
Claudio Beccari

claudio dot beccari at gmail dot com

The euclideangeometry package
user manual

Version 0.1.8 of 2020-04-15

Abstract

This file further extends the functionalities of the curve2e package, which,
on turn, is an extension of the pict2e package to the standard picture en-
vironment as defined in the LATEX kernel source file.

The curve2e package was upgraded a the beginning of 2020; the material
of this new package, might have been included in the former one, but it is
so specific, that we preferred defining a standalone one; this package takes
care of requesting the packages it depends from.

The purpose is to provide the tools to draw most of the geometrical con-
structions that a high school instructor or bachelor degree professor might
need in order to teach geometry. The connection to Euclide depends on
the fact that in its times calculations were made with ruler, compass, and,
apparently, also with ellipsograph.

The user of this package has available all the machinery provided by
the pict2e and curve2e packages, in order to define new functionalities and
build macros that draw the necessary lines, circles, and other such objects,
as they would have done in the ancient times. Actually just one macro is
programmed to solve a linear system of equations

Contents
1 Introduction 1

2 Installing euclideangeometry 2

3 Loading euclideangeometry 3

4 Available commands 3

5 curve2e extensions 6

6 Euclidean geometry commands 12

7 Examples 20
7.1 Straight and curved vectors 20
7.2 Polygons . 20
7.3 Dashed and dotted lines . 21
7.4 Generic curves . 21
7.5 The \multiput command . 21
7.6 Drawing mathematical functions 21
7.7 Intersections involving circles 25
7.8 Triangles and their special lines 30
7.9 Special triangle centers . 31
7.10 The tangent to an ellipse . 34
7.11 A triangle internally tangent ellipse given one of its foci . . . 36

8 Conclusion 37

Warning
The euclideangeometry package requires the advanced functionalities of the
LATEX3 (L3) language; if such functionalities are not available for any reason
(incomplete/basic installation of the TEX system; legacy installation of the
TEX system; the TEX system has not been updated; . . .) input of this
package is stopped, the whole job is aborted, and a visible message is issued.

1 Introduction
The picture environment has been available since the very beginning of LATEX
in 1985. At that time it was a very simple environment that allowed to draw
very simple line graphics with many limitations. When LATEX was upgraded
from LATEX2.09 to LATEX 2εin 1994, Leslie Lamport announced an upgrade
that eventually became available in 2003 with package pict2e; in 2006 I wrote

1

the curve2e package that added many more functionalities; both packages
were upgraded during these years; and now line graphics with the picture
environment can perform pretty well. The package euclideangeometry adds
even more specific functionalities in order to produce geometric drawings as
they were possible in the old times, when calculus and analytic geometry
were not available.

In these years other drawing programs were made available to the TEX
community; PSTricks and TikZ are the most known ones, but there are
other less known packages, that perform very well; among the latter I would
like to mention xpicture, that relies on pict2e and curve2e, but extends the
functionalities with a very smart handling of coordinate systems, that allow
to draw many line drawings suitable for teaching geometry in high schools
and introductory courses in the university bachelor degree programs.

This package euclideangeomery apparently follows the same path of xpic-
ture, but it avoids defining a new user language interface; rather it builds
new macros by using the same philosophy of the recent curve2e package.

It is worth mentioning that now curve2e accepts coordinates in both
cartesian and polar form; it allows to identify specific points of the drawing
with macros, so the same macro can be used over and over again to ad-
dress the same points. The package can draw lines, vectors, arcs with no
arrow tips, or with one arrow tip, or with arrow tips at both ends, arcs in-
cluded. The macros for drawing poly lines, polygons, circles, generic curves
(by means of Bézier cubic or quadratic splines) are already available; such
facilities are documented and exemplified in the user manual of curve2e
package.

In what follows there will be several figures drawn with this package;
in the background there is a red grid where the meshes are 10 \unitlenth
apart in both directions; they should help to understand the position of the
various drawings on the picture canvas. This grid is useful also to the end
user, while s/he is working on a particular drawing, but when the drawing
is finished, the user can delete the grid command or comment out that line
of code. For what regards the commands used to render the images, their
codes can be found in the documented code file euclideangeometry.pdf.

2 Installing euclideangeometry
You are not supposed to manually install package euclideangeometry. In
facts you have to work with a complete and updated/upgraded TEX instal-
lation, otherwise this package won’t work; this means that you have done
your updating after 2020-01-18. And this package is already present in any
modern updated complete installation of the TEX system. Otherwise the
package will load curve2e with an old version and file date, and this package
will abort its own loading, besides aborting the whole job.

2

3 Loading euclideangeometry
If you want to use the euclideangeometry package, we suggest you load it
with the following command:

\usepackage[〈options〉]{euclideangeomery}

The package will take care of managing the possible 〈options〉 and to call
curve2e with the such specified options; on turn curve2e calls pict2e passing
on the 〈options〉; such 〈options〉 are only those usable by pict2e because
neither curve2e nor euclideangeometry use any option. If the user is invoking
euclideangeometry, it is certain s/he does not want to use the native picture
environment, but the modern extended one; therefore the only meaningful
possible options are latex and pstricks; such options influence only the shape
of the arrow tips; with option latex they are triangular, while with pstricks
they have the shape of a stealth aircraft. The difference is very small;
therefore we imagine that even if these options are available, they might
never be used.

Nothing happens if the user forgets this mechanism; therefore if s/he
loads curve2e and/or pict2e, before euclideangeomentry the only problem
that might arise is an “Option clash” error message; if two of these packages
are selected with different arrow tips; not impossible, of course, by we deem
it very unlikely.

4 Available commands
The commands available with the first extension pict2e to the native picture
environment, maintain their names but do not maintain the same restric-
tions; in particular there are the following improvements.

1. Lines and vectors are drawn as usual by \putting in place their forms,
but their inclinations are not limited to a limited number of slope
parameters, originally specified with reciprocally prime single digit
values not exceeding 6 for lines, and 4 for vectors; the length of these
sloped objects is still their horizontal component; now, the slopes may
be described with any signed fractional number not exceeding 230 −
1 in absolute value; it still is a limited number of slopes, but their
combinations are practically countless.

2. There is no restriction on the minimum length of lines and vectors.
3. Circles and dots can be drawn at any size, not at that dozen or so of

finite sizes that were accepted with the original environment.
4. Ovals may be specified the corner curvature; the default size of the

quarter circles that make up the oval corners may be specified; if no
specification is given the radius of such corners is the maximum that

3

can be fitted in the oval; in practice it is half the shortest value between
the oval height and width.

5. The quadratic Bézier splines do not require the specification of the
number of dots that were used by the native environment to draw
“arbitrary” curves; now they are drawn with continuous curved lines.

Some new commands were added by pict2e

1. The third degree (cubic) Bézier splines are sort of new; certainly now
they are traced with continuous lines; if it is desired, it is possible
to replace the continuous line with a number of dots so as to have a
(unevenly) dotted curve. It suffices to specify the number of dots the
curve should be made with.

2. \arc and \arc* draw an arc or a filled circular sector, with their
centers at the axes origin; therefore they need to be put in place some-
where else by means of the usual \put command.

3. The new command \Line traces a segment from one given point to
another point; it is very convenient to specify the end points instead
of the slope the line must have to go form the starting point to the
ending one. The command does not require the \put command to put
the segment in place; nevertheless it can be shifted somewhere else
with \put if it becomes necessary.

4. The new command \polyline draws a sequence of connected segments
that form a piecewise linear “curve”; the way segments are joined to
one another depend from the “join” specifiers that pict2e has intro-
duced; they will be described further on.

5. \polygon and \polygon* produce closed paths as it would be possible
when using \polyline and specifying the last point coincident with
the first point of that curve. If the asterisk is used the closed path is
filled with the default color.

There were also the low level commands user interfaces to the various
drivers; these drivers really exist, but pict2e knows how to detect the correct
language of the necessary drive; the user is therefore allowed to pretend to
ignore the existence of such drivers, and s/he can simply use these low level
commands; their names are almost self explanatory.

1. \moveto Sets the start of a line to an initial point.
2. \lineto traces a segment up to a specified point.
3. \curveto traces a third degree Bézier spline up to the third specified

point, while using the other two ones as control points.1
4. \circlearc traces a circumference arc from the last line point to a

specified destination; its center, its angle amplitude, its initial point
are among the specified arguments, but the reader should check on the
pict2e documentation for the details.

1If these terms are unfamiliar, please read the pict2e documentation.

4

Attention! Notice that these commands produce just information to
trace lines, but by themselves they do not trace anything; in order to
actually trace the curve or do other operations with what has been
done after the user finished describing the line to be traced, the fol-
lowing low level commands must be used.

5. A \closepath is necessary if it is desired to join the last position to
the initial one. But if the last point specified coincides with the very
first one, a closed loop is effectively already completed.

6. If a \strokepath command is used the line is drawn.
7. If a \fillpath command is used, the line loop is filled with the current

color. Notice, if the described line is not a closed loop, this filling
command acts as if the line first point and last point were joined by a
straight line.

While describing a line with the above low level commands, or with
the previous high level commands, lines and segments join and finish as
described hereafter; the following commands must be used, possibly within
a group, before actually tracing a specific line made up with several joined
lines or curves. Notice that their effect is just visible with lines as thin as
1 pt, and very visible with thicker lines.

1. \buttcap truncates each line with a sharp cut perpendicular to the
line axis exactly through the line end point (default).

