
The derivative package

Written by:
Simon Jensen

sjelatex@gmail.com

Released:
v0.95

2019-09-18

The derivative package provides a set of commands which makes writing
ordinary and partial derivatives of arbitrary order in a straight forward
manner. Additionally, this package provides a set of commands to define
variants of the aforementioned derivatives. A set of optional arguments
along with lots of package options allow for easy and great flexibility over
the derivative’s format, such as where the function is positioned, point of
evaluation, and switching between fraction styles. Moreover, the mixed
order of the partial derivative and variants hereof is automatically computed.
This package is written in the expl3 language and requires therefore the
LATEX3 package bundles l3kernel and l3package. Additionally, the mleftright
package is optional and provides the improved automatically scaling \mleft
and \mright.

NB: This is a beta version and some elements are subject to change.

Contents
1 Introduction 3

2 Ordinary derivative 4
2.1 Variants . 6

3 Partial derivative 8
3.1 Variants . 10

4 Package options 11
4.1 Categories . 11
4.2 Ordinary derivative . 12
4.3 Partial derivative . 16
4.4 All derivatives . 21

5 Defining variants 23
5.1 Variants of the ordinary derivative . 23
5.2 Variants of the partial derivative . 23

6 The mixed order 25
6.1 Sorting algorithms . 25

6.1.1 Examples . 25
6.2 The numerical term . 27
6.3 Reversing the sort algorithm . 27

7 Miscellaneous 28
7.1 Slashfrac . 28

8 To do 29
8.1 Future implementation . 29
8.2 Future changes . 29
8.3 Future considerations . 29

Index 31
Index of Options . 31
Index of Commands . 31

Change history 33

2

1 Introduction
This is a beta version meaning that some elements might be changed in the official
release. Using this package in its current state is therefore on your own risk. An
update will be made before the official release explaining what will be changed and
what impact this might cause.

This package started as a personnel package a few years ago that I used in various
projects. Firstly, it was written in TEXand LATEX, which gave rise to various errors as
the complexity of the package grew larger and ended up as a spaghetti code. Therefore,
the code was rewritten into the LATEX3 language and may now be easily maintained.
Originally this package was written because there did not exist any great package for
derivatives. It was first much later that I discovered the diffcoeff package, which does
a good job. However, at this time, I had already written much of the code with no
documentation. I decided to write one and make it into a package for the public.

As a note on terminology, I use the wording infinitesimal and abbreviated as inf
for the operator symbol 𝑑, 𝜕, 𝛿 etc. used in various derivatives like d𝑦

d𝑥 , 𝜕𝑦
𝜕𝑥 , 𝛿𝑦

𝛿𝑥 etc.
Moreover I explicitly use differential d for 𝑑 and partial for 𝜕. In the description of
macros and options, I often write cs-⟨placeholder⟩ to denote a comma-separated list of
⟨placeholder⟩. For example, [⟨cs-orders⟩] is used in the partial derivative’s description
to denote the order differentiation and is read as a comma-separated list of orders. It
should also be noted that whenever an argument reads ⟨key=value⟩, it means that it is
a comma-separated list of key-value pairs.

3

2 Ordinary derivative
*[⟨order⟩]{⟨function⟩}/{⟨variable⟩}_{⟨point1⟩}^{⟨point2⟩}\odv

The ordinary derivative \odv is defined with a set of mandatory and optional arguments
that either typeset specific parts or changing the style of the derivative. In this package,
the ordinary derivative is defined with an upright lowercase d, because it is used by
many nowadays books, as

\DeclareOdvVariant{\odv}{d}[style-inf=\mathrm] pdfTEX
XƎTEX, LuaTEX\DeclareOdvVariant{\odv}{d}[style-inf=\symup]

The first argument of \odv is an optional star that determines where the function is*
typeset; either in the numerator of the fraction or next to the fraction. Using the option
switch-*=false, the function is typeset in the numerator when the star is absent, and
next to the fraction when the star is present as shown below

\odv{y}{x} ⟹ d𝑦
d𝑥

\odv*{y}{x} ⟹ d
d𝑥

𝑦

The effect of the star’s presence can be switched around using switch-*=true i.e. the
equations in the above example are exchanged, as described in section 4.2.
The second argument is optional and is written inside square brackets. This argument[⟨order⟩]
is used to set the order of differentiation as seen below

\odv[2]{y}{x} ⟹ d2𝑦
d𝑥2

\odv[n]{y}{x} ⟹ d𝑛𝑦
d𝑥𝑛

\odv[n+2]{y}{x} ⟹ d𝑛+2𝑦
d𝑥𝑛+2

The order may be a number, a symbol and a combination hereof, because it is simply
typeset there. This is different from how the partial derivative’s mixed order is typeset,
which is computed. The order is not automatically sorted as the mixed order for the
partial derivative. This argument is subject to change, see consideration 8.3(i) for more
information.
This is the first mandatory argument that typeset the function that is to be differentiated{⟨function⟩}

\odv{f(x)}{x} ⟹ d𝑓(𝑥)
d𝑥

\odv{e^{\sin(x)}}{x} ⟹ d𝑒sin(𝑥)

d𝑥

The function is simply typeset in the numerator or next to the fraction.

