The fixdif Package

Zhang Tingxuan

2023/01/27 Version 1.6*

Abstract

The fixdif package redefines the $\backslash d$ command in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ and provides an interface to define commands for differential operators.

The package is compatible with pdfT $\mathrm{E}_{\mathrm{E}} \mathrm{X}, \mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{Lua}_{\mathrm{E}} \mathrm{X}$. Furthermore, the package is compatible with unicode-math package in $\mathrm{X}_{\mathrm{H}_{\mathrm{E}}} \mathrm{T}_{\mathrm{E}}$ and LuaTEX.

Contents

1 The background 2
2 Introduction 3
2.1 When using unicode-math . 3
2.2 When using hyperref . 3
2.3 Basic commands and package options 3

3 Define commands for differential operators 4
3.1 Define commands with a single command name 4
3.2 Define commands with multi commands or a string 5

4 Using differential operators temporarily 6
5 Examples 6
*https://github.com/AlphaZTX/fixdif
6 The source code 6
6.1 Control the skip between slashes and differential operator 7
6.2 Patch the skips around the differential operator 7
6.3 Declare the package options 7
6.4 Deal with the $\backslash \mathrm{d}$ command 8
6.5 User's interface for defining new differential operators 8
6.6 In-document commands: \mathdif and \mathdif* 9

1 The background

It's usually recommended that one should reserve a small skip between the differential operator and the expression before it ${ }^{1}$. Take the following cases as an example:

$$
f(x) \mathrm{d} x \quad \text { and } \quad f(x) \mathrm{d} x .
$$

We usually consider that the example on the right side is better than the one on the left side. The little skip between $f(x)$ and $\mathrm{d} x$ can be regarded as a symbol of the product of $f(x)$ and $\mathrm{d} x$.

So some users prefer to define a macro like this:
}\)
This macro works well in "display math" and "text math", but we still face the following three problems:

1. The skip before "d" would still be reserved in "text fraction", which is regarded bad. For example, $\$ \backslash \mathrm{~d} y / \backslash \mathrm{d} x \$$ produces $\mathrm{d} y / \mathrm{d} x$;
2. This \d command cannot be used out of math mode. In other words, \d\{o\} would not produce " O " in text;
3. The skip between " d " and the expression before it can be regarded as a product operator. A product operator is definitely a binary operator.
Take $\backslash \operatorname{cdot}(\cdot)$ as an example. A binary operator reserves small skips before and after itself when in "display math" or "text math" such as $x \cdot y$, but the skips will disappear in "script math" or "script script math" such as $a^{x \cdot y}$. Thus the small skip should also disappear in script, but $\$ \mathrm{a} \wedge\{\mathrm{f}(\mathrm{x}) \backslash \mathrm{d} x\} \$$ still produces $a^{f(x) \mathrm{d} x}$ but not $a^{f(x) \mathrm{d} x}$.

To solve these problems, you can try this package.

[^0]
2 Introduction

To load this package, write
ackage\{fixdif\}inthepreamble.Inyourdocument,$\backslash\left[f(x)\backslashdx,\backslashquad\backslashfrac\{\backslashdy\}\{\backslashdx\},\backslashquad\backslashdy/\backslashdx,\backslashquada_\{y\backslashdx\}.\backslash\right]$willproduceundefined

$$
f(x) \mathrm{d} x, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}, \quad \mathrm{~d} y / \mathrm{d} x, \quad a^{y \mathrm{~d} x}
$$

2.1 When using unicode-math

If you are using unicode-math package with $\mathrm{X}_{-1} \mathrm{~T}_{\mathrm{E}} \mathrm{X} / \mathrm{LuaT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ in your document, you must pay attention to the following items:

- If you want to use amsmath package, make sure that the unicode-math package is loaded after amsmath.
- You had better specify the math font through the \setmathfont command provided by unicode-math in order to avoid bad skip in text fraction like $\mathrm{d} y / \mathrm{d} x$.
- Load the fixdif package after unicode-math.

Therefore the correct order is

```
\usepackage{amsmath}
\usepackage{unicode-math}
\setmathfont{...}[...]
\usepackage{fixdif}
```


2.2 When using hyperref

If you want to use the hyperref package simultaneously, remember to load hyperref before the fixdif package, otherwise the hyperref package will cause conflicts.

2.3 Basic commands and package options

\d The fixdif package provides a \d command for the differential operator "d" in math mode. When in text, \d behaves just like the old $\backslash d$ command in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ or plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as an accent command. For example,
$\$ \backslash \mathrm{~d} x \$$ and $\backslash \mathrm{d} \mathrm{x}$
will produce " $\mathrm{d} x$ and x ".