2. \roundcap adds a semicircle to the very end of each line.
3. \squarecap adds a half square to the very end of each line.
4. \miterjoin joins two (generally straight) lines with a miter (or mitre)

joint; this means that the borders of the line are prolonged until they
meet; it is very nice when the junction angle is not far away from, or is
larger than 90◦. Apparently for pict2e this type of joint is the default.

5. \roundjoin joins each (generally straight) line with an arc on the
external part of the bend; it is good in most circumstances.

6. \beveljoin joins two (generally straight) lines with a miter joint trun-
cated with a sharp cut perpendicular to the bisector of the lines axes;
with acute angles it is better than the miter joint, but when angles are
very small, even this joint is not adequate.

Notice that \buttcap is the default, but in general it might be better to
declare the \roundcap for the whole document.

We do not go further in the description of the new pict2e modified and
new new commands; the reader unfamiliar with programmable drawing and
the pic2e extensions can consult that package documentation. Actually all
commands have been redefined or modified by curve2e in order to render
them at least compatible with both the cartesian and polar coordinates. In
oder to have a better understanding of these details, see figure 12.

2The \polyline macro has the default join of type bevel; remember to specify a dif-

5

\buttcap,\miterjoin \roundcap,\roundjoin \squarecap,\beveljoin

Figure 1: Different caps and joins

5 curve2e extensions
Again we do not enter into the details, because the user can read the new
user manual curve2e-manual.pdf simply by entering and executing the
texdoc curve2e-manual command into a terminal or command prompt
window; this new manual is available with version 2.2.0 (or higher) of curve2e
and it contains the extensions and sample codes for (simple) sample draw-
ings; some examples are not so simple, but show the power of this package
upgrade.

The most important two changes are (a) the choice of different coordi-
nates for addressing points on the drawing canvas, and (b) the possibility of
using macros to identify specific points. As already mentioned, such changes
have been applied also to most, if not all3 commands defined by pict2e.

curve2e defines a lot of operations the user can do with the point coor-
dinates; this is done by assuming they are complex numbers, or vectors, or
rotoamplification operators, and making with such entities a lot of actions
compatible with their “incarnation". For example multiplying a vector by
a rotoàmplification operator, in spite the fact that internally they are both
represented by ordered pairs of (generally) fractional numbers, means simply
obtaining a new vector rotated and scaled with respect to the original one;
the point addressed by the first vector, becomes another point in a different
precise position.

Below you see several examples of usage of such commands; but here
space will be saved if a short list is made concerning these “complex number”
operations.

ferent join type if you want a different one.
3I assume I have upgraded all such commands; if not, please, send me a bug notice; I

will acknowledge your contribution.

6

Remember the double nature of such complex numbers:

z = x+ iy = m eiφ

therefore addition and subtraction are simply done with

z1 ± z2 = x1 ± x2 + i(y1 ± y2)

Multiplications and divisions are simply done with

z1z2 = (m1m2) ei(φ1+φ2)

z1/z2 = (m1/m2) ei(φ1−φ2)

Squares and square roots4 are simply done with:

z2 = m2 ei2φ

√
z =
√
m eiφ/2

The complex conjugate of a complex number is shown with a superscript
asterisk:

if z = x+ iy then z? = x− iy

and from these simple formal rules many results can be obtained; and there-
fore several macros must be defined.

But let us summarise. Here is a short list with a minimum of expla-
nation of the commands functionalities introduced by curve2e. The user
notices that many commands rely on a delimited argument command syn-
tax; the first arguments can generally be introduced with point macros, as
well as numerical coordinates (no matter if cartesian and polar ones) while
the output(s) should always be in form of point macro(s). Parentheses for
delimiting the ordered pairs or the point macros are seldom required. On
the other side, the variety of multiple optional arguments, sometimes re-
quires the use of different delimiters, most often than not the signs < >, in
addition to the usual brackets. These syntax functionalities are available
with the xparse and xfp packages, that render the language L3 very useful
and effective.

Handling of complex numbers is done with the following commands. New
commands to draw special objects, are also described.

1. Cartesian and polar coordinates; they are distinguished by their sepa-
rator; cartesian coordinates are the usual comma separated pair 〈x, y〉;
polar coordinates are specified with a colon separated pair 〈θ: ρ〉. In

4The square root of a complex number has two complex values; here we do not go into
the details on how curve2e choses one or the other value. In practice, the curve2e macros
that use square roots, work mostly on scalars to find magnitudes that are always positive.

7

general they are specified within parentheses, but some commands re-
quire them without any parenthesis. In what follows a generic math
symbol, such as for example P1, is used to indicate a complex number
that addresses a particular point, irrespective of the chosen coordinate
type, or a macro defined to contain those coordinates.

2. The complex number/vector operations already available with curve2e
are the following; we specify “macro” because in general macros are
used, instead of explicit numerical values, but for input vector macros
it is possible to use the comma or colon separated ordered pair; “ver-
sor” means “unit vector”; angles are always expressed in degrees; out-
put quantities are everything follows the key word to; output quanti-
ties are alway supposed to be in the form of control sequences.

• \MakeVectorFrom〈number,number〉〈numeric macro〉 to〈vector macro〉
• \CopyVect〈vector macro〉 to〈vector macro〉
• \ModOfVect〈vector macro〉 to〈modulus macro〉
• \DirOfVect〈vector macro〉 to〈versor macro〉
• \ModAndDirOfVect〈vector macro〉 to〈modulus macro〉 and〈versor macro〉
• \ModAndAngleOfVect〈vector macro〉 to〈modulus macro〉 and〈angle macro〉
• \DistanceAndDirOfVect〈1st vector macro〉 minus〈2nd vector macro〉

to〈distance macro〉 and〈versor macro〉
• \XpartOfVect〈vector macro〉 to〈numerical macro〉
• \YpartOfVect〈vector macro〉 to〈numerical macro〉
• \DirFromAngle〈angle macro〉 to〈versor macro〉
• \ArgOfVect〈vector macro〉 to〈angle macro〉
• \ScaleVect〈vector macro〉 by〈scale factor〉 to〈vector macro〉
• \ConjVect〈vector macro〉 to〈conjugate vector macro〉
• \SubVect〈subtrahend vector〉 from〈minuend vector〉 to〈vector macro〉
• \AddVect〈1st vector〉 and〈2nd vector〉 to〈vector macro〉
• \Multvect{〈1st vector〉}〈?〉{〈2nd vector〉}〈?〉〈output vector macro〉

the asterisks are optional; either one changes the 〈2nd vector〉 into its
complex conjugate

• \MultVect〈1st vector〉〈?〉〈2nd vector〉 to〈vector macro〉
discouraged; maintained for backward compatibility; the only optional
asterisk changes the 〈2nd vector〉 into its complex conjugate

• \Divvect{〈dividend vector〉}{〈divisor vector〉}{〈output vector macro〉}
• \DivVect〈dividend vector〉 by〈divisor vector〉 to〈vector macro〉

maintained for backwards compatibility.

3. A new command \segment(〈P1〉)(〈P2〉) draws a line that joins the
specified points.

8

4. Command \Dashline(〈P1〉)(〈P2〉){〈dash length〉} draws a dashed line
between the specified points; the 〈dash length〉 is specified as a coeffi-
cient of \unitlenth so it is a proportioned to the diagram scale. The
gap between dashes is just as wide as the dashes; they are recomputed
by the command in order to slightly adjust the 〈dash length〉 so that
the line starts at point P1 with a dash, and ends at P2 again with a
dash.

5. Command \Dotline(〈P1〉)(〈P2〉){〈gap〉}[〈diameter〉] traces a dotted
line between the specified points with dots 〈gap〉 units apart, starting
and ending with a dot at the specified points. Optionally the absolute
diameter of the dots may be specified: a diameter of 1 pt (default)
is visible, but it might be too small; a diameter of 1mm is really
very black, and may be too large; if the diameter is specified without
dimensions they are assumed by default to be typographic points.

6. Command \polyline, \polygon and \polygon* are redefined to ac-
cept both coordinate kinds.

7. Commands \VECTOR(〈P1〉)(〈P2〉) (and \VVECTOR, with the same syn-
tax) draw vectors with one arrow tip at the end, or arrow tips at both
ends respectively.

8. New commands \Arc(〈center〉)(〈start〉){〈angle〉} and, with the same
syntax, \VectorArc and \VectorARC draw arcs with the specified
〈center〉, starting at point 〈start〉, with an aperture of 〈angle〉 degrees
(not radians). \Arc draws the arc without arrow tips; \VectorArc
draws the arc with one arrow tip at the end point; \VectorARC draws
an arc with arrow tips at both ends.

9. Command \multiput has been redefined to accept optional argu-
ments, besides the use of coordinates of both kinds. The new syntax
is the following:

\multiput[〈shift〉](〈origin〉)(〈step〉){〈number〉}{〈object〉}[〈handler〉]

where, if you neglect the first and the last (optional) arguments, you
have the original syntax; the 〈origin〉 point is where the first 〈object〉
is placed; 〈step〉 is the displacement of a new 〈object〉 relative to the
previous one; 〈number〉 is the total number of 〈object〉s put in place
by the command; possibly the number may be an integer expression
computed with the \inteval function of the L3 language, accessed
through the xfp package already loaded by curve2e. The new features
are 〈shift〉, that is used to displace the whole drawing somewhere else
(in case some fine tuning is required), and 〈handler〉; the latter is
a powerful means to control both the object to be set in place and
its position; further on there will be examples that show that the
object can be put not only on straight paths, but also un other curves,
including parabolas, circles, and other shapes.