4

The fourth argument is an optional slash written between the function and the variable/
and determines which fraction style the derivative is typeset with, as described in
section 4.2. Using the option switch-/=false and the package’s default settings, the
derivative is typeset with \frac when the slash is absent, and \slashfrac1 when the
slash is present, as shown below

\odv{y}{x} ⟹ d𝑦
d𝑥

\odv{y}/{x} ⟹ d𝑦/d𝑥

As for the star argument, the effect of the slash’s presence can be switched around using
switch-/=true i.e. the equations in the above example are exchanged, as described in
section 4.2.
This is the second and final mandatory argument, which purpose is to typeset the{⟨variable⟩}
variable in which the function is differentiated with respect to as shown below

\odv{f}{x} ⟹ d𝑓
d𝑥

\odv{f}{y} ⟹ d𝑓
d𝑦

The variable is always typeset in the denominator.
This is the last optional argument that specifies the point(s) of evaluation. It is an_{⟨point1⟩}^{⟨point2⟩}
e-type argument in the xparse language and given as e{_^}. This means that the
subscript _ and superscript ^ accepts an argument given in braces. Moreover, the order
of _ and ^ is independent as shown below

\odv{y}{x}_{x_1} ⟹ d𝑦
d𝑥

∣
𝑥1

\odv{y}{x}^{x_2} ⟹ d𝑦
d𝑥

∣
𝑥2

\odv{y}{x}_{x_1}^{x_2} ⟹ d𝑦
d𝑥

∣
𝑥2

𝑥1

\odv{y}{x}^{x_2}_{x_1} ⟹ d𝑦
d𝑥

∣
𝑥2

𝑥1

The common way to specify the point of evaluation is using the subscript argument.
If needed, the second point of evaluation can be specified with the superscript argument.

1which is a macro defined by the package, see section 7.1 for more information.

5

2.1 Variants
This package offers four variants of the ordinary derivative: Material derivative \mdv,
functional derivative \fdv, the average rate of change \adv and the Jacobian \jdv. A
unique feature of this package, is that you can define your own variants of the ordinary
derivative as described in section 5.1.
*[⟨order⟩]{⟨function⟩}/{⟨variable⟩}_{⟨point1⟩}^{⟨point2⟩}\mdv

The material derivative is used in some branches of physics (e.g. thermodynamic, fluid
dynamic etc.). It is only natural for a physics student as me to define such a variant,
that used an upright uppercase D. In this package, the material derivative is defined as

\DeclareOdvVariant{\mdv}{D}[style-inf=\mathrm] pdfTEX
XƎTEX, LuaTEX\DeclareOdvVariant{\mdv}{D}[style-inf=\symup]

In physics, the material derivative is defined by

D𝜑(𝐫, 𝑡)
D𝑡

≔ 𝜕𝜑(𝐫, 𝑡)
𝜕𝑡

+ ̇𝐫 ⋅ ∇𝜑(𝐫, 𝑡)

*[⟨order⟩]{⟨function⟩}/{⟨variable⟩}_{⟨point1⟩}^{⟨point2⟩}\fdv

The functional derivative is used in the calculus of variation and uses a lowercase delta.
With the package’s default settings, it will use an italic delta. In this package, the
functional derivative is defined as

\DeclareOdvVariant{\fdv}{\delta} pdfTEX, XƎTEX, LuaTEX

In physics, it is for example used in the Lagrange equation or in the derivation of the
Hartree-Fock equation

𝛿𝐼
𝛿𝑞𝛼

= 𝜕𝐿
𝜕𝑞𝛼

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝛼

= 0, 𝛿ℒ
𝛿𝜓∗

𝑛
= ̂𝐹 |𝜓𝑛⟩ − 𝜖𝑛|𝜓𝑛⟩ = 0,

respectively.
*[⟨order⟩]{⟨function⟩}/{⟨variable⟩}_{⟨point1⟩}^{⟨point2⟩}\adv

The average rate of change is defined to use an upright uppercase delta with the
packages default settings. In this package, the average rate of change is defined as

\DeclareOdvVariant{\adv}{\Delta}[style-inf=\mathrm] pdfTEX
XƎTEX, LuaTEX\DeclareOdvVariant{\adv}{\Delta}

The average rate of change is used to determine the slope of a straight line

Δ𝑦
Δ𝑥

= 𝑦2 − 𝑦1
𝑥2 − 𝑥1

*[⟨order⟩]{⟨function⟩}/{⟨variable⟩}_{⟨point1⟩}^{⟨point2⟩}\jdv

The Jacobian is defined to use an italic partial differential with the package’s default
settings. Also a pair of parentheses is automatically inserted around the function and
variable. In this package, the Jacobian is defined as

6

\DeclareOdvVariant{\jdv}{\partial}[misc-add-delims={fun,var}] pdfTEX, XƎTEX, LuaTEX

which gives
𝜕(𝑓, 𝑔, ℎ)
𝜕(𝑥, 𝑦, 𝑧)

7

3 Partial derivative
*[⟨cs-orders⟩][⟨mixed order⟩]{⟨function⟩}/{⟨cs-variables⟩}_{⟨point1⟩}^{⟨point2⟩}\pdv

The partial derivative \pdv is defined with a set of mandatory and optional arguments
that either typeset specific parts or changing the style of the derivative. In this package,
the partial derivative is defined with an italic partial differential as

\DeclarePdvVariant{\pdv}{\partial}[sep-inf-ord=1, sep-ord-fun=-2] pdfTEX, XƎTEX, LuaTEX