Set the font of erearetwobasicpackageoptionstocontrolthe\d'sstyleinmathmode-rmandnormal.Thedefaultoptionisrm,inwhichcase$\$\mathrm{f}(\mathrm{x})\backslash\mathrm{d}\mathrm{x}\$$produces$f(x)\mathrm{d}x$.Ifyouchosethenormaloption,forexample\usepackage[normal]\{fixdif\}$\$\mathrm{f}(\mathrm{x})\backslash\mathrm{d}\mathrm{x}\$$wouldproduces$f(x)dx$.\resetdfontBesidestheprevioustwooptionalfonts,youcanresetthefontofdifferentialoperator"d"through\resetdfontcommandinpreamble:\resetdfont\{\mathsf\}then$\backslash\mathrm{d}\mathrm{x}$willproduce$\mathrm{d}x$.\partialControlthebehaviorof\partialIndefault,\partialwillalsoberegardedasadifferentialoperatorinthispackage.Ifyoudon'tlikethisdefaultsetting,youcanusethenopartialoption:\usepackage[nopartial]\{fixdif\}undefined

If you use the default setting, \partialnondif yields the ordinary symbol ∂.

3 Define commands for differential operators

Attention! The commands in this section can be used in preamble only!

3.1 Define commands with a single command name

\backslash letdif \backslash letdif $\{\langle c m d\rangle\}\{\langle c s n a m e\rangle\}$ (preamble only)
The \letdif command has two arguments - the first is the newly-defined command and the second is the control sequence name of a math character, that is, a command without its backslash. For example,
\letdif\{\vr\}\{delta\}
then $\backslash \mathrm{vr}$ will produce a δ (\backslash delta) with automatic skip before it.
Through the \letdif command, we can redefine a math character command by its name. For example,
\letdif\{\delta\}\{delta\}
then \delta itself will be a differential operator.
The second argument \langle csname \rangle of \letdif command can be used repeatedly. If you want to get the ordinary symbol of $\backslash\langle$ csname \rangle, you can input \backslash partialnondif $\backslash\langle$ csname \rangle nondif in math mode. For example, in default, \partialnondif yields
the old partial symbol " ∂ ".
\backslash letdif* \letdif*\{〈cmd $\rangle\}\{\langle c s n a m e\rangle\}$ (preamble only)

This command is basically the same as \letdif, but this command will patch a correction after the differential operator. This is very useful when a math font is setted through unicode-math package. For example,

```
\usepackage{unicode-math}
\setmathfont{TeX Gyre Termes Math}
\usepackage{fixdif}
\letdif{\vr}{updelta}
```

this will cause bad negative skip after \vr, but if you change the last line into
\letdif*\{\vr\}\{updelta\}
you will get the result correct.

3.2 Define commands with multi commands or a string

\newdif \backslash newdif $\{\langle c m d\rangle\}\{\langle m u l t i-c m d\rangle\}$
(without correction, preamble only)
\backslash newdif* \newdif*\{〈cmd $\rangle\}\{\langle$ multi-cmd $\rangle\}$
(with correction, preamble only)
The first argument of these commands is the newly-defined command; and the second argument should contain more than one tokens. For example, if you have loaded the xcolor package, you can use the following line:
\newdif $\{\backslash$ redsfd $\}\{\backslash$ textsf $\{\backslash \operatorname{color}\{$ red $\} d\}\}$

Then you get the \redsfd as a differential operator. Take another example,
\newdif $\{\backslash \mathrm{D}\}\{\backslash$ mathrm\{D\}\}

Then you get $\backslash D$ for an uppercase upright " D " as a differential operator.
If your second argument contains only one command like \Delta, it's recommended to use \letdif or \letdif* instead.
\backslash newdif and \backslash newdif* will check whether $\langle c m d\rangle$ has been defined already. If so, an error message will be given.
\backslash renewdif \backslash renewdif $\{\langle c m d\rangle\}\{\langle m u l t i-c m d\rangle\} \quad$ (without correction, preamble only)
\backslash renewdif* \renewdif*\{
These two commands are basically the same as \newdif and \newdif*. The only difference is that \renewdif and \renewdif* will check whether $\langle c m d\rangle$ has not been defined yet. If so, an error message will be given.

