an integrable function defined on the measurable set E and hat $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable function so that $|f_n| \leq g$. If f is a function so that $f_n \to f$ almost everywhere then

Proof: The function $g - f_n$ is non-negative and thus from Fatou lemma

Theorem 1 (Dominated convergence of Lebesgue) Assume that a is

$$\lim_{n\to\infty}\int f_n=\int f.$$

we have that $\lceil (g-f) \leq \liminf \lceil (g-f_n) \rceil$. Since $|f| \leq g$ and $|f_n| \leq g$ the functions f and f_n are integrable and we have

$$\int g - \int f \le \int g - \limsup \int f_n,$$

SO $\int f \ge \lim \sup \int f_n.$