The first argument of \pdv is an optional star that determines where the function is*
typeset; either in the numerator of the fraction or next to the fraction. Using the option
switch-*=false, the function is typeset in the numerator when the star is absent, and
next to the fraction when the star is present as shown below

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv*{f}{x,y} ⟹ 𝜕2

𝜕𝑥 𝜕𝑦
𝑓

The effect of the star’s presence can be switched around using switch-*=true i.e. the
equations in the above example are exchanged, as described in section 4.3.
The second argument is optional and is written inside square brackets. This argument[⟨cs-orders⟩]
is used to set the order of differentiation for each of the variables and should be given
in a comma-separated list e.g. [1,2,3] as shown below

\pdv[2,3]{f}{x,y} ⟹ 𝜕5𝑓
𝜕𝑥2 𝜕𝑦3

\pdv[\beta,a,n+2a]{f}{x,y,z} ⟹ 𝜕3𝑎+𝛽+𝑛𝑓
𝜕𝑥𝛽 𝜕𝑦𝑎 𝜕𝑧𝑛+2𝑎

\pdv[2,n^2,n^2-1]{f}{x,y,z} ⟹ 𝜕2𝑛2+1𝑓
𝜕𝑥2 𝜕𝑦𝑛2 𝜕𝑧𝑛2−1

The orders may consist numbers, symbols and a combination hereof. Notice, that
the mixed order is automatically calculated and sorted based on the variables orders
by the package. See sections 4.3 and 6 for more information. This argument is subject
to change, see consideration 8.3(i) for more information.
If you, unfortunately, come to the conclusion, that you are unsatisfied with how the[⟨mixed order⟩]
package typeset the mixed order or if it gives a wrong result, then you can overwrite
it with this argument. The use of this argument completely bypass the automatic
calculation and sorting done by the package, and simply typeset the mixed order as
you wrote it as shown below

\pdv[4n+2k, 3k+n]{ f(x,y) }{ x,y } ⟹ 𝜕5𝑛+5𝑘𝑓(𝑥, 𝑦)
𝜕𝑥4𝑛+2𝑘 𝜕𝑦3𝑘+𝑛

\pdv[4n+2k, 3k+n][5(n+k)]{ f(x,y) }{ x,y } ⟹ 𝜕5(𝑛+𝑘)𝑓(𝑥, 𝑦)
𝜕𝑥4𝑛+2𝑘 𝜕𝑦3𝑘+𝑛

8

This argument is also subject to change, see consideration 8.3(ii) for more information.
This is the first mandatory argument that typeset the function that is to be partially{⟨function⟩}
differentiated as shown below

\pdv{ f(x,y,z) }{ x, y, z } ⟹ 𝜕3𝑓(𝑥, 𝑦, 𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧

\pdv{ e^x \sin(y) \ln(z) }{ x, y, z } ⟹ 𝜕3𝑒𝑥 sin(𝑦) ln(𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧

The function is simply typeset in the numerator or next to the fraction.
The fifth argument is an optional slash written between the function and the variables/
and determines which fraction style the derivative is typeset with, as described in
section 4.3. Using the option switch-/=false and the package’s default settings, the
derivative is typeset with \frac when the slash is absent and \slashfrac1 when the
slash is present, as shown below

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv{f}/{x,y} ⟹ 𝜕2𝑓/𝜕𝑥 𝜕𝑦

As for the star argument, the effect of the slash’s presence can be switched around using
switch-/=true i.e. the equations in the above example are exchanged, as described in
section 4.3.
This is the second and final mandatory argument, which purpose is to typeset the{⟨cs-variables⟩}
variables in which the function is partially differentiated with respect to. The variables
are given in a comma-separated list e.g. {x, y, z}, as shown below

\pdv{f}{x} ⟹ 𝜕𝑓
𝜕𝑥

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

The variables are typeset in the denominator with a 𝜕 inserted to the left of them.
This is the last optional argument that specifies the point(s) of evaluation or variables_{⟨point1⟩}^{⟨point2⟩}
held constant. It is an e-type argument in the xparse language and given as e{_^}. This
means that the subscript _ and superscript ^ accepts an argument given in braces.
Moreover, the order of _ and ^ is independent as shown below

9

\pdv{f}{x,y}_{(x_1,y_1)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥1,𝑦1)

\pdv{f}{x,y}^{(x_2,y_2)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

\pdv{f}{x,y}_{(x_1,y_1)}^{(x_2,y_2)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

(𝑥1,𝑦1)

\pdv{f}{x,y}^{(x_2,y_2)}_{(x_1,y_1)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

(𝑥1,𝑦1)

The subscript argument is commonly used as the point of evaluation or variables
held constant. If needed, the superscript argument may be used for the second point of
evaluation.

3.1 Variants
This package does not define any variants of the partial derivative. However, a unique
feature of this package, is that you can define your own variants of the partial derivative
as described in section 5.2.

10

4 Package options
This package accepts its options using the well-known key=value syntax. The keys
are divided into categories, for which each key have its associated category as a prefix.
Each category and option is explained below.
{⟨derivative⟩}[⟨key=value⟩]\derivset

The package options can be set either in the preamble or in the document using the
\derivset command. The options may also be set when defining a new derivative.
Currently, there is no other way to set the options however this is subject to change,
see consideration 8.3(i) for more information.
A mandatory argument that determines which derivative the key=value pairs is assigned{⟨derivative⟩}
to, where the allowed ⟨main-category⟩ are the derivatives defined by the packages and
you, see sections 5.1 and 5.2. The special value all is also allowed, which gives access
to the options that applies to all derivatives.
This optional argument accepts its input as a comma-separated list of key=value[⟨key=value⟩]
pairs. Leaving out [⟨key=value⟩] sets the options to the packages default settings
for the chosen {⟨derivative⟩} e.g. \derivset{⟨*⟩}\odv sets the options for the ordinary
derivative to the packages default settings. This argument is subject to change, see
consideration 8.3(iii) for more information.