9

10. Another version of repetitive commands \xmultiput is very similar
to \multiput but the iterations are controlled in a different way so
that it is possible also to draw continuous curves describing analytical
functions even with parametric equations. Further on there will be
some examples.

11. The preloaded xfp package provides two important functionalities, i.e.
two L3 “functions”, \fpeval and \inteval; the latter executes ex-
pressions on integer numbers containing the usual operators +, -, *,
/; the division quotient is rounded to the nearest (positive or nega-
tive) integer. The former operates with real fractional numbers and,
in addition to the usual arithmetical operators as \inteval, it can use
many mathematical functions, from square roots, to exponentials, log-
arithms, trigonometric and hyperbolic direct and inverse functions5,
plus other ones. Normally fractional numbers are operated on decimal
strings, with 16 fractional places, and 14 integer places but the L3 func-
tions accept also scientific notation. The user can specify truncation or
rounding to a specified number of digits. Such integer and fractional
mathematical operations are already integrated in most computations
performed by curve2e.

12. curve2e provides two more L3 functions: \fptest and \fpdowhile
with the following syntax:

\fptest{〈test〉}{〈true〉}{〈false〉}
\fpdowhile{〈test〉}{〈actions〉}

For both macros the 〈test〉 is a logical F3 expression; its operands
are logical constants, logical values, logical numeric comparisons; its
operators are the typical ||, &&, and !, respectively for OR, AND, and
NOT. The logical numerical comparisons are mathematical constants
or expressions connected with relation operators, such as >, =, <;
such operators may be negated with the NOT operator; therefore, for
example, !> means “not greater than”, therefore “lower or equal to”.

13. The above tests are very useful to control both \fptest and \fpdowhile.
The logical 〈test〉 result lets \fptest execute only the 〈true〉 or the
〈false〉 code. Before using \fpdowhile the 〈test〉 expression must be
initialised to be true; the 〈actions〉 should contain some code to be
iteratively executed, but they must contain some assignments, typi-
cally a change in an iteration counter, such that eventually the 〈test〉
logical expression becomes false. Lacking this assignments, the loop
continues to infinity, or better, until a fatal error message is issued
that informs that the program working memory is exhausted.

14. Such new commands are already used to code the \multiput and
\xmultiput commands, but they are available also to the user who

5The implementation of inverse hyperbolic function is on the L3 Team “to do” list.

10

can operate in a very advanced way; further on, some examples will
show some advanced drawings.

15. General curves can be drawn by pic2e command \curve that is sort
of difficult to use, because the user has to specify also the control
points of the third order Bézier splines. Some other new commands
are available with curve2e, that are supposed to be easier to use; they
are described in the following items.

16. The new command \Curve joins a sequence of third order splines by
simply specifying the node-direction coordinates; i.e. at the junction
of two consecutive splines, in a certain interpolation node the final
previous spline tangent has the same direction as that at the second
spline first node; if a change of direction is required, an optional new
direction can be specified. Therefore this triplet of information has
the following syntax:

(〈node〉)<〈direction〉>[〈new direction〉]

Evidently the 〈new direction〉 is specified only for the nodes that cor-
respond to a cusp. A variation of the command arguments is available
by optionally specifying the “looseness” of the curve:

(〈node〉)<〈direction;start,end〉>[〈. . . 〉]

where 〈start〉 is the spline starting “looseness” and 〈end〉 is the spline
ending one. These (generally different) values are an index of how far
the control point is from the adjacent node. With this functionality
the user has a very good control on the curve shape and curvature.

17. A similar command \Qurve works almost the same way, but it traces
a quadratic Bézier spline; this one is specified only with two nodes
an a single control point, therefore is less configurable than cubic
splines; the same final line may require several quadratic splines when
just a single cubic spline might do the same job. Notice also that
quadratic splines are just parabolic arcs, therefore without inflection
points, while a cubic spline can have one inflexion point.

18. A further advanced variation is obtained with the new \CurveBetween
command that creates a single cubic spline between two given points
with the following syntax:

\CurveBetween〈node1 〉 And〈node2 〉 WithDirs 〈dir1 〉 And〈dir2 〉

19. A similar variant command is defined with the following syntax:

\CbezierBetween〈node1 〉 And〈node2 〉 WithDirs〈dir1 〉 And〈dir2 〉
UsingDists〈dist1 〉 And〈dist2 〉

Usage examples are shown in section 7

11

6 Euclidean geometry commands
With the already large power of curve2e there was a push towards specialised
applications; the first of which was, evidently, geometry; that kind of geom-
etry that was used in the ancient times when mathematicians did not have
available the sophisticated means they have today; they did not even have
a positional numerical notation, that arrived in the “western world” we are
familiar with, just by the XI-XII century; before replacing the roman num-
bering system, another couple of centuries passed by; real numbers with the
notation we use today with a decimal separator, had to wait till the XVI
century (at least); many things that naw are taught in elementary school
were still a sort of magic until the end of XVIII century.

Even a simple algebraic second degree equation was a problem. In facts
the Renaissance was the artistic period when the classical proportions were
brought back to the artists who could not solve the simple equation where
a segment of unit length is divided in two unequal parts x and 1 − x such
that the following proportion exists among the various parts and the whole
segment:

x

1 = 1− x
x

=⇒ x = 1
x
− 1

today we cam solve the problem by manipulating that simple proportion to
get

x2 + x− 1 = 0

and we know that the equation has two solution of opposite signs, and that
their magnitudes are the reciprocal of one another. Since we are interested
in their magnitudes, we adapt the solutions in the form

x1,2 =
√

5± 1
2 =

√
1 + 0.52 ± 0.5 =⇒

{
x1 = 1.618 . . .
x2 = 0.618 . . .

(1)

The larger number is called the golden number and the smaller one the
golden section.

Luca Pacioli, by the turn of centuries XV–XVI, was the tutor of Guidubaldo,
the son and heir of Federico di Montefeltro, Duke of Urbino6; he wrote the
famous book De Diuina Proportione that contained also the theory of the
golden section accompanied by beautiful drawings of many Platonic solids
and other non convex ones, drawn by Leonardo da Vinci. Everything was
executed with perfect etchings, even the construction of the golden section;
in its basic form7 it is replicated in figure 2. By the way figure 2 shows

6If you never visited this Renaissance city and its Ducal Palace, consider visiting it; it
is one of the many UNESCO Heritage places.

7The third formula in equation (1) is written in such a way as to explain the graphical
construction in figure 2.

12

\unitlength=0.005\linewidth
\begin{picture}(170,140)(0,-70)
\GraphGrid(0,-70)(170,140)
\VECTOR(0,0)(170,0)
\Pbox(170,0)[t]{x}[0]
\Pbox(100,0)[t]{\mathrm{1}}[2]
\Pbox(0,0)[r]{O}[2]
\Arc(100,0)(50,0){-90}
\segment(100,0)(100,70)
\segment(0,0)(100,50)
\Pbox(50,0)[tr]{\mathrm{0.5}}[2]
\ModAndAngleOfVect100,50 to\M and\A
\Arc(0,0)(\M,0){\A}\Pbox(\M,0)[bl]{C}[2]
\Arc(\M,0)(\M,-50){90}
\Arc(\M,0)(\M,-50){-90}
\Pbox(\fpeval{\M-50},0)[b]{\mathit{x_2}}[3]
\Pbox(\fpeval{\M+50},0)[b]{\mathit{x_1}}[3]
\put(\M,0){\Vector(-70:50)}
\Pbox(120,-25)[bl]{\mathit{r}=\mathrm{0.5}}[0]
\thicklines
\segment(0,0)(100,0)
\end{picture}

x1O 0.5
Cx2 x1

r = 0.5

Figure 2: The golden section x2 and the golden number x1

also the code that is used for the drawing done completely with the facilities
available just with curv2e. It is also a usage example of several commands.

Illiteracy was very widespread; books were expensive and were common
just in the wealthy people mansions.

Mathematicians in the classical times B.C. up to the artists in the Re-
naissance, had no other means but to use geometrical constructions with
ruler and compass. Even today in schools where calculus is not yet taught
as a normal subject, possibly not in certainly high school degree courses, but
certainly not in elementary and junior high schools, the instructors have to
recourse to geometrical constructions. Sometimes, as in Italy, access to pub-
lic universities is open with no restrictions to all students with a high school
diploma for degree courses that are more vocational than cultural. Therefore
such students in some university degree courses have to frequent upgrading
courses in order to master some more mathematics compared to what they
studied during their basic education.

The instructors nowadays very often prepare some booklets with their
lessons; such documents, especially in electronic form, are a good help for
many students. And LATEX is used to write such documents. Therefore this
extension module is mostly dedicated to such instructors.

The contents of this module is not exhaustive; it just shows a way to use
the curve2e facilities to extend it to be suited for the kind of geometry they
teach.

Here we describe the new commands provided by this package; then in
section 7 we show their usage by means examples.

1. Command \IntersectionOfLines is a fundamental one; its syntax is
the following:

13

\IntersecionOfLines(〈point1 〉)(〈dir1 〉) and(〈point2 〉)(〈dir2 〉)
to〈vector〉

were each line is identified with its 〈point〉 and its direction 〈dir〉; the
intersection coordinates go to the output 〈vector〉.

