
The euclideangeometry package
Claudio Beccari

claudio dot beccari at gmail dot com

Version v.0.1.4 – Last revised 2020-02-11.

Contents
1 The code 1

1.1 Checking the date of
a sufficiently recent
curve2e package 1

1.2 Labelling 2
1.3 Service macros for ellipses 4
1.4 Processing lines and seg-

ments 5
1.5 Triangle special points . . 8
1.6 Other specific service

macros 10

1.7 Regular polygons and
special ellipses 14
1.7.1 Regular polygons . 15
1.7.2 The Steiner ellipse 15
1.7.3 The ellipse that is

internally tangent
to a triangle while
one of its foci is
prescribed 18

2 Comments on this package 20

Preface
This file contains the documented code of euclideangeometry. The user man-
ual source file euclideangeometry-man.tex and the readable document is
euclideangeometry.pdf; it should already be installed with your updated com-
plete TEX system installation.

Please refer to the user manual before using this package.

1 The code
1.1 Checking the date of a sufficiently recent curve2e pack-

age
This package has been already identified by the commands extracted by the
docstrip package, during the .dtx file compilation. In any case, if the test checks
that the curve2e file date is too old; it warns the user with an emphasised error
message on the console, loading this euclideangeometry package is stopped and
the whole job aborts. The emphasised error message appears like this:

1

Package curve2e too old
Be sure that your TeX installation is complete and up to date

Input of euclideangeometry is stopped and job aborted

This message should be sufficiently strong in order to avoid using this package
with a vintage version of TEX Live or MikTEX.

1 \RequirePackage{curve2e}
2 \@ifpackagelater{curve2e}{2020/01/18}{}%
3 {%
4 \typeout{***}
5 \typeout{Package curve2e too old}
6 \typeout{Be sure that your TeX installation is complete and up to date}
7 \typeout{***}
8 \typeout{Input of euclideangeometry stopped and job aborted}
9 \typeout{***}

10 \@@end
11 }%
12

1.2 Labelling
While doing any graphical geometrical drawing it is necessary to label points,
lines, angles and other such items. Non measurable labels should be in upright
sans serif font, according to the ISO regulations, but here we are dealing witt point
identified by macros the contain their (cartesian or polar) coordinates that very
often are both labels and math variables.

Here we provide a versatile macro that can do several things. Its name is
\Pbox and it produces a box containing the label in math format. By default the
point label is typeset with the math font variant produced by command \mathsf,
but the macro is sufficiently versatile to allow other settings; It accepts several
optional arguments, therefore it syntax is particular:

\Pbox(〈coordinates〉)[〈alignment〉]{〈label〉}[〈diameter〉]〈?〉<〈angle〉>

where 〈coordinates〉 are the coordinates where to possibly set a black dot with
the specified 〈diameter〉; in any case it is the reference point of the 〈label〉; the
〈alignment〉 is formed by the usual letters t, b, c, l, r that can be paired in
a coherent way (for example the couple tb is evidently incoherent, as well as
lr), but in absence of this optional specification, the couple cc is assumed; most
often than not, the label position becomes such that when the user reviews the
document drafts, s/he understands immediately that s/he forgot to specify some
reasonable 〈alignment〉 codes. Think of the 〈alignment〉 letters as the position of
the reference point with respect to the the 〈label〉 optical center. The optional
〈angle〉 argument produces a rotation of the whole label by that angle; it may be

2

used in several circumstances, especially when the label is just text, to produce,
for example, a sideways legend. It is useful also when the labels are produced
within a rotated box, in order to counterrotate them.

The optional asterisk draws a frame around the label. Notice that the separator
between the visible or the invisible frame and the box contents varies according
the the fact the the 〈alignment〉 specification contains just one or two letter codes;
this is useful, because the diagonal position of the label should be optically equal
to the gap that exists between the reference point and the 〈label〉 box.

If the 〈diameter〉 is zero, no dot is drawn, the whole 〈label〉 is typeset with
the \mathit math font; otherwise only the first symbol of a math expression si
typeset in sans serif. The presence of subscripts makes the labels appear more
distant from their reference point; the same is true when math symbols, even
without subscripts, are used, because of the oblique nature of the math letters
alphabet.

If some text has to be printed as a label, it suffices to surround it with dollar
signs, that switch back to text mode when the default mode is the math one. With
this kind of textual labels it might be convenient to use the optional asterisk to
frame the text.
13 \providecommand\Pbox{}
14 \newlength\PbDim
15 \RenewDocumentCommand\Pbox{D(){0,0} O{cc} m O{0.5ex} s D<>{0}}{%
16 \put(#1){\rotatebox{#6}{\makebox(0,0){%
17 \settowidth\PbDim{#2}%
18 \edef\Rapp{\fpeval{\PbDim/{1ex}}}%
19 \fptest{\Rapp > 1.5}{\fboxsep=0.5ex}{\fboxsep=0.75ex}%
20 \IfBooleanTF{#5}{\fboxrule=0.4pt}{\fboxrule=0pt}%
21 \fptest{#4 = 0sp}%
22 {\makebox(0,0)[#2]{\fbox{$\relax#3\relax$}}}%
23 {\edef\Diam{\fpeval{(#4)/\unitlength}}%
24 \makebox(0,0){\circle*{\Diam}}%
25 \makebox(0,0)[#2]{\fbox{$\relax\mathsf#3\relax$}}%
26 }}}%
27 }\ignorespaces}

The following command, to be used always within a group, or a environment or
inside a box, works only with piecewise continuously scalable font collection, such
as, for example, the Latin Modern fonts, or with continuously scalable fonts, such
as, for example, the Times ones. They let the operator select, for the scope of
the command ,any size, even fractional so as to fine adjust the text width in the
space allowed for it; it is particularly useful with the monospaced fonts, that forbid
hyphenation, and therefore cannot be adjusted to the current line width.
28 \DeclareRobustCommand\setfontsize[2][1.2]{%
29 \linespread{#1}\fontsize{#2}{#2}\selectfont}

With OpenType fonts there should not be any problems even with math fonts;
with Type 1 fonts the only scalable fonts I know of, are the LibertinusMath fonts,
usable through the LibertinusT1math package, are also the only ones that have
8 bit encoded math fonts (256 glyph fonts), while the standard default Type 1

3

math fonts are just 7 bit encoded (128 glyphs fonts).
Another useful labelling command is Zbox; this command is an evolution of

a command that I been using for years in several documents of mine. It uses
some general text, not necessarily connected to a particular point of the picture
environment, as a legend; It can draw short text as a simple horizontal box, and
longer texts as a vertical box of specified width and height

