
The fixdif Package

Zhang Tingxuan

2023/01/27 Version 1.6∗

Abstract

The fixdif package redefines the \d command in LATEX and provides an
interface to define commands for differential operators.

The package is compatible with pdfTEX, XƎTEX and LuaTEX. Further-
more, the package is compatible with unicode-math package in XƎTEX and
LuaTEX.

Contents

1 The background 2

2 Introduction 3

2.1 When using unicode-math . 3

2.2 When using hyperref . 3

2.3 Basic commands and package options 3

3 Define commands for differential operators 4

3.1 Define commands with a single command name 4

3.2 Define commands with multi commands or a string 5

4 Using differential operators temporarily 6

5 Examples 6
∗https://github.com/AlphaZTX/fixdif

1

https://github.com/AlphaZTX/fixdif

6 The source code 6

6.1 Control the skip between slashes and differential operator 7

6.2 Patch the skips around the differential operator 7

6.3 Declare the package options . 7

6.4 Deal with the \d command . 8

6.5 User’s interface for defining new differential operators 8

6.6 In-document commands: \mathdif and \mathdif* 9

1 The background
It’s usually recommended that one should reserve a small skip between the dif-
ferential operator and the expression before it1. Take the following cases as an
example:

𝑓(𝑥)d𝑥 and 𝑓(𝑥) d𝑥.
We usually consider that the example on the right side is better than the one on
the left side. The little skip between 𝑓(𝑥) and d𝑥 can be regarded as a symbol of
the product of 𝑓(𝑥) and d𝑥.

So some users prefer to define a macro like this:

\renewcommand\d{\mathop{\mathrm{d}}\!}

This macro works well in “display math” and “text math”, but we still face the
following three problems:

1. The skip before “d” would still be reserved in “text fraction”, which is re-
garded bad. For example, $\d y/\d x$ produces d𝑦/ d𝑥;

2. This \d command cannot be used out of math mode. In other words, \d{o}
would not produce “ọ” in text;

3. The skip between “d” and the expression before it can be regarded as a
product operator. A product operator is definitely a binary operator.
Take \cdot (⋅) as an example. A binary operator reserves small skips before
and after itself when in “display math” or “text math” such as 𝑥 ⋅ 𝑦, but the
skips will disappear in “script math” or “script script math” such as 𝑎𝑥⋅𝑦.
Thus the small skip should also disappear in script, but $a^{f(x)\d x}$
still produces 𝑎𝑓(𝑥) d𝑥 but not 𝑎𝑓(𝑥)d𝑥.

To solve these problems, you can try this package.
1See https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typese

t-a-differential-operator.

2

https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typeset-a-differential-operator
https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typeset-a-differential-operator

2 Introduction
To load this package, write

\usepackage{fixdif}

in the preamble. In your document,

\[f(x)\d x,\quad\frac{\d y}{\d x},\quad\d y/\d x,\quad a^{y\d x}. \]

will produce
𝑓(𝑥) d𝑥, d𝑦

d𝑥, d𝑦/d𝑥, 𝑎𝑦d𝑥.

2.1 When using unicode-math

If you are using unicode-math package with XƎTEX/LuaTEX in your document,
you must pay attention to the following items:

• If you want to use amsmath package, make sure that the unicode-math pack-
age is loaded after amsmath.

• You had better specify the math font through the \setmathfont command
provided by unicode-math in order to avoid bad skip in text fraction like
d𝑦/d𝑥.

• Load the fixdif package after unicode-math.

Therefore the correct order is

\usepackage{amsmath}
\usepackage{unicode-math}
\setmathfont{...}[...]
\usepackage{fixdif}

2.2 When using hyperref

If you want to use the hyperref package simultaneously, remember to load hyperref
before the fixdif package, otherwise the hyperref package will cause conflicts.

2.3 Basic commands and package options

The fixdif package provides a \d command for the differential operator “d” in math\d
mode. When in text, \d behaves just like the old \d command in LATEX or plain
TEX as an accent command. For example,

$\d x$ and \d x

will produce “d𝑥 and x̣”.

