The filehook Package

Martin Scharrer
martin@scharrer-online.de

CTAN: http://www.ctan.org/pkg/filehook

Version v0.7 —2020/02/03

Abstract

This package provides hooks for input files. Document and package authors
can use these hooks to execute code at begin or the end of specific or all input
files.

1 Introduction

These package changes some internal I5IgX macros used to load input files so that they
include ‘hooks’ A hook is an (internal) macro executed at specific points. Normally it
is initially empty, but can be extended using an user level macro. The most common
hook in BIEX is the ‘At-Begin-Document’ hook. Code can be added to this hook using
\AtBeginDocument{(TgX code)}.

This package provides hooks for files read by the BIgX macros \input, \include
and \InputIfFileExists aswell as (since v0.3 from 2010/12/20) for class and pack-
age files, i.e. macros \documentclass, \LoadClassWithOptions and \LoadClass
as well as \usepackage, \RequirePackageWithOptions and \RequirePackage.
Note that \InputIfFileExists, and therefore its hooks, is used by the aforemen-
tioned macros. In v0.4 from 2011/03/01 special hooks where added which are ex-
ecuted for every read file, but will not be executed a second time by the internal
\InputIfFileExists inside \input and \include.

For all files a ‘AtBegin’ and a ‘AtEnd’ hook is installed. For \include files there is
also a ‘After’ hook which it is executed after the page break (\clearpage) is inserted
by the \include code. In contrast, the ‘AtEnd’ hook is executed before the trailing
page break and the ‘AtBegin’ hook is executed after the leading page break. The
‘AtBegin’ hook can be used to set macros to file specific values. These macros can be
reset in the ‘AtEnd’ hook to the parent file values. If these macros appear in the page
header or footer they need to be reset ‘After’ hook to ensure that the correct values
are used for the last page.

In addition to general hooks which are executed for all files of there type, file
specific one can be defined which are only executed for the named file. The hooks for
classes and packages are always specific to one file.

Older versions of this package provided the file name as argument #1 for the
general hooks. This has been changed in v0.4 from 2011/01/03: the hook code is
stored and executed without modifications, i.e. macro argument characters (#) are

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/filehook

now handled like normal and don’t have to be doubled. See section 5 for information
how to upgrade older documents.

2 Usage

The below macros can be used to add material (TgX code) to the related hooks. All
‘AtBegin’ macros will append the code to the hooks, but the ‘AtEnd’ and ‘After’ macros
will prefix the code instead. This ensures that two different packages adding material
in ‘AtBegin’/‘AtEnd’ pairs do not overlap each other. Instead the later used package
adds the code closer to the file content, ‘inside’ the material added by the first package.
Therefore it is safely possible to surround the content of a file with multiple BIgX
environments using multiple ‘AtBegin’/‘AtEnd’ macro calls. If required inside another
package a different order can be enforced by using the internal hook macros shown
in the implementation section.

Every File

\AtBeginOfEveryFile{(TgX code)}
\AtEndOfEveryFile{(TgX code)}

Sometime certain code should be executed at the begin and end of every read file,
e.g. pushing and popping a file stack. The ‘At...OfFiles’ hooks already do a good
job here. Unfortunately there is the issue with the \clearpage in \include. The
\AtEnd0fFiles is executed before it, which can cause issues with page headers and
footers. A workaround, e.g. done by older versions of the currfile package, is to
execute the code twice for include files: once in the include related hooks and once
in the 0OfFiles hooks.

A better solution for this problem was added in v0.4 from 2011/01/03: the
EveryFile hooks will be executed exactly once for every file, independent if it is read
using \input, \include or \InputIfFileExists. Special care is taken to suppress
them for the \InputIfFileExists inside \input and \include.

These hooks are located around the more specific hooks: For \input files the
‘Begin’ hook is executed before the \AtBeginOf Inputs hook and the ‘End’ hook after
the \AtEndOf Inputs. Similarly, for \include files the ‘Begin’ hook is executed be-
fore the \AtBeginOfIncludes hook and the ‘End’ hook after the \AfterIncludes
(1). For files read by \InputIfFileExists (e.g. also for \usepackage, etc.) they
are executed before and after the \AtBeginOfFiles and \AtEndOfFiles hooks,
respectively. Note that the \AtBeginOfEveryFile hook is executed before the
\AtBeginOfPackageFile/\AtBeginOfClassFile hooks and thatthe \AtEndOfEveryFile
hookis executed also before the hooks \AtEndOfPackageFile/\AtEnd0fClassFile.
Therefore the ‘Every’ and ‘PackageFile’/‘ClassFile’ hooks do not nest correctly like all
other hooks do.

All Files

\AtBeginOfFiles{(TX code)}
\AtEndOfFiles{(7gX code)}

These macros add the given {(code)} to two hooks executed for all files read us-
ing the \InputIfFileExists macro. This macro is used internally by the \input,
\include and \usepackage/\RequirePackage macros. Packages and classes might
use it to include additional or auxiliary files. Authors can exclude those files from the
hooks by using the following code instead:

\IfFileExists{(file name)}{\@input\@filefQund}{}

\AtBeginOfFile{(file name)}{(TgX code)}
\AtEnd0fFile{(file name)}{(TgX code)}

Like the \. . .0fIncludeFile{(file name)}{(TgX code)} macros above, just for ‘all’
read files. If the (file name) does not include a file extension it will be set to ‘. tex’.
The ‘all files’ hooks are closer to the file content than the \input and \include
hook, i.e. the \AtBeginOfFiles comes after the \AtBeginOfIncludes and the
\AtEnd0fFiles comes before the \AtEnd0f Includes hook.
The following figure shows the positions of the hooks inside the macro:

\InputIfFileExists:

Hook: AtBeginOfEveryFile
Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Include Files

\AtBeginOf Includes{(TgX code)}
\AtEnd0fIncludes{(7gX code)}
\AfterIncludes{(1gX code)}

As described above the ‘AtEnd’ hook is executed before and the ‘After’ hook is executed
after the trailing \clearpage. Note that material which appears in the page header
or footer should be updated in the ‘After’ hook, not the ‘AtEnd’ hook, to ensure that
the old values are still valid for the last page.

\AtBeginOfIncludeFile{(file name)}{(TgX code)}
\AtEndO0fIncludeFile{(file name)}{(1gX code)}
\AfterIncludeFile{(file name)}{(TgX code)}

These file-specific macros take the two arguments. The (code) is only executed for
the file with the given (file name) and only if it is read using \include. The (file
name) should be identical to the name used for \include and not include the ‘. tex’

extension. Files with a different extension are neither supported by \include nor
this hooks.

