
The fcolumn package∗

Edgar Olthof
edgar <dot> olthof <at> inter <dot> nl <dot> net

Printed November 22, 2021

Abstract

In financial reports, text and currency amounts are regularly put in one
table, e.g., a year balance or a profit-and-loss overview. This package pro-
vides the settings for automatically typesetting and checking such columns,
including the sum line (preceded by a rule of the correct width), using the
specifier f.

1 Introduction

The package fcolumn provides the macros for an extra tabular specifier that makes
creating financial tables easy. The column specifier f itself is rather simple; it is
the predefined version of a generic column F. The generic version expects four
arguments: 1) grouping character of the integer part on output, 2) decimal mark
used on output, 3) compact additional information on input/output characteris-
tics, and 4) anything, but primarily used for providing formatting information, see
below.

The f-column in the current version of the package is defined for the continental
European standard: \newcolumntype{f}{F{.}{,}{3,2}{}}. This means that a
number like 12345,67 will be typeset as 12.345,67. People in the Anglo-Saxon world
would rather code \newcolumntype{f}{F{,}{.}{3,2}{}} for the same input,
yielding 12,345.67 as output for the number given above. The default value for #3
is 3,2, indicating that grouping of the integer part is by three digits, that a comma
is used in the TEX-source to indicate the decimal separator, and that the decimal
part consists of two digits. If however, in your country or company grouping is
done with a thinspace every four digits, that the separator in the source should be
the character p, and there are three digits after the decimal mark—that happens to
be a \cdot—, then simply specify \newcolumntype{f}{F{\,}{\cdot}{4p3}{}}

in that case. The input could be 123456p78 then, yielding 12 3456·780 as output.
By default two digits are used for the decimal part, so if you really want no

decimal digits (in that case of course also skipping the decimal mark) you have to
explicitly specify x,0. If you want no grouping character, specify 0,x.

∗This file has version number v1.4, last revised 2021/11/22.

1

As the fourth parameter you can insert anything just before the typesetting of
an amount in a column takes place. Its purpose is to add additional formatting
information, e.g., \color{red} to have the contents of a column coloured red, but
it can be misused, so use with care. And it can’t do all!

This package requires and loads the array package [1]. To show where and
how the F-column is used, let’s look at some typical financial information as shown
in Table 1 and how this is entered in LATEX (Table 2). All the work was done by

Table 1: Example Table.

Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00
bank account −603,23 mortgage 150.000,00
savings 28.000,00
cash 145,85 profit 27.542,62

227.542,62 227.542,62

Table 2: Verbatim version of Example Table 1.

\begin{table}[htb]

\caption{Example Table.}

\label{tab:ex1}

\begin{tabular}{@{}lflf@{}}

\multicolumn4c{\bfseries Balance sheet}\\

\toprule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\

\midrule

house & 200000 & equity capital& 50000 \\

bank account & -603,23 & mortgage & 150000 \\

savings & 28000 \\

cash & 145,85 & profit & 27542,62 \\

\sumline

\bottomrule

\end{tabular}

\end{table}

the column specifier “f” (for “finance”). In this case it constructs the \sumline,
typesets the numbers, calculates the totals, determines the widths of the sumrules,
and checks whether the two columns are in balance; if not, the user is warned via a
\PackageWarning. Of course for nice settings the booktabs package [2] was used,
but that is not the point here.

This package is heavily inspired by the dcolumn package by David Carlisle [3],
some constructions are more or less copied from that package. Version 1.4 (this
version) incorporates the idea of Christian Hoff of providing additional (format-
ting) information per column. A rather contrived example is given in Table 3,

2

combining colour and fonts. How this is entered in LATEX is shown in Table 4.

Table 3: Example Table with column formatting.

Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00
bank account −603,23 mortgage 150.000,00
savings 28.000,00
cash 145,85 profit 27.542,62

227.542,62 227.542,62

The font changing commands like \mathsf and \mathbf act on an argument, hence

Table 4: Almost verbatim version of Example Table 3.

\newcolumntype{q}[1]{F{.}{,}{3,2}{#1}}

\begin{table}[htb]

\caption{Example Table with column formatting.}

\label{tab:ex3}

\begin{tabular}{@{}lq{\color{red}\mathsf,\mathbf}lq{\color{green}}@{}}

\multicolumn4c{\bfseries Balance sheet}\\

...

...(same financial contents as in Table 1)

...

\end{tabular}

\end{table}

require braces, but these are already provided internally for this purpose. For that
reason this type of commands must be given last, without braces (and if you don’t
specify a font changing command, these extra internal braces are just redundant).
The argument to the new columntype may consist of two parts, separated by a
comma. In that case, the part to the left of the comma is applied to the data
entered by the user and the right part is applied to the result. The example in
Table 3 shows this: the bold font is only used in the \sumline and also the colour
is back to the default (black). If you want formatting for the whole column, like
green colour as in the last column of Table 3, leave out the comma.

Note that changes in font size, e.g., “\huge” in “\huge\color{red}\mathbf”
as parameter to column type q are ignored by LATEX, since the formatting infor-
mation is used in math environment, which has its own way of handling this. This
isn’t bad, as size changes in one column, without overall changes to the table look
terrible. If you want something huge, make a \huge table.

This package now also works with longtable [4], provided longtable is loaded
before fcolumn; it checks for that. For a change, the raw formatting of the mul-
tipage table is shown first, in Table 5. For more information on how to handle
\endhead and related commands, see the documentation of longtable [4].

3

Table 5: Almost verbatim version of Example Table 6.

\begin{longtable}[l]{@{}lflf@{}}

\caption{\label{tab:ex6}Table showing compatibility of fcolumn and

longtable.}\\

\multicolumn4c{\bfseries Balance sheet}\\

\toprule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\

\midrule

\endfirsthead

\caption[]{\textit{(continued from previous page)\/}}\\

\midrule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\

\midrule

\endhead

\multicolumn4{r@{}}{\small\textit{(Table continues on next page)\/}}\\

\midrule

\endfoot

\bottomrule

\endlastfoot

...

...(somewhat altered financial contents as in Table 1)

...

\end{longtable}

And here is the result (it’s ugly, but it had to be this long to demonstrate the
page break). Not shown here are the new fcolumn formatting possibilities (like
new fonts and/or colours), but it has been checked they do work in combination
with longtable.

Table 6: Table showing compatibility of fcolumn and longtable.

Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00
bank account −603,23 mortgage 150.000,00
savings 1 2.000,00
savings 2 2.000,00
savings 3 2.000,00
savings 4 2.000,00
savings 5 2.000,00
savings 6 2.000,00
savings 7 2.000,00
savings 8 2.000,00
savings 9 2.000,00

(Table continues on next page)

4

Table 6: (continued from previous page)

properties 31 dec 2014 debts 31 dec 2014

savings 10 2.000,00
savings 11 2.000,00
savings 12 2.000,00
savings 13 2.000,00
savings 14 2.000,00
cash 145,85 profit 27.542,62

227.542,62 227.542,62

2 Commands

The user only needs to know six commands or constructions. These six are given
here.

F In the tabular the column specifier F can be given with arguments, or the pre-
defined version f, where the four arguments of F are {.}, {,}, {3,2}, and {}.
If you want g to be your own definition like the curious one given in Section 1,
then specify \newcolumntype{g}{F{\,}{\cdot}{4p3}{}} prior to using g in a
tabular.

Entries in an F-column are, from that moment on, treated as numbers unless
explicitly escaped by \leeg, see below. The numbers are typeset according to the
template the user gives with his/her F-column. The “middle” character of #3 is
an important switch: it does more than just setting the input decimal mark. By
default the input grouping character is the dot, except when the dot is specified as
input decimal mark; in that case the comma is acting as input grouping character.
With this convention the continental Europe and Anglo-Saxon part of the world
is served. And using input grouping markers is optional anyway.