3

Set the font of \d There are two basic package options to control the \d’s
style in math mode — rm and normal. The default option is rm, in which case
$f(x)\d x$ produces 𝑓(𝑥) d𝑥. If you chose the normal option, for example

\usepackage[normal]{fixdif}

$f(x)\d x$ would produces 𝑓(𝑥) 𝑑𝑥.

Besides the previous two optional fonts, you can reset the font of differential\resetdfont
operator “d” through \resetdfont command in preamble:

\resetdfont{\mathsf}

then \d x will produce d𝑥.

Control the behavior of \partial In default, \partial will also be regarded\partial
as a differential operator in this package. If you don’t like this default setting, you
can use the nopartial option:

\usepackage[nopartial]{fixdif}

If you use the default setting, \partialnondif yields the ordinary symbol 𝜕.

3 Define commands for differential operators
Attention! The commands in this section can be used in preamble only!

3.1 Define commands with a single command name

\letdif{⟨cmd⟩}{⟨csname⟩} (preamble only)\letdif

The \letdif command has two arguments — the first is the newly-defined
command and the second is the control sequence name of a math character, that
is, a command without its backslash. For example,

\letdif{\vr}{delta}

then \vr will produce a 𝛿 (\delta) with automatic skip before it.

Through the \letdif command, we can redefine a math character command
by its name. For example,

\letdif{\delta}{delta}

then \delta itself will be a differential operator.

The second argument ⟨csname⟩ of \letdif command can be used repeat-
edly. If you want to get the ordinary symbol of \⟨csname⟩, you can input
\⟨csname⟩nondif in math mode. For example, in default, \partialnondif yields\partialnondif

4

the old partial symbol “𝜕”.

\letdif*{⟨cmd⟩}{⟨csname⟩} (preamble only)\letdif*

This command is basically the same as \letdif, but this command will
patch a correction after the differential operator. This is very useful when a math
font is setted through unicode-math package. For example,

\usepackage{unicode-math}
\setmathfont{TeX Gyre Termes Math}
\usepackage{fixdif}
\letdif{\vr}{updelta}

this will cause bad negative skip after \vr, but if you change the last line into

\letdif*{\vr}{updelta}

you will get the result correct.

3.2 Define commands with multi commands or a string

\newdif{⟨cmd⟩}{⟨multi-cmd⟩} (without correction, preamble only)\newdif
\newdif*{⟨cmd⟩}{⟨multi-cmd⟩} (with correction, preamble only)\newdif*

The first argument of these commands is the newly-defined command; and
the second argument should contain more than one tokens. For example, if you
have loaded the xcolor package, you can use the following line:

\newdif{\redsfd}{\textsf{\color{red}d}}

Then you get the \redsfd as a differential operator. Take another example,

\newdif{\D}{\mathrm{D}}

Then you get \D for an uppercase upright “D” as a differential operator.

If your second argument contains only one command like \Delta, it’s rec-
ommended to use \letdif or \letdif* instead.

\newdif and \newdif* will check whether ⟨cmd⟩ has been defined already.
If so, an error message will be given.

\renewdif{⟨cmd⟩}{⟨multi-cmd⟩} (without correction, preamble only)\renewdif
\renewdif*{⟨cmd⟩}{⟨multi-cmd⟩} (with correction, preamble only)\renewdif*

These two commands are basically the same as \newdif and \newdif*. The
only difference is that \renewdif and \renewdif* will check whether ⟨cmd⟩ has
not been defined yet. If so, an error message will be given.

5

4 Using differential operators temporarily
\mathdif{⟨symbol⟩} (without correction, in math mode only)\mathdif
\mathdif*{⟨symbol⟩} (with correction, in math mode only)\mathdif*

These two commands can be used in math mode only, more specifically, after
\begin{document}. For example, $x\mathdif{\Delta}\psi$ will get 𝑥 Δ𝜓.