The following figure shows the positions of the hooks inside the macro:

\include:

\clearpage (implicit)

Hook: AtBeginOfEveryFile

Hook: AtBeginOfincludeFile{(file name)}
Hook: AtBeginOfIncludes

\InputIfFileExists:

Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}

Hook: AtEndOflncludes

Hook: AtEndOfincludeFile{(file name)}
\clearpage (implicit)

Hook: Afterlncludes

Hook: AfterIncludeFile{(file name)}
Hook: AtEndOfEveryFile

Input Files

\AtBeginOf Inputs{(7gX code)}
\AtEndOf Inputs{(7gX code)}

Like the \ . . .0f Includes{code} macros above, just for file read using \input.

\AtBeginOf InputFile{(file name)}{{TgX code)}
\AtEndOf InputFile{(file name)}{({TX code)}

Like the \. . .0fIncludeFile{(file name)}{code} macros above, just for file read
using \input. If the (file name) does not include a file extension it will be set to
‘. tex’.

The following figure shows the positions of the hooks inside the macro:

\input:

Hook: AtBeginOfEveryFile

Hook: AtBeginOfinputFile{(file name)}

Hook: AtBeginOflnputs
\InputIfFileExists:

Hook: AtBeginOfFile{(file name)}
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}

Hook: AtEndOflnputs
Hook: AtEndOflnputFile{(file name)}
Hook: AtEndOfEveryFile

Package Files

\AtBeginOfPackageFilex*{(package name)}{(TgX code)}
\AtEndOfPackageFilex*{(package name)}{(TgX code)}

This macros install the given (7gX code) in the ‘AtBegin’ and ‘AtEnd’ hooks of the given
package file. The \AtBeginOfPackageFile simply executes \AtBeginOfFile{(package
name) . sty+{(TgXcode)}. Special care is taken to ensure that the ‘AtEnd’ code is exe-
cuted after any code installed by the package itself using the BIgX macro \AtEnd0fPackage.
Note that it is therefore executed after the ‘AtEndOfEveryFile’ hook. If the starred
version is used and the package is already loaded the code is executed right away.

The following figure shows the positions of the hooks inside the macros:

\usepackage/\RequirePackage/\RequirePackageWithOptions:

\InputIfFileExists:

Hook: AtBeginOfEveryFile

Hook: AtBeginOfFile{(file name)}

(includes AtBeginOfPackageFile{(file name)})
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Hook: AtEndOfPackage (BEX hook)
Hook: AtEndOfPackageFile{(file name)}

Class Files

\AtBeginOfClassFilex*{(class name)}{(1gX code)}
\AtEndO0fClassFilex*{(class name)}{(TgX code)}

This macros install the given (7gX code) in the ‘AtBegin’ and ‘AtEnd’ hooks of the given
class file. They work with classes loaded using \LoadClass, \LoadClassWithOptions
and also \documentclass. However, in the latter case filehook must be loaded
using \RequirePackage beforehand. The macro \AtBeginOfClassFile simply
executes \AtBeginOfFile{(class name).cls}{. . .}. Special care is taken to ensure
that the ‘AtEnd’ code is executed after any code installed by the class itself using
the BTgX macro \AtEndOfClass. Note that it is therefore executed after the ‘AtEnd-
OfEveryFile’ hook. If the starred version is used and the class is already loaded the
code is executed right away.
The following figure shows the positions of the hooks inside the macros:

\documentclass/\LoadClass/\LoadClassWithOptions:

\InputIfFileExists:

Hook: AtBeginOfEveryFile

Hook: AtBeginOfFile{(file name)}
(includes AtBeginOfClassFile{(file name)})
Hook: AtBeginOfFiles

Hook: AtEndOfFiles
Hook: AtEndOfFile{(file name)}
Hook: AtEndOfEveryFile

Hook: AtEndOfClass (BEX hook)
Hook: AtEndOfClassFile{(file name)}

2.1 Clearing Hooks

\ClearHook\At...Of...(argument(s) of hook macro)

New in v0.5
2011/01/09

Using this macro existing hooks can be globally cleared, i.e. set to empty. This should
be used with care because it will also remove all (user level) hook code set by packages
into this hook. Note that the special hook code installed by the packages currfile
and svn-multi as well as the compatibility code described in section 4 is not affected.
The syntax for this macro is the same as for the normal hook macros only with a
leading \ClearHook, where the (code) argument is mandatory but its content is
ignored. Examples:

\ClearHook\AtBeginOf InputFile{(file name)}{(ignored)}

\ClearHook\AtBeginOfFiles{(ignored)}

3 PGF Key Interface

An auxiliary package pgf-filehook is provided which adds support for the versatile
pgfkeys interface. This interface is heavily used by pgf (portable graphics format)
and its higher level format TikZ. It allows the definition and execution of styles and
commands (macros) using a {key)=(value) format. Main benefits over similar formats
is the support for a “directory structure” inside the key and the ability to call functions
on the value before it gets processed by the key. The main way to define and execute
keys is the macro \pgfkeys{(key)=(value), . . .}. TikZ provides the similar macro
\tikzstyle which defaults to the main path ‘/tikz’. More detailed information can
be found in the official pgfmanual.

All filehook macros described in the previous section (\AtXXX0£YYY) can also
be accessed using the pgf keys directory ‘/filehook’, where all hook type have an
own sub-directory (/filehook/YYY) in which the hooks for this type are located
(/filehook/YYY/AtXXX). For example \AtBeginOf Inputs{(code)} can also be ac-
cessed using

\pgfkeys{/filehook/Inputs/AtBegin={(code)}}
or \AfterIncludeFile{(file name)}{{code)} as

\pgfkeys{/filehook/IncludeFile/After={(file name)}{{code)}}
as well as \AtEnd0fClassFilex{(file name)}{{code)} as

\pgfkeys{/filehook/ClassFile/AtEnd=*{(file name)}{(code)}}.

\pgffilehook{(key)=(value), ...}

This macro is like \pgfkeys but defaults to the ‘/filehook’ directory, so that it can

be dropped from the (key). Note that pgfkeys also supports to “change the directory”
using (directory)/ . cd, so that it does not need to be included in further keys. All
directories are defined as ‘is family’ so that the /. cd is assumed if the directory is
used on its own. For example

\pgfkeys{/filehook/Inputs/AtBegin={(code)},/filehook/Inputs/AtEnd={(code)}}
can be shorten as
\pgffilehook{Inputs,AtBegin={(code)},AtEnd={{code)}}.

Some of the pgf key functions can become useful, e.g. if the hook code should be
expanded before it is added to the hook:
\pgffilehook{EveryFile/AtBegin/.expand once={\headertext \currfilenamel}}
will expand the first macro \headertext (actually the first token) in the hook code
once (using \expandafter), but not any other tokens. In this example future changes
of \headertext would not have any effect on the hook code, but \currfilename
will be expanded for every file. Other useful functions are ‘. expand twice’ (expand
the first token twice) and ‘. expanded’ (expand the whole hook code using \edef).