Is syntax is the following:

\Zbox(〈position〉)(〈(〉)dimensions)[〈alignment〉]{〈text〉}

where 〈position〉 is where the reference point of the box has to be put in the
picture; 〈dimensions〉 are optional; if not specified, the box is a horizontal one,
and it is as wide as its contents; if it is specified, it must be a comma separated list
of two integer or fractional numbers that are the width and the height of the box;
if the height is specified as zero, the width specifies a horizontal box of that width;
〈alignment〉 is optional and is formed by one or two coherent letter codes from
the usual set t, b, c, l, r; if the 〈alignment〉 is absent, the default alignment
letters are bl, i.e. the box reference point is the bottom left corner; 〈text〉 contains
general text, even containing some math.
30
31 \def\EUGsplitArgs(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}
32 \newlength\EUGZbox
33 \providecommand\Zbox{}
34 \RenewDocumentCommand\Zbox{r() D(){0,0} O{bl} m}{%
35 \EUGsplitArgs(#2)\ZboxX\ZboxY % splits box dimensions
36 \fboxsep=2\unitlength
37 \ifnum\ZboxX=\z@
38 \def\ZTesto{\fbox{#4}}%
39 \else
40 \ifnum\ZboxY=\z@
41 \def\ZTesto{\fbox{\parbox{\ZboxX\unitlength}{#4}}}%
42 \else
43 \def\ZTesto{%
44 \setbox\EUGZbox=\hbox{\fbox{%
45 \parbox[c][\ZboxY\unitlength][c]{\ZboxX\unitlength}{#4}}}%
46 \dimen\EUGZbox=\dimexpr(\ht\EUGZbox +\dp\EUGZbox)/2\relax
47 \ht\EUGZbox=\dimen\EUGZbox\relax
48 \dp\EUGZbox=\dimen\EUGZbox\relax
49 \box\EUGZbox%
50 }%
51 \fi
52 \fi
53 \put(#1){\makebox(0,0)[#3]{\ZTesto}}\ignorespaces}

1.3 Service macros for ellipses
The \ellisse has a control sequence name in Italian; it differs for just one letter
from the name ellipse English name, but we cannot use the latter one because it

4

may conflict with other packages loaded by the user; actually this command and
the next one are just shortcuts for executing more general commands with specific
sets of arguments. For details and syntax, please refer yourself to section 1.6
54
55 \NewDocumentCommand\ellisse{ s m m}{%
56 \IfBooleanTF{#1}%
57 {\let\fillstroke\fillpath}%
58 {\let\fillstroke\strokepath}%
59 \Sellisse{#2}{#3}%
60 }
61
62 \NewDocumentCommand\Xellisse{ s D(){0,0} O{0} m m O{} o}{%
63 \IfBooleanTF{#1}%
64 {\XSellisse*(#2)[#3]{#4}{#5}[#6][#7]}%
65 {\XSellisse(#2)[#3]{#4}{#5}[#6][#7]}%
66 }

We do not know if the following macro \polyvector may be useful for eu-
clidean geometry constructions, but it may be useful in block diagrams; it is sim-
ply a polyline where the last segment is a geometrical vector. As in polyline the
number of recursions is done until the last specified coordinate pair; recognising
that it is the last one, instead of drawing a segment, the macro draws a vector.
67
68 \def\polyvector(#1){\roundcap\def\EUGpreviouspoint{#1}\EUGpolyvector}
69 \def\EUGpolyvector(#1){%
70 \@ifnextchar({%
71 \segment(\EUGpreviouspoint)(#1)\def\EUGpreviouspoint{#1}\EUGpolyvector}%
72 {\VECTOR(\EUGpreviouspoint)(#1)}%
73 }

1.4 Processing lines and segments
The next macros are functional for the geometric constructions we are going to
make: finding the intersection of lines or segments, finding the lengths and ar-
guments of segments, directions, distances, distance of a point from a line or a
segment, the symmetrical point of a another one specified with respect to a given
center of symmetry; the axes of segments, the solutions of the relationship between
the semi axes of an ellipse and the semi focal distance, and so on.

Most of these commands have delimited arguments; the delimiters may be the
usual parentheses, but they may be keywords; many commands contain the key-
word to, not necessarily the last one; the arguments before such keyword may
be entered as ordered comma separated numerical couples, or comma separated
macros the containing scalar values; or they may be macros that contain the or-
dered couples representing vectors or directions; they all may be in cartesian or
polar form. Remember that such ordered couples are complex numbers, repre-
sentable by vectors applied to the origin of the axes; therefore sometimes it is
necessary that the underlying commands execute some vector differences so as to
work with generic vectors.

5

On the opposite the output values, i.e. the argument after that to keyword,
should be tokens that can receive a definition, in general macros, to which the
user should assign a mnemonic name; s/he should use such macros for further
computations or for drawing commands.

The first and principal command is \IntersectionOfLines and it has the
following syntax:

\IntersectionOfLines(〈point1 〉)(〈dir1 〉)and(〈point2 〉)(〈dir2 〉)to〈crossing〉

where 〈point1 〉 and 〈dir1 〉 are respectively a point of the first line and its direction,
not a second point, but the direction — it is important to stress this point; similarly
for the second line; the output is stored in the macro that identifies the 〈crossing〉
point. The directions do not need to be expressed with unit vectors, but the lines
must not be parallel or anti parallel (equal directions or differing by 180◦); the
macro contains a test that checks this anomalous situation because an intersection
at infinity or too far away (214 − 1 typographical points, approximately 5,758 m)
is of no interest; in case, no warning message is issued, the result is put to 0,0,
and the remaining computations become nonsense. It is a very unusual situation
and I never encountered it; nevertheless. . .
74
75 \def\IntersectionOfLines(#1)(#2)and(#3)(#4)to#5{\bgroup
76 \def\IntPu{#1}\def\Uu{#2}\def\IntPd{#3}\def\Ud{#4}%
77 \DirOfVect\Uu to\Du
78 \DirOfVect\Ud to\Dd
79 \XpartOfVect\Du to \a \YpartOfVect\Du to \b
80 \XpartOfVect\Dd to \c \YpartOfVect\Dd to \d
81 \XpartOfVect\IntPu to \xu \YpartOfVect\IntPu to \yu
82 \XpartOfVect\IntPd to \xd \YpartOfVect\IntPd to \yd
83 \edef\Den{\fpeval{-(\a*\d-\b*\c)}}%
84 \fptest{abs(\Den)<1e-5}{% Almost vanishing determinant
85 \def#5{0,0}%
86 }{% Determinant OK
87 \edef\Numx{\fpeval{(\c*(\b*\xu-\a*\yu)-\a*(\d*\xd-\c*\yd))/\Den}}%
88 \edef\Numy{\fpeval{(\d*(\b*\xu-\a*\yu)-\b*(\d*\xd-\c*\yd))/\Den}}%
89 \CopyVect\Numx,\Numy to\Paux
90 \edef\x{\egroup\noexpand\edef\noexpand#5{\Paux}}\x\ignorespaces}}