2. A second command\IntersectionOfSegments does almost the same
work, but the coordinates of a segment define also its direction, which
is the argument of the difference of the terminal nodes of each segment;
the syntax therefore is the following:

\IntersectionOfSegments(〈point11 〉)(〈point12 〉)
and(〈point21 〉)(〈point22 〉)to〈vector〉

Again the intersection point coordinates go to the output 〈vector〉.
The first segment is between points 11 and 12, and, similarly, the
second segment is between points 21 and 22.

3. Another “intersection” command is \IntersectionsOfLine to deter-
mine the two intersection of a line with a circle. The syntax is:

\IntersectionsOfLine(〈point〉)(〈dir〉)WithCircle(〈center〉){〈radius〉}to〈int1 〉
and〈int2 〉

where 〈point〉 and 〈dir〉 identify a line with a given direction and pass-
ing through a given point; the circle is identified with its 〈center〉 and
〈radius〉; the intersection points 〈int1 〉 and 〈int2 〉 are the coordinates
of the intersection points; If the line and circle do not intersect, a
warning message is issued, shown in the console and written to the
.log file; the intersection points are assigned the default values 0,0,
which evidently produce strange results in the output document, so as
to remind the user to give a look to the .log file and to review his/her
data.

4. It is difficult to numerically determine the coordinates of the intersec-
tion points of two circles; it becomes easier if one of the intersections
is known; To this end, a macro to draw a circle with a given center
and passing through a given point is handy:

\CircleThrough〈point〉WithCenter{〈center〉}

draws such circumference.
5. With the above macro it becomes easy to draw two circumferences

with different centers and passing through the same point; therefore
it becomes determine the other intersection point by means of the
following macro:

\Segment(〈endpoint1 〉)(〈endpoint2 〉)SymmetricPointOF〈p1 〉
to〈p2 〉

14

The computation is simple, because the second intersection is the sym-
metrical point 〈p2 〉 of 〈p1 〉 with respect to the segment that joins the
centers of the given circles intersecting one another in 〈p1 〉.

6. It would be interesting to solve the same problem with help of the
following macro relating to right triangles identified with their hy-
pothenuse and one of its legs; the other leg is found by means of this
macro:

\LegFromHypothenuse〈length1 〉 AndOtherLeg〈length2 〉
to{〈length3 〉}

since the intersection points of two circles define their common chord;
this chord and the two circle centers define two isosceles triangles with
the same base; therefore the segment joining the circle radii, coincides
whit the chord axis and divides each isosceles triangle in two right
triangles, where the hypotenuse is one of two radii and the first leg
is the distance from the chord middle point, intersection of the chord
and the segment joining the circle centers; at this point the distance of
the second point intersection from the chord middle point and the co-
ordinates of the second intersection may be easily computed; of course
this is a much clumsier way to determine the second intersection, but
it is useful to solve this right triangle easy problem.

7. Command \ThreePointCircle draws a circle that goes through three
given points; the syntax is the following:

\ThreePointCircle〈?〉(〈point1 〉)(〈point2 〉)(〈point3 〉)

A sub product of this macro is formed by the vector \C that contains
the coordinates of the center of the circle, that might be useful even if
the circle is not drawn; the optional asterisk, if present, does not draw
the circle, but the center is available.

8. Alternatively

\ThreePointCircleCenter(〈point1 〉)(〈point2 〉)(〈point3 〉)to〈vector〉

computes the three point circle center assigning its coordinates to
〈vector〉.

9. Command \CircleWithCenter draws a circle given its center and it
radius; in facts the syntax is the following:

\CircleWithCenter〈center〉 Radius〈Radius〉

This macro does not require the \put command to put the circle in
place.

10. A similar macro \Circlewithcenter does almost the same; its syntax
is the following:

15

\Circlewithcenter〈center〉 radius〈radius〉

Apparently these two commands do the same, but, no, they behave
differently: in the former command the 〈Radius〉 is a vector the modu-
lus of which is computed and used as the radius; in the latter command
the 〈radius〉 is a scalar and (its magnitude) is directly used.

11. Command with syntax:

\AxisOf〈point1 〉 and〈point2 〉 to 〈point3 〉 and〈point4 〉

is used to determine the axis of a segment; the given segment is spec-
ified with its end points 〈point1 〉 and 〈point2 〉 and the axis is deter-
mined by point 〈point3 〉 and 〈point4 〉; actually 〈point3 〉 is the middle
point of the given segment.

12. These two commands with syntax:

\SegmentCenter(〈point1 〉)(〈point2 〉)to〈center〉
\MiddlePointOf(〈point1 〉)(〈point2 〉)to〈center〉

determine just the middle point between two given points. They are
totally equivalent, aliases to one another; sometimes it is more conve-
nient to use a name, sometimes the other; it helps reading the code
and maintaining it.

13. Given a triangle and a specific vertex, it is possible to determine the
middle point of the opposite side; it is not very difficult, but it is very
handy to have all the necessary elements to draw the median line. The
simple syntax is the following:

\TriangleMedianBase〈vertex〉 on〈base1 〉 and〈base2 〉
to〈base middle point〉

14. A similar command \TriangleHeightBase is used to determine the
intersection of the height segment from one vertex to the opposite
base; with triangles that have an obtuse angle, the height base might
lay externally to one of the bases adjacent to such an angle. The
syntax is the following

\TriangleHeigthtBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈height
base〉

15. Similarly there is the \TriangleBisectorBase macro with a similar
syntax:

\TriangleBisectorBase〈vertex〉 on〈base1 〉 and〈base2 〉
to〈bisector base〉

16. A triangle barycenter is the point where its median lines intersect;
command \TriangleBarycenter determines its coordinates with the
following syntax.

16

\TriangleBarycenter(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈barycenter〉

17. A triangle orthocenter is the point where its height lines intersect;
command \TriangleOrthocenter determines its coordinates with the
following syntax:

\TriangleOrthocenter(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈orthocenter〉

18. A triangle incenter is the point where its bisector lines intersect; com-
mand \TriangleIncenter determines its coordinates with the follow-
ing syntax:

\TriangleIncenter(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈incenter〉

19. The distance of a specified point from a given segment or line is com-
puted with the following command

\DistanceOfPoint〈point〉 from(〈point1 〉)(〈point2 〉) to〈distance〉

where 〈point〉 specifies the point and 〈point1 〉 and 〈point2 〉 identify
two points on a segment or a line; 〈distance〉 is a scalar value.

20. In a construction that will be examined in section 7 we need to deter-
mine an ellipse axis if the other axis and the focal distance are know;
actually it solves the relation

a2 = b2 + c2 (2)

that connects such three quantities; a is always the largest of the three
quantities; therefore the macro tests if the first entry is larger than the
second one: if is is, it computes a Pitagorean difference, otherwise the
user should pay attention to use as the first entry the smaller among
b and c, so as to compute a Pitagorean sum. The command is the
following:

\AxisFromAxisAndFocus〈axis or focus〉 and〈focus or axis〉
to〈other axis or focus〉

The word “axis” stands for “semi axis length”; the word “focus" stands
for “focal semi distance”; actually the macro works equally well with
full lengths, instead of half lengths; its is important not to mix full and
half lengths. Such lengths are expressed as factors of \unitlength,
not as absolute values. This command is described again when dealing
with the specific problem referred to at the beginning of this list item;
the description is going to be more detailed and another macro is added
to avoid possible errors.

17

21. Given a segment, i.e. the coordinates of its end points, it is useful to
have a macro that computes its length; at the same time it is useful to
to compute its direction; this operation is not the same as to compute
modulus and argument of a vector, but consists in computing such
quantities from the difference of the vectors pointing to the segment
end points. These two macros are the following:

\SegmentLength(〈point1 〉)(〈point2 〉) to〈length〉
\SegmentArg(〈point1 〉)(〈point2 〉) to〈argument〉

The 〈argument〉 is computed in the interval −180◦ < φ ≤ +180◦;
it represents the argument of the vector that goes from 〈point1 〉 to
〈point2 〉, therefore the user must pay attention to the order s/he enters
the end point coordinates.

22. The next command \SymmetricalPointOf is used to find the reflec-
tion of a specified point with respect to a fixed point; of course the
latter is the middle point of the couple, but the unknown to be deter-
mined is not the center of a segment, but one of its end points. The
syntax is the following:

\SymmetricalPointOf〈point1 〉 respect〈fixed〉 to〈point2 〉

23. Command \RegPolygon draws a regular polygon inscribed within a
circle of given radius and center, with a specified number of sides;
optional arguments allow to specify color and thickness of the sides,
or the polygon interior color; this macro operates differently from the
one for drawing ellipses, that draws simultaneously an ellipse with the
border of a color and the interior of another one; with this macro the
user who wants to achieve this effect must superimpose to polygons
with different settings; but it would not be too difficult to arrange a
new macro or to modify this one in order to get “bicolor” polygons. It
is not necessary for the purpose of this package, therefore we let the
user express his/her phantasy by creating other macros. The actual
syntax is the following:

\RegPolygon〈?〉(〈center〉){〈radius〉}{〈sides〉}[〈angle〉]<〈settings〉>

The initial optional asterisk specifies if the interior has to be coloured;
if yes, the 〈settings〉 refer to the color of the interior; if not, the
〈settings〉 refer to the thickness and color of the sides; no 〈settings〉
imply sides drawn with the default line thickness, generally the one
corresponding to \thinlines, and the default color (generally black)
for the sides or the interior. By default the first vertex is set to an an-
gle of 0◦ with respect to the 〈center〉; the optional 〈angle〉 modifies this
value to what is necessary for a particular polygon. The 〈center〉 itself
is optional, in the sense that if it is not specified the center lays in the

18

origin of the picture axes; if this argument is specified, the polygon
center is displaced accordingly. The number of sides in theory may be
very high, but it is not wise to exceed a couple of dozen sides; if the
number of sides is too high, a polygon (completely contained in an A4
page) may become undistinguishable from a circumference.