\sumline The numbers in an F-column are typeset as a financial amount, but the real benefit
comes with the \sumline. It does three things:
1) It calculates the total of the column so far and the maximum width encountered

so far, including the width of the total;
2) It generates a rule with width calculated in the first item;
3) It checks the columns that are supposed to balance whether or not they actually

do. If so, nothing happens. If not, a \PackageWarning is given that column i
and j do not balance, where i and j are the relevant columns. This is only
done if the total number of F-columns is even, e.g., if there are six F-columns,
then 1 is checked against 4, 2 against 5, and 3 against 6. If the number of
F-columns is odd then anything could be possible in that table and nothing is
assumed about structure within the table. This behaviour can be overridden,
see below.

By default the vertical separation between the rule and the total is 2 pt,
but this can be changed by the optional argument to \sumline. Give, e.g.,
\sumline[10pt], in case you want this spacing to be 10 pt. And you may even

5

give two options, like in \sumline[10pt][5pt], in which the second option is the
extra space below the summary row. In fact that second option is the option to
\\ that is implicit in \sumline.

\resetsumline Suppose you want to typeset one tabular with the profit-and-loss of many projects
individually. The layout of those tabulars is the same and it were nice if all columns
were aligned. This can be done by making it one big tabular with a fresh start for
each project. The macro \resetsumline is used for that: it resets all totals and
all column widths, see for example Table 7. Note that the rules in the first and

Table 7: Example: multiple projects.

Project 1

expense actual budget income actual budget

food 450,20 500,00 tickets 1.200,00 1.000,00
drinks 547,50 400,00
music 180,00 100,00
profit 22,30

1.200,00 1.000,00 1.200,00 1.000,00
Project 2

expense actual budget income actual budget

food 250,00 300,00 tickets 400,00 450,00
drinks 100,00 80,00
music 80,00 70,00 loss 30,00

430,00 450,00 430,00 450,00

third F-columns of project 1 cover 1.200,00 whereas in project 2 those rules are
narrower since they only cover 430,00; still the columns are aligned. The verbatim
way of setting up Table 7 is given in Table 8.

\leeg If an F-column should be empty then simply leave it empty. If however it should
not be empty but the entry should be treated as text—even if it is a number—,
this can be done with \leeg. It expects an argument and this argument is typeset
in the column. The common case is where p.m. (pro memoria) is entered. In
contrast to v1.1.2 of this package, now even an empty F-column followed by \\ is
allowed.

\checkfcolumns The automatic column balance check can also be done manually. If F-columns 1
and 4 should balance and you want them to be checked, then simply say
\checkfcolumns14. With more than nine F-columns you may be forced to say
something like \checkfcolumns{10}{12}. If \checkfcolumns is used, the auto-
matic check is disabled. Multiple \checkfcolumnss are supported; if F-columns 1,
2, and 3 should balance, you specify \checkfcolumns12 and \checkfcolumns23.
There is no explicit command to disable all checking, but \checkfcolumns11 ob-
viously also serves that purpose.

6

Table 8: Verbatim version of Table 7.

\begin{table}[htb]

\caption{Example: multiple projects.}

\label{tab:ex3}

\begin{tabular}{@{}lfflff@{}}

\multicolumn6c{\bfseries Project~1}\\

\toprule

expense & \leeg{actual} & \leeg{budget} &

income & \leeg{actual} & \leeg{budget} \\

\midrule

food & 450,2 & 500 & tickets & 1200 & 1000 \\

drinks & 547,5 & 400 \\

music & 180 & 100 \\

profit & 22,3 \\

\sumline

\resetsumline

\multicolumn6c{\bfseries Project~2}\\

\toprule

expense & \leeg{actual} & \leeg{budget} &

income & \leeg{actual} & \leeg{budget} \\

\midrule

food & 250 & 300 & tickets & 400 & 450 \\

drinks & 100 & 80 \\

music & 80 & 70 & loss & 30 \\

\sumline

\bottomrule

\end{tabular}

\end{table}

\ifstrict@ccounting In the rare occasion that a negative number occurs in a financial table, the sign
of that number can be an explicit minus sign (−) or the number is coloured red,
or it is typeset between parentheses, and there may be even other ways. By
default (for aesthetic reasons) fcolumn typesets it with a minus sign, but strict
accounting prescibes that the number should be put between parentheses. The
latter can be accomplished by setting \strict@ccountingtrue. But since this
contains a non-letter, it is also possible to invoke fcolumn with the option strict,
i.e., \usepackage[strict]{fcolumn}, which sets this flag.

3 The macros

Here follows the actual code.

7

3.1 Option

option strict There is one option. If set, strict accounting rules are used in display.

1 \newif\ifstrict@ccounting \strict@ccountingfalse

2 \DeclareOption{strict}{\strict@ccountingtrue}

3 \ProcessOptions

3.2 Definitions

column F

column f

The column specifier F is the generic one, and f is the default (continental Euro-
pean) one for easy use. Note that the definition of the column type f does not use
private macros (no @), so overriding its definition is easy for a user.

4 \newcolumntype{F}[4]{>{\b@fi{#1}{#2}{#3}{#4}}r<{\e@fi}}

5 \newcolumntype{f}{F{.}{,}{3,2}{}}

\FCsc@l

\FCtc@l

Two 〈count〉s are defined, that both start at zero: the 〈count〉 \FCsc@l, that keeps
track at which F-column the tabular is working on and the 〈count〉 \FCtc@l, that
records the number of F-columns that were encountered so far. Later in the
package the code can be found for generating a new 〈count〉 and a new 〈dimen〉
if the number of requested F-columns is larger than currently available. This is of
course the case when an F-column is used for the first time.

6 \newcount\FCsc@l \FCsc@l=0 \newcount\FCtc@l \FCtc@l=0

\geldm@cro The macro \geldm@cro takes a number and by default interprets this as an amount
expressed in cents (dollar cents, euro cents, centen, Pfennige, centimes, kopecks,
groszy) and typesets it as the amount in entire currency units (dollars, euros,
guldens, Marke, francs, rubles, z loty) with comma as decimal separator and the
dot as grouping character (thousand separator if the first part of #1 is 3). As
explained, this can be changed. It uses two private booleans: \withs@p and
\strict@ccounting. The latter is used to typeset negative numbers between
parentheses. By default it doesn’t do this: a minus sign is used.

7 \newif\ifwiths@p

Actually \geldm@cro is only a wrapper around \g@ldm@cro.

8 \def\geldm@cro#1#2{\withs@pfalse

9 \afterassignment\g@ldm@cro\count@#1\relax{#2}}

\g@ldm@cro After setting the environment for formatting, this macro starts by looking at the
sign of #2: if it is negative, it prints the correct indicator (a parenthesis or a
minus sign), assigns the absolute value of #2 to \count2 and goes on. Note that
\geldm@cro and therefore \g@ldm@cro are always used within $s, so it is really a
minus sign that is printed, not a hyphen. All calculations are done with \count0,
\count1, etc. i.e., without F-column-specific 〈count〉s because it is all done locally.
Leaving the tabular environment will restore their values. This is also true for the
effect of \FCform@t, so that formatting information is local to this column. The
reason for inserting the opening brace between \FCform@t and \ifnum (and the

8

accompanying closing brace after \fi) is to facilitate the possible use of \mathbf
or any other font changing command as the last item in \FCform@t.

10 \def\g@ldm@cro#1\relax#2{\FCform@t{\ifnum#2<0 \ifstrict@ccounting (\else

11 -\fi \count2=-#2 \else\count2=#2

12 \fi

Calculate the entire currency units: this is the result of x/a as integer division,
with a = 10n and n the part of #1 after the separator (if any). Here the first
character of #1 is discarded, so the separator in #1 is not strict: you could also
specify 3.2 instead of 3,2 (or even 3p2).

13 \count4=\ifx\relax#1\relax 2 \else \@gobble#1\relax\fi

14 \count3=0

15 \loop\ifnum\count3<\count4

16 \divide\count2 by 10 \advance\count3 by \@ne

17 \repeat

Note that \count3 now equals \count4: this going up-and-down will be used
more often, it saves several assignments. The value in \count2 is then output by
\g@ldens using the separation given (and stored in \count@).

18 \g@ldens{\the\count@}%

If there is a decimal part. . .