4.1 Categories
This section seeks to give a detailed description of each category.

• The style-⟨…⟩ keys sets either the font style or the fraction style of ⟨…⟩. The font
styles \mathnormal/\symnormal and \mathrm/\symup are commonly used in literat-
ure. The fraction style can be either \frac, \dfrac, \tfrac, \sfracR, \slashfrac1

and many more.

• The delims-⟨…⟩ keys sets the delimiters used around the ⟨…⟩. The Rule of Two
applies here: ‘Always two there are, no more, no less. A left and a right delimiter’.
The allowed delimiters are those that can be scaled with \left, \big etc.

• The scale-⟨…⟩ keys sets the size of the ⟨…⟩’s delimiters. The values big, Big,
bigg, and Bigg are self-explanatory and internally a left and right version are
used e.g. \bigl and \bigr. The value none inserts the delimiters (except periods)
unscaled. While the value auto scales the delimiters automatically using \left
and \right.

• The sep-⟨…⟩-⟨…⟩ keys inserts math space between ⟨…⟩ and ⟨…⟩ using \mskip. These
keys accepts a comma-separated list of numbers {x,y,z} that are internally used
to form the syntax x mu plus y mu minus z mu.

• The switch-⟨…⟩ keys serves to change an argument’s behaviour by swapping the
effect of an optional character’s presence.

11

• The sort-⟨…⟩ keys deals with the sorting algorithm behind the mixed order, where
you can choose the sorting method that suits you best. These keys are unique to
the partial derivative and variants of it.

• The mics-⟨…⟩ keys are miscellaneous keys that does not belong to any of the
above categories.

Note. A value with superscripted U, P and R refers to a unicode engine i.e. LuaTEX and
XƎTEX, pdfTEX and requires package, respectively. Additionally, some keys have two
versions; with and without -/ at the end. These keys are related to the slash argument.
If switch-/=false then the keys with and without -/ are used when the slash argument
is present and absent, respectively. Setting switch-/=true then these keys are used in
the opposite cases for the slash’s presence.

4.2 Ordinary derivative
The options in this subsection are available for the ordinary derivative \odv and variants
hereof that are defined by the package and you.

Style

⟨math-font-style⟩ \mathnormalP, \symnormalUstyle-inf

The font style of the infinitesimal for the chosen derivative is set by this key. The
default font style is \mathnormalP and \symnormalU. If an upright font is preferred then
\mathrmP and \symupU could be used, or if an italic font then \mathnormalP and \symitU.
⟨fraction⟩ \fracstyle-frac

The derivative uses the fraction set by this key whenever switch-/=false and the slash
argument is absent. The key’s default value is the usual fraction \frac.
⟨fraction⟩ \slashfracstyle-frac-/

The derivative uses the fraction set by this key whenever switch-/=false and the slash
argument is present. The key’s default value is a text-styled fraction \slashfrac1 i.e.
on the form d𝑦/d𝑥.

Scaling

auto, none, big, Big, bigg, Bigg autoscale-eval

This key sets the size of the delimiters used for the point of evaluation. This scaling
is used whenever switch-/=false and the slash argument is absent. The key’s default
value is set to scale the delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-eval-/

This key sets the size of the delimiters used for the point of evaluation. This scaling is
used whenever switch-/=false and the slash argument is present. The key’s default
value is set to scale the delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-fun

12

This key sets the size of the delimiters used around the function. The scaling is used
whenever misc-add-delims=fun is used. The key’s default value is set to scale the
delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-var

This key sets the size of the delimiters used around the variable. The scaling is used
whenever misc-add-delims=var is used. The key’s default value is set to scale the
delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-frac

This key sets the size of the delimiters used for around the fraction. This scaling is used
whenever switch-/=false, the slash argument is absent and misc-add-delims=frac is
used. The key’s default value is set to scale the delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-frac-/

This key sets the size of the delimiters used for around the fraction. This scaling is used
whenever switch-/=false, the slash argument is present and misc-add-delims=frac is
used. The key’s default value is set to scale the delimiters automatically.

Delimiters

⟨left delimiter⟩⟨right delimiter⟩ . \rvertdelims-eval

This key sets the left and right delimiters used to indicate the point of evaluation. These
delimiters are inserted whenever switch-/=false and the slash argument is absent. The
default left and right delimiters is a period2 and a vertical bar, respectively.
⟨left delimiter⟩⟨right delimiter⟩ . \rvertdelims-eval-/

This key sets the left and right delimiters used to indicate the point of evaluation. These
delimiters are inserted whenever switch-/=false and the slash argument is present.
The default left and right delimiters is a period2 and a vertical bar, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-fun

This key sets the left and right delimiters used to around the function and these
are inserted whenever misc-add-delims=fun is used. The key’s default left and right
delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-var

This key sets the left and right delimiters used to around the variable and these
are inserted whenever misc-add-delims=var is used. The key’s default left and right
delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac

This key sets the left and right delimiters used to around the fraction in the derivative
e.g. (d

d𝑥)𝑦 These delimiters are inserted whenever switch-/=false, the slash argument
is absent and misc-add-delims=frac is used. The key’s default left and right delimiters
are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac-/

2which doesn’t output anything.