4 Using differential operators temporarily

\mathdif \mathdif $\{\langle$ symbol $\rangle\}$
\mathdif* \mathdif*\{〈symbol $\rangle\}$
(without correction, in math mode only)
(with correction, in math mode only)

These two commands can be used in math mode only, more specifically, after \backslash begin\{document\}. For example, $\$ \mathbf{x} \backslash$ mathdif $\{\backslash$ Delta \backslash psi $\$$ will get $x \Delta \psi$.

5 Examples

This section shows how to use this package properly in your document.
Take the two examples below:

```
\letdif{\Delta}{Delta} % Example 1, in preamble
\letdif{\nabla}{nabla} % Example 2, in preamble
```

Actually, the second example is more reasonable. Sometimes, we take " Δ " as laplacian (equivalent to ∇^{2}), while " Δ " can also be regarded as a variable or function at some other times. Consequently, it's better to save a different command for " Δ " as laplacian while reserve \Delta as a command for an ordinary math symbol " Δ ". However, in the vast majority of cases, " ∇ " is regarded as nabla operator so there is no need to save a different command for " ∇ ". Then we can correct the code above:
\letdif\{\laplacian\}\{Delta\} \% Example 1, corrected, in preamble
With the xparse package, we can define the command in another method:

```
\letdif{\nabla}{nabla}
\DeclareDocumentCommand{ \laplacian }{ s }{
    \IfBooleanTF{#1}{\mathdif{\Delta}}{\nabla^2}
}
```

Then \laplacian produces ∇^{2} and \laplacian* produces Δ.
Dealing with "+" and "-" If you input $\$-\backslash \mathrm{d} \mathbf{x} \$$, you'll get " $-\mathrm{d} x$ " in your document. However, if you think " $-\mathrm{d} x$ " is better, you can input $-\{\backslash \mathrm{d} x\}$. The "\d x" in a group will be regarded ordinary but not inner so that the small skip will disappear. Maybe " $-\mathrm{d} x$ " is just okay.

6 The source code
 $1\langle *$ package〉

Check the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ format and provides the package name.

```
2\NeedsTeXFormat{LaTeX2e}
3\ProvidesPackage{fixdif}[2023/01/27 Interface for defining differential operators.]
```


6.1 Control the skip between slashes and differential operator

Change the math code of slash (/) and backslash (\backslash) so that the skip between slashes and differential operators can be ignored.

```
4\@ifpackageloaded{unicode-math}{\AtBeginDocument{%
```

If the unicode-math package has been loaded, use the $\mathrm{X}_{-} \mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{Lua} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ primitive \Umathcode to change the type of slashes. The numeral "4" stands for "open".

```
\Umathcode`\/="4 \symoperators "002F
\Umathcode"2044="4 \symoperators "2044
\Umathcode"2215="4 \symoperators "2215
\Umathcode"2F98="4 \symoperators "2F98
\Umathcode`\\="4 \symoperators "005C
\Umathcode"2216="4 \symoperators "2216
\Umathcode"29F5="4 \symoperators "29F5
\Umathcode"29F9="4 \symoperators "29F9
}}{
```

If the unicode-math package has not been loaded, use the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primitive \backslash mathcode to change the type of slashes. The \backslash needs to be redefined through \delimiter primitive too.

```
\mathcode`\/="413D
\mathcode`\\="426E % \backslash
\def\backslash{\delimiter"426E30F\relax}
```

$17\}$

6.2 Patch the skips around the differential operator

\mup@tch The following \mup@tch patches the skip after the differential operator.

```
18\def\mup@tch{\mathchoice{\mskip-\thinmuskip}{\mskip-\thinmuskip}{}{}{}}
```

The \s@beforep@tch patches the commands with star (\letdif*, etc).
$19 \backslash \operatorname{def} \backslash s @ b e f o r e p @ t c h\{\backslash$ mathchoice $\}\}\{\backslash \operatorname{mbox}\}\}\{\backslash \operatorname{mbox}\}\}\}$

6.3 Declare the package options

Declare the options of the package and execute them.

```
20 \DeclareOption{rm}{\@ifpackageloaded{unicode-math}
21 {\def\@@dif{\symrm{d}}}{\def\@@dif{\mathrm{d}}}}
22\DeclareOption{normal}{\def\@@dif{d}}
23\DeclareOption{partial}{\@tempswatrue}
24\DeclareOption{nopartial}{\@tempswafalse}
25\ExecuteOptions{rm,partial}
26\ProcessOptions\relax
```

Control the behavior of \partial.
27 \if@tempswa
28 \AtEndOfPackage\{\letdif $\{\backslash$ partial\}\{partial\}\}
29 \fi
\resetdfont Define the \resetdfont command.

```
30\gdef\resetdfont#1{\let\@@dif\relax%
```