19 \ifnum\count3>0\decim@lmark

Next the decimal part is dealt with. Now x mod a is calculated in the usual way:
x− (x/a) ∗ a with integer division. The minus sign necessary for this calculation
is introduced in the next line by changing the comparison from < to >.

20 \ifnum#2>0 \count2=-#2\else\count2=#2 \fi

21 \loop\ifnum\count3>0

22 \divide\count2 by 10 \advance\count3 by \m@ne

23 \repeat

The value of \count3 is now 0, so counting up again.

24 \loop\ifnum\count3<\count4

25 \multiply\count2 by 10 \advance\count3 by \@ne

26 \repeat

27 \ifnum#2>0 \advance\count2 by #2

28 \else \advance\count2 by -#2

29 \fi

30 \zerop@d{\number\count3}{\number\count2}%

31 \fi

If the negative number is indicated by putting it between parentheses, then the
closing parenthesis should stick out of the column, otherwise the alignment of this
entry in the column is wrong. This is done by an \rlap and therefore does not
influence the column width. For the last column this means that this parenthe-
sis may even stick out of the table. I don’t like this, therefore I chose to put
\strict@ccountingfalse. Change if you like, by setting the option strict.

If overflow was detected, an exclamation mark is output to the right of the
value that caused this. This of course ruins the appearance of the table, but in
this case that serves a clear goal: there’s something wrong and you should know.

9

32 \ifx\FCs@gn\m@ne \ifnum#2<0 \ifstrict@ccounting

33 \rlap{)~!}\else\rlap{~!}\fi\else\ifstrict@ccounting

34 \rlap{~!}\else\rlap{~!}\fi\fi

35 \else \ifnum#2<0 \ifstrict@ccounting\rlap{)}\fi\fi

36 \fi}}

\g@ldens Here the whole currency units are dealt with. The macro \g@ldens is used recur-
sively, therefore the double braces; this allows to use \count0 locally. This also
implies that tail recursion is not possible here, but that is not very important,
as the largest number (which is 231 − 1) will only cause a threefold recursion us-
ing the default 3,2 (ninefold when using 1,0, but who does that?). The largest
amount this package can deal with is therefore 2.147.483.647 (using 3,0). For
most people this is probably more than enough if the currency is euros or dollars.
And otherwise make clear that you use a currency unit of ke (or even Me for the
very rich). The author is thinking of ways to use two counters for each number.
The maximum then becomes 263 − 1. Even expressed in cents this would lead
to a maximum of slightly more than 92.2 Pe ; about 100 times the current world
economy [5]. Yet another method is to use Heiko Oberdiek’s package bigintcalc:
then only memory restrictions apply. This, however, requires a major rewrite of
fcolumn. For now, version 1.4 sticks to the moderate amounts.

There is no straightforward interpretation of #1 being zero or negative, there-
fore this is used as an indicator that no grouping character should be used.

37 \def\g@ldens#1{{\count3=\count2 \count0=#1

First divide by 10n, where n is #1.

38 \ifnum\count0<1 \count0=3 \fi

39 \loop \ifnum\count0>0 \divide\count2 by 10 \advance\count0 by \m@ne

40 \repeat

Here is the recursive part,

41 \ifnum\count2>0 \g@ldens{#1}\fi

and then reconstruct the rest of the number.

42 \count0=#1

43 \ifnum\count0<1 \count0=3 \fi

44 \loop \ifnum\count0>0 \multiply\count2 by 10 \advance\count0 by \m@ne

45 \repeat

46 \count2=-\count2

47 \advance\count2 by \count3 \du@zendprint{#1}}}

\du@zendprint The macro \du@zendprint takes care for correctly printing the separator and
possible trailing zeros. The former, however, is only done if #1 is larger than zero.

48 \def\du@zendprint#1{\ifwiths@p\ifnum#1>0 \sep@rator\fi

49 \zerop@d{#1}{\number\count2}%

50 \else\zerop@d1{\number\count2}\fi\global\withs@ptrue}

\zerop@d The macro \zerop@d uses at least #1 digits for printing the number #2, padding
with zeros when necessary. Note: #1 being zero or negative is a flag that it should

10

be interpreted as 3. A bit ugly, but it works, since the related code knows about
this.

It is done within an extra pair of braces, so that \count0 and \count1 can be
used without disturbing their values in other macros.

51 \def\zerop@d#1#2{{\count0=1 \count1=#2

First determine the number of digits of #2 (expressed in the decimal system). This
number is in \count0 and is at least 1.

52 \loop \divide \count1 by 10 \ifnum\count1>0 \advance\count0 by \@ne

53 \repeat

If #1 is positive, the number of zeros to be padded is max(0, #1-\count0) (the
second argument can be negative), so a simple loop suffices. If it is zero or negative,
this is a signal that it should be interpreted as 3 (and no separator will be output).

54 \ifnum#1>0

55 \loop \ifnum\count0<#1\relax 0\advance\count0 by \@ne

56 \repeat

57 \else

58 \advance\count0 by -3

59 \loop \ifnum\count0<0 0\advance\count0 by \@ne

60 \repeat

61 \fi\number#2}}

\zetg@ld This macro takes care for several things: it increases the subtotal for a given F-
column, it checks whether or not that subtotal has overflown, it records the largest
width of the entries in that column and it typesets #1 via \geldm@cro.

62 \def\zetg@ld#1#2{\count0=#2\relax \let\FCs@gn=\@ne

First it checks whether there is a risk of overflow in this step. If A and B are two
TEX-registers and B is to be added to A, overflow will not occur if one is (or both
are) zero or if A and B have different signs. Otherwise, be careful. Note that TEX
does not check for overflow when performing an \advance (done in section 1238
of Ref. [6]), in contrast to \multiply, see section 105.

63 \ifnum\count0<0

64 \ifnum\csname FCtot@\romannumeral\FCsc@l\endcsname<0

65 \let\FCs@gn=\m@ne

66 \fi

67 \fi

68 \ifnum\count0>0

69 \ifnum\csname FCtot@\romannumeral\FCsc@l\endcsname>0

70 \let\FCs@gn=\m@ne

71 \fi

72 \fi

73 \global\advance\csname FCtot@\romannumeral\FCsc@l\endcsname by \count0

74 \ifx\FCs@gn\m@ne

They had the same sign: risk of overflow. Record the sign of \count0 (and
of the original total of this column; they were the same) in \FCs@gn. Table 9
shows what can go wrong if the numbers are too large: in the left F-column the
sumline is incorrect and the number that caused the overflow is indicated by an

11

Table 9: Examples on overflow.

Projects

income 31 dec 2014 31 dec 2015 31 dec 2016

item 1 20.000.000,00 20.000.000,00 20.000.000,00
item 2 10.000.000,00 ! 2.000.000,00 ! −2.000.000,00
item 3 5.000.000,00 −2.000.000,00 ! 2.000.000,00

−7.949.672,96 20.000.000,00 20.000.000,00

exclamation mark. In the middle F-column, overflow occurs twice and because this
is once positive, once negative here, cancellation of errors occurs and the sumline
is correct in the end. Nevertheless, it is advised to swap the two items that caused
the overflow, as shown in the right F-column.

Since the absolute value of \FCs@gn is unity, no overflow will occur in the
multiplication step below.

75 \ifnum\count0>0 \let\FCs@gn\@ne \fi

76 \count0=\csname FCtot@\romannumeral\FCsc@l\endcsname

77 \multiply\count0 by \FCs@gn

78 \ifnum\count0<0

79 \let\FCs@gn=\m@ne

80 \PackageError{fcolumn}{Register overflow}{Overflow occurred

81 in fcolumn \number\FCsc@l. You can press <enter> now and I’ll

82 proceed,\MessageBreak but check your table. The offending entry is

83 indicated with an exclamation\MessageBreak mark in the output.}%

84 \else\let\FCs@gn=\@ne

85 \fi

86 \fi

The value of \FCs@gn is used in \geldm@cro below.