24. Several macros are dedicated to ellipses; their names are spelled in
Italian, “ellisse”, because the name “ellipse” is already taken by other
packages; with an Italian user command names there should be no
interference with other packages, or the risk is reduced to a min-
imum. The various macros are \ellisse, \Sellisse, \Xellisse,
\XSellisse, \EllisseConFuoco \EllisseSteiner; the last two con-
trol sequence names are aliased with the corresponding English ones
\EllipseWithFocus and \SteinerEllipse. For the other four ones
it is wise to avoid English names for the reasons explained above.
After all the Italian and the English names are very similar and are
pronounced almost identically.
Actually \ellisse is practically a shorthand for \Sellisse be-
cause some optional arguments are already fixed, but the meaning
of \fillstroke depends on the presence or absence of an initial as-
terisk; similarly \Xellisse is a sort of a shorthand for \XSellisse; in
facts those commands, that contain an ‘S’ in their names, can option-
ally perform also the affine shear transformation, while those without
the ‘S’ do not execute such transformation. Figure 3 displays a normal
ellipse with its bounding rectangle, and the same ellipse to which the
shear affine transformation is applied; the labeled points represent the
third order Bézier spline nodes and control points.

Ptr

Pbl Pbr

Ptl

Crt

Crb

Clt

Clb

CtrCtl

CbrCbl

Pmr

Pmt

Pml

Pmb

Ptr

Pbl Pbr

Ptl

Crt

Crb

Clt

Clb

CtrCtl

CbrCbl

Pmr

Pmt

Pml

Pmb
Figure 3: The effect of shearing an ellipse with its bounding rectangle

25. The syntax of those six commands are the following:

19

\Sellisse〈?〉{〈semiaxis-h〉}{〈semiaxis-v〉}[〈shear〉]
\ellisse〈?〉{〈semiaxis-h〉}{〈semiaxis-v〉}
\XSellisse〈?〉(〈center〉)[〈angle〉]<〈shear〉>{〈semiaxis-h〉}%

{〈semiaxis-v〉}〈?〉[〈settings1 〉][〈settings2 〉]
\Xellisse〈?〉(〈center〉)[〈angle〉]{〈semiaxis-h〉}%

{〈semiaxis-v〉}[〈settings1 〉]{〈settings2 〉}
\EllipseWithFocus〈?〉(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)(〈focus〉)
\SteinerEllipse〈?〉(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)[〈diameter〉]

All require the semi axis lengths; the 〈semiaxis-h〉 and 〈semiaxis-v〉
refer to the semi axes before possible rotation by 〈angle〉 degrees, and
do not make assumptions on which axis is the bigger one. The op-
tional parameter 〈shear〉 is the angle in degrees by which the vertical
coordinate lines are slanted by effect of shearing. If 〈shear〉, that by
default equals zero, is not set to another value, the asterisks of com-
mand \Sellisse and \XSellisse do not have any effect. Otherwise
the asterisk of \Sellisse forces to draw the ellipse bounding box
(rectangle before shearing, parallelogram after shearing) as shown to-
gether with some marked special points (the vertices, spline nodes and
control points of the quarter circle or quarter ellipse Bézier splines) in
figure 3. For \ellisse the asterisk implies filling, instead of stroking
the ellipse contour. The 〈setting〉 1 and 2 refer to the color filling
and/or border color, and contour thickness, as already explained. For
the \EllipseWithFocus, the 〈focus〉 contains the coordinates of one
of the two ellipse foci; such coordinates should point to some position
inside the triangle. The \SteinerEllipse requires less data, in the
sense that such ellipse is unique; it is the ellipse internally tangent to
the triangle at its side middle points.

7 Examples
Here we can show some examples of the advanced curve2e commands and
of what can be done with this euclideangeometry extension.

7.1 Straight and curved vectors

Figure 4 shows some vectors and vector arcs with the code used to draw
them; as usual some points are described with cartesian coordinates and
some with polar ones.

7.2 Polygons

Figures 6 and 7 display a normal and a color filled pentagon with their codes.
Figure 5 shows a variety of polygons with their codes.

20

\unitlength=0.01\linewidth
\begin{picture}(100,60)
\GraphGrid(100,60)
\put(0,30){\vector(1,2){10}}
\put(20,30){\Vector(10,20)}
\VECTOR(40,30)(50,50)
\VVECTOR(60,30)(70,60)
\Arc(100,60)(80,60){90}
\VectorArc(0,0)(20,0){90}
\VectorARC(100,0)(80,0){-90}
\polyvector(30,0)(35,10)(55,20)(60,0)
\end{picture}

Figure 4: Some vectors and vector arcs

7.3 Dashed and dotted lines

For dotted lines it is possible to specify the dot size; it can be specified
with an explicit unit of measure, or, if no unit is specified, it is assumed
to be “points”. The \Dotline takes care of transforming the implied or
the explicit dimension in multiples of \unitlength. Figure 8 shows some
examples with their codes.

7.4 Generic curves

With the \Curve macro it is possible to make line art or filled shapes.
Figures 9 show the same shape, the first just stroked and the second color
filled.

7.5 The \multiput command

The new \multiput and \xmultiput commands are extensions of the orig-
inal \multiput macro; both are used to put a number of objects according
to a discrete law; but they can produce surprising effects. Figure 10 displays
several examples. As it possible to see, the black dots are evenly distributed
along the canvas diagonal; the green filled squares are along a sloping down
line inclined by 15◦ as specified by the polar coordinates of the 〈increment〉;
the blue filled triangles are distributed along a parabola; the red stroked
diamonds are distributed along a half sine wave.

Another interesting construction is a clock quadrant; this is shown in
figure 11

7.6 Drawing mathematical functions

Figure 12 shows an equilateral hyperbola; since it has asymptotes, the draw-
ing must be carefully done avoiding overflows, parts of drawing out of the

21

\centering
\unitlength=0.006\linewidth\begin{picture}(120,90)
%
\RegPolygon(9,20){20}{6}<\linethickness{3pt}\color{red}>
\RegPolygon(55,20){20}{7}[90]
\RegPolygon(100,20){20}{8}[22.5]<\linethickness{0.5ex}\color{blue}>
%
\put(0,50){%

\RegPolygon(9,20){20}{3}\RegPolygon(9,20){20}{3}[30]
\RegPolygon(9,20){20}{3}[60]\RegPolygon(9,20){20}{3}[90]

%
\RegPolygon*(55,20){20}{4}<\color{green}>
\RegPolygon(55,20){20}{4}<\linethickness{1ex}>

%
\RegPolygon*(100,20){20}{4}[45]<\color{orange}>
\RegPolygon(100,20){20}{4}[45]<\linethickness{1ex}\color{blue}>

}
\end{picture}

Figure 5: A variety of polygons and their codes

\unitlength=0.5mm
\begin{picture}(40,32)(-20,-17)
\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
\end{picture}

Figure 6: A normal polygon drawn with \polyline

picture area. Nevertheless the possibility of describing mathematical func-
tions in terms of L3 functions (in spite of the same name, they are completely
different things) makes it possible to exploit the 〈settings〉 argument to do

22

\unitlength=.5mm
\begin{picture}(40,32)(-20,-20)
\color{magenta}
\polygon*(90:20)(162:20)(234:20)(306:20)(378:20)
\end{picture}

Figure 7: A filled polygon drawn with \polygon

\unitlength=0.02\linewidth
\begin{picture}(40,40)
\GraphGrid(40,40)
\Dashline(0,0)(40,10){4}
\put(0,0){\circle*{1}}
\Dashline(40,10)(0,25){4}
\put(40,10){\circle*{1}}
\Dashline(0,25)(20,40){4}
\put(0,25){\circle*{1}}
\put(20,40){\circle*{1}}
\Dotline(0,0)(40,40){2}[0.75mm]
\put(40,40){\circle*{1}}
\end{picture}

Figure 8: Dashed and dotted lines

the job with \xmultiput.
A more complicated drawing can be done by expressing the function to

draw with parametric equations; the idea is to code the math formulas{
x(t) = f1(t)
y(t) = f2(t)

because it is easy to code the x and the y component and use the \fpdowhile
command to trace the curve with a piecewise continuous line; actually a
continuous line with a piecewise continuous derivative; it is important to
sample the curve in a sufficient dense way. A heart shaped mathematical
function taken from the internet 8 is the following

x(t) = sin3(t)

y(t) = 13 cos(t)− 5 cos(2t)− 2 cos(3t)− cos(4t)
16

Figure 13 displays the graph, and its code, and, most important, the L3
definition of the parametric equations. Compared to the previous equations
we applied a scale factor and added the final term (2.4) in order to shift a
little bit the drawing so as to vertically center it .