13

This key sets the left and right delimiters used to around the fraction in the derivative
e.g. (d/d𝑥)𝑦 These delimiters are inserted whenever switch-/=false, the slash argument
is present and misc-add-delims=frac is used. The key’s default left and right delimiters
are a left and a right parenthesis, respectively.

Math spacing

The options in this subsection inserts extra horizontal math space. The below equation
illustrates where the space is inserted

d⟨inf-fun⟩𝑦
d⟨inf-var⟩𝑥

d⟨inf-ord⟩2⟨ord-fun⟩𝑦
d𝑥⟨var-ord⟩2

d𝑦
d𝑥

∣
⟨eval-sp⟩𝑥2

⟨eval-sb⟩𝑥1

,

where it has been split into three to give a better overview.
⟨cs-numbers⟩ 0sep-inf-ord

This key sets the math space that is inserted in the infinitesimal’s power left to the
order. It is only inserted when the order is different from 1. The key’s default value is
0 mu.
⟨cs-numbers⟩ 0sep-inf-fun

This key sets the math space that is inserted between the infinitesimal and the function
when the order is equal to 1. The space is only inserted when a non-blank function is
printed in the numerator. The key’s default value is 0 mu.
⟨cs-numbers⟩ 0sep-ord-fun

This key sets the math space that is inserted between the infinitesimal and the function
when the order is different from 1. The space is only inserted when a non-blank
function is printed in the numerator. The key’s default value is 0 mu.
⟨cs-numbers⟩ 0sep-inf-var

This key sets the math space that is inserted between the infinitesimal and the variable.
The space is only inserted when a non-blank variable is given. The key’s default value
is 0 mu.
⟨cs-numbers⟩ 0sep-var-ord

This key sets the math space that is inserted in the variable’s power left to the order.
The space is only inserted when the order is different from 1. The key’s default value
is 0 mu.
⟨cs-numbers⟩ 0sep-eval-sb

This key sets the math space that is inserted in the evaluation subscript left to the
point of evaluation. The space is only inserted when a non-blank subscript is given.
The key’s default value is 0 mu.
⟨cs-numbers⟩ 0sep-eval-sp

This key sets the math space that is inserted in the evaluation superscript left to the
point of evaluation. The space is only inserted when a non-blank superscript is given.
The key’s default value is 0 mu.

14

Switches

true, false falseswitch-*

The effect of the star’s presence can be switched with the value true. That is, the
function is typeset next to the fraction when the star is absent and in the numerator
when the star is present. As an example, compare below where the option is turned on
(true) and off (false),

\derivset{\odv}[switch-*=false] \odv{y}{x} ⟹ d𝑦
d𝑥

\derivset{\odv}[switch-*=true] \odv{y}{x} ⟹ d
d𝑥

𝑦

The key’s default value is false.
true, false falseswitch-/

The effect of the slash’s presence can be switched with the value true. That is, the
derivative is typeset with the fraction set by style-frac-/ when the slash is absent and
with the fraction set by style-frac when the slash is present. As an example, compare
below where the option is turned on (true) and off (false),

\derivset{\odv}[switch-/=false] \odv{y}{x} ⟹ d𝑦
d𝑥

\derivset{\odv}[switch-/=true] \odv{y}{x} ⟹ d𝑦/d𝑥

The key’s default value is false.

Miscellaneous

fun, var, frac falsemisc-add-delims
misc-remove-delims These two keys accepts its input as an comma-separated list of values such that

\derivset{\odv}[misc-add-delims=fun]
\derivset{\odv}[misc-add-delims={fun,var}]
\derivset{\odv}[misc-add-delims={fun,var,frac}]

are all valid, and the same goes for misc-remove-delims. The key misc-add-delims is
used to insert the delimiters around the key’s values, while misc-remove-delims is used
to remove the inserted delimiters. The next example shows the key misc-add-delims in
action

\derivset{\odv}[misc-add-delims=fun] \odv{y}{x} ⟹ d(𝑦)
d𝑥

\derivset{\odv}[misc-add-delims={fun,var}] \odv{y}{x} ⟹ d(𝑦)
d(𝑥)

\derivset{\odv}[misc-add-delims={fun,var,frac}] \odv{y}{x} ⟹ (d(𝑦)
d(𝑥)

)

15

All the above applies to misc-remove-delims as well, except it removes the delimiters.
The effect of the key misc-add-delims is turned off (false) locally inside a derivative.
This is to ensure that the option is not applied to more than one derivative when nested
as shown below

\derivset{\odv}[misc-add-delims=var] \odv*{\odv{y}{x}}{x} ⟹ d
d(𝑥)

d𝑦
d𝑥

\derivset{\odv}[misc-add-delims=fun] \odv*{\odv{y}{x}}{x} ⟹ d
d𝑥

(d𝑦
d𝑥

)

\derivset{\odv}[misc-add-delims=frac] \odv*{\odv{y}{x}}{x} ⟹ (d
d𝑥

) d𝑦
d𝑥

These two keys and this local behaviour are subject to change, see change 8.2(i)
and consideration 8.3(v) for more information.

4.3 Partial derivative
The options in this subsection are available for the partial derivative \pdv and variants
hereof that are defined by the package and you.