87 \setbox0=\hbox{$\geldm@cro{#1}{#2}$}%

88 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

89 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

90 \fi\unhbox0}

The 〈count〉s \FC@l and \FC@r capture the part to the left and to the right of
the decimal mark, respectively.

91 \newcount\FC@l \newcount\FC@r

Some auxiliary definitions for capturing compacted information.

92 \def\setucc@de#1#2\relax{\uccode‘\~=‘#1 }

93 \def\assignform@t#1,#2,#3\assignform@t{\def\FCform@t{#1}%

94 \def\FCform@tt{#2}\ifx\FCform@tt\@empty \def\FCform@tt{#1}\fi}

\b@fi The macro \b@fi provides the beginning of the financial column. It will be inserted
in the column to capture the number entered by the user. The separator and
decimal mark are within a math environment, so you can indeed specify \, instead
of \thinspace, but there is an extra brace around, so it doesn’t affect the spacing
between the digits (trick copied from dcolumn, Ref. [3]).

12

95 \def\b@fi#1#2#3#4{%

An intermediate macro \sep@xt to extract the first character of #1, which in most
cases will be the only character.

96 \def\sep@xt##1##2\end{\def\sep@rator{{##1}}}%

97 \sep@xt#1\end\def\decim@lmark{{#2}}%

98 \def\sp@l{#3}\assignform@t#4,,\assignform@t\global\advance\FCsc@l by

99 \@ne \global\FC@l=0 \global\FC@r=1

The value specified by the user is then captured by \FC@l and this is done in a
special way: \FC@l is assigned globally within \box0. Why? To use it as scribbling
paper to examine what the user entered, without dumping it into the horizontal
list.

There are four parts to an F-column entry, all parts optional, making 16 com-
binations. The sequence is (in the Backus–Naur notation of Ref. [7]): 〈sign〉
〈integer constant〉 〈decimal mark〉 〈integer constant〉. Here 〈sign〉 is a plus or mi-
nus character with category code 12, 〈integer constant〉 is a sequence of zero or
more (decimal) 〈digit〉s, and 〈decimal mark〉 is the middel part of #3, i.e., the
comma in 3,2 or the period in 3.2. If the 〈decimal mark〉 is absent with no space
characters between the two 〈integer constant〉 terms, these merge, making four
redundant entries. One of the combinations is 〈empty〉, a sequence of exactly zero
non-space tokens: this is the only combination that doesn’t put anything in an
F-column—and was the most difficult part to handle.

The minus sign must be captured separately, because in an entry like -0,07

the 7 cents are negative, but this cannot be seen from the part to the left of the
decimal mark, since −0 is 0 in TEX (in fact in most computer languages, but not
in MIX [8]), so \ifnum-0<0 yields false. \FCs@gn is a general purpose flag. Its
first use is to capture the sign.

100 \let\FCs@gn=\@ne\relax \setbox0\hbox\bgroup$%

Do the scan inside a box and inside math mode. Start with defining all characters
that may appear as the first one in an F-column as active.

101 \uccode‘\~=‘0\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=0}

102 \uccode‘\~=‘1\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=1}

103 \uccode‘\~=‘2\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=2}

104 \uccode‘\~=‘3\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=3}

105 \uccode‘\~=‘4\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=4}

106 \uccode‘\~=‘5\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=5}

107 \uccode‘\~=‘6\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=6}

108 \uccode‘\~=‘7\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=7}

109 \uccode‘\~=‘8\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=8}

110 \uccode‘\~=‘9\relax \uppercase{\def~}{\restorem@thcodes \global\FC@l=9}

For the input decimal mark something extra is needed: if it is the first character
in an F-column (like in ,07), it should also restore the \mathcodes of the digits.
Checking whether or not it is the first is easy, since in that case the \mathcodes of
the decimal digits is still "8000. The assignment to \FC@r starts with 1, so that
appended digits get captured correctly, even if they start with 0. Postprocessing
of \FC@r is done in \e@fi. The input decimal mark switches itself off as active

13

character, so at most one input decimal separator is allowed (N.B.: this makes
sense).

111 \def\deactdecm@rk##1##2\relax{\mathcode‘##1=0 }%

112 \afterassignment\setucc@de\count@#3\relax

113 \uppercase{\def~}{\ifnum\mathcode‘\0=\mathcode‘- \restorem@thcodes\fi

114 \afterassignment\deactdecm@rk\count@#3\relax \global\FC@r=1}%

The input grouping character effectively expands to “nothing, i.e., ignore” in a
complicated way: it ignores the character and resumes scanning the number. The
test prior to that action is needed if the grouping character is the first character
encountered in the F-column. Which part to continue with depends on whether
or not an input decimal mark was encountered; that can be checked by looking at
its \mathcode.

The input grouping character is the dot ., except when that character was
already chosen as input decimal mark. In that case, the grouping character will
be the comma. This is easy to check because the \uccode of ‘\~ is still preserved.

115 \def\d@cm##1##2{\count@=\mathcode‘##1 }

116 \ifnum\uccode‘\~=‘. \uccode‘\~=‘,\relax\else \uccode‘\~=‘.\relax\fi

117 \uppercase{\def~}{\ifnum\mathcode‘\0=\mathcode‘- \restorem@thcodes\fi

118 \afterassignment\d@cm\count@#3\relax

The \expandafter below is necessary because the global assignment should act
after the \fi.

119 \ifnum\count@=\mathcode‘- \expandafter\global\FC@l=\the\FC@l

120 \else \expandafter\global\FC@r=\the\FC@r\fi}%

The signs are relatively simple: record the sign, restore \mathcodes if needed (it
should be: a minus sign between digits screws up everything), and start scanning
the number.

121 \uccode‘\~=‘+\relax

122 \uppercase{\def~}{\ifnum\mathcode‘\0=\mathcode‘-

123 \restorem@thcodes\fi\global\FC@l=0}%

124 \uccode‘\~=‘-\relax

125 \uppercase{\def~}{\ifnum\mathcode‘\0=\mathcode‘-

126 \restorem@thcodes\fi\global\let\FCs@gn\m@ne \global\FC@l=0}%

Now actually activate all these codes. The first is simple, but after that, one can’t
say "8000 anymore because 0 acts as active. But copying \mathcodes still works.

127 \mathcode‘-="8000 \mathcode‘+=\mathcode‘- \mathcode‘.=\mathcode‘-

These three remain active until the $ in \e@fi is encountered. The following ones
will, except in the 〈empty〉 case, have their activeness turned off at some time.

128 \def\actdecm@rk##1##2\relax{\ifx##1.\relax \mathcode‘,=\mathcode‘-

129 \else \mathcode‘##1=\mathcode‘- \fi}%

130 \afterassignment\actdecm@rk\count@#3\relax

131 \mathcode‘\0=\mathcode‘- \mathcode‘\1=\mathcode‘-

132 \mathcode‘\2=\mathcode‘- \mathcode‘\3=\mathcode‘-

133 \mathcode‘\4=\mathcode‘- \mathcode‘\5=\mathcode‘-

134 \mathcode‘\6=\mathcode‘- \mathcode‘\7=\mathcode‘-

135 \mathcode‘\8=\mathcode‘- \mathcode‘\9=\mathcode‘- }

14

\e@fi If the digits are still active then either nothing was entered or only characters that
did not deactivate the digits were entered. In either case the output should be
〈empty〉. To flag this outside the group that started with the opening $ of \b@fi,
\FC@r is set globally to a negative value. This doesn’t harm, because it didn’t
contain relevant information anyway. Outside the group, the sign of \FC@r can
then be tested. This is a slight misuse of this \count, but now it’s documented. In
effect, \FC@r can only be -1, 1, or at least 10, so the comparison \ifnum\FC@r>0

does not miss 0.

136 \def\e@fi{\ifnum\mathcode‘\0=\mathcode‘- \global\FC@r=\m@ne\fi$\egroup

137 \ifnum\FC@r>0

If there was no decimal mark or if there was a decimal mark but no decimal
part, \FC@r will still be 1, which doesn’t parse well with \secd@xt, so a zero is
appended, i.e., yielding 10.