8http://mathworld.wolfram.com/HeartCurve.html reports several formulas, includ-
ing the cardioid, but the one we use here is a different function

23

\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\Curve(2.5,0)<0.1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>

\end{picture}

\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\color{orange}\relax
\Curve*(2.5,0)<0.1,1>(5,3.5)<0,1>%
(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>
\end{picture}

Figure 9: A stroked and a filled heart shaped contour

24

\unitlength=0.01\linewidth
\begin{picture}(100,100)
\GraphGrid(100,100)
\multiput(0,0)(10,10){11}{\circle*{2}}
\color{blue!70!white}
\multiput(0,0)(10,0){11}{%
\RegPolygon*{2}{3}<\color{blue!70!white}>}%

[\GetCoord(\R)\X\Y
\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{(\X/10)**2}}
\CopyVect\X,\Y to\R]

\multiput(0,0)(10,1){11}{%
\RegPolygon{2}{4}<\color{magenta}>}%

[\GetCoord(\R)\X\Y
\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{sind(\X*1.8)*100}}
\CopyVect\X,\Y to\R]

\multiput(50,50)(-15:5){11}{%
\RegPolygon*{2}{4}[45]<\color{green!60!black}>}
\end{picture}

Figure 10: Some examples of the 〈handler〉 optional argument

\unitlength=0.0095\linewidth
\begin{picture}(100,100)
\GraphGrid(100,100)
\put(50,50){\thicklines\circle{100}}
\xmultiput[50,50](60:35)(-30:1){12}%

{\makebox(0,0){\circle*{2}}}%
[\MultVect\R by\D to\R]%

\xmultiput[50,50](60:40)(-30:1){12}%
{\ArgOfVect\R to\Ang

\rotatebox{\fpeval{\Ang-90}}%
{\makebox(0,0)[b]{%

\Roman{multicnt}}}}%
[\Multvect{\R}{\D}\R]

\thicklines\put(50,50){\circle*{4}}
\put(50,50){\Vector(37.5:30)}
\put(50,50){\Vector(180:33)}
\end{picture}

I

II
III

IV

V
VIVII

VI
II

IX
X

XI
XII

Figure 11: Usage example of the \xmultiput command

7.7 Intersections involving circles

Determining the intersection of two circles is difficult; algebraically it re-
quires the solution of second degree equations whose coefficients are sort of
complicated expressions of the centers and radii; furthermore such equations
might not have real roots. The problems are much simpler even geometri-
cally when one circle is intersected by a line, and when two circles share
a common point. In the first case there are two intersections, possibly co-
incident, if the centers distance is shorter than the sum of their radii; in
the second case its easy to determine the chord common to both circles and

25

%
\unitlength=0.008\linewidth
\begin{picture}(100,100)
\GraphGrid(100,100)
\VECTOR(0,0)(100,0)\Pbox(100,0)[tr]{x}[0]
\VECTOR(0,0)(0,100)\Pbox(0,100)[tr]{y}[0]
\Pbox(0,0)[r]{O}[3pt]
\thicklines
\moveto(10,100)\countdef\I=2560 \I=11
\xmultiput(0,0)(1,0){101}%

{\lineto(\I,\fpeval{1000/\I})}%
[\advance\I by1 \value{multicnt}=\I]

\strokepath
\end{picture} x

y

O

Figure 12: An equilateral hyperbola drawn with a thinly sampled piecewise
continuous line

% Parametric equations of the "heart"
\providecommand\heart[3]{%
\edef\X{\fpeval{#1*16*(sind(#2)^3)}}
\edef\Y{\fpeval{#1*(13*cosd(#2) - 5*cosd(2*#2)

- 2*cosd(3*#2) -cosd(4*#2)+2.4)}}
\CopyVect\X,\Y to#3}
%
% Drawing
\unitlength=0,005\linewidth
\begin{picture}(200,200)(-100,-100)
\GraphGrid(-100,-100)(200,200)
\VECTOR(-100,0)(100,0)\Pbox(100,0)[tr]{x}[0]
\VECTOR(0,-100)(0,100)\Pbox(0,100)[tl]{y}[0]
\Pbox(0,0)[tr]{O}\linethickness{1pt}\bgroup
\edef\scala{\fpeval{100/16}}
\countdef\I=2560 \I=0\roundjoin
\fpdowhile{\I !>360}{\heart\scala\I\Punto
\ifnum\I=0 \moveto(\Punto)\else \lineto(\Punto)\fi
\advance\I by 3}\strokepath\egroup
\end{picture}

x

y

O

Figure 13: A heart shaped mathematical function drawn with a thinly sam-
pled piecewise continuous line

26

\unitlength =0.007\linewidth
\begin{picture}(100,100)
\AutoGrid
\IntersectionsOfLine(100,50)(0,20)%

WithCircle(40,40){30}to\Puno and\Pdue
\Pbox(\Puno)[tl]{P_1}[2]
\Pbox(\Pdue)[t]{P_2}[2]
\Dotline(\C)(\Pt){2}[1.5]
\Dotline(\C)(\Pq){2}[1.5]
\Pbox(\Int)[t]{M}[2]
\Dotline(\C)(\Int){2}[1.5]
%
\IntersectionsOfLine(0,70)(100,70)%

WithCircle(40,40){30}to\Ptre and\Pquat
\Pbox(\Ptre)[bl]{P_3}[2]
\Pbox(\Pquat)[br]{P_4}[2]
\IntersectionsOfLine(0,40)(100,100)%

WithCircle(40,40){30}to\Pcin and\Psei
\Pbox(\Pcin)[br]{P_5}[2]
\Pbox(\Psei)[t]{P_6}[2]
\end{picture}

C
P1

P2
M

C

P3P4

C
P5

P6

Figure 14: Intersection of a circle with several lines

the problem of finding the second intersection becomes that of finding the
second end point of the chord.

Figure 14 shows the simple geometrical construction that leads to the
determination of the intersections; one of the lines is tangent to the circle
and the intersection points P3 and P4 coincide.

Figure 15 shows the geometrical construction to determine the second
intersection point P2 of two circles that already have a first common point
P1. The common chord and the segment joining the centers are not shown,
but the code, although with “strange” point names, shows all the steps
necessary to find the second intersection point

The following macro allows to determine both intersections, if they exist,
of two generic circles; of corse the maro is a little more complicated than
the above macro need to find the second intersection when one is already
known. Even the reasoning behind the macro is quite different and slightly
“creative”.

In facts the reasoning is to avoid any or most analytical computations;
analytically it would be quite simple to set up a system of two second degree
polynomial equations; after processing such a system it is necessary to solve
a second degree equation, but in order to control if there are intersections it
should be necessary to discuss the value and sign of the discriminant; it is
nothing special when doing all this by hand, but it involves a complicated
code in terms of the LATEX language. It is much simpler to reason geomet-
rically; imagine to draw two circles; let a be the distance of their centers,

27

\unitlength 0.007\linewidth
\begin{picture}(100,100)
\AutoGrid
\edef\PCCuno{30,40}
\edef\PCCdue{70,60}
\edef\PCCzero{40,55}
\Pbox(\PCCuno)[t]{C_1}[2]
\Pbox(\PCCdue)[t]{C_2}[2]
\Pbox(\PCCzero)[l]{P_1}[2.5]
\CircleThrough\PCCzero WithCenter\PCCuno
\CircleThrough\PCCzero WithCenter\PCCdue
\Segment(\PCCuno)(\PCCdue)%

SymmetricPointOf\PCCzero to\PCCquat
\Pbox(\PCCquat)[l]{P_2}[2.5]
\end{picture}

C1

C2P1

P2

Figure 15: Second intersection point P2 of two circles sharing a first inter-
section point P1

and let R1 and R2 be their radii. Then if

|R1 −R2| ≤ a ≤ R1 +R2

the intersections do exist, even if it is possible that the circles are tangent
to one another and the two intersection points become a (double) one; this
takes place when either ‘equals’ sign applies. I f the left boundary is not
satisfied the centers are too close one another and the internal circle is too
small compared to the external one. On the opposite if the upper bound is
not satisfied the second circle is outside the first one and too far away.

The macro controls the above range, and if the the input data do not
satisfy the range boundaries, there are no intersections: a warning message
is issued, but computations go on with non sense values for both output
coordinates; may be other errors or produced, but in any case the successive
drawing lines will not be acceptable; a good sign to the user who may have
not noticed the warning message in his/her console, but is immediately
“forced” to consult this manual and find out this explanation; s/he will then
review his/her code in oder to change the drawing data.

If the data cope with the above range, the computations go on along
this simple reasoning, that it drawn in the left part of figure 16. There you
see the segment that joins the two centers, and the intersection points to be
found. They are the end points of the chord common to both circles; using
as vertices the two centers and such chord as the base, two isosceles triangles
are formed; the segment joining the centers bisects both triangles forming
four right triangles where the hypotenuse is formed by the pertinent radius,
and one leg is half the chord; with reference to the right triangles IC1P1
and IC2P1, Pithagoras’ theorem lets us determine the relation between the
common leg IP1 and the other triangle sides; this s the small analytical
computation we have to execute, so as to compute the distance c from the

28

center C1 and the common leg length h. These two values are sufficient,
together with the direction of segment C1C2 to find the intersection points
coordinates.