Style

⟨math-font-style⟩ \mathnormalP, \symnormalUstyle-inf

The font style of the infinitesimal for the chosen derivative is set by this key. The
default font style is \mathnormalP and \symnormalU. If an upright font is preferred then
\mathrmP and \symupU could be used, or if an italic font then \mathnormalP and \symitU.
⟨fraction⟩ \fracstyle-frac

The derivative uses the fraction set by this key whenever switch-/=false and the slash
argument is absent. The key’s default value is the usual fraction \frac.
⟨fraction⟩ \slashfracstyle-frac-/

The derivative uses the fraction set by this key whenever switch-/=false and the slash
argument is present. The key’s default value is a text-styled fraction \slashfrac1 i.e.
on the form 𝜕2𝑓/𝜕𝑥 𝜕𝑦.

Scaling

auto, none, big, Big, bigg, Bigg autoscale-eval

This key sets the size of the delimiters used for the point of evaluation. This scaling
is used whenever switch-/=false and the slash argument is absent. The key’s default
value is set to scale the delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-eval-/

This key sets the size of the delimiters used for the point of evaluation. This scaling is
used whenever switch-/=false and the slash argument is present. The key’s default
value is set to scale the delimiters automatically.

16

auto, none, big, Big, bigg, Bigg autoscale-fun

This key sets the size of the delimiters used around the function. The scaling is used
whenever misc-add-delims=fun is used. The key’s default value is set to scale the
delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-var

This key sets the size of the delimiters used around the variable. The scaling is used
whenever misc-add-delims=var is used. The key’s default value is set to scale the
delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-frac

This key sets the size of the delimiters used for around the fraction. This scaling is used
whenever switch-/=false, the slash argument is absent and misc-add-delims=frac is
used. The key’s default value is set to scale the delimiters automatically.
auto, none, big, Big, bigg, Bigg autoscale-frac-/

This key sets the size of the delimiters used for around the fraction. This scaling is used
whenever switch-/=false, the slash argument is present and misc-add-delims=frac is
used. The key’s default value is set to scale the delimiters automatically.

Delimiters

⟨left delimiter⟩⟨right delimiter⟩ ()delims-eval

This key sets the left and right delimiters used to indicate the point of evaluation. These
delimiters are inserted whenever switch-/=false and the slash argument is absent. The
key’s default left and right delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-eval-/

This key sets the left and right delimiters used to indicate the point of evaluation. These
delimiters are inserted whenever switch-/=false and the slash argument is present.
The key’s default left and right delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-fun

This key sets the left and right delimiters used to around the function and these
are inserted whenever misc-add-delims=fun is used. The key’s default left and right
delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-var

This key sets the left and right delimiters used to around the variable and these
are inserted whenever misc-add-delims=var is used. The key’s default left and right
delimiters are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac

This key sets the left and right delimiters used to around the fraction in the derivative
e.g. (𝜕

𝜕𝑥)𝑦. These delimiters are inserted whenever switch-/=false, the slash argument
is absent and misc-add-delims=frac is used. The key’s default left and right delimiters
are a left and a right parenthesis, respectively.
⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac-/

17

This key sets the left and right delimiters used to around the fraction in the derivative e.g.
(𝜕/𝜕𝑥)𝑦. These delimiters are inserted whenever switch-/=false, the slash argument is
present and misc-add-delims=frac is used. The key’s default left and right delimiters
are a left and a right parenthesis, respectively.

Math spacing

The options in this subsection inserts extra horizontal math space. The below equation
illustrates where the space is inserted

𝜕⟨inf-fun⟩𝑓
𝜕⟨inf-var⟩𝑥

𝜕⟨inf-ord⟩2⟨ord-fun⟩𝑓
𝜕𝑥⟨var-inf⟩𝜕𝑦

𝜕3𝑓
𝜕𝑥⟨var-ord⟩2⟨ord-inf⟩𝜕𝑦

(𝜕𝑓
𝜕𝑥

)
⟨eval-sp⟩(𝑥2,𝑦2)

⟨eval-sb⟩(𝑥1,𝑦1)

where it have been split into four to give a better overview.
⟨cs-number⟩ 0sep-inf-ord

This key sets the math space that is inserted in the infinitesimal’s power left to the
mixed order. It is only inserted when the mixed order is different from 1. The key’s
default value is 0 mu.
⟨cs-number⟩ 0sep-inf-fun

This key sets the math space that is inserted between the infinitesimal and the function
when the mixed order is equal to 1. The space is only inserted when a non-blank
function is printed in the numerator. The key’s default value is 0 mu.
⟨cs-number⟩ 0sep-ord-fun

This key sets the math space that is inserted between the infinitesimal and the function
when the mixed order is different from 1. The space is only inserted when a non-blank
function is printed in the numerator. The key’s default value is 0 mu.
⟨cs-number⟩ 0sep-inf-var

This key sets the math space that is inserted between the infinitesimal and the following
variable. The space is only inserted when a non-blank variable is given. The key’s
default value is 0 mu.
⟨cs-number⟩ 0sep-var-ord

This key sets the math space that is inserted in a variable’s power left to the order.
The space is only inserted when the order is different from 1. The key’s default value
is 0 mu.
⟨cs-number⟩ 3sep-var-inf

They key sets the math space that is inserted between a variable and the following
infinitesimal. The space is only inserted when the variable’s order is equal to 1. It is
only inserted when more than one non-blank variables are given. The key’s default
value is 3 mu.
⟨cs-number⟩ 3sep-ord-inf

They key sets the math space that is inserted between a variable and the following
infinitesimal. The space is only inserted when the variable’s order is different from

18

1. It is only inserted when more than one non-blank variables are given. The key’s
default value is 3 mu.
⟨cs-number⟩ -4sep-eval-sb

This key sets the math space that is inserted in the evaluation subscript left to the
point of evaluation. The space is only inserted when a non-blank subscript is given.
The key’s default value is -4 mu.
⟨cs-number⟩ -4sep-eval-sp

This key sets the math space that is inserted in the evaluation superscript left to the
point of evaluation. The space is only inserted when a non-blank superscript is given.
The key’s default value is -4 mu.