5 Examples
This section shows how to use this package properly in your document.

Take the two examples below:

\letdif{\Delta}{Delta} % Example 1, in preamble
\letdif{\nabla}{nabla} % Example 2, in preamble

Actually, the second example is more reasonable. Sometimes, we take “Δ” as
laplacian (equivalent to ∇2), while “Δ” can also be regarded as a variable or
function at some other times. Consequently, it’s better to save a different command
for “Δ” as laplacian while reserve \Delta as a command for an ordinary math
symbol “Δ”. However, in the vast majority of cases, “∇” is regarded as nabla
operator so there is no need to save a different command for “∇”. Then we can
correct the code above:

\letdif{\laplacian}{Delta} % Example 1, corrected, in preamble

With the xparse package, we can define the command in another method:

\letdif{\nabla}{nabla}
\DeclareDocumentCommand{ \laplacian }{ s }{
\IfBooleanTF{#1}{\mathdif{\Delta}}{\nabla^2}

}

Then \laplacian produces ∇2 and \laplacian* produces Δ.

Dealing with “+” and “−” If you input $-\d x$, you’ll get “− d𝑥” in your
document. However, if you think “−d𝑥” is better, you can input -{\d x}. The
“\d x” in a group will be regarded ordinary but not inner so that the small skip
will disappear. Maybe “− d𝑥” is just okay.

6 The source code
1 ⟨∗package⟩

Check the TEX format and provides the package name.
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{fixdif}[2023/01/27 Interface for defining differential operators.]

6

6.1 Control the skip between slashes and differential operator

Change the math code of slash (/) and backslash (\) so that the skip between
slashes and differential operators can be ignored.

4 \@ifpackageloaded{unicode-math}{\AtBeginDocument{%

If the unicode-math package has been loaded, use the XƎTEX/LuaTEX primitive
\Umathcode to change the type of slashes. The numeral “4” stands for “open”.

5 \Umathcode`\/="4 \symoperators "002F
6 \Umathcode"2044="4 \symoperators "2044
7 \Umathcode"2215="4 \symoperators "2215
8 \Umathcode"2F98="4 \symoperators "2F98
9 \Umathcode`\\="4 \symoperators "005C

10 \Umathcode"2216="4 \symoperators "2216
11 \Umathcode"29F5="4 \symoperators "29F5
12 \Umathcode"29F9="4 \symoperators "29F9
13 }}{

If the unicode-math package has not been loaded, use the TEX primitive \mathcode
to change the type of slashes. The \backslash needs to be redefined through
\delimiter primitive too.

14 \mathcode`\/="413D
15 \mathcode`\\="426E % \backslash
16 \def\backslash{\delimiter"426E30F\relax}
17 }

6.2 Patch the skips around the differential operator

The following \mup@tch patches the skip after the differential operator.\mup@tch

18 \def\mup@tch{\mathchoice{\mskip-\thinmuskip}{\mskip-\thinmuskip}{}{}{}}

The \s@beforep@tch patches the commands with star (\letdif*, etc).

19 \def\s@beforep@tch{\mathchoice{}{}{\mbox{}}{\mbox{}}}

6.3 Declare the package options

Declare the options of the package and execute them.

20 \DeclareOption{rm}{\@ifpackageloaded{unicode-math}
21 {\def\@@dif{\symrm{d}}}{\def\@@dif{\mathrm{d}}}}
22 \DeclareOption{normal}{\def\@@dif{d}}
23 \DeclareOption{partial}{\@tempswatrue}
24 \DeclareOption{nopartial}{\@tempswafalse}
25 \ExecuteOptions{rm,partial}
26 \ProcessOptions\relax

7

Control the behavior of \partial.

27 \if@tempswa
28 \AtEndOfPackage{\letdif{\partial}{partial}}
29 \fi

Define the \resetdfont command.\resetdfont

30 \gdef\resetdfont#1{\let\@@dif\relax%
31 \def\@@dif{#1{d}}}

6.4 Deal with the \d command

\@dif is the differential operator produced by \d in math mode. Here we prefer\@dif
\mathinner to \mathbin to make the skip.

32 \def\@dif{\mathinner{\@@dif}\mup@tch}

Restore the \d command in text by \d@accent with the \let primitive.\d@accent

33 \AtBeginDocument{\let\d@accent\d

Redefine the \d command. In text, we need to expand the stuffs after \d\d

34 \DeclareRobustCommand\d{\ifmmode\@dif\else\expandafter\d@accent\fi}}

6.5 User’s interface for defining new differential operators

Define the \letdif and \letdif* command. The internal version of \letdif is\letdif
\letdif* \@letdif, of \letdif* is \s@letdif.