4 Compatibility Issues with Classes and other Packages

The filehook package might clash with other packages or classes which also redefine
\InputIfFileExists orinternal macros used by \include and \input (which are
\@input@ and \@iinput). Special compatibility code is in place for the packages
listed below (in their current implementation). If any other unknown definition of
\InputIfFileExists is found an error will be raised. The package option ‘force’
can be used to prevent this and to force the redefinition of this macro. Then any
previous modifications will be lost, which will most likely break the other package.
Table 1 lists all packages and classes which where found do be incompatible. The
packages auxhook, stampinclude, rerunfilecheck and excludeonly redefine
one or more of the above macros but have been found compatible with filehook.
Please do not hesitate to inform the author of f i1ehook of any encountered problems
with other packages.

4.1 Supported Classes and Packages

The following classes and packages are actively supported and should work as normal
when used together with filehook. Please note that most of them are incompatible
to each other, which filehook might not fix.

memoir

The memoir class redefines \InputIfFileExists to add own hooks identical to the
‘At...OfFiles’ hooks (there called \AtBeginFile and \AtEndFile). This hooks will
be moved to the corresponding ones of £ilehook and will keep working as normal.
Since v0.4 from 2011/01/03 this modification will be also applied when the filehook
package is loaded (using \RequirePackage) before the memoir class. However, the
hooks from filehook need to be temporally disabled while reading the memoir class.
They will not be triggered for all files read directly by this class, like configuration and
patch files. Note that the ‘At...OfClassFile’ hooks still work for the memoir class file
itself. In fact they are used to restore the default definition of \InputIfFileExists
at the begin and patch it at the end of the class file. The filehook package should be
loaded either before the class (using \RequirePackage) or directly after it. Because
the memoir hook code is moved to the filehook hooks this class should then be
compatible with below packages if memoir and filehook are loaded before them.

scrlfile

The scr1file package from the koma-script bundle redefines \InputIfFileExists
to allow file name aliases and to also add hooks. If required it should be loaded before
filehook, which will add its hooks correctly to the modified definition. Since v0.4
from 2011/01/03 this modification will be also applied when the scrlfile package
isloaded after filehook.

fink

The filehook and currfile packages where written as replacements for the fink
package, where filehook provides the necessary hooks for currfile. The fink
package has now been deprecated in favour of currfile and should not be used
anymore. The fink compatibility code has been removed from filehook and both

Table 1: Incompatible packages and classes

Name Type Note Affected Hooks

paper class with journal option All hocks for \include'd files
journal class All hocks for \include'd files
gmparts package \include hooks

newclude package formallyincludex All hocks for \include'd files

cannot be used successfully together as both redefine the \InputIfFileExists
macro.

listings

The listings package uses \input inside \1stinputlisting. Therefore the InputFile(s)
and File(s) hooks are also triggered for these files. Please note that this hooks are
executing inside a verbatim environment. While the code in the hook is not affected
(because it was added outside the verbatim environment), any further code read using

any input macro (\input, \@input, \@@input (TgX’s \input), ...) will be processed
verbatim and typeset as part of the listing. Since v0.4 this macro is automatically
patched so \@input is used instead to avoid this issue.

4.2 Other Classes and Packages
jmlrbook

The jmlrbook class from the jmlr bundle temporary redefines \InputIfFileExists
to import papers. The ‘original’ definition is saved away at load time of the package
and is used internally by the new definition. This means that the hooks will not be
active for this imported files because filehook is loaded after the class. This should
not affect its normal usage. Note that, in theory, the package could be loaded before
\documentclass using \RequirePackage to enable the file hooks also for these
files.

BIEX’s \bibliography

The standard BIEX macro \bibliography uses the same internal macro \@input®@
to read a file as \include does. The ‘include’ hooks will also be executed for this
.bbl file if the macro is directly followed by \clearpage, because the filehook
code will assume it is executed inside \include. This rare case can be easily avoided
by placing a \relax after \bibliography{...}.

5 Upgrade Guide

This sections gives information for users of older versions of this package which
unfortunately might not be 100% backwards compatible.

Upgrade to v0.4 - 2011/01/03

¢ The macro \AfterIncludeFile was misspelled as \AfterOfIncludeFile in
the implementation of earlier versions, but not in the documentation. This
has now be corrected. Please adjust your code to use the correct name and to
require the filehook package from 2011/01/03.

» All general hooks (the one not taking a file argument) used to have an implicit
argument #1 which was expanded to the file name (i.e. the argument of \input
etc.). This has now be changed, so that macro arguments are not handled
special in hook code, which e.g. simplifies macro definitions. Older hook code
might need to change ## to # to compensate for this change. If the file name is
required the macros (e.g. \currfilename) of the partner package currfile
should be used. These macros are available everywhere including in all hocks.

10

6 Implementation

%<!COPYRIGHT>
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\ProvidesPackage{filehook}[7
%<!DATE>
%»<!VERSION >
%<*DRIVER >

2099/01/01 develop
%</DRIVER >

Hooks for input files]

6.1 Options
\newif\iffilehook@force

\DeclareOption{force}{\filehook@forcetruel
\ProcessOptions\relax

6.2 General stuff

\iffilehook@newfmt

\newif\iffilehook@newfmt
\@ifl@t@r\fmtversion{2019/10/01}{\filehook@newfmttrue,
}{\filehook@newfmtfalse}

\filehook@let

#1: <macro name 1>
#2: <macro name 2>

\def\filehook@let#1#2{
\expandafter\ifx\csname #2\spacel\endcsnamelrelax
\expandafter\let\csname #1\expandafter\endcsname\,/
csname #2\endcsname
\else
\expandafter\def\csname #1\expandafter\endcsname\,
expandafter{\expandafter\protect\csname #1\/
space\endcsnamel}’
\expandafter\let\csname #1\spacelexpandafter\,
endcsname \csname #2\space\endcsname
\fi

11

\filehook@glet

#1: <macro name 1>
#2: <macro name 2>

\def\filehookQ@glet#1#2{Y
\expandafter\ifx\csname #2\spacelendcsnamelrelax
\expandafter\global\expandafter\let\csname #1\,
expandafter\endcsname\csname #2\endcsname
\else
\expandafter\global\expandafter\def\csname #1\/
expandafter\endcsname\expandafter{\expandafter,
\protect\csname #1\spacelendcsnamel
\expandafter\global\expandafter\let\csname #1\,
space\expandafter\endcsname\csname #2\space\/
endcsname
\fi

\filehook@cmp

#1: <macro name 1>
#2: <macro name 2>
Compare two macros definition including its space form in case of robust macros.