The IntersectionOfSegments macro is similar but in input it contains the
end points of two segments: internally it uses \IntersectionOfLines and to do
so it has to determine the directions of both segments. The syntax is the following:

\IntersectionOfSegments(〈point11 〉)(〈point12 〉)and(〈point21 〉)(〈point22 〉)
to〈crossing〉

The 〈crossing〉 point might fall outside one or both segments. It is up to the
users to find out if the result is meaningful or nonsense. Two non parallel lines
are infinitely long in both directions and any 〈crossing〉 point is acceptable; with
segments the situation might become nonsense.

6

91
92 \def\IntersectionOfSegments(#1)(#2)and(#3)(#4)to#5{%
93 \SubVect#1from#2to\IoSvectu \DirOfVect\IoSvectu to\DirIoSVecu
94 \SubVect#3from#4to\IoSvectd \DirOfVect\IoSvectd to\DirIoSVecd
95 \IntersectionOfLines(#1)(\DirIoSVecu)and(#3)(\DirIoSVecd)to#5\ignorespaces}

An application of the above intersections is formed by the next two macros;
they find the axes of a couple of sides of a triangle and use their base point and
direction to identify two lines the intersection of which is the circumcenter; the
distance of one base point from the circumcenter is the radius of the circumcircle
that can be drawn with the usual macros. We have to describe the macros \AxisOf
and CircleWithCenter and we will do it in a little while. Meanwhile the syntax
of the whole macro is the following:

\ThreePointCircle〈?〉(〈vetex1 〉)(〈vertex2 〉)(〈vertex3 〉)

where the three vertices are the three points where the circle must pass, but they
identify also a triangle. Its side axes intersect in one point that by construction is
at the same distance from the three vertices, therefore it is the center of the circle
that passes through the three vertices. A sub product of the computations is the
macro \C that contains the center coordinates. If the optional asterisk is used
the whole drawing is executed, while if it is missing, only the \C macro remains
available but the user is responsible to save/copy its value into another macro; for
this reason another macro should be more easy to use; its syntax is the following:

\ThreePointCircleCenter(〈vetex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈center〉

where the vertices have the same meaning, but〈center〉 is the user chosen macro
that contains the center coordinates.
96
97 \NewDocumentCommand\ThreePointCircle{s r() r() r()}{%
98 \AxisOf#2and#3to\Mu\Du \AxisOf#2and#4to\Md\Dd
99 \IntersectionOfLines(\Mu)(\Du)and(\Md)(\Dd)to\C

100 \SubVect#2from\C to\R
101 \IfBooleanTF{#1}{\CircleWithCenter\C Radius\R}{}\ignorespaces}
102
103 \NewDocumentCommand\ThreePointCircleCenter{r() r() r() m}{%
104 \ThreePointCircle(#1)(#2)(#3)\CopyVect\C to#4}

There are some useful commands that help creating picture diagrams in an
easier way; for example one of the above described commands internally uses
\CircleWithCenter. It is well known that the native picture command \circle
requires the specification of the diameter but many euclideangeometry com-
mands already get the distance of two points, or the magnitude of a segment,
or similar objects that may be used as a radius, rather than the diameter; why
should we not have macros that simultaneously compute the require diameter and
draw the circle. Here there are two such macros; they are similar to one another
but their names differ in capitalisation, but also in the way they use the available
input information. The syntax is the following:

7

\CircleWithCenter〈center〉 Radius〈Radius〉
\Circlewithcenter〈center〉 radius〈radius〉

where in both cases 〈center〉 is a vector/ordered couple that points to the circle
center. On the contrary 〈Radius〉 is a vector obtained through previous calcula-
tions, while 〈radius〉 is a scalar containing a previously calculated length.

105 \def\CircleWithCenter#1Radius#2{\put(#1){\ModOfVect#2to\CWR
106 \circle{\fpeval{2*\CWR}}}\ignorespaces}
107 %
108 \def\Circlewithcenter#1radius#2{\put(#1){\circle{\fpeval{2*abs(#2)}}}%
109 \ignorespaces}

As announced, here we have a macro to compute the axis of a segment; given
two points P1 and P2, for example the end points of a segment, or better the end
point of the vector that goes from P1 to P2, the macro determines the segment
middle point and a second point the lays on the perpendicular at a distance equal
to half the first two points distance; this second point lays at the left of vector
P2 −P1, therefore it is important to select the right initial vector, in order to have
the second axis point on the desired side.

\AxisOf〈P1 〉 and〈P2 〉 to〈Axis1 〉〈Axis2 〉

Macros \SegmentCenter and \MiddlePointOf are alias of one another; their syn-
tax is:

\SegmentCenter(〈P1 〉)(〈P2 〉)to〈center〉
\MiddlePointOf(〈P1 〉)(〈P2 〉)to〈center〉

〈P1 〉, 〈p2 〉 and 〈center〉 are all vectors.
110
111 \def\AxisOf#1and#2to#3#4{%
112 \SubVect#1from#2to\Base \ScaleVect\Base by0.5to\Base
113 \AddVect\Base and#1to#3 \MultVect\Base by0,1to#4}
114
115 \def\SegmentCenter(#1)(#2)to#3{\AddVect#1and#2to\Segm
116 \ScaleVect\Segm by0.5to#3\ignorespaces}
117
118 \let\MiddlePointOf\SegmentCenter

1.5 Triangle special points
Here we have the macros to find the special points on a triangle side that are the
“foot” of special lines from one vertex to the opposite side. We already described
the circumcircle and the circumcenter, but that is a separate case, because the
circumcenter is not the intersection of special lines from one vertex to the opposite
base. The special lines we are interested in here are the height, the median, and
the bisector The macros have the same aspect \Triangle...Base, where the dots
are replaced with each of the (capitalised) special line names. Their syntaxes are
therefore very similar:

8

\TriangleMedianBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈M 〉
\TriangleHeightBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈H 〉
\TrinagleBisectorBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈B〉

where 〈vertex〉 contains one of the vertices coordinates, and 〈base1 〉 and 〈base2 〉
are the end points of the side opposite to that triangle vertex; 〈M 〉, metaH, and
〈B〉 are the intersections of these special lines from the 〈vertex〉 to the opposite
side; in order, they are the foot of the median, the foot of the height; the foot of
the bisector. The construction of the median foot 〈M 〉 is trivial because this foot
is the base center; the construction of the height foot is a little more complicated,
because it is necessary to find the exact direction of the perpendicular from the
vertex to the base in order to find the intersection 〈H 〉; the construction of the
bisector base implies finding the exact direction of the two sides starting at the
〈vertex〉, and taking the mean direction, which is trivial if polar coordinates are
used; at this point the bisector line is completely determined and the intersection
with the base line 〈B〉 is easily obtained.