138 \ifnum\FC@r=1 \FC@r=10 \fi

Next is a loop for bringing the decimal part in the correct way to the integer part.
The loop is performed the number of decimal digits to be printed (the 2 in 3,2

of the default setting). This also means that if you provided more decimal digits
than this, the excess digit(s) will not be handled and a \PackageWarning will be
given, showing these excess digits. This is truncation, not rounding! There is one
situation in which this code doesn’t catch all: when exactly one extra zero was
provided. And in that case truncation is a no-op.

139 \def\i@ts##1##2{\count0=##2}

140 \afterassignment\i@ts\count@\sp@l

141 \loop\ifnum\count0>0 \multiply\FC@l by 10

142 \expandafter\secd@xt\number\FC@r\end \advance\count0 by \m@ne

143 \repeat

144 \ifnum\FC@r>10

145 \def\tw@l##1##2\relax{##2}

146 \PackageWarning{fcolumn}{Excess digit\ifnum\FC@r>100 s\fi\space

147 ‘‘\expandafter\tw@l\number\FC@r\relax’’ in decimal part

148 \MessageBreak ignored near or}

149 \fi

Don’t forget to correct for the sign (once this is done, \FCs@gn is free again and
can and will be used for other purposes). Then output the result.

150 \ifx\FCs@gn\m@ne\relax \FC@l=-\FC@l \fi

151 \zetg@ld{\sp@l}{\FC@l}%

152 \fi}

\secd@xt The second digit from the left is needed from a string of characters representing
a decimal number. The macro \secd@xt extracts that digit, provided that the
number has at least two digits, but that is guaranteed by \e@fi. That second
digit is then added to \FC@l. A new number is assigned to \FC@r, that consists of
the digits of #1#3. If #3 was empty, 10 is assigned. In this way \FC@r is prepared
for insertion in the next invocation of \secd@xt. In iterating: 1234 yields 134,
yields 14, yields 10, stays 10, etc.

153 \def\secd@xt#1#2#3\end{\advance\FC@l by #2

15

154 \FC@r=#1#3 \ifnum\FC@r=1 \FC@r=10 \fi}

\restorem@thcodes As shown above, once the first digit, or sign, or decimal separator, or grouping
character is scanned, the decimal digits should loose their activeness. That is done
here in a rather blunt way, since the actual \mathcode is not important—as long
as it is not "8000—because the digits are not used for typesetting (and even if
they were; it’s inside \box0, whose contents will be discarded). When the $ in
\e@fi is encountered, the digits get back their original \mathcodes so that the
actual typesetting in \zetg@ld is correct again.

155 \def\restorem@thcodes{\mathcode‘\0=0 \mathcode‘\1=0

156 \mathcode‘\2=0 \mathcode‘\3=0 \mathcode‘\4=0 \mathcode‘\5=0

157 \mathcode‘\6=0 \mathcode‘\7=0 \mathcode‘\8=0 \mathcode‘\9=0 }

3.3 Adaptations to existing macros

\@array The definition of \@array had to be extended slightly because it should also in-
clude \@mksumline (acting on the same #2 as \@mkpream gets). This change is
transparant: it only adds functionality and if you don’t use that, you won’t notice
the difference. It starts by just copying the original definition from v2.4k of the
array package [1].

158 \def\@array[#1]#2{%

159 \@tempdima \ht \strutbox

160 \advance \@tempdima by\extrarowheight

161 \setbox \@arstrutbox \hbox{\vrule

162 \@height \arraystretch \@tempdima

163 \@depth \arraystretch \dp \strutbox

164 \@width \z@}%

Here comes the first change: after each \\ (or \cr for that matter) the 〈count〉
\FCsc@l should be reset. This is easiest done with \everycr, but \everycr is put
to {} by \ialign, so that definition should change. The resetting should be done
globally.

165 \def\ialign{\everycr{\noalign{\global\FCsc@l=0 }}%

166 \tabskip\z@skip\halign}

Then the definition is picked up again.

167 \begingroup

168 \@mkpream{#2}%

169 \xdef\@preamble{\noexpand \ialign \@halignto

170 \bgroup\@arstrut\@preamble\tabskip\z@\cr}%

171 \endgroup

The combination \endgroup followed by \begingroup seems redundant, but that
is not the case: the \endgroup restores everything that was not \global. With
the following \begingroup it is ensured that \@mksumline experiences the same
settings as \@mkpream did.

172 \begingroup

173 \@mksumline{#2}%

174 \endgroup

16

As a side product of \@mksumline also the 〈count〉s for the totals and 〈dimen〉s for
the widths of the colums are created. The columns should start fresh, i.e., totals
are 0 and widths are 0 pt.

175 \res@tsumline

From here on it is just the old definition of array.sty.

176 \@arrayleft

177 \if #1t\vtop \else \if#1b\vbox \else \vcenter \fi \fi

178 \bgroup

179 \let \@sharp ##\let \protect \relax

180 \lineskip \z@

181 \baselineskip \z@

182 \m@th

183 \let\\\@arraycr \let\tabularnewline\\\let\par\@empty \@preamble}

Because \@array was changed here and it is this version that should be used,
\@@array should be \let equal to \@array again.

184 \let\@@array=\@array

Much of the techniques here are repeated in \LT@array.

3.4 The sumline, close to a postamble

\@mksumline The construction of the sumline is much easier than that of the preamble for several
reasons. It may be safely assumed that the preamble specifier is grammatically
correct because it has already been screened by \@mkpream. Furthermore, most
entries will simply add nothing to \s@ml@ne, e.g., @, !, and | can be fully ignored.
Ampersands are only inserted by c, l, r, p, m, and b. So a specifier like @{}lflf@{}
will yield the sumline &\a&&\a\\, (where \a is a macro that prints the desired
result of the column, see below). Had the specifier been l|f||@{ }l|f, then
the same sumline must be constructed: all difficulties are already picked up and
solved in the creation of the preamble.

In reality the sumline must be constructed from the expanded form of the spec-
ifier, so @{}lf@{} will expand as @{}l>{\b@fi{.}{,}{3,2}{}}r<{\e@fi}@{}.
The rules for constructing the sumline are now very simple:
• add an ampersand when c, l, r, p, m, or b is found, unless it is the first one

(this is the same as in the preamble);
• add a \a when <{\e@fi} is found;
• ignore everything else;
• close with a \\.
(In reality also the column check is inserted just before the \\, see \aut@check.)
To discriminate, a special version of \@testpach could be written, but that is not
necessary: \@testpach can do all the work, although much of it will be discarded.
Here speed is sacrificed for space and this can be afforded because the creation of
the sumline is done only once per \tabular or \longtable.

The start is copied from \@mkpream.

185 \def\@mksumline#1{\gdef\s@ml@ne{}\@lastchclass 4 \@firstamptrue

17

At first the column number is reset and the actual code for what was called \a

above is made inactive.

186 \global\FCsc@l=0

187 \let\prr@sult=\relax

Then \@mkpream is picked up again.

188 \@temptokena{#1}\@tempswatrue

189 \@whilesw\if@tempswa\fi{\@tempswafalse\the\NC@list}%

190 \count0\m@ne\let\the@toks\relax\prepnext@tok

Next is the loop over all tokens in the expanded form of the specifier. The change
with respect to \@mkpream is that the body of the loop is now only dealing with
F-classes 0, 2, and 10. What to do in those cases is of course different from what to
do when constructing the preamble, so special definitions are created, see below.

191 \expandafter \@tfor \expandafter \@nextchar

192 \expandafter :\expandafter =\the\@temptokena \do

193 {\@testpach

194 \ifcase \@chclass \@classfz \or \or \@classfii \or \or \or \or \or

195 \or \or \or \@classfx \fi\@lastchclass\@chclass}%

And the macro is finished by applying the \aut@check and appending the \\

to the sumline. Note that the \aut@check is performed in the last column, but
since it does not put anything in the horizontal list—it only writes to screen and
transcript file—, this is harmless.

