miscellaneus mathematical macros. Antoine Missier, CTAN, v2.0 2022/11/11.
[2] L'extension frenchmath. Antoine Missier, CTAN, v2.2 2022/12/15.
[3] The icomma package for UTEX $_{E} 2_{\varepsilon}$. Walter Schmidt, CTAN, v2.0 2002/03/10.
[4] The mathtool package. Morten Høgholm, Lars Madsen, CTAN, v1.21 2018/01/08.
[5] The interval package. Lars Madsen, CTAN, v0.4 2019/03/06.

[^0]: *This document corresponds to ibrackets v1.0, dated 2022/12/19.