119
120 \def\TriangleMedianBase#1on#2and#3to#4{%
121 \SubVect#1from#2to\TMBu \SubVect#1from#3to\TMBd
122 \SubVect\TMBu from\TMBd to\Base
123 \ScaleVect\Base by0.5to\TMBm\AddVect#2and\TMBm to#4\ignorespaces}
124 %
125 \def\TriangleHeightBase#1on#2and#3to#4{%
126 \SubVect#2from#3to\Base
127 \ArgOfVect\Base to\Ang \CopyVect\fpeval{\Ang+90}:1 to\Perp
128 \IntersectionOfLines(#1)(\Perp)and(#2)(\Base)to#4\ignorespaces}
129 %
130 \def\TriangleBisectorBase#1on#2and#3to#4{%
131 \SubVect#2from#1to\Luno \SubVect#3from#1to\Ldue
132 \SubVect#2from#3to\Base
133 \ArgOfVect\Luno to\Arguno \ArgOfVect\Ldue to\Argdue
134 \edef\ArgBis{\fpeval{(\Arguno+\Argdue)/2}}%
135 \CopyVect \ArgBis:1to \Bisect
136 \IntersectionOfLines(#2)(\Base)and(#1)(\Bisect)to#4\ignorespaces}

Having defined the previous macros, it becomes very easy to create the macros to
find thebarycenter, the orthocenter, theincenter ; for the circumcenter and the cir-
cumcircle we have already solved the question with the \ThreePointCircleCenter
and the ThreePointCircle macros; for homogeneity, we create here their aliases
with the same form as the new “center” macros. Actually, for the “circle” macros,
once the center is known, there is no problem with the circumcircle, while for the
incircle it suffices a macro to determine the distance of the incenter from one of
the triangle sides; such a macro is going to be defined in a little while; it is more
general than simply to determine the radius of the incircle.

137
138 \let\TriangleCircumcenter\ThreePointCircleCenter
139 \let\TriangleCircummcircle\ThreePointCircle

The other “center” macros are the following; they all consist in finding two

9

of the specific triangle lines, and finding their intersection. Therefore for the
barycenter we intersect two median lines; for the orthocenter we intersect two
height lines; for the incenter we intersect two bisector lines;

140
141 \def\TriangleBarycenter(#1)(#2)(#3)to#4{%
142 \TriangleMedianBase#1on#2and#3to\Pa
143 \TriangleMedianBase#2on#3and#1to\Pb
144 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
145 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
146 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
147
148 \def\TriangleOrthocenter(#1)(#2)(#3)to#4{%
149 \TriangleHeightBase#1on#2and#3to\Pa
150 \TriangleHeightBase#2on#3and#1to\Pb
151 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
152 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
153 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
154
155 \def\TriangleIncenter(#1)(#2)(#3)to#4{%
156 \TriangleBisectorBase#1on#2and#3to\Pa
157 \TriangleBisectorBase#2on#3and#1to\Pb
158 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
159 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
160 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}

1.6 Other specific service macros
And here it comes the general macro to determine the distance of a point from a
segment or from a line that contains that segment; it may be used for determining
the radius of the incenter, but it is going to be used also for other purposes. Its
syntax is the following:

\DistanceOfPoint〈point〉 from(〈P1 〉)(〈P2 〉)to〈distance〉

where 〈point〉 is a generic point; 〈P1 〉 and 〈P2 〉 are a segment end points, or two
generic points on a line; 〈distance〉 is the macro that receives the computed scalar
distance value.

161
162 \def\DistanceOfPoint#1from(#2)(#3)to#4{%
163 \SubVect#2from#3to\Base \MultVect\Base by0,1to\AB
164 \IntersectionOfLines(#1)(\AB)and(#2)(\Base)to\D
165 \SubVect#1from\D to\D
166 \ModOfVect\D to#4}

The following macros are specific to solve other little geometrical problems that
arise when creating more complicated constructions.

The \AxisFromAxisAndFocus is an unhappy name that describes the solution
of an ellipse relationship between the ellipse axes and the focal distance

a2 = b2 + c2 (1)

10

This relation exists between the “semi” values, but it works equally well with
the full values. Evidently a is the largest quantity and refers to the main ellipse
axis, the one that passes through the two foci; b refers to the other shorter ellipse
axis and c refers to the foci; b and c are smaller than a, but there is no specific
relationship among these two quantities It goes by itself that these statements
apply to a veritable ellipse, not to a circle, that is the special case where b = a
and c = 0.

Since to solve the above equation we have one unknown and two known data,
but we do not know what they represent, we have to assume some relationship
exist between the known data; therefore if a is known it must be entered as the
first macro argument; otherwise a is the unknown and the first Argument has to
be the smaller one among b and c. Since b andc may come from other computation
the user has a dilemma: which is the smaller one? But this is a wrong approach; of
course if the user knows which is the smaller, s/he can use the macro by entering
the data in the proper order; but the user is determining the main axis, therefore
it better that s/he uses directly the second macro \MainAxisFromAxisAndFocus
that directly computes a disregarding the order with which b and c are entered;
the macro name suggests to enter b first and c second, but it is irrelevant thanks
to the sum properties. Summarising:

• if the main axis is known use \AxisFromAxisAndFocus by entering the main
axis as the first argument; otherwise

•
– if it is known which is smaller among b and c, it is possible to use

\AxisFromAxisAndFocus by entering the smaller one as the first argu-
ment; otherwise

– determine the main axis by using \MainAxisFromAxisAndFocus

Their syntaxes of these two commands are basically the following:

\AxisFromAxisAndFocus〈main axis〉 and〈axis or focus〉 to〈focus or axis〉
\MainAxisFromAxisAndFocus〈axis or focus〉 and〈focus or axis〉 to〈main axis〉

but it is possible to enter the data in a different way with the first command; the
described syntax is the suggested one. Evidently 〈axis or focus〉 and 〈focus or
axis〉 imply that if you specify the focus in one of the two, you have to specify the
axis in the other one.