196 \xdef\s@ml@ne{\s@ml@ne\noexpand\aut@check\noexpand\\}}

\@addtosumline Macro \@addtosumline, as its name already suggests, adds something to the
sumline, like its counterpart \@addtopreamble did to the preamble.

197 \def\@addtosumline#1{\xdef\s@ml@ne{\s@ml@ne #1}}

\@classfx Class f10 for the sumline creation is a stripped down version of \@classx: add an
ampersand unless it is the first. It deals with the specifiers b, m, p, c, l, and r.

198 \def\@classfx{\if@firstamp \@firstampfalse \else \@addtosumline &\fi}

\@classfz Class f0 is applicable for specifiers c, l, and r, and if the arguments of p, m, or b

are given. The latter three cases, with \@chnum is 0, 1, or 2 should be ignored and
the first three cases are now similar to class f10.

199 \def\@classfz{\ifnum\@chnum<\thr@@ \@classfx\fi}

\@classfii Here comes the nice and nasty part. Class f2 is applicable if a < is specified. This is
tested by checking \@lastchclass, which should be equal to 8. Then it is checked
that the argument to < is indeed \e@fi. This check is rather clumsy but this was
the first way, after many attempts, that worked. It is necessary because the usage
of < is not restricted to \e@fi: the user may have specified other LATEX-code
using <.

200 \def\@classfii{\ifnum\@lastchclass=8

201 \edef\t@stm{\expandafter\string\@nextchar}

202 \edef\t@stn{\string\e@fi}

203 \ifx\t@stm\t@stn

18

If both tests yield true, i.e., we encountered a <{\e@fi} where we expect one to
find, then add the macro to typeset everything.

204 \@addtosumline{\prr@sult}

But we’re not done yet: in the following lines of code the appropriate 〈count〉s
and 〈dimen〉s are created, if necessary. Note that \FCsc@l was set to 0 in the
beginning of \@mksumline, so it is well-defined when \@classfii is used.

205 \global\advance\FCsc@l by \@ne

206 \ifnum\FCsc@l>\FCtc@l

Apparently the number of requested columns is larger than the currently available
number of relevant 〈count〉s and 〈dimen〉s, so new ones should be created. What
is checked here is merely the existence of \FCtot@<some romannumeral>. If it
already exists—although it may not even be a 〈count〉; that cannot be checked—
it is not created by fcolumn and an error is given. In case it is a 〈count〉 you’re
just lucky, and you could ignore that error, although any change to this 〈count〉
is global anyway, so things will be overwritten. In the case it is not a 〈count〉,
things will go haywire and you’ll soon find out. The remedy then is to rename
your 〈count〉 prior to fcolumn to avoid this name clash.

207 \expandafter\ifx\csname FCtot@\romannumeral\FCsc@l\endcsname\relax

208 \expandafter\newcount\csname FCtot@\romannumeral\FCsc@l\endcsname

209 \else

210 \PackageError{fcolumn}{Name clash for <count>}{\expandafter\csname

211 FCtot@\romannumeral\FCsc@l\endcsname is already defined and it may

212 not even be a <count>. If you’re\MessageBreak sure it is a <count>,

213 you can press <enter> now and I’ll proceed, but things\MessageBreak

214 will get overwritten.}%

215 \fi

And the same is applicable for the 〈dimen〉: in case of a name clash you have to
rename your 〈dimen〉 prior to fcolumn.

216 \expandafter\ifx\csname FCwd@\romannumeral\FCsc@l\endcsname\relax

217 \expandafter\newdimen\csname FCwd@\romannumeral\FCsc@l\endcsname

If the creation was successful, the 〈count〉 \FCtc@l should be increased.

218 \global\FCtc@l=\FCsc@l

219 \else

220 \PackageError{fcolumn}{Name clash for <dimen>}{\expandafter\csname

221 FCwd@\romannumeral\FCsc@l\endcsname is already defined and it may

222 not even be a <dimen>. If you’re\MessageBreak sure it is a <dimen>,

223 you can press <enter> now and I’ll proceed, but things\MessageBreak

224 will get overwritten.}%

225 \fi

226 \fi

227 \fi

228 \fi}

Once created, it is not necessary to initialise them here because that is done later
in one go.

19

\sumline The command for the sumline has one optional argument: the separation be-
tween the rule and the total. By default this is 2 pt, but the user may specify
\sumline[10pt] if that separation needs to be 10 pt. The assignment needs to be
global, because it is done in the first column of the tabular, but is valid for the
whole line.

229 \newdimen\s@mlinesep

230 \def\sumline{\@ifnextchar[\s@mline{\s@mline[2pt]}}

231 \def\s@mline[#1]{\global\s@mlinesep=#1 \s@ml@ne}

In the introduction it was stated that \sumline has two options, but in reality
that second option is the option to \\ that is issued by \s@ml@ne.

\prr@sult The macro \prr@sult actually puts the information together. It starts like \leeg.

232 \def\prr@sult{$\egroup \let\e@fi=\relax \let\FCform@t=\FCform@tt

Then the information for the last line is computed. It is not sufficient to calculate
the width of the result (in points) to use that as the width of the rule separating
the individual entries and the result. It may be that the sum is larger (in points)
than any of the entries, e.g., when the result of 6+6 (using specifier 3,2) is typeset.
The width of the rule should be equal to the width of \hbox{$12{,}00$} then.
On the other hand the width of the rule when summing 24 and −24 should be that
of \hbox{$-24{,}00$} (or \hbox{$(24{,}00$}, see above), not the width of the
result \hbox{$0{,}00$}. Therefore the maximum of all entry widths, including
the result, was calculated.

233 \setbox0=\hbox{$\geldm@cro{\sp@l}{\number\csname

234 FCtot@\romannumeral\FCsc@l\endcsname}$}%

235 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

236 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

237 \fi

238 \vbox{\hrule width \csname FCwd@\romannumeral\FCsc@l\endcsname

239 \vskip\s@mlinesep

240 \hbox to \csname FCwd@\romannumeral\FCsc@l\endcsname{\hfil\unhbox0}}}

3.5 Other checks

\leeg This macro is used to overrule the default behaviour of the pair \b@fi and \e@fi.
It starts with ending the groups in the same way that \e@fi would normally do.
Then the effect of \e@fi (that is still in the preamble) is annihilated by \letting it
to be \relax. This \let is only local to the current column. Then the argument
to \leeg is treated in a similar way as \e@fi would do with a typeset number.

Since the user may from time to time also need a column entry other than
a number in the table, e.g., \leeg{p.m.}, this definition is without at-sign. By
defining \leeg in this way, instead of \multicolumn1r{} (which contains \omit),
the default spacing in the column is retained. It has its normal effect on the
column width, but doesn’t alter the width of the sumrule.

241 \def\leeg#1{$\egroup \let\e@fi=\relax #1}

Note that anything may be given as argument to \leeg, so in principle it can also
be used to cheat: \leeg{0,03} will insert 0,03 in the table but it doesn’t increase

20

the totals of that column by 3 (assuming 3,2 coding for the separations). But you
won’t cheat, won’t you? It may affect the width, so be careful: don’t insert the
unabridged version of Romeo and Juliet [9] here.

\res@tsumline Since all changes to the totals and widths of the columns are global, they have
to be reset actively at the start of a tabular or array. That is an action by itself,
but it may occur more often, on request of the user, therefore a special macro
is defined. A side effect of this macro is that \FCsc@l is reset to 0. This is an
advantage: it should be zero at the beginning of a line in the table (for other lines
this is done by the \\).

242 \def\res@tsumline{\FCsc@l=\FCtc@l\loop\ifnum\FCsc@l>0

243 \global\csname FCtot@\romannumeral\FCsc@l\endcsname=0

244 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\z@

245 \advance\FCsc@l by \m@ne\repeat}

\resetsumline To reset a sumline within a table, it should be done within a \noalign.

246 \def\resetsumline{\noalign{\res@tsumline}}

\aut@check If the number of F-columns is even, it is assumed that they are part of two sets
of columns of which each column of the first set should balance the appropriate
column of the second set. If on the other hand the number of columns is odd, then
at least one column has nothing to balance against and no checking occurs. It is
correct to check for oddness of \FCsc@l since this \aut@check is only performed
in the last column of the tabular: the value of \FCsc@l now equals the number of
columns used in the current tabular (and may differ from \FCtc@l).