31 \def \@@dif\{\#1\{d\}\}\}

6.4 Deal with the \d command

\@dif \@dif is the differential operator produced by \d in math mode. Here we prefer \backslash mathinner to \mathbin to make the skip.
$32 \backslash$ def \@dif $\{\backslash$ mathinner $\{\backslash @ @ d i f\} \backslash m u p @ t c h\}$
\d@accent Restore the \d command in text by \d@accent with the \let primitive.
$33 \backslash$ AtBeginDocument \{\let\d@accent \d
\d Redefine the \d command. In text, we need to expand the stuffs after \d
34 \DeclareRobustCommand \d\{\ifmmode\@dif \else\expandafter\d@accent $\backslash f i\}\}$
6.5 User's interface for defining new differential operators
\letdif Define the \letdif and \letdif* command. The internal version of \letdif is \letdif* \@letdif, of \letdif* is \s@letdif.

35 \def \@letdif\#1\#2\{\AtBeginDocument $\{\%$
\#1 is the final command; \#2 is the "control sequence name" of \#1's initial definition. Here we create a command (\csname\#2nonfif \endcsname) to restore \#2.

```
\ifcsname #2nondif\endcsname\else%
\expandafter\let\csname #2nondif \expandafter\endcsname
    \csname #2\endcsname%
\fi%
```

Finally let \#1 be the new command.

```
\gdef#1{\mathinner{\csname #2nondif\endcsname}\mup@tch}%
```

41 \}\}

The definition of \s@letdif is similar, but with the patch for negative skips.

```
\def\s@letdif#1#2{\AtBeginDocument{%
    \ifcsname #2nondif\endcsname\else%
    \expandafter\let\csname #2nondif\expandafter\endcsname
        \csname #2\endcsname%
    \fi%
    \gdef#1{\mathinner{\s@beforep@tch\csname #2nondif\endcsname\hbox{}}\mup@tch}%
48}}
49\def\letdif{\@ifstar\s@letdif\@letdif}
```

\newdif Define the \newdif and \newdif* commands. \#1 is the final command; \#2 is the \newdif* "long" argument.

```
0 \long\def\@newdif#1#2{\AtBeginDocument{%
    \ifdefined#1
        \PackageError{fixdif}{\string#1 is already defined.}
            {Try another command instead of \string#1.}%
    \else
        \long\gdef#1{\mathinner{#2}\mup@tch}%
    \fi%
}}
\long\def\s@newdif#1#2{\AtBeginDocument{%
    \ifdefined#1
    \PackageError{fixdif}{\string#1 is already defined.}
            {Try another command instead of \string#1.}%
    \else
        \long\gdef#1{\s@beforep@tch\mathinner{#2\mbox{}}\mup@tch}%
    \fi%
65}}
66\def\newdif{\@ifstar\s@newdif\@newdif}
```

 \renewdif Define the \renewdif and \renewdif* commands.
 \renewdif*
67 \long\def \@renewdif\#1\#2\{\AtBeginDocument\{\%
\ifdefined\#1
\long\gdef\#1\{\mathinner\{\#2\}\mup@tch\}\%
\else
\PackageError\{fixdif\}\{\string\#1 has not been defined yet.\}
\{You should use \string\newdif instead of \string\renewdif.\}\%
\fi\%
4\}
\long\def\s@renewdif\#1\#2\{\AtBeginDocument\{\%
\ifdefined\#1
\long\gdef\#1\{\s@beforep@tch \mathinner\{\#2\mbox\{\}\}\mup@tch\}\%
\else
\PackageError\{fixdif\}\{\string\#1 has not been defined yet.\}
$\{$ You should use \string\newdif instead of \string\renewdif.\}\%
\fi\%
\}\}
83 \def $\backslash r e n e w d i f\{\backslash @ i f s t a r \backslash s @ r e n e w d i f \backslash @ r e n e w d i f\}$

6.6 In-document commands: \mathdif and \mathdif*

$84 \backslash$ def \@mathdif\#1\{\mathinner\{\#1\} \backslash mup@tch $\}$
$85 \backslash$ def \s@mathdif\#1\{\s@beforep@tch \backslash mathinner $\{\# 1 \backslash \operatorname{mbox}\}\} \backslash$ mup@tch $\}$
$86 \backslash$ DeclareRobustCommand\mathdif\{\@ifstar\s@mathdif \@mathdif\}
End of the package.
87 〈/package〉

[^0]: ${ }^{1}$ See https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typese t-a-differential-operator.