\def\filehook@cmp#1#2{7
\expandafter\ifx\csname #2\spacelendcsnamelrelax
\expandafter\ifx\csname #1\expandafter\endcsnamel,
csname #2\endcsname
\expandafter\expandafter\expandafter\,
@firstoftwo
\else
\expandafter\expandafter\expandafter\,
@secondoftwo
\fi
\else
\expandafter\ifx\csname #1\spacelexpandafter\,
endcsname\csname #2\space\endcsname
\expandafter\expandafter\expandafter\,
@firstoftwo
\else
\expandafter\expandafter\expandafter\,
@secondoftwo
\fi
\fi

12

6.3 Initialisation of Hooks

The general hooks are initialised to call the file specific hooks.

\filehook@csuse

\begingroup

\gdef\filehook@csuse#l{\ifcsname #1\endcsname\csname

#1\expandafter\endcsname\fi}
\expandafter\ifx\csname csuse\endcsname\relax

\expandafter\ifx\csname ifcsname\endcsnamel\relax

\gdef\filehook@csuse#1{\expandafter\ifx\/

csname #1\endcsnamelrelax\elselcsname #1\,

expandafter\endcsname\fi}
\fi
\else
\global\let\filehook@csuse\csuse
\fi
\endgroup

\filehook@include@atbegin

60

\def\filehook@include@atbegin#1{
\filehook@let{InputIfFileExists}{,
filehook@@InputIfFileExists}
\filehook@csuse{\filehook@include@atbegin@#1}7
\filehook@include@@atbegin
3

\filehook@include@Qatbegin

\def\filehook@include@@atbegin{}

\filehook@include@atend

\def\filehook@include@atend#1{
\filehook@include@@atend
\filehook@csuse{\filehook@include@atend@#1%}7

\filehook@include@@atend

\def\filehook@include@@atend{}

13

\filehook@include@after

\def\filehook@include@after#1{/
\filehook@include@@after

\filehook@csuse{\filehook@include@after@#13}7

\filehook@include@@after

\def\filehook@include@@after{}

\filehook@input@atbegin

\def\filehook@input@atbegin#1{/
\filehook@let{InputIfFileExists}{,
filehook@@InputIfFileExists})
\filehook@csuse{\filehook@input@atbegin@\,
filehook@ensureext{#1}}7
\filehook@input@@atbegin
}

\filehook@input@@atbegin

\def\filehook@input@@atbegin{}

\filehook@input@atend

\def\filehook@input@atend#1{7
\filehook@input@@atend
\filehook@csuse{\filehook@input@atend®@\,

filehook@ensureext{#1}1}

\filehook@input@@atend

\def\filehook@input@@atend{}

14

\filehook@atbegin

\def\filehook@atbegin#1{/
\filehook@csuse{\filehook@atbegin@\/
filehook@ensureext {#1}1}7
\filehook@@atbegin
}

\filehook@@atbegin

\def\filehook@@atbegin{}

\filehook@atend

\def\filehook@atend#1{J
\filehook@@atend
\filehook@csuse{\filehook@atend@\filehook@ensureext,
{#13}}%

\filehook@@atend

\def\filehook@@atend{}

\filehook@every@atbegin

\def\filehook@every@atbegin#1{J
\filehook@every@@Qatbegin
}

\filehook@every@@atbegin

\def\filehook@every@Q@atbegin{}

\filehook@every@atend

\def\filehook@every@atend#1{/
\filehook@every@Q@atend
}

15

\filehook@every@@atend

100

101

106

109

\def\filehook@every@Q@atend{}

6.4 Hook Modification Macros

The following macros are used to modify the hooks, i.e. to prefix or append code to
them.

Internal Macros

The macro prefixes for the file specific hooks are stored in macros to reduce the
number of tokens in the following macro definitions.

\def\filehook@include®@atbegin@{
filehook@include@atbegin®@}
\def\filehook@include@atend@{filehook@include@atend®}
\def\filehook@include@after@{filehook@include@after®@}
\def\filehook@input@atbegin@{filehook@input@atbegin®@}
\def\filehook@input@atend@{filehook@input@atend@}
\def\filehook@input@after@{filehook@input@after@}
\def\filehook@atbegin@{filehook@atbegin@}
\def\filehook@atend@{filehook@atend@}
\def\filehook@after@{filehook@after@}

\filehook@append

110

Uses default BITgX macro.
\def\filehook@append{\g@addto@macro}

\filehook@appendwarg

Appends code with one macro argument. The \@tempa intermediate step is required
because of the included ##1 which wouldn't correctly expand otherwise.

\long\def\filehook@appendwarg#1#2{
\begingroup
\toks@\expandafter {#1{##1}#2}7
\edef\@tempa{\the\toks@})
\expandafter\gdef\expandafter#1l\expandafter##\
expandafteri1\expandafter{\@tempal’
\endgroup
}

16

\filehook@prefix

Prefixes code to a hook.

\long\def\filehook@prefix#1#2{J
\begingroup
\@temptokena{#2}7
\toks@\expandafter{#1}7
\xdef#1{\the\@temptokenal\the\toks@}
\endgroup
}

\filehook@prefixwarg

Prefixes code with an argument to a hook.

\long\def\filehook@prefixwarg#1#2{J
\begingroup
\@temptokena{#2}
\toks@\expandafter {#1{##1}1}Y%
\edef\@tempa{\the\@temptokenal\the\toks@}
\expandafter\gdef\expandafter#1\expandafter##\
expandafter1\expandafter{\@tempal
\endgroup
}

\filehook@addtohook

#1: Macro which should be used to add the material to the hook

#2: Macro name prefix

#3: End of macro name (file name)
The macro first expands the file name (#3) to flatten all included macros. An extension
is added if missing, as well as the prefix. All modifications of \@tempa are made inside
a group to keep them local.

\def\filehook@addtohook#1#2#3{7

\begingroup

\edef\@tempa{#31}7

\edef\@tempa{#2\filehook@ensureext{\Q@tempal}l}’

\@ifundefined{\@tempalt{\global\@namedef {\@tempa,
3%

\expandafter\endgroup

\expandafter#1l\csname\@tempalendcsname

User Level Macros

The user level macros simple use the above defined macros on the appropriate hook.

17

\AtBeginOfIncludes

m \newcommand*\AtBeginOfIncludes{’
142 \filehook@append\filehook@include@@atbegin
143 }

\AtEndOfIncludes

s \newcommand *\AtEndOfIncludes{’
145 \filehook@prefix\filehook@include@@atend
146 }

\AfterIncludes

1w \newcommand*\AfterIncludes{’
148 \filehook@prefix\filehook@include@@after
149 }

\AtBeginOfIncludeFile

0 \newcommand*\AtBeginOfIncludeFile [1]{%

151 \filehook@addtohook\filehook®@append\,
filehook@include@atbegin@{\filehook@ensuretex
{#1}}7%

\AtEndOfIncludeFile

55 \newcommand*\AtEndOfIncludeFile [1]{7

154 \filehook@addtohook\filehook®@prefix\,
filehook@include@atend@{\filehook@ensuretex{#1}},
%

\AfterIncludeFile

5 \newcommand*\AfterIncludeFile[1]1{%

157 \filehook@addtohook\filehook@prefix\,
filehook@include@after@{\filehook@ensuretex{#1}},
%

18

\AtBeginOfInputs

\newcommand*\AtBeginOfInputs{’
\filehook@append\filehook@input@@atbegin
}

\AtEndOfInputs

\newcommand *\ AtEndOfInputs{’
\filehook@prefix\filehook@input@@atend
¥

\AtBeginOfInputFile

\newcommand *\AtBeginOfInputFile{7
\filehook@addtohook\filehook®@append\,
filehook@input@atbegin®@

\AtEndOfInputFile

\newcommand*\AtEndOfInputFile{’
\filehook@addtohook\filehook@prefix\,
filehook@input@atend®

\AtBeginOfFiles

\newcommand*\AtBeginOfFiles{/
\filehook@append\filehook@@atbegin
}

\AtEndOfFiles

\newcommand *\ AtEndOfFiles{7
\filehook@prefix\filehook@@atend
}

19

\AtBeginOfEveryFile

\newcommand *\AtBeginOfEveryFile{7
\filehook@append\filehook@every@Qatbegin
by

\AtEndOfEveryFile

\newcommand *\ AtEndOfEveryFile{’
\filehook@prefix\filehook@every@Q@atend
3

\AtBeginOfFile

\newcommand*\AtBeginO0fFile{’
\filehook@addtohook\filehook®@append\
filehook@atbegin®@

\AtEndOfFile

186

\newcommand*\AtEnd0fFile{)
\filehook@addtohook\filehook@prefix\filehook@atend@
}

\AtBeginOfClassFile

\newcommand*\AtBeginOfClassFile{’
\@ifnextcharx*
{\AtBeginOfXFile@star\@clsextensionl}/
{\AtBeginOfXFile@normal\@clsextensionl}/

\AtBeginOfPackageFile

\newcommand*\AtBeginOfPackageFile{/
\@ifnextchar*
{\AtBeginOfXFile@star\Q@pkgextensionly
{\AtBeginOfXFile@normal\@pkgextensionl}’

20

\AtBeginOfXFile@star

#1: extension
#2: name

If the class or package is already loaded the code is executed right away. Otherwise it

is installed normally.

\def\AtBeginOfXFile@star#1*x#2{J
\@ifl@aded{#1}{#2}7
{\@efirstofonel
{\AtBeginOfXFile@normal {#1}{#2}1}%

\AtBeginOfXFile@normal

204

206

#1: extension
#2: name

\def\AtBeginOfXFile@normal#1#2{7
\AtBeginOfFile{#2.#1}7
}

\AtEndOfClassFile

\newcommand*\AtEndOfClassFile{’
\@ifnextcharx*
{\AtEndOfXFile@star\@clsextension}Y
{\AtEndOfXFile@normal\@clsextension}Y

\AtEndOfPackageFile

\newcommand *\AtEndOfPackageFile{7
\@ifnextcharx*
{\AtEndOfXFile@star\@pkgextensionl
{\AtEndOfXFile@normal\@pkgextensionl}y

\AtEndOfXFile@star

#1: extension
#2: name

If the class or package is already loaded the code is executed right away. Otherwise it

is installed normally.

21

\def\AtEndOfXFile@star#1x#2{7

218 \@ifl@aded{#1}{#2}7

219 {\@firstofonel}y

20 {\AtEndOfXFile@normal {#1}{#2}}7
}
\AtEndOfXFile@normal

#1: extension

#2: name
Note that \AtEndOfClass is identical to \AtEndOfPackage, so no differentiation
between classes and packages is needed here.

\long\def\AtEndOfXFile@normal #1#2#3{7
\AtEndOfFile{#2.#1}{\AtEndOfPackage{#3}1}7
}

\ClearHook

Clears the hook by temporary redefining the prefix and append macros to do a simple
definition to empty.

\newcommand*\ClearHook{7%
\begingroup
\def\filehook@prefix##1##2{7
\gdef##1{}%
\endgroup
Y
\let\filehook@append\filehook@prefix

6.5 Installation of Hooks

The \@input@ and \@iinput macros from latex.1ltx are redefined to install the
hooks.
First the original definitions are saved away.

\filehook@orig@@input®@

\let\filehook@orig@@input@\@input®

\filehook@orig@@iinput

\let\filehook@orig@@iinput\@iinput

22

\@input@

This macro is redefined for the \include file hooks. Checks if the next command
is \clearpage which indicates that we are inside \@include. If so the hooks are
installed, otherwise the original macro is used unchanged. For the ‘after’ hook an
own \clearpage is inserted and the original one is gobbled.

\def\@input@#1{%
\@ifnextchar\clearpage
{7
\filehook@every@atbegin{#1}7
\filehook@include®@atbegin{#1}7
\filehook@orig@@input@{#13}7
\filehook@include®@atend{#1}
\clearpage
\filehook@include@after{#1}7
\filehook@every@atend{#13}

25 \@gobble
246 Y
247 {\filehook@orig@@input@{#13}1}7
248 }
\@iinput

This macro is redefined for the \ input file hooks. it simply surrounds the original
macro with the hooks.

\def\filehook@@iinput#1{/
\filehook@everyQ@atbegin{#13}7
\filehook@input@atbegin{#13}7
\filehook@orig@@iinput{#1}7%
\filehook@input@atend{#1}7
\filehook@everyQatend{#1}7

}

\let\@iinput\filehook@@iinput

\filehook@swap

Auxiliary macro which swaps the two arguments. This is needed to expand \@f i1lef@und,
which is given as first argument but needed then as the second one.

\def\filehook@swap#1#2{#2#1}

\filehook@ensureext

This macro ensures the existence of a file name extension. If non is given ‘. tex’ is
added.

23

\def\filehook@ensureext#1{7
\expandafter\filehook@@ensureext#l\empty.tex\,
empty\empty

\filehook@@ensureext

\def\filehook@@ensureext#1.#2\empty#3\empty{#1.#2}

\filehook@ensuretex

Ensures a ‘. tex’ extension, i.e. adds it if missing, even if there is a different one.

\def\filehook@ensuretex#1{/
\expandafter\filehook@@ensuretex#1l\empty.tex\,
empty\empty

\filehook@@ensuretex

\def\filehook@@ensuretex#1.tex\empty#2\empty{#1.tex}

The filehook default definition of \InputIfFileExists is defined here to-
gether with alternatives definitions for comparison. There are stored first in a token
register and later stored in a macro which is expanded if required. This is always
done inside a group to keep them temporary only. The token register is used to avoid
doubling of macro argument characters.

\latex@InputIfFileExists

Standard BIgX definition of \InputIfFileExists

\iffilehook@newfmt
\expandafter\def\expandafter\latex@InputIfFileExists\,
expandafter{’
\expandafter\protect\csname InputIfFileExists\space,
\endcsname
}
\expandafter\long\expandafter\def\csname
latex@InputIfFileExists\space\endcsname#1#2{7
\IfFileExists{#1}/
{7
\expandafter\@swaptwoargs\expandafter
{\efilef@und}{#2\Q@addtofilelist{#1}\@Q@input}}}
\else
\long\def\latex@InputIfFileExists#1#2{7

24

\IfFileExists{#1}Y%
{#2\@addtofilelist{#1}%
\@@input\@filefQund
Y
}
\fi

\filehook@default@InputIfFileExists

\DeclareRobustCommand\,
filehook@default@InputIfFileExists [2]{%
\IfFileExists{#1}/

{\expandafter\filehook@swap
\expandafter{\@filef@und}’
{#2\0addtofilelist {#1}/
\filehook@everyQatbegin{#11}7
\filehook®@atbegin{#11}7
\@@input}’
\filehook@atend{#1}7
\filehook@every@atend{#13}
Y

Make sure definition is global:

\filehook@glet{filehook@default@InputIfFileExists}{
filehook@default@InputIfFileExistsl}Y

\filehook@@default@InputIfFileExists

\DeclareRobustCommand\
filehook@@default@InputIfFileExists [2]1{%
\filehook@let{InputIfFileExists}{,
filehook@InputIfFileExistsl}/
\IfFileExists{#1}/
{\expandafter\filehook@swap
\expandafter{\Q@filef@undl}’
{#2\Caddtofilelist {#1}J
\filehook@atbegin{#1}7
\@@input}%
\filehook@atend{#1}
Y

Make sure definition is global:

\filehook@glet{filehook@@default@InputIfFileExists}{,
filehook@@default@InputIfFileExistsl}V

25

\InputIfFileExists

First we test for the scr1file package. The test macro adds the necessary patches if
so. In order to also support it when it is loaded afterwards the two hooks below are
used to revert the definition before the package and patch it afterwards.

\AtBeginOfPackageFile{scrlfile}{%
\filehook@glet{InputIfFileExists}{,
latex@InputIfFileExists}/
}
\AtEndOfPackageFilex{scrlfile}{7
\RequirePackage{filehook-scrlfilel
3
Fink:

\AtBeginOfPackageFilex{fink}{’
\RequirePackage{kvoptions}
\begingroup
\filehook@let{InputIfFileExists}{,
latex@InputIfFileExists}/
Y
\AtEndOfPackageFilex{fink}{’
\edef\@tempa{\noexpand\PassOptionsToPackage{,
mainext=\fnk@mainext ,maindir=\fnk@maindir}{,
currfilel}}%
\expandafter\endgroup\Q@tempa
\RequirePackage{filehook-fink}J
o
If memoir is detected its hooks are added to the appropriate ‘At...OfFiles’ hooks.
This works fine because its hooks have the exact same position. Please note that the
case when memoir is used together with scrlfile is not explicitly covered. In this
case the scr1file package will overwrite memoirs definition.

\AtBeginOfClassFile{memoir}{J

\filehook@let{InputIfFileExists}{,
latex@InputIfFileExists}/

\let\@iinput\filehook@orig@@iinput

7

\AtEndOfClassFile*{memoir}{’
\let\@iinput\filehook@@iinput
\RequirePackage{filehook -memoirl}y

Y
Finally, if no specific alternate definition is detected the original BTEX definition is

checked for and a error is given if any other unknown definition is detected. The force

option will change the error into a warning and overwrite the macro with the default.

\filehook@cmp{InputIfFileExists}{,
filehook@InputIfFileExists})
{}% already set up

L%

26

\filehook@cmp{InputIfFileExists}{,
latex@InputIfFileExistsl}/
336 {%
\filehook@let{filehook@InputIfFileExists}{
filehook@default@InputIfFileExists})
338 \filehook@let{filehook@@InputIfFileExists}{
filehook@@default@InputIfFileExistsl}/
339 \filehook@let{InputIfFileExists}{,
filehook@InputIfFileExists}
340 }%
341 {%
512 \iffilehook@force
a3 \filehook@let{filehook@InputIfFileExists}{
filehook@default@InputIfFileExistsl}/
su \filehook@let{filehook@@InputIfFileExists}{
filehook@@default@InputIfFileExists}/
a5 \filehook@let{InputIfFileExists}{,
filehook@InputIfFileExists}
346 \PackageWarning{filehook}{Detected unknown ,
definition of \string\InputIfFileExists/
BRI A
347 The ’force’ /
option of ’,
filehook’ is ,
in effect.
Macro is
overwritten
with default!l},
A
348 \else
349 \PackageError{filehook}{Detected unknown .,
definition of \string\InputIfFileExists/
BRI A
350 Use the ’force’ ~
option of ’,
filehook’ to
overwrite it.}{},
YA
351 \fl
352 }%
Y

s \AtBeginDocument{’

55 % Check if definition got changed again. For the
new LaTeX format we check again \,
InputIfFileExists <space>,

356 % for the old format to \InputIfFileExists .~
directly.

\filehook@cmp{InputIfFileExists}{,
filehook@InputIfFileExists}{}{/

27

\PackageWarning{filehook}{Macro \string\,
InputIfFileExists\space got redefined
after ’filehook’ was loaded.”"JJ

Certain file hooks
might now be
dysfunctional!}’

Y
}

%<!COPYRIGHT >

\NeedsTeXFormat{LaTeX2e}[1999/12/01]

\ProvidesPackage{filehook-memoir}[2020/02/02 v0.2 /
filehook patch for memoir class]

\RequirePackage{filehook}
\begingroup

\memoir@InputIfFileExists

The definition taken from memoir.cls. Copyright see there.

\ifcsname InputIfFileExists\space\endcsname
\DeclareRobustCommand \memoir@InputIfFileExists [2]{,
A
\IfFileExists{#1}/
{%
\expandafter\@swaptwoargs\expandafter
{\efilef@Qund\m@matendf {#1}\killm@matf {#1}}{7
#2\Q@addtofilelist{#1}\m@matbeginf {#1}\@Q@input,
YA
b5
Y
}
\else
% 01d definition
\renewcommand{\memoir@InputIfFileExists}[2]{%
\IfFileExists{#1}/
{#2\@addtofilelist{#1}\m@matbeginf {#1}7
\@@input \@filef@und
\m@matendf {#1}7

\killm@matf {#1}}7
}
\fi
\@tempswafalse

\filehook@cmp{InputIfFileExists}{,
filehook@InputIfFileExists}
{\@tempswatruel}’
{7

28

400

101

402

103

104

105

106

408

109

\filehook@cmp{InputIfFileExists}{,
memoir@InputIfFileExists}’