The output is only to screen and the transcript file; it doesn’t change the
appearance of your document, so in case the assumption is wrong you can safely
ignore the result and go on. The 〈count〉s 0 and 1 are used here and this can be
done because any content of those 〈count〉s from previous calculations has become
irrelevant at this moment.

If the list \FC@chklist is empty, the list for the automatic check is generated
(which will remain empty if \FCsc@l is odd).

247 \def\FC@chklist{}

248 \def\aut@check{\ifx\@empty\FC@chklist\relax

249 \ifodd\FCsc@l\else

250 \count0=\@ne \count1=\FCsc@l

251 \divide\count1 by \tw@

252 \loop\ifnum\count1<\FCsc@l

253 \advance\count1 by \@ne

254 \xdef\FC@chklist{\FC@chklist\number\count0,\number\count1;}%

255 \advance\count0 by\@ne

256 \repeat

257 \fi

258 \fi

Then this list is peeled off and processed.

259 \loop

260 \ifx\FC@chklist\@empty\let\FCs@gn=\@ne\else\let\FCs@gn=\m@ne\fi

21

261 \ifx\FCs@gn\m@ne

262 \expandafter\fre@t\FC@chklist\end

263 \ifnum\csname FCtot@\romannumeral\count0\endcsname=

264 \csname FCtot@\romannumeral\count1\endcsname\else

265 \PackageWarning{fcolumn}{F-columns \number\count0 \space

266 and \number\count1 \space do not balance near or}%

267 \fi

268 \repeat}

When \aut@check is finished, \FC@chklist is empty again, i.e., well prepared for
the next time it is used. This also means that the default behaviour kicks in again:
if that’s not what you want, you should specify the appropriate \checkfcolumns

lines again.

\fre@t This function eats the first two numbers off \FC@chklist.

269 \def\fre@t#1,#2;#3\end{\count0=#1 \count1=#2 \xdef\FC@chklist{#3}}

\checkfcolumns But the assumptions for \aut@check may be wrong, therefore manual control on
this checking is also made possible here. The macro \checkfcolumns provides a
way to the user to check that the appropriate columns are balanced (as it should
in a balance). Arguments #1 and #2 are the F-column numbers to compare. It is
the responsibility of the user to provide the correct numbers here, otherwise bogus
output is generated. If this manual check is inserted, the automatic check will not
be performed.

270 \def\checkfcolumns#1#2{\noalign{\xdef\FC@chklist{\FC@chklist #1,#2;}}}

3.6 Support for package longtable

Package longtable is used for tables that may span multiple pages. fcolumn and
longtable work together as long as longtable is loaded first, so that fcolumn can
adapt one definition of longtable. If longtable is not loaded, that definition is
just that: a definition. If longtable is loaded before fcolumn, it is a redefinition,
and it should be. For that reason the user is warned (not loading longtable is
not an error if you don’t use it) if fcolumn is loaded without prior loading of
longtable.

271 \ifx\longtable\@undefined

272 \PackageWarningNoLine{fcolumn}{fcolumn is loaded without longtable. That’s

273 OK, but\MessageBreak if you want to load longtable as well, make sure

274 \MessageBreak it is done before loading fcolumn}

275 \fi

\LT@array And here is the only definition of longtable that needs to be adapted a bit, to
make fcolumn work with that package.

276 \def\LT@array[#1]#2{%

277 \refstepcounter{table}\stepcounter{LT@tables}%

278 \if l#1 \LTleft\z@\LTright\fill

279 \else\if r#1 \LTleft\fill\LTright\z@

280 \else\if c#1 \LTleft\fill\LTright\fill

22

281 \fi\fi\fi

282 \let\LT@mcol\multicolumn\let\LT@@tabarray\@tabarray\let\LT@@hl\hline

283 \def\@tabarray{\let\hline\LT@@hl \LT@@tabarray}%

284 \let\\\LT@tabularcr\let\tabularnewline\\%

285 \def\newpage{\noalign{\break}}%

286 \def\pagebreak{\noalign{\ifnum‘}=0\fi\@testopt{\LT@no@pgbk-}4}%

287 \def\nopagebreak{\noalign{\ifnum‘}=0\fi\@testopt\LT@no@pgbk4}%

288 \let\hline\LT@hline\let\kill\LT@kill\let\caption\LT@caption

289 \@tempdima\ht\strutbox\let\@endpbox\LT@endpbox

290 \ifx\extrarowheight\@undefined

291 \let\@acol\@tabacol\let\@classz\@tabclassz\let\@classiv\@tabclassiv

292 \def\@startpbox{\vtop\LT@startpbox}\let\@@startpbox

293 \@startpbox\let\@@endpbox\@endpbox\let\LT@LL@FM@cr\@tabularcr

294 \else

295 \advance\@tempdima\extrarowheight \col@sep\tabcolsep

296 \let\@startpbox\LT@startpbox\let\LT@LL@FM@cr\@arraycr

297 \fi

298 \setbox\@arstrutbox\hbox{\vrule\@height\arraystretch\@tempdima

299 \@depth\arraystretch\dp\strutbox\@width\z@}%

300 \let\@sharp##\let\protect\relax

301 \begingroup

302 \@mkpream{#2}%

303 \xdef\LT@bchunk{%

304 \global\advance\c@LT@chunks\@ne\global\LT@rows\z@

305 \setbox\z@\vbox\bgroup\LT@setprevdepth\tabskip\LTleft

306 \noexpand\halign to\hsize\bgroup\tabskip\z@\@arstrut

307 \@preamble\tabskip\LTright\cr}%

308 \endgroup

Until this line it was just the code for \LT@array from package longtable. The
five lines of the next chunk are new to \LT@array. Their purpose is the same as
in \@array above.

309 \begingroup

310 \@mksumline{#2}%

311 \endgroup

312 \res@tsumline

313 \everycr{\noalign{\global\FCsc@l=0 }}%

From here on \LT@array is picked up again.

314 \expandafter\LT@nofcols\LT@bchunk&\LT@nofcols

315 \LT@make@row\m@th\let\par\@empty

316 \lineskip\z@\baselineskip\z@\LT@bchunk}

That’s it!

Acknowledgement

Thanks to Karl Berry for valuable comments regarding the consistency of the
installation procedure of this version. Frank Mittelbach gave various useful sug-
gestions for improving the input parsing as well as hints to make the package more

23

LATEX-like. He also challenged me to make fcolumn compatible with longtable.
Christian Hoff’s request on column formatting triggered many happy hours of
coding.

References

[1] Frank Mittelbach and David Carlisle. A new implementation of LATEX’s
tabular and array environment.

[2] Simon Fear. Publication quality tables in LATEX.
[3] David Carlisle. The dcolumn package.
[4] David Carlisle. The longtable package.
[5] According to the IMF www.imf.org.
[6] Donald Knuth, Computers & Typesetting/B, TEX: the program.
[7] Donald Knuth, Computers & Typesetting/A, The TEXbook.
[8] Donald Knuth, The Art of Computers Programming, volume 1.
[9] William Shakespeare, Romeo and Juliet, a tragedy (1597).