167
168 \def\AxisFromAxisAndFocus#1and#2to#3{%
169 \fptest{abs(#1)>abs(#2)}%
170 {\edef#3{\fpeval{sqrt(#1**2-#2**2)}}}%
171 {\edef#3{\fpeval{sqrt(#2**2+#1**2)}}}}
172
173 \def\MainAxisFromAxisAndFocus#1and#2to#3{%
174 \edef#3{\fpeval{sqrt(#2**2+#1**2)}}}

The following macros allow to determine some scalar values relative to segments;
in the second one the order of the segment end points is important, because the
computed argument refers to the vector P2 −P1. Their syntaxes are the following:

11

\SegmentLength(〈P1 〉)(〈P2 〉)to〈length〉
\SegmentArg(〈P1 〉)(〈P2 〉)to〈argument〉

Both 〈length〉 and 〈argument〉 are macros that contain scalar quantities; the argu-
ment is in the range −180◦ < Φ ≤ +180◦.

175
176 \def\SegmentLength(#1)(#2)to#3{\SubVect#1from#2to\Segm
177 \ModOfVect\Segm to#3}
178
179 \def\SegmentArg(#1)(#2)to#3{\SubVect#1from#2to\Segm
180 \GetCoord(\Segm)\SegmX\SegmY\edef#3{\fpeval{atand(\SegmY,\SegmX)}}%
181 \ignorespaces}

In the following sections we need some transformations, in particular the affine
shear one. The macros we define here are not for general use, but are specific for
the purpose of this package.

The fist macro shears a segment, or better a vector that goes from point P1
to point P2 with a horizontal shear factor/angle α; the origin of the vector does
not vary and remains P1 but the arrow tip of the vector is moved according to
the shear factor; in practice this shearing macro is valid only for vectors that start
from any point laying on the x axis. The shear factor α is the angle of the clock
wise rotation vector operator by which the vertical coordinate lines get rotated
with respect to their original position. The syntax is the following:

\ShearVect(〈P1 〉)(〈P2 〉)by〈shear〉 to〈vector〉

where 〈P1 〉 and 〈P2 〉 are the initial and final points of the vector to be sheared
with the 〈shear〉 angle, and the result is put in the output 〈vector〉

182
183 \def\ShearVect(#1)(#2)by#3to#4{%
184 \SubVect#1from#2to\AUX
185 \GetCoord(\AUX)\Aux\Auy
186 \edef\Aux{\fpeval{\Aux + #3*\Auy}}%
187 \edef\Auy{\fpeval{\Auy}}%
188 \AddVect\Aux,\Auy and#1to#4\ignorespaces}
189

Again we have another different \ScaleVector macro that takes in input the
starting and ending points of a vector, and scales the vector independently of the
initial point.

190
191 \def\ScaleVector(#1)(#2)by#3to#4{%
192 % Scala per il fattore #3 il vettore da #1 a #2
193 \SubVect#1from#2to\AUX
194 \ScaleVect\AUX by#3to\AUX
195 \AddVect\AUX and#1to#4\ignorespaces}

The following macro to draw a possibly sheared ellipse appears complicated;
but in reality it is not much different from a “normal” ellipse drawing command.
In oder to do the whole work the ellipse center is set in the origin of the axes,

12

therefore it is not altered by the shearing process; everything else is horizontally
sheared by the shear angle α. In particular the 12 nodes and control point that are
required by the Bézier splines that draw the four ellipse quarters. It is this mul-
titude of shearing commands that makes the macro mach longer and apparently
complicated. The syntax is the following:

\Sellisse〈?〉{〈h-axis〉}{〈v-axis〉}[〈shear〉]

where the optional asterisk is used to mark and label the Bézier spline nodes and
the control points of the possibly sheared ellipse; without the asterisk the ellipse
is drawn without any “decoration”; the optional 〈shear〉 is as usual the angle of
the sheared vertical coordinate lines; its default value is zero.

196 %
197 \NewDocumentCommand\Sellisse{s m m O{0}}{\bgroup
198 \CopyVect#2,#3to\Ptr \ScaleVect\Ptr by-1to\Pbl
199 \CopyVect#2,-#3to\Pbr \ScaleVect\Pbr by-1to\Ptl
200 \edef\Ys{\fpeval{tand{#4}}}%
201 \edef\K{\fpeval{4*(sqrt(2)-1)/3}}%
202 %
203 \ShearVect(0,0)(0,#3)by\Ys to\Pmt
204 \ShearVect(0,0)(0,-#3)by\Ys to\Pmb
205 \ShearVect(0,0)(#2,0)by\Ys to\Pmr
206 \ShearVect(0,0)(-#2,0)by\Ys to\Pml
207 %
208 \ShearVect(\Pmr)(\Ptr)by\Ys to\Ptr
209 \ShearVect(\Pml)(\Ptl)by\Ys to\Ptl
210 \ShearVect(\Pmr)(\Pbr)by\Ys to\Pbr
211 \ShearVect(\Pml)(\Pbl)by\Ys to\Pbl
212 %
213 \IfBooleanTF{#1}{\Pbox(\Ptr)[bl]{P_{tr}}\Pbox(\Pbl)[tr]{P_{bl}}%
214 \Pbox(\Pbr)[tl]{P_{br}}\Pbox(\Ptl)[br]{P_{tl}}%
215 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)}{}%
216 %
217 \ScaleVector(\Pmr)(\Ptr)by\K to\Crt
218 \ScaleVector(\Pmr)(\Pbr)by\K to\Crb
219 \ScaleVector(\Pml)(\Ptl)by\K to\Clt
220 \ScaleVector(\Pml)(\Pbl)by\K to\Clb
221 \ScaleVector(\Pmt)(\Ptr)by\K to\Ctr
222 \ScaleVector(\Pmt)(\Ptl)by\K to\Ctl
223 \ScaleVector(\Pmb)(\Pbr)by\K to\Cbr
224 \ScaleVector(\Pmb)(\Pbl)by\K to\Cbl
225 %
226 \IfBooleanTF{#1}{%
227 \Pbox(\Crt)[l]{C_{rt}}\Pbox(\Crb)[l]{C_{rb}}
228 \Pbox(\Clt)[r]{C_{lt}}\Pbox(\Clb)[r]{C_{lb}}
229 \Pbox(\Ctr)[b]{C_{tr}}\Pbox(\Ctl)[b]{C_{tl}}
230 \Pbox(\Cbr)[t]{C_{br}}\Pbox(\Cbl)[t]{C_{bl}}
231 %
232 \Pbox(\Pmr)[l]{P_{mr}}\Pbox(\Pmt)[b]{P_{mt}}%