Switches

true, false falseswitch-*

The effect of the star’s presence can be switched with the value true. That is, the
function is typeset next to the fraction when the star is absent and in the numerator
when the star is present. As an example, compare below where the option is turned on
(true) and off (false),

\derivset{\pdv}[switch-/=false] \pdv{y}{x} ⟹ 𝜕𝑦
𝜕𝑥

\derivset{\pdv}[switch-/=true] \pdv{y}{x} ⟹ 𝜕𝑦/𝜕𝑥

The key’s default value is false.
true, false falseswitch-/

The effect of the slash’s presence can be switched with the value true. That is, the
derivative is typeset with the fraction set by style-frac-/ when the slash is absent and
with the fraction set by style-frac when the slash is present. As an example, compare
below where the option is turned on (true) and off (false),

\derivset{\pdv}[switch-/=false] \pdv{y}{x} ⟹ 𝜕𝑦
𝜕𝑥

\derivset{\pdv}[switch-/=true] \pdv{y}{x} ⟹ 𝜕𝑦/𝜕𝑥

The key’s default value is false.

Miscellaneous

fun, var, frac falsemisc-add-delims
misc-remove-delims These two keys accepts its input as an comma-separated list of values such that

\derivset{\pdv}[misc-add-delims=fun]
\derivset{\pdv}[misc-add-delims={fun,var}]
\derivset{\pdv}[misc-add-delims={fun,var,frac}]

19

are all valid, and the same goes for misc-remove-delims. The key misc-add-delims is
used to insert the delimiters around the key’s values, while misc-remove-delims is used
to remove the inserted delimiters. The next example shows the key misc-add-delims in
action

\derivset{\pdv}[misc-add-delims=fun] \pdv{y}{x} ⟹ 𝜕(𝑦)
𝜕𝑥

\derivset{\pdv}[misc-add-delims={fun,var}] \pdv{y}{x} ⟹ 𝜕(𝑦)
𝜕(𝑥)

\derivset{\pdv}[misc-add-delims={fun,var,frac}] \pdv{y}{x} ⟹ (𝜕(𝑦)
𝜕(𝑥)

)

All the above applies to misc-remove-delims as well, except it removes the delimiters.
The effect of the key misc-add-delims is turned off (false) locally inside a derivative.
This is to ensure that the option is not applied to more than one derivative when nested
as shown below

\derivset{\pdv}[misc-add-delims=var] \pdv*{\pdv{y}{x}}{x} ⟹ 𝜕
𝜕(𝑥)

𝜕𝑦
𝜕𝑥

These two keys and this local behaviour are subject to change, see change 8.2(i)
and consideration 8.3(v) for more information.

Sort

The keys given in this subsection will be briefly described here and a more in-depth
description will be given in section 6.
abs, sign, symbol sign, symbol, abssort-method

This key sets the sorting method behind the mixed order using build in algorithms.
The symbolic terms in the mixed order is sorted by sign, symbolic length and absolute
value by the sign, symbol and abs algorithms, respectively. The key takes its input as
a comma-separated list of values, accepting up to three values e.g.

\derivset{\pdv}[sort-method=sign] \pdv[c+kn,-b+2a]{f}{x,y}

⟹ 𝜕𝑐+𝑘𝑛+2𝑎−𝑏𝑓
𝜕𝑥𝑐+𝑘𝑛 𝜕𝑦−𝑏+2𝑎

\derivset{\pdv}[sort-method={sign,symbol}] \pdv[c+kn,-b+2a]{f}{x,y}

⟹ 𝜕𝑘𝑛+𝑐+2𝑎−𝑏𝑓
𝜕𝑥𝑐+𝑘𝑛 𝜕𝑦−𝑏+2𝑎

\derivset{\pdv}[sort-method={sign,symbol,abs}] \pdv[c+kn,-b+2a]{f}{x,y}

⟹ 𝜕𝑘𝑛+2𝑎+𝑐−𝑏𝑓
𝜕𝑥𝑐+𝑘𝑛 𝜕𝑦−𝑏+2𝑎

20

are valid inputs. Note how the terms in the mixed order are ordered using different
sorting methods. This key is further described in section 6.1. The key’s default value
uses all three algorithms as sign, symbol, abs.
auto, first, last autosort-numerical

This key determines where the numerical term3 is placed in the mixed order. Using the
values first and last, then the numerical term will always be placed as the first and last
term in the mixed order, respectively. While the value auto will automatically determine
where to place the numerical term depending on the sign of the first symbolic term;
it is placed as the first and last term if the sign is negative and positive, respectively.
This is shown below