The syntax il the following

\TwoCirclesIntersections(〈C1 〉)(〈C2 〉)withradii{〈R1 〉} and{〈R2 〉}
to〈P1 〉 and〈P2 〉

Th symbols are self explanatory; as usual, input data (those entered before
the keyword to) may be control sequences defined with the necessary data,
or explicit data; on the opposite the output ones must be control sequences.

x

y

C1

C2

P1

P2

R1

R2
I x

y

C1

C2

P1

P2

R1

R2

Figure 16: Intersections of two generic circles

The code for drawing figure 16 is the following.

\begin{minipage}{0.475\linewidth}
\unitlength0.01\linewidth
\begin{picture}(100,100)(-50,-50)
\AutoGrid
\VECTOR(-50,0)(50,0) \Pbox(50,0)[tr]{x}[0]
\VECTOR(0,-50)(0,50) \Pbox(0,50)[l]{y}[0]
\edef\Kuno{-10,-10}\edef\RKuno{30}%
\edef\Kdue{20,10}\edef\RKdue{20}
\thicklines
\Circlewithcenter\Kuno radius\RKuno
\Circlewithcenter\Kdue radius\RKdue
\thinlines
\TwoCirclesIntersections(\Kuno)(\Kdue)withradii\RKuno

and\RKdue to\Puno and\Pdue
\Pbox(\Kuno)[br]{C_1}[4] \Pbox(\Kdue)[bl]{C_2}[4]
\Pbox(\Puno)[tl]{P_1}[4] \Pbox(\Pdue)[bc]{P_2}[4]

29

\put(\Kuno){\Vector(-45:\RKuno)}\Pbox(5,-27)[bl]{R_1}[0]
\put(\Kdue){\Vector(-45:\RKdue)}\Pbox(25, 3)[bl]{R_2}[0]

\Pbox(\CI)[t]{I}[4]
%
\segment(\Kuno)(\Kdue)\segment(\Puno)(\Pdue)
\segment(\Kuno)(\Pdue)\segment(\Kdue)(\Pdue)
\segment(\Kuno)(\Puno)\segment(\Puno)(\Kdue)
\end{picture}
\end{minipage}
\hfill
\begin{minipage}{0.475\linewidth}
\unitlength0.01\linewidth
\begin{picture}(100,100)(-50,-50)
\AutoGrid
\VECTOR(-50,0)(50,0) \Pbox(50,0)[tr]{x}[0]
\VECTOR(0,-50)(0,50) \Pbox(0,50)[l]{y}[0]
\edef\Kuno{-10,-10}\edef\RKuno{30}%
\edef\Kdue{20,10}\edef\RKdue{20}
\thicklines
\Circlewithcenter\Kuno radius\RKuno
\Circlewithcenter\Kdue radius\RKdue
\thinlines
\TwoCirclesIntersections(\Kuno)(\Kdue)withradii\RKuno

and\RKdue to\Puno and\Pdue
\Pbox(\Kuno)[b]{C_1}[4] \Pbox(\Kdue)[b]{C_2}[4]
\Pbox(\Puno)[tl]{P_1}[4] \Pbox(\Pdue)[b]{P_2}[4]
\put(\Kuno){\Vector(-45:\RKuno)}\Pbox(5,-27)[bl]{R_1}[0]
\put(\Kdue){\Vector(-45:\RKdue)}\Pbox(25,3)[bl]{R_2}[0]
\end{picture}
\end{minipage}

7.8 Triangles and their special lines

Triangles have special lines; they are the median, the height, and the bisec-
tor lines. They join each vertex with a specific point of the apposite side,
respectively with the middle point, the intersection with the side perpendic-
ular line, and the intersection with the bisector line. Figure 17 displays the
construction of the three special lines relative to a specific vertex. Thanks to
the macros described earlier in this list, this drawing is particularly simple;
most of the code is dedicated to labelling the various points and to assign
coordinate values to the macros that are going to be use in a symbolic way.
The generic triangle (not a regular polygon) requires one line of code, and
the determination of the intersections of the lines with the suitable triangle
side, and their tracing requires two code lines each.

30

\unitlength=0.008\linewidth
\begin{picture}(100,100)(0,-10)
\GraphGrid(0,-10)(100,100)
\def\Puno{0,0} \def\Pdue{0,80} \def\Ptre{100,60}
{\thicklines\polygon(\Puno)(\Pdue)(\Ptre)}%
\Pbox(\Puno)[tc]{P_1}[1]

\Pbox(\Pdue)[bc]{P_2}[1]\Pbox(\Ptre)[bc]{P_3}[1]
% Median
\TriangleMedianBase\Puno on \Pdue and \Ptre to\M
\Pbox(\M)[bc]{M}[1.5]\segment(\Puno)(\M)

% Height
\TriangleHeightBase\Puno on \Pdue and\Ptre to\H
\Dotline(\Puno)(\H){2}[1.5]\Pbox(\H)[bc]{H}[1.5]

% Bisector
\TriangleBisectorBase\Puno on\Pdue and\Ptre to\B
\Dashline(\Puno)(\B){3}\Pbox(\B)[b]{B}[1.5]

\end{picture} P1

P2

P3

M
H B

Figure 17: A triangle with the median, the height, and the bisector lines
from a specific vertex

7.9 Special triangle centers

Each triplet of a triangle special lines of the same kind intersect each other
in a special point; the median lines intersect in the barycenter, the height
lines in the orthocenter, the bisectors lines in the incenter ; these centers
may be those of special circles: Figures 18 to 21; the incircle, centred in the
incenter, has a special name, because it has the property of being tangent to
all the three triangle sides; there is also the circumcircle that passes through
the three vertices, its center is the intersection of the three side axes. There
is also the nine point circle. Figures 18, 19, 20, and 21 display the necessary
constructions and, possibly, also the special circles they are centers of.

\unitlength=0.008\linewidth
\begin{picture}(100,100)(0,-10)
\GraphGrid(0,-10)(100,100)
\def\Puno{0,0}\def\Pdue{0,80}\def\Ptre{100,60}
{\linethickness{0.6pt}\polygon(\Puno)(\Pdue)(\Ptre)}%
\Pbox(\Puno)[tl]{P_1}[1.5]%
\Pbox(\Pdue)[bl]{P_2}[1.5]\Pbox(\Ptre)[bc]{P_3}[1.5]
\TriangleMedianBase\Puno on\Pdue and \Ptre to\Mu
\TriangleMedianBase\Pdue on\Ptre and \Puno to\Md
\TriangleMedianBase\Ptre on\Puno and \Pdue to\Mt

\Dotline(\Puno)(\Mu){3}[1.5]
\Dotline(\Pdue)(\Md){3}[1.5]
\Dotline(\Ptre)(\Mt){3}[1.5]
\IntersectionOfSegments(\Puno)(\Mu)and(\Pdue)(\Md)to\C
\Pbox(\C)[t]{B}[2]
\end{picture}

P1

P2

P3

B

Figure 18: Determination of the barycenter

Although these examples require some new simple macros, described in
the previous sections; some more more examples can be made that require
more complex macros. Even these macros are just examples. For other

31

\unitlength=0.008\linewidth
\begin{picture}(100,100)(0,-10)
\GraphGrid(0,-10)(100,100)
\def\Puno{0,0}\def\Pdue{0,80}\def\Ptre{100,60}
{\linethickness{0.6pt}\polygon(\Puno)(\Pdue)(\Ptre)}%
\Pbox(\Puno)[tl]{P_1}[1.5]%
\Pbox(\Pdue)[bl]{P_2}[1.5]\Pbox(\Ptre)[bc]{P_3}[1.5]
\TriangleHeightBase\Puno on\Pdue and \Ptre to\Hu
\TriangleHeightBase\Pdue on\Ptre and \Puno to\Hd
\TriangleHeightBase\Ptre on\Puno and \Pdue to\Ht

\Dotline(\Puno)(\Hu){3}[1.5]
\Dotline(\Pdue)(\Hd){3}[1.5]
\Dotline(\Ptre)(\Ht){3}[1.5]
\IntersectionOfSegments(\Puno)(\Hu)and(\Pdue)(\Hd)to\C
\Pbox(\C)[t]{H}[2]
\end{picture}

P1

P2

P3
H

Figure 19: Determination of the orthocenter

\unitlength=0.008\linewidth
\begin{picture}(100,100)(0,-10)
\GraphGrid(0,-10)(100,100)
\def\Puno{0,0}\def\Pdue{0,80}\def\Ptre{100,60}
{\linethickness{0.6pt}%

\polygon(\Puno)(\Pdue)(\Ptre)}%
\Pbox(\Puno)[tl]{P_1}[1.5]%
\Pbox(\Pdue)[bl]{P_2}[1.5]
\Pbox(\Ptre)[bc]{P_3}[1.5]
\TriangleBisectorBase\Puno on\Pdue and \Ptre to\Iu
\TriangleBisectorBase\Pdue on\Ptre and \Puno to\Id
\TriangleBisectorBase\Ptre on\Puno and \Pdue to\It

\Dotline(\Puno)(\Iu){3}[1.5]
\Dotline(\Pdue)(\Id){3}[1.5]
\Dotline(\Ptre)(\It){3}[1.5]
\IntersectionOfSegments(\Puno)(\Iu)%

and(\Pdue)(\Id)to\C
\Pbox(\C)[t]{I}[2]
\DistanceOfPoint\C from(\Puno)(\Pdue)to\R
\Circlewithcenter\C radius\R
\end{picture}

P1

P2

P3

I

Figure 20: Determination of the incenter and of the incircle

applications it is probably necessary to add even more macros.
Let us proceed with the construction of the Steiner ellipse: given a trian-

gle, there exists only one ellipse that is internally tangent to the side middle
points.

The geometrical construction goes on this way; suppose you have to draw
the Steiner ellipse of triangle T ; finding the side middle points has already
been shown, but the process to build the ellipse is still to be found. So
let us chose a side to work as the base of triangle T , and perform an affine
shear transformation parallel to the base so as to move the vertex of triangle
T , opposite to the base, to the base axis, we get another triangle T1 that
is isosceles; if it is not yet so, let us make another compression/expansion
affine transformation, so as to get an equilateral triangle T2; this last triangle
is particularly simple to handle, because its Steiner ellipse reduces to its
incircle. If we apply in reverse order the above transformations we get the
Steiner ellipse we were looking for. The only difficult part is the affine shear
transformation.