13

233 \Pbox(\Pml)[r]{P_{ml}}\Pbox(\Pmb)[t]{P_{mb}}%
234 %
235 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)\thicklines}{}%
236 %
237 \moveto(\Pmr)
238 \curveto(\Crt)(\Ctr)(\Pmt)
239 \curveto(\Ctl)(\Clt)(\Pml)
240 \curveto(\Clb)(\Cbl)(\Pmb)
241 \curveto(\Cbr)(\Crb)(\Pmr)
242 \fillstroke
243 \egroup}
244

This user macro is used to call the \Sellisse macro with the desired parameters,
but also to act with it on order to fill or stroke the ellipse contour, and to select
some settings such as the contour line thickness, or the color of the ellipse contour
or interior. the syntax is the following:

\XSellisse〈?1 〉(〈center〉)[〈angle〉]<〈shear〉>{〈h-axis〉}{〈v
axis〉}〈?2 〉[〈settings1 〉][〈settings2 〉]

where there are two optional asterisks, 〈?1 〉 and 〈?2 〉; the first one controls the
coloring of the ellipse: if present the interior is filled, if absent the contour is
stroked; the second one controls the way a possibly sheared ellipse appears: if
present, the construction is shown, if absent only the final result is shown; 〈center〉
is optional: if present, the ellipse center is specified; if absent, its center is at the
origin of the picture axes; 〈angle〉 is optional with default value zero: if absent, the
ellipse is not rotated and the 〈h-axis〉 remains horizontal, while the 〈v-axis〉 remains
vertical, while if present and with a non vanishing value, the ellipse is rotated
counterclockwise the amount specified, and, of course, if the value is negative, the
rotation is clockwise. The optional parameter 〈shear〉, if present, shears the ellipse
paralle the 〈h-axis〉 direction; the 〈settings1 〉 and 〈settings2 〉 operate as described
for command \Xellisse.

245
246 \NewDocumentCommand\XSellisse{ s D(){0,0} O{0} D<>{0} m m s O{} o }%
247 {\IfBooleanTF#1{\let\fillstroke\fillpath}%
248 {\let\fillstroke\strokepath}%
249 \put(#2){\rotatebox{#3}{#8\relax
250 \IfBooleanTF{#7}{\Sellisse*{#5}{#6}[#4]}%
251 {\Sellisse{#5}{#6}[#4]}%
252 \IfValueTF{#9}{\let\fillstroke\strokepath
253 #9\Sellisse{#5}{#7}[#4]}{}}}%
254 \ignorespaces}

1.7 Regular polygons and special ellipses
We finally arrive to more complex macros used to create special polygons and
special ellipses.

14

1.7.1 Regular polygons

Regular polygons are not that special; it is possible to draw them by using the
\multiput or \xmultiput commands, but a single command that does everything
by itself with more built in functionalities is much handier. The new command
\RegPolygon has the following syntax:

\RegPoligon〈?〉(〈center〉){〈radius〉}{〈number〉}[〈angle〉]<〈settings〉>

where 〈?〉 is an optional asterisk; its presence means that the polygon interior is
filled, instead of the polygon contour being stroked; the 〈center〉 specification of
the polygon is optional; if it is omitted, the polygon center goes to the origin of
the picture coordinates; 〈radius〉 is the mandatory radius of the circumscribed
circle, or, in other words, the distance of each polygon vertex form the 〈center〉;
the mandatory 〈number〉 is an integer that specifies the number of polygon sides;
the first vertex that is being drawn by this command, has an angle of zero degrees
with respect to the 〈center〉; if a different initial 〈angle〉 different from zero is de-
sired, it is specified through this optional argument; possibly the angle bracketed
optional 〈setting〉 parameter may be used to specify, for example, the line thick-
ness for the contour, and/or the color for the polygon contour or interior. See
the documentation euclideangeometry-man.pdf for more information and usage
examples.

255 \newcount\RPI
256 \NewDocumentCommand\RegPolygon{s D(){0,0} m m O{0} D<>{\relax} }{{%
257 %\countdef\RPI=258
258 \RPI=0
259 \CopyVect#5:#3to\P
260 \CopyVect\fpeval{360/#4}:1to\R
261 \put(#2){#6\relax
262 \moveto(\P)\fpdowhile{\RPI < #4}%
263 {\MultVect\P by\R to\P
264 \lineto(\P)\advance\RPI by 1}%
265 \IfBooleanTF{#1}%
266 {\fillpath}{#6\strokepath}}}\ignorespaces}
267 %%%%%%%%%
268 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
269 \ModOfVect#1to\@tempa
270 \unless\ifdim\@tempa\p@=\z@
271 \DividE\t@X by\@tempa to\t@X
272 \DividE\t@Y by\@tempa to\t@Y
273 \fi\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

1.7.2 The Steiner ellipse

The construction of the Steiner ellipse is very peculiar; it is almost intuitive that
any triangle has infinitely many internal tangent ellipses; therefore it is necessary
to state some other constraints to find one specific ellipse out from this unlimited
set.

15

One such ellipse is the Steiner one, obtained by adding the constraint that the
ellipse be tangent to the median points of the triangle sides. But one thing is the
definition, and another totally different one is to find the parameters of such an
ellipse; and working with ruler and compass, it is necessary to find a procedure to
draw such an ellipse.

The construction described here and implemented with the SteinerEllipse
macro is based on the following steps, each one requiring the use of some of the
commands and/or transformations described in the previous sections.

1. Given a generic triangle (the coordinates of its three vertices) it is not nec-
essary, but it is clearer to explain, if the triangle is shifted and rotated so as
to have one of its sides horizontal, and the third vertex in the upper part of
the picture drawing. So we first perform the initial shift and rotation and
memorise the parameters of this transformation so that, at the end of the
procedure, we can put back the triangle (and its Steiner ellipse) in its orig-
inal position. Let us call this shifted and rotated triangle with the symbol
T0.

2. We transform T0 with an affine shear transformation into an isosceles triangle
T1 that has the same base and the same height as T0. We memorise the shear
“angle” so as to proceed to an inverse transformation when the following
steps are completed: let be α this shear angle; geometrically it represents
the angle of the sheared vertical coordinate lines with respect to the original
vertical position.