\derivset{\pdv}[sort-numerical=first] \pdv[n,2]{f}{x,y}

⟹ 𝜕2+𝑛𝑓
𝜕𝑥𝑛 𝜕𝑦2

\derivset{\pdv}[sort-numerical=last] \pdv[-n,2]{f}{x,y}

⟹ 𝜕−𝑛+2𝑓
𝜕𝑥−𝑛 𝜕𝑦2

where the value auto would have placed the numerical term opposite in both equations.
The key is further described in section 6.2, and its default value is auto.
true, false falsesort-sign-reverse

The sorting algorithm sign separates the positive and negative terms where the former
is placed first and the latter last. The value true will reverse this ordering such that
the negative terms is placed first and the positive terms last. See section 6.3 for more
information.
true, false falsesort-symbol-reverse

The sorting algorithm symbol separates the terms by their symbolic length, where the
terms are ordered in a descending manner according to their length. If the value true
is used, then the terms will ordered in a ascending manner instead. See section 6.3 for
more information.
true, false falsesort-abs-reverse

The sorting algorithm number separates the terms by their absolute value, where the
terms are ordered in a descending manner. If the value true is used, then the terms
will ordered in a ascending manner instead. See section 6.3 for more information.

4.4 All derivatives
The options in this subsection are applied to all of the derivatives that are defined
by the package and you, because some options should be consisting regardless of the
derivatives. The options are accessed using \derivset{all}[⟨key=value⟩].
leftright, mleftmrightR leftrightscale-auto

3The numerical term is the sum of all the orders that does not contain any symbols, but solely consist
of numbers.

21

This package uses \left and \right to automatically scale delimiters. The value
mleftmright requires the mleftright package, which makes this package use \mleft and
\mright instead.

22

5 Defining variants
This section goes into detail with how to define variants of the ordinary and partial
derivative based on the package’s internal commands, as mentioned earlier. The
derivative package provides a LATEX 2𝜀 way of defining the derivatives. Thought it is
preferable to define variants of the ordinary derivative over the partial derivative, unless
one needs more than one variable of differentiation and access to the mixed order.

5.1 Variants of the ordinary derivative
⟨control-sequence⟩⟨inf-d⟩[⟨key=value⟩]\NewOdvVariant

\RenewOdvVariant
\ProvideOdvVariant
\DeclareOdvVariant

This family of commands are used to define a variant of the ordinary derivative with
the macro name ⟨control-sequence⟩. Moreover, the new derivative will use ⟨inf-d⟩ as its
infinitesimal and inherit the package’s default settings given in section 4.2, but they
may be overwritten with [⟨key=value⟩]. The difference between them, is as follows:

• \NewOdvVariant is similar to \NewDocumentCommand of the xparse package and will
issue an error if ⟨control-sequence⟩ has already been defined.

• \RenewOdvVariant is similar to \RenewDocumentCommand of the xparse package and
will issue an error if ⟨control-sequence⟩ has not previously been defined.

• \ProvideOdvVariant is similar to \ProvideDocumentCommand of the xparse package
and will define ⟨control-sequence⟩ if it does not have an existing definition. It will
not issue any errors.

• \DeclareOdvVariant is similar to \DeclareDocumentCommand of the xparse package
and will always define the ⟨control-sequence⟩ with the new definition regardless of
whether it already exists.

The first argument is the macro name of the derivative that is to be defined.⟨control-sequence⟩

While the second argument makes the derivative ⟨control-sequence⟩ use ⟨inf-d⟩ as the⟨inf-d⟩
infinitesimal, like ‘d’ is used as the infinitesimal in the ordinary derivative \odv. The
argument must be a single token thought this is subject to change, see considera-
tion 8.3(vi).
The optional argument accepts its input as a comma-separated list of key=value pairs,[⟨key=value⟩]
which overrides the package’s default options for the keys given. Leaving out this
argument, then the derivative will use the package’s default settings.

5.2 Variants of the partial derivative
⟨control-sequence⟩⟨inf-p⟩[⟨key=value⟩]\NewPdvVariant

\RenewPdvVariant
\ProvidePdvVariant
\DeclarePdvVariant

This family of commands are used to define a variant of the partial derivative with
the macro name ⟨control-sequence⟩. Moreover, the new derivative will use ⟨inf-p⟩ as its
infinitesimal and inherit the package’s default options given in section 4.3, but they
may be overwritten with [⟨key=value⟩]. The difference between them is as follows:

23

• \NewPdvVariant is similar to \NewDocumentCommand of the xparse package and will
issue an error if ⟨control-sequence⟩ has already been defined.

• \RenewPdvVariant is similar to \RenewDocumentCommand of the xparse package and
will issue an error if ⟨control-sequence⟩ has not previously been defined.

• \ProvidePdvVariant is similar to \ProvideDocumentCommand of the xparse package
and will define ⟨control-sequence⟩ if it does not have an existing definition. It will
not issue any errors.

• \DeclarePdvVariant is similar to \DeclareDocumentCommand of the xparse package
and will always define the ⟨control-sequence⟩ with the new definition regardless of
whether it already exists.

The first argument is the macro name of the derivative that is to be defined.⟨control-sequence⟩

While the second argument makes the derivative ⟨control-sequence⟩ use ⟨inf-p⟩ as the infin-⟨inf-p⟩
itesimal, like ‘𝜕’ is used as the infinitesimal in the partial derivative \pdv. The argument
must be a single token thought this is subject to change, see consideration 8.3(vi