{\@tempswatruel}’
{37
Y
\if@tempswa

\filehook@glet{filehook@InputIfFileExists}{,
filehook@default@InputIfFileExists})
\filehook@glet{filehook@@InputIfFileExists}{,
filehook@@default@InputIfFileExistsl}/
\filehook@glet{InputIfFileExists}{,
filehook@InputIfFileExistsl}/
\filehook@appendwarg\filehook@atbegin{\m@matbeginf
{#13}}7%
\filehook@prefixwarg\filehook@atend{\m@matendf {#1}\,
killm@matf {#1}}7
\PackageInfo{filehook}{Detected ’memoir’ class: the,
memoir hooks will be moved to the ‘At...0fFiles/
> hooks}
\else
\iffilehook@force
\filehook@glet{filehook@InputIfFileExists}{
filehook@default@InputIfFileExistsl}/
\filehook@glet{filehook@@InputIfFileExists}{,
filehook@@default@InputIfFileExists}/
\filehook@glet{InputIfFileExists}{,
filehook@InputIfFileExists})
\PackageWarning{filehook}{Detected ’memoir’ class,
with unknown definition of \string\,
InputIfFileExists. " J%
The ’force’ option of
filehook’ is in ,
effect. Macro is
overwritten with
default !}

J

7

\else
\PackageError{filehook}{Detected ’memoir’ class .,
with unknown definition of \string\,
InputIfFileExists . " JY%
Use the ’force’ option of,
>filehook’ to ~
overwrite it.}{}V
\fi
\fi

\endgroup

%<VCOPYRIGHT >
\NeedsTeXFormat{LaTeX2e}[1999/12/01]

29

118

119

434

39

140

S

\ProvidesPackage{filehook-1listings}[2011/01/02 vO.1
Patch for listings to avoid hooks for verbatim
input files]

\begingroup

\long\def\patch#1\def\1lst@next#2#3\endpatch{’
\toks@{#21}/
\edef\@tempa{\the\toks@}
\def\@tempb{\input {####1}}7
\ifx\@tempa\@tempb
\gdef\1lst@InputListing##1{#1\def\1lst@next{\,
@input {##1}}#3}%
\else
\PackageWarning{filehook-listings}{To-be-,
patched code in macro \string\,
lst@InputlListing was not found!})
\fi
}

\@ifundefined{lst@Inputlisting}{%
\PackageWarning{filehook-listings}{To-be-patched
Macro \string\lst@InputListing not found!})
H?}

\expandafter\patch\lst@InputListing{#1}\endpatch
\endgroup

%<!'COPYRIGHT>

\NeedsTeXFormat{LaTeX2e}[1999/12/01]

\ProvidesPackage{filehook-scrlfile}[2020/02/02 v0.2
filehook patch for scrlfile package]

\RequirePackage{filehook}

\begingroup

\scrlfile@InputIfFileExists

\expandafter\def\expandafter\,
sclrfile@InputIfFileExists\expandafter{/
\expandafter\protect\csname InputIfFileExists\space,
\endcsname
¥
\expandafter\long\expandafter\def\csname /
scrlfile@InputIfFileExists\space\endcsname#1#2{7
\begingroup\expandafter\expandafter\expandafter\,
endgroup
\expandafter\ifx\csname #1-Q@alias\endcsname\relax

30

\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-@alias\endcsname,
#1317
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\,
csname
#1-Q@alias\endcsname }{#2}7,
Y
{\IfFileExists{#1}{
\expandafter\scr@input@withhook\expandafter{\,
@filef@und }{#1}{#2}1}7

\filehook@scrlfile@InputIfFileExists

\DeclareRobustCommand\,
filehook@scrlfile@InputIfFileExists [2]{%
\begingroup\expandafter\expandafter\expandafter\,
endgroup
\expandafter\ifx\csname #1-Q@alias\endcsnamel\relax
\expandafter\@secondoftwo
\else
\scr@replacefile@msg{\csname #1-Qalias\endcsname,/
H#1}
\expandafter\@firstoftwo
\fi
{7
\expandafter\InputIfFileExists\expandafter{\,
csname
#1-@alias\endcsname }{#2}7,
Y
{\IfFileExists{#1}{/
\expandafter\filehook@swap
\expandafter{\@filef@undl}Y
{\scr@load@hook{before}{#1}7
#2\Qaddtofilelist {#1}/
\filehook@everyQatbegin{#1}7
\filehook@atbegin{#1}7
\@@input}%
\filehook@atend{#11}
\filehook@everyQ@atend{#1}7
\scr@load@hook{after}{#1}
i3 A

31

w \filehook@glet{filehook@scrlfile@InputIfFileExistsl}{,
filehook@scrlfile@InputIfFileExistsl}V

\filehook@@scrlfile@InputIfFileExists

» \DeclareRobustCommand\,/
filehook@@scrlfile@InputIfFileExists [2]{%
490 \filehook@let{InputIfFileExists}{,
filehook@InputIfFileExists}
191 \begingroup\expandafter\expandafter\expandafter\,
endgroup

192 \expandafter\ifx\csname #l1-Q@alias\endcsnamel\relax

193 \expandafter\@secondoftwo

194 \else

195 \scr@replacefile@msg{\csname #l1-Qalias\endcsname,
H{#1}7

196 \expandafter\@firstoftwo

197 \fi

198 {’%

199 \expandafter\InputIfFileExists\expandafter{\,
csname

00 #1-@alias\endcsname}{#2}J

501 }%

02 {\IfFileExists{#1}{/

503 \expandafter\filehook@swap

504 \expandafter{\@filef@undl}/

505 {\scr@load@hook{before}{#1}7

506 #2\@addtofilelist {#1}Y

507 \filehook@atbegin{#1}7

508 \@@1nput }70

509 \filehook@atend{#1}

510 \scr@load@hook{after}{#1}7

511 }}%

512 }

su \filehook@glet{filehook@@scrlfile@InputIfFileExists}{,

filehook@@scrlfile@InputIfFileExists})

If the scr1file package definition is detected the filehooks are added to that
definition. Unfortunately the \scr@load@hook{before} hook is placed before not
after the #2\@addtofilelist{#1} code. Otherwise the filehooks could simply be
added to these hooks. Note that this will stop working if scr1file ever changes its
definition of the \InputIfFileExists macro.

su \Qtempswafalse
55 \filehook@cmp{InputIfFileExists}{,
filehook@InputIfFileExistsl}y
516 {\@tempswatruel}’
{7
518 \filehook@cmp{InputIfFileExists}{,
scrlfile@InputIfFileExists}’

32

{\@tempswatruel}’
{37
Y

\if@tempswa
\filehook@glet{filehook@InputIfFileExists}{
filehook@scrlfile@InputIfFileExistsl}/
\filehook@glet{filehook@@InputIfFileExists}{
filehook@@scrlfile@InputIfFileExists})
\filehook@glet{InputIfFileExists}{,
filehook@InputIfFileExists}
\PackageInfo{filehook}{Package ’scrlfile’ detected ,
and compensated forl}y
\else
\iffilehook@force
\filehook@glet{filehook@InputIfFileExists}{
filehook@scrlfile@InputIfFileExists}/
\filehook@glet{filehook@@InputIfFileExists}{,
filehook@@scrlfile@InputIfFileExists}’
\filehook@glet{InputIfFileExists}{,
filehook@InputIfFileExists})
\PackageWarning{filehook}{Detected ’scrlfile’ ,
package with unknown definition of \string\,
InputIfFileExists. " JY%