3. With another affine vertical scaling transformation we transform T1 into
an equilateral triangle T2; the ratio of the vertical transformation equals the
ratio between the T2 to the T1 heights; we memorise this ratio for the reverse
transformation at the end of the procedure.

4. The Steiner ellipse of the equilateral triangle T2 is its incircle. We are almost
done; we just have to proceed to the inverse transformations; getting back
from T2 to T1 first implies transforming the incircle of T2 into an ellipse with
its vertical axis scaled by the inverse ratio memorised in step 3.

5. The second inverse transformation by the shear angle is easy with the pas-
sage from T1 to T0, but it would be more difficult for transforming the
ellipse into the sheared ellipse. We have already defined the \Sellipse and
the \XSellipse macros that may take care of the ellipse shear transforma-
tion; we already memorised the shear angle in step 2, therefore the whole
procedure, except for putting back the triangle, is almost done.

6. Eventually we perform the last shifting and rotating transformation and the
whole construction is completed.

The new macro Steiner ellipse has therefore the following syntax:

\SteinerEllipse〈?〉(〈P1 〉)(〈P2 〉)(〈P3 〉)[〈diameter〉]

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the vertices of the triangle; 〈?〉 is an optional asterisk;
without it the maro draws only the final result, that contains only the given
triangle and its Steiner ellipse; on the opposite, if the asterisk is used the whole

16

construction from T0 to its Steiner ellipse is drawn; the labelling of points is done
with little dots of the default 〈diameter〉 or a specified value; by default it is a
1 pt diameter, but sometimes it would be better to use a slightly larger value
(remembering that 1 mm — about three points — is already too much). Please
refer to the documentation file euclideangeometry-man.pdf for usage examples
and suggestions.

274 %
275
276 \NewDocumentCommand\SteinerEllipse{s d() d() d() O{1}}{\bgroup
277 %
278 \IfBooleanTF{#1}{}{\put(#2)}{%
279 \CopyVect0,0to\Pu
280 \SubVect#2from#3to\Pd
281 \SubVect#2from#4to\Pt
282 \ModAndAngleOfVect\Pd to\M and\Rot
283 \MultVect\Pd by-\Rot:1 to\Pd \MultVect\Pt by-\Rot:1 to\Pt
284 \IfBooleanTF{#1}{}{\rotatebox{\Rot}}{\makebox(0,0)[bl]{%
285 \Pbox(\Pu)[r]{P_1}[#5]<-\Rot>\Pbox(\Pd)[t]{P_2}[#5]<-\Rot>
286 \Pbox(\Pt)[b]{P_3}[#5]<-\Rot>%
287 \polygon(\Pu)(\Pd)(\Pt)%
288 \edef\B{\fpeval{\M/2}}\edef\H{\fpeval{\B*tand(60)}}
289 \IfBooleanTF{#1}{\Pbox(\B,\H)[b]{H}[#5]
290 \polygon(\Pu)(\B,\H)(\Pd)}{}%
291 \edef\R{\fpeval{\B*tand(30)}}
292 \IfBooleanTF{#1}{\Pbox(\B,\R)[bl]{C}[#5]
293 \Circlewithcenter\B,\R radius{\R}}{}%
294 \GetCoord(\Pt)\Xt\Yt\edef\VScale{\fpeval{\Yt/\H}}
295 \IfBooleanTF{#1}{\polyline(\Pu)(\B,\Yt)(\Pd)
296 \Pbox(\B,\Yt)[b]{V}[#5]}{}%
297 \edef\Ce{\fpeval{\R*\VScale}}
298 \IfBooleanTF{#1}{\Xellisse(\B,\Ce){\R}{\Ce}
299 \Pbox(\B,\Ce)[r]{C_e}[#5]\Pbox(\B,0)[t]{B}[#5]}{}%
300 \SubVect\B,0 from\Pt to\SlMedian
301 \IfBooleanTF{#1}{\Dotline(\B,0)(\Pt){2}[1.5]}{}%
302 \ModAndAngleOfVect\SlMedian to\Med and\Alfa
303 \edef\Alfa{\fpeval{90-\Alfa}}
304 \IfBooleanTF{#1}{\Dotline(\B,\Yt)(\B,0){2}[1.5]
305 \Pbox(\fpeval{\B+\Ce*tand{\Alfa}},\Ce)[l]{C_i}[#5]
306 \VectorArc(\B,0)(\B,15){-\Alfa}
307 \Pbox(\fpeval{\B+2.5},14)[t]{\alpha}[0]}{}%
308 \edef\a{\R}\edef\b{\Ce}%
309 \CopyVect\fpeval{\B+\Ce*tand{\Alfa}},\Ce to\CI
310 \XSellisse(\CI)<\Alfa>{\R}{\Ce}
311 }}}%
312 \egroup\ignorespaces}
313 \let\EllisseSteiner\SteinerEllipse

17

1.7.3 The ellipse that is internally tangent to a triangle while one of
its foci is prescribed

We now are going to tackle another problem. As we said before, any triangle
has an infinite set of internally tangent circles, unless some further constraint is
specified.

Another problem of this kind is the determination and geometrical construction
of an internally tangent ellipse when one focus is specified; of course since the whole
ellipse is totally internal to the triangle, we assume that the user has already
verified that the coordinates of the focus fall inside the triangle. We are not going
to check this feature in place of the user; after all, if the user draws the triangle
within a picture image, together with the chosen focus, is suffices a glance to
verify that such focus lays within the triangle perimeter.

The geometrical construction is quite complicated, but it is described in a
paper by Estevão V. Candia on TUGboat 2019 40(3); it consists of the following
steps.

1. Suppose you have specified a triangle by means of its three vertices, and a
point inside it to play the role of a focus; it is necessary to find the other
focus and the main axis length in order to have a full description of the
ellipse.

2. To do so, it is necessary to find the focus three symmetrical points with
respect to the three sides.

3. The center of the three point circle through these symmetrical points is the
second focus.

4. The lines that join the second focus to the three symmetrical points of the
first focus, intersect the triangle sides in three points that result to be the
tangency points of the ellipse to the triangle.

5. Chosen one of these tangency points and computing the sum of its distances
from both foci, the total length of the ellipsis main axis is found.

6. Knowing both foci, the total inter focal distance is found, therefore equa-
tion (1) allows to find the other axis length.

7. The inclination of the focal segment gives us the the rotation to which the
ellipse is subject, and the middle point of such segment gives the ellipse
center.