32

\unitlength=0.01\linewidth
\begin{picture}(100,110)
\GraphGrid(100,110)
\CopyVect20,10to\Pu \Pbox(\Pu)[t]{P_1}
\CopyVect10,90to\Pd \Pbox(\Pd)[br]{P_2}
\CopyVect100,70to\Pt \Pbox(\Pt)[l]{P_3}
{\linethickness{0.6pt}\polygon(\Pu)(\Pd)(\Pt)}%
\AxisOf\Pd and\Pu to\Mu\Du
\AxisOf\Pu and\Pt to\Md\Dd
\AxisOf\Pt and\Pd to\Mt\Dt
\IntersectionOfLines(\Mu)(\Du)and(\Md)(\Dd)to\C
\AddVect\Mu and\Du to\Du\Dotline(\Mu)(\Du){3}[2]
\AddVect\Md and\Dd to\Dd\Dotline(\Md)(\Dd){3}[2]
\AddVect\Mt and\Dt to\Dt\Dotline(\Mt)(\Dt){3}[2]
\Pbox(\C)[t]{C}[2.5]
\ThreePointCircle*(\Pu)(\Pd)(\Pt)
\end{picture}

P1

P2

P3

C

Figure 21: Determination of the circumcenter and of the circumcircle

The L3 functions we already created take care of all such transforma-
tions, but with an optional asterisk we can draw the intermediate passages
where triangles T2 and T1 have their base shifted and rotated to be horizon-
tal, so that some translations and rotations are also necessary. Figure 22
displays the final result and the code necessary to build it.

\unitlength=0.01\linewidth
\begin{picture}(100,110)
\GraphGrid(100,110)%
\SteinerEllipse(10,10)(90,20)(60,105)[2]
\end{picture}

P1
P2

P3

Figure 22: The Steiner ellipse of a given triangle

With just the addition of an asterisk we can draw the whole geometrical
construction; see figure 23

33

\unitlength=0.01\linewidth
\begin{picture}(100,110)(0,-10)
\GraphGrid(0,-10)(100,110)%
\SteinerEllipse*(10,10)(90,20)(60,105)[2]
\end{picture}

P1 P2

P3

H

C

V

Ce

B

Ci

α

Figure 23: The construction of the Steiner ellipse of a given triangle

7.10 The tangent to an ellipse

Ellipses have mani interesting properties. One that I was not able to find
anywhere in the documentation I examined (of course not the totality of
available on ellipses, except an on-line document written in Portuguese by
Sergio Alvez, https://docplayer.com.br/345411-Elipses-inscritas-num-triangulo.
html, is the director circumference, literal translation of the Portuguese def-
inition circunfência diretriz.

Consider an ellipse with its foci F en F ′, and a generic point P on its
contour. Trace a segment from F P and another segment for P F ′; these
segments measure the distanced from point P to each focus: their sum is
the length of the main ellipse axis 2a, being a the semi axis. Now lengthen
the segment P F ′ to point S by the length of F P ; the length of S F ′ is
therefore equal to 2a; now trace the circumference with center in F ′ and
radius 2a; this is the director circumference, that is labelled with Γ.

By construction, then, the circle γ centred in F and radius equal to F P
is tangent to Γ in S and passes through F . This allows to say that:

• the ellipse is the locus of the centres of all circles passing through focus
F and internally tangent to the circle Γ centred in the other focus F ′
and with radius 2a;

• the axis of segment S F is tangent to the ellipse;
• the tangency point is the point P ;
• since this axis passes through the midpoint M of segment S F and it

is perpendicular to it, the segment M P has the same direction of the
tangent to the ellipse;

• notice that points S and F are symmetrical with respect to the tangent

34

\unitlength=0.005\linewidth
\begin{picture}(170,160)(-60,-80)
\GraphGrid(-60,-80)(170,160)
\VECTOR(0,-80)(0,80)\Pbox(0,80)[r]{y}[0]
\VECTOR(-60,0)(110,0)\Pbox(110,0)[t]{x}[0]
\edef\A{40}\edef\B{30}\Xellisse{\A}{\B}[\thicklines]
\edef\X{\fpeval{\A*cosd(120)}}\edef\Y{\fpeval{\B*sind(120)}}
\edef\P{\X,\Y}\Pbox(\P)[b]{P}[3]
\edef\C{\fpeval{sqrt(\A**2-\B**2)}}% Inter focal semi distance
\CopyVect-\C,0 to\F \CopyVect\C,0 to\Fp\Pbox(\Fp)[t]{F’}[3]
\Pbox(\F)[t]{F}[3]\Pbox(0,0)[tr]{O}[3]
\edef\Raggio{\fpeval{2*\A}}\Circlewithcenter\Fp radius\Raggio
\SegmentLength(\P)(\F)to\raggio\Circlewithcenter\P radius\raggio
\SegmentArg(\Fp)(\P)to\Arg\AddVect\Fp and\Arg:\Raggio to\S
\segment(\Fp)(\S)\Pbox(\S)[br]{S}[3]
\segment(\F)(\S)\SegmentCenter(\F)(\S)to\M
\Pbox(\M)[r]{M}[3]\SegmentArg(\F)(\S)to\Arg
\edef\Arg{\fpeval{\Arg-90}}\AddVect\M and \Arg:50 to\D\segment(\M)(\D)
\end{picture}

y

x

P

F′F O

S

M

Figure 24: The director circumference

in point P .

Such properties can be viewed and controlled in figure 24.
Of course the geometrical construction of figure 24 can be used also in

reverse order; for example it may be given a line to play the role of the

35

\unitlength=0.0065\linewidth
\begin{picture}(150,150)(-30,-20)
\GraphGrid(-30,-20)(150,150)
\EllipseWithFocus%

(10,40)(110,10)(0,110)(20,60)
\end{picture} P1

P2

P3

F

F′
C

x

y

O

Figure 25: An ellipse internally tangent to a triangle, given a focus

tangent, a point on this line to play the role of tangency, and a point not
belonging to the line to play the role of a focus, then it is possible to find the
other focus laying on a horizontal line passing through the given focus. It
suffices to find the symmetrical point of the first focus with respect with the
given line, and to draw a line passing through this symmetrical point and
the point of tangency that intersects the horizontal line through the first
focus, concluding that this is the second focus and that the ellipse major
axis length is that of the segment joining this second focus with the above
mentioned symmetrical point.

7.11 A triangle internally tangent ellipse given one of its foci

It is possible to draw an ellipse that is internally tangent to a triangle if one
of its foci is specified; without this specification the problem is not definite,
and the number o such ellipses is countless. But with the focus specification,
just one ellipse exists with that tangency constraint. It suffices to find the
other focus and at least one point of tangency, because the focal distance
and the sum of distances of that tangency point from the foci, is sufficient
to determine all the parameters required to draw the ellipse.

As seen in the previous subsection 7.10, it is sufficient to find the threes
symmetrical point of The given focus with respect to to the three sides, i.e.
the three lines that pass through the triangle vertices; and the constructions
gives simultaneously the major axis length and the three tangency points,
therefore all the elements required to draw the ellipse. to draw

The geometrical construction with help of what has been explained in
subsection ?? is easy; the steps to follow, therefore are the following:

36

\unitlength0.0065\linewidth
\begin{picture}(150,150)(-30,-20)
\GraphGrid(-30,-20)(150,150)
\EllipseWithFocus*%

(10,40)(110,10)(0,110)(20,60)
\end{picture} P1

P2

P3

FM3

M2

M1

S1

S2

S3
F′

T1

T2
T3

C

x

y

O

Figure 26: Construction of the ellipse of figure 25

• draw the triangle and the given focus F;
• Find the symmetrical points Si of this focus with respect to the sides

of the triangle;
• use these three points Si as the vertices of a triangle with which to draw

its circumcircle that turns to be the director circumference; actually
only its center is of interest, because it represents the second focus F′;
the inter focal distance 2c; is just le length of vector F ′ − F ;

• join with segments each symmetrical point Si with the second focus F′
and find their intersections Ti with the triangle sides; they represent
the tangency points of the ellipse to be drawn;

• the radius of the director circumference is the ellipse major axix;
• equation (2) allows to find the second axis length; the segment that

joins the foci has the required inclination of the main axis; its middle
point is the ellipse center; therefore all necessary pieces of information
to draw the ellipse are known.

Figures 25 and 26 display the construction steps and the final result.

8 Conclusion
We have shown that the picture environment, extended with this package
euclideangeometry (that takes care of loading curve2e and pict2e) can make
important diagrams that certainly were not foreseen by Leslie Lamport when
he first wrote the code for the initial picture environment.

The reader can easily understand that this package is far from being
exhaustive for all geometrical problems to be solved with ruler and com-

37

pass; it shows a way to add more commands to approach further problems;
if any author, who creates new commands, would like to contribute more
macros to this package, I will be happy to integrate his/her contribution to
a new version of this package; depending on the contribution, I would be
very happy to add its author name to this package author list; for simpler
contributions each contributor will be duly acknowledged.

Creating new macros to solve more problems is pleasant; the more diffi-
cult the problem, the greater the satisfaction in solving it.

Have fun with LATEX and its potential applications!

38