35 \def\@letdif#1#2{\AtBeginDocument{%

#1 is the final command; #2 is the “control sequence name” of #1’s initial definition.
Here we create a command (\csname#2nonfif\endcsname) to restore #2.

36 \ifcsname #2nondif\endcsname\else%
37 \expandafter\let\csname #2nondif\expandafter\endcsname
38 \csname #2\endcsname%
39 \fi%

Finally let #1 be the new command.

40 \gdef#1{\mathinner{\csname #2nondif\endcsname}\mup@tch}%
41 }}

The definition of \s@letdif is similar, but with the patch for negative skips.

42 \def\s@letdif#1#2{\AtBeginDocument{%
43 \ifcsname #2nondif\endcsname\else%
44 \expandafter\let\csname #2nondif\expandafter\endcsname
45 \csname #2\endcsname%
46 \fi%
47 \gdef#1{\mathinner{\s@beforep@tch\csname #2nondif\endcsname\hbox{}}\mup@tch}%
48 }}
49 \def\letdif{\@ifstar\s@letdif\@letdif}

8

Define the \newdif and \newdif* commands. #1 is the final command; #2 is the\newdif
\newdif* “long” argument.

50 \long\def\@newdif#1#2{\AtBeginDocument{%
51 \ifdefined#1
52 \PackageError{fixdif}{\string#1 is already defined.}
53 {Try another command instead of \string#1.}%
54 \else
55 \long\gdef#1{\mathinner{#2}\mup@tch}%
56 \fi%
57 }}
58 \long\def\s@newdif#1#2{\AtBeginDocument{%
59 \ifdefined#1
60 \PackageError{fixdif}{\string#1 is already defined.}
61 {Try another command instead of \string#1.}%
62 \else
63 \long\gdef#1{\s@beforep@tch\mathinner{#2\mbox{}}\mup@tch}%
64 \fi%
65 }}
66 \def\newdif{\@ifstar\s@newdif\@newdif}

Define the \renewdif and \renewdif* commands.\renewdif
\renewdif*

67 \long\def\@renewdif#1#2{\AtBeginDocument{%
68 \ifdefined#1
69 \long\gdef#1{\mathinner{#2}\mup@tch}%
70 \else
71 \PackageError{fixdif}{\string#1 has not been defined yet.}
72 {You should use \string\newdif instead of \string\renewdif.}%
73 \fi%
74 }}
75 \long\def\s@renewdif#1#2{\AtBeginDocument{%
76 \ifdefined#1
77 \long\gdef#1{\s@beforep@tch\mathinner{#2\mbox{}}\mup@tch}%
78 \else
79 \PackageError{fixdif}{\string#1 has not been defined yet.}
80 {You should use \string\newdif instead of \string\renewdif.}%
81 \fi%
82 }}
83 \def\renewdif{\@ifstar\s@renewdif\@renewdif}

6.6 In-document commands: \mathdif and \mathdif*

84 \def\@mathdif#1{\mathinner{#1}\mup@tch}
85 \def\s@mathdif#1{\s@beforep@tch\mathinner{#1\mbox{}}\mup@tch}
86 \DeclareRobustCommand\mathdif{\@ifstar\s@mathdif\@mathdif}

End of the package.
87 ⟨/package⟩

9

	Contents
	1 The background
	2 Introduction
	2.1 When using unicode-math
	2.2 When using hyperref
	2.3 Basic commands and package options

	3 Define commands for differential operators
	3.1 Define commands with a single command name
	3.2 Define commands with multi commands or a string

	4 Using differential operators temporarily
	5 Examples
	6 The source code
	6.1 Control the skip between slashes and differential operator
	6.2 Patch the skips around the differential operator
	6.3 Declare the package options
	6.4 Deal with the \d command
	6.5 User's interface for defining new differential operators
	6.6 In-document commands: \mathdif and \mathdif*