Change History

v0.1
General: First working version. . . . 1

v1.0
General: Three-argument version is

working properly. 1
v1.1

General: Automatic checking of
column balance performed
when number of F-columns is
even (behaviour can be
overridden). Empty entries are
now recognised and correctly
treated as such, except for the
one ended by the double
backslash. Not serious;
workaround possible.
Furthermore optimisation of
code: minimised the number of
private counts and resetting of
column counter done in a nicer
way. 1

v1.1.1
General: Installation procedure

changed from .ins-in-.dtx to
separate .ins and .dtx after
discussion with Karl Berry as
well as some minor code

improvements. 1
v1.1.2

General: Some inconsistencies
between explanatory text and
actual code removed. 1

v1.2
General: Input parsing changed

after comment from Frank
Mittelbach. He (Frank) also
gave various suggestions for
improving robustness or user
friendlyness of this package.
This version is only backwards
compatible when zero decimal
digits were and are specified as
modifier. 1

v1.3
General: Christian Hoff requested

the possibility to provide extra
formatting information to a
column, e.g., colouring. That
was implemented by having an
extra parameter to the generic
F-column. The current
solution is not very robust, as
font and/or size change in
math environment are very

24

www.imf.org

tricky, but providing colour
information works, see the
example in the main text. This
version is now compatible with
package longtable. Version 1.3
is backwards compatible to 1.2:
it only adds functionality. 1

v1.4
General: More robust version on

the extra formatting
information: alternative
formatting after the comma (if
any), instead of additional
information. Corrected a few
typos. 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@@array 184

\@addtosumline
. . . . 197, 198, 204

\@array 158

\@arraycr 183, 296

\@arrayleft 176

\@chclass 194, 195

\@chnum 199

\@classfii . . . 194, 200

\@classfx . 195, 198, 199

\@classfz 194, 199

\@empty 94,
183, 248, 260, 315

\@endpbox 289, 293

\@ifnextchar 230

\@lastchclass
. . . . 185, 195, 200

\@mksumline 173, 185, 310

\@startpbox 292, 293, 296

\@tabacol 291

\@tabarray . . . 282, 283

\@tabclassiv 291

\@tabclassz 291

\@tabularcr 293

\@temptokena . . 188, 192

\@testopt 286, 287

\@testpach 193

\@undefined . . . 271, 290

\\ 183, 196, 284

\~ 92, 101–
110, 116, 121, 124

Numbers

\0 . . . 113, 117, 122,
125, 131, 136, 155

\1 131, 155

\2 132, 156

\3 132, 156

\4 133, 156

\5 133, 156

\6 134, 157

\7 134, 157

\8 135, 157

\9 135, 157

A

\actdecm@rk . . . 128, 130

\afterassignment . .
. 9, 112,
114, 118, 130, 140

\assignform@t . . . 93, 98

\aut@check . . . 196, 247

B

\b@fi 4, 95

\break 285

C

\c@LT@chunks 304

\caption 288

\checkfcolumns . . 1, 270

\col@sep 295

\column F 4

\column f 4

D
\d@cm 115, 118
\deactdecm@rk . 111, 114
\decim@lmark 19, 97
\DeclareOption 2
\du@zendprint . . . 47, 48

E
\e@fi 4, 136, 202, 232, 241
\else 10, 11,

13, 20, 28, 33–
35, 50, 57, 84,
116, 120, 129,
177, 198, 209,
219, 249, 260,
264, 279, 280, 294

\end 96, 97,
142, 153, 262, 269

\endcsname 64, 69, 73,
76, 88, 89, 207,
208, 211, 216,
217, 221, 234–
236, 238, 240,
243, 244, 263, 264

\endgroup
. 171, 174, 308, 311

\everycr 165, 313
\expandafter 119, 120,

142, 147, 191,
192, 201, 207,
208, 210, 216,
217, 220, 262, 314

\extrarowheight . . .
. . . . 160, 290, 295

25

F
\F 1
\FC@chklist

. 247, 248, 254,
260, 262, 269, 270

\FC@l 91, 99, 101–110,
119, 123, 126,
141, 150, 151, 153

\FC@r 91, 99, 114, 120,
136–138, 142,
144, 146, 147, 154

\FCform@t . . 10, 93, 232
\FCform@tt 94, 232
\FCs@gn 32, 62,

65, 70, 74, 75,
77, 79, 84, 100,
126, 150, 260, 261

\FCsc@l . . . 6, 64, 69,
73, 76, 81, 88,
89, 98, 165, 186,
205–208, 211,
216–218, 221,
234–236, 238,
240, 242–245,
249, 250, 252, 313

\FCtc@l . 6, 206, 218, 242
\fi 11–13, 20,

29, 31, 33–36,
38, 41, 43, 48,
50, 61, 66, 67,
71, 72, 75, 85,
86, 90, 94, 113,
116, 117, 120,
123, 126, 129,
136, 138, 146,
149, 150, 152,
154, 177, 189,
195, 198, 199,
215, 225–228,
237, 257, 258,
260, 267, 275,
281, 286, 287, 297

\fill 278–280
\fre@t 262, 269

G
\g@ldens 18, 37
\g@ldm@cro 9, 10
\gdef 185
\geldm@cro . . 7, 87, 233

\global . . 50, 73, 89,
98, 99, 101–110,
114, 119, 120,
123, 126, 136,
165, 186, 205,
218, 231, 236,
243, 244, 304, 313

H

\halign 166, 306

\hbox 87, 100,
161, 233, 240, 298

\hrule 238

\hsize 306

I

\i@ts 139, 140

\ialign 165, 169

\ifdim 88, 235

\ifnum 10,
15, 19–21, 24,
27, 32, 35, 38,
39, 41, 43, 44,
48, 52, 54, 55,
59, 63, 64, 68,
69, 75, 78, 113,
116, 117, 119,
122, 125, 136–
138, 141, 144,
146, 154, 199,
200, 206, 242,
252, 263, 286, 287

\ifodd 249

\ifstrict@ccounting

1, 1, 10, 32, 33, 35

\ifwiths@p 7, 48

\ifx . . 13, 32, 74, 94,
128, 150, 203,
207, 216, 248,
260, 261, 271, 290

L

\leeg 1, 241

\let 62, 65,
70, 75, 79, 84,
100, 126, 179,
183, 184, 187,
190, 232, 241,
260, 282–284,

288, 289, 291–
293, 296, 300, 315

\longtable 271
\LT@array 276

M
\mathcode

. 111, 113, 115,
117, 119, 122,
125, 127–129,
131–136, 155–157

\MessageBreak 82, 83,
148, 212, 213,
222, 223, 273, 274

\multicolumn 282

N
\NC@list 189
\newcolumntype . . . 4, 5
\newcount . . . 6, 91, 208
\newdimen 217, 229
\newif 1, 7
\newpage 285
\noalign . . 165, 246,

270, 285–287, 313
\noexpand . 169, 196, 306
\nopagebreak 287
\number . . 30, 49, 50,

61, 81, 142, 147,
233, 254, 265, 266

O
\option strict 1

P
\PackageError

. 80, 210, 220
\PackageWarning 146, 265
\PackageWarningNoLine

. 272
\pagebreak 286
\phantom 34
\ProcessOptions 3
\prr@sult . 187, 204, 232

R
\relax . 9, 10, 13, 55,

62, 92, 100–112,
114, 116, 118,
121, 124, 128,

26

130, 145, 147,
150, 179, 187,
190, 207, 216,
232, 241, 248, 300

\res@tsumline
. 175, 242, 246, 312

\resetsumline . . . 1, 246

\restorem@thcodes .
. 101–110, 113,
117, 123, 126, 155

\rlap 33–35

\romannumeral
. . . 64, 69, 73,
76, 88, 89, 207,
208, 211, 216,
217, 221, 234–
236, 238, 240,
243, 244, 263, 264

S
\s@ml@ne

. 185, 196, 197, 231
\s@mline 230, 231
\s@mlinesep 229, 231, 239
\secd@xt 142, 153
\sep@rator 48, 96
\sep@xt 96, 97
\setucc@de 92, 112
\sp@l . . 98, 140, 151, 233
\stepcounter 277
\strict@ccountingfalse

. 1
\strict@ccountingtrue

. 2
\sumline 1, 229

T
\t@stm 201, 203

\t@stn 202, 203

\tabcolsep 295

\tw@l 145, 147

U

\uccode . . . 92, 101–
110, 116, 121, 124

\uppercase 101–110,
113, 117, 122, 125

W

\withs@pfalse 8

\withs@ptrue 50

Z

\zerop@d . 30, 49, 50, 51

\zetg@ld 62, 151

27

	Introduction
	Commands
	The macros
	Option
	Definitions
	Adaptations to existing macros
	The sumline, close to a postamble
	Other checks
	Support for package longtable