The ’force’ option of ’,
filehook’ is in /
effect. Macro is /
overwritten with
default !}’

\else
\PackageError{filehook}{Detected ’scrlfile’ .,
package with unknown definition of \string\,
InputIfFileExists. "~ J%
Use the ’force’ option of,/
>filehook’ to ~
overwrite it.}{}7
\fi
\fi

\endgroup

%<!COPYRIGHT >

\NeedsTeXFormat{LaTeX2e}[1999/12/01]

\ProvidesPackage{filehook-fink}[011/01/03 vO0.1
filehook compatibility code for fink packagel

\RequirePackage{filehook}
\RequirePackage{currfilely

\begingroup

33

s \long\def\finkQ@old@InputIfFileExists#1#2{7
550 \IfFileExists{#1}{%
: #2\ @addtofilelist{#1}7%
\fink@prepare{#1}7
55 \expandafter\fink@input/
554 \expandafter\fink@restore\expandafter{\finkpath}},
yA

3

s5v \long\def\fink@new@InputIfFileExists#1#2{/

558 \IfFileExists{#1}{J

559 #2\ @addtofilelist{#1}7

560 \edef\fink@before{\noexpand\fink@input {#1}1}7

561 \edef\fink@after{\noexpand\fink@restore{\finkpath,
Y

562 \expandafter\fink@before\finkQafter}

563 }

s \ifcase
566 \ifx\InputIfFileExists\filehook@InputIfFileExists,
O\else
567 \ifx\InputIfFileExists\latex@InputIfFileExists
1\else
568 \ifx\InputIfFileExists\fink@new@InputIfFileExists.,
1\else
569 \ifx\InputIfFileExists\fink@old@InputIfFileExists,
1\else
570 1 %
\fi\fi\fi\fi
2 \relax
75 \or
57 \global\let\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
\globalllet\filehook@@InputIfFileExists\,
filehook@@default@InputIfFileExists
576 \global\let\InputIfFileExists\,
filehook@InputIfFileExists
\PackageInfo{filehook-fink}{Package ’fink’ detected,
and replaced by ’currfile’}’
s \else
579 \iffilehook@force
580 \global\let\filehook@InputIfFileExists\,
filehook@default@InputIfFileExists
581 \global\let\filehook@@InputIfFileExists\,/
filehook@@default@InputIfFileExists
02 \global\let\InputIfFileExists\/
filehook@InputIfFileExists
\PackageWarning{filehook-fink}{Detected ’fink’
package with unknown definition of \string\,

34

603

604

605

606

608

609

610

InputIfFileExists. "~ J%

The ’force’ option of ’,
filehook’ is in
effect. Macro is /
overwritten with
default !}

\else
\PackageError{filehook-fink}{Detected ’fink’ ,
package with unknown definition of \string\,
InputIfFileExists . " J)

Use the ’force’ ~
option of ’,
filehook’ to .~
overwrite it.}{}’

\fi

\fi

\endgroup

6.6 Support for PGF Keys

\ProvidesPackage{pgf-filehook}[2010/01/07 v1.0 PGF ,

keys for the filehook package]

\RequirePackage{filehook}
\RequirePackage{pgfkeys}

\pgfkeys{’

h

h

h

/filehook/.is family,
/filehook,

EveryFile/.is family,

EveryFile/AtBegin/.code={\AtBeginOfEveryFile,
{#1}1},

EveryFile/AtBegin/.value required,

EveryFile/AtEnd/.code={\AtEndOfEveryFile{#13}},

EveryFile/AtEnd/.value required,

Files/.is family,
Files/AtBegin/.code={\AtBeginOfFiles{#1}},
Files/AtBegin/.value required,
Files/AtEnd/.code={\AtEndOfFiles{#1}},
Files/AtEnd/.value required,

File/.is family,

File/AtBegin/.code 2 args={\AtBeginOfFile,/
{#13{#23}7},

File/AtBegin/.value required,

File/AtEnd/.code 2 args={\AtEndOfFile{#1}{#2}},

File/AtEnd/.value required,

35

h

h

h

h

h

h

3

Inputs/.is family,
Inputs/AtBegin/.code={\AtBeginOfInputs{#1}},
Inputs/AtBegin/.value required,
Inputs/AtEnd/.code={\AtEndOfInputs{#1}},
Inputs/AtEnd/.value required,

InputFile/.is family,

InputFile/AtBegin/.code 2 args={\,
AtBeginOfInputFile{#1}{#2}},

InputFile/AtBegin/.value required,

InputFile/AtEnd/.code 2 args={\AtEndOfInputFile,
{#1}{#2}},

InputFile/AtEnd/.value required,

Includes/.is family,
Includes/AtBegin/.code={\AtBeginOfIncludes{#1}},
Includes/AtBegin/.value required,
Includes/AtEnd/.code={\AtEndOfIncludes{#1}},
Includes/AtEnd/.value required,
Includes/After/.code={\AfterIncludes{#13}},
Includes/After/.value required,

IncludeFile/.is family,

IncludeFile/AtBegin/.code 2 args={\,
AtBeginOfIncludeFile{#1}{#2}},

IncludeFile/AtBegin/.value required,

IncludeFile/AtEnd/.code 2 args={\,
AtEndOfIncludeFile{#1}{#2}},

IncludeFile/AtEnd/.value required,

IncludeFile/After/.code 2 args={\AfterIncludeFile,
{#13{#2}},

IncludeFile/After/.value required,

ClassFile/.is family,
ClassFile/AtBegin/.code={\AtBeginOfClassFile#1},
ClassFile/AtBegin/.value required,
ClassFile/AtEnd/.code={\AtEndOfClassFile#1},
ClassFile/AtEnd/.value required,

PackageFile/.is family,

PackageFile/AtBegin/.code={\AtBeginOfPackageFile,
#1},

PackageFile/AtBegin/.value required,

PackageFile/AtEnd/.code={\AtEndOfPackageFile#1},

PackageFile/AtEnd/.value required,

\newcommand {\pgffilehook}{\pgfqkeys{/filehook}}

36

	Introduction
	Usage
	Clearing Hooks

	PGF Key Interface
	Compatibility Issues with Classes and other Packages
	Supported Classes and Packages
	Other Classes and Packages

	Upgrade Guide
	Implementation
	Options
	General stuff
	Initialisation of Hooks
	Hook Modification Macros
	Installation of Hooks
	Support for PGF Keys