8. At this point we have all the necessary elements to draw the ellipse.

We need another little macro to find the symmetrical points; if the focus F and
its symmetrical point P with respect to a side/segment, the intersection of such
segment F−P with the side is the segment middle point M ; from this property we
derive the formula P = 2M−F . Now M is also the intersection of the line passing
through F and perpendicular to the side. Therefore it is particularly simple to
compute, but its better to have available a macro that does the whole work; here
it is, but it assumes the the center of symmetry is already known:

314
315 \def\SymmetricalPointOf#1respect#2to#3{\ScaleVect#2by2to\Segm
316 \SubVect#1from\Segm to#3\ignorespaces}

18

And its syntax is the following:

\SymmetricalPointOf〈focus〉 respect〈symmetry center〉
to〈symmetrical point〉

where the argument names are self explanatory.
The overall macro that executes all the passages described in the above enu-

meration follows; the reader can easily recognise the various steps, since the names
of the macros are self explanatory; the Gi point names are the symmetrical ones to
the first focus F ; the Mi points are the centers of symmetry; the F ′ point is the sec-
ond focus; the Ti points are the tangency points. The macro \EllipseWithFOcus
has the following syntax:

\EllipseWithFocus〈?〉(〈P1 〉)(〈P2 〉)(〈P3 〉)(〈focus〉)

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the triangle vertices and 〈focus〉 contains the first
focus coordinates; the optional asterisk, as usual, selects the construction steps
versus the final result: no asterisk, no construction steps.

317
318 \NewDocumentCommand\EllipseWithFocus{s d() d() d() d()}{\bgroup%
319 \CopyVect#2to\Pu
320 \CopyVect#3to\Pd
321 \CopyVect#4to\Pt
322 \CopyVect#5to\F
323 \polygon(\Pu)(\Pd)(\Pt)
324 \Pbox(\Pu)[r]{P_1}[1.5pt]\Pbox(\Pd)[t]{P_2}[1.5pt]
325 \Pbox(\Pt)[b]{P_3}[1.5pt]\Pbox(\F)[b]{F}[1.5pt]
326 \SegmentArg(\Pu)(\Pt)to\At
327 \SegmentArg(\Pu)(\Pd)to\Ad
328 \SegmentArg(\Pd)(\Pt)to\Au
329 \IntersectionOfLines(\Pu)(\At:1)and(\F)(\fpeval{\At+90}:1)to\Mt
330 \IntersectionOfLines(\Pd)(\Ad:1)and(\F)(\fpeval{\Ad+90}:1)to\Md
331 \IntersectionOfLines(\Pd)(\Au:1)and(\F)(\fpeval{\Au+90}:1)to\Mu
332 \IfBooleanTF{#1}{\Pbox(\Mt)[br]{M_3}[1.5pt]\Pbox(\Md)[t]{M_2}[1.5pt]
333 \Pbox(\Mu)[b]{M_1}[1.5pt]}{}
334 \SymmetricalPointOf\F respect\Mu to\Gu
335 \IfBooleanTF{#1}{\Pbox(\Gu)[l]{G_1}[1.5pt]}{}
336 \SymmetricalPointOf\F respect \Md to\Gd
337 \IfBooleanTF{#1}{\Pbox(\Gd)[t]{G_2}[1.5pt]}{}
338 \SymmetricalPointOf\F respect \Mt to\Gt
339 \IfBooleanTF{#1}{\Pbox(\Gt)[r]{G_3}[1.5pt]}{}
340 \IfBooleanTF{#1}{\ThreePointCircle*(\Gu)(\Gd)(\Gt)}%
341 {\ThreePointCircle(\Gu)(\Gd)(\Gt)}
342 \CopyVect\C to\Fp \Pbox(\Fp)[l]{F’}[1.5pt]
343 \IfBooleanTF{#1}{%
344 \Dotline(\F)(\Gt){2}[1.5pt]
345 \Dotline(\F)(\Gd){2}[1.5pt]
346 \Dotline(\F)(\Gu){2}[1.5pt]}{}
347 \IntersectionOfSegments(\Pu)(\Pt)and(\Fp)(\Gt)to\Tt

19

348 \IntersectionOfSegments(\Pu)(\Pd)and(\Fp)(\Gd)to\Td
349 \IntersectionOfSegments(\Pd)(\Pt)and(\Fp)(\Gu)to\Tu
350 \IfBooleanTF{#1}{\Pbox(\Tu)[l]{T_1}[1.5pt]
351 \Pbox(\Td)[b]{T_2}[1.5pt]
352 \Pbox(\Tt)[tl]{T_3}[1.5pt]
353 \Dashline(\Fp)(\Gu){1}\Dashline(\Fp)(\Gd){1}\Dashline(\Fp)(\Gt){1}}{}
354 \DistanceAndDirOfVect\Fp minus\Tt to\DFp and\AFu
355 \DistanceAndDirOfVect\F minus\Tt to\DF and\AF
356 \SegmentCenter(\F)(\Fp)to\CE \Pbox(\CE)[b]{C}[1.5pt]
357 \edef\a{\fpeval{(\DFp+\DF)/2}}
358 \SegmentArg(\F)(\Fp)to\AngFocalAxis
359 \SegmentLength(\F)(\CE)to\c
360 \AxisFromAxisAndFocus\a and\c to\b
361 \Xellisse(\CE)[\AngFocalAxis]{\a}{\b}[\thicklines]
362 \VECTOR(-30,0)(120,0)\Pbox(120,0)[t]{x}[0]
363 \VECTOR(0,-20)(0,130)\Pbox(0,130)[r]{y}[0]\Pbox(0,0)[tr]{O}[1.5pt]
364 \egroup\ignorespaces}
365 \let\EllisseConFuoco\EllipseWithFocus

2 Comments on this package
In general we found very comfortable to draw ellipses and to define macros to draw
not only such shapes or filled elliptical areas, but also to create “legends” with
coloured backgrounds and borders; such applications found their way in other
works. But here we dealt with other geometrical problems. The accompany-
ing document euclideangeometry-man.pdf describes much clearly with examples
what you can do with the macros described in this package. In facts, this file just
describes the package macros, and it gives some ideas on how to extend the ability
of curve2e to draw geometrical diagrams. The users who would like to modify or
to add some functionalities are invited to do so; I will certainly acknowledge their
contributions and even add their names to the list of authors.

As long as I can, I enjoy playing with LATEX and its wonderful facilities; but,
taking into consideration my age, I would invite the users to consider the possibility
of assuming the maintenance of this package.

Aknowledgements
I am very grateful to Enrico Gregorio who let me know the several glitches I made
in my first version; besides being a real TEX wizard, he is a wise person and
suggested me several things that was important to change, because they could
offer risks of confusion with other packages.

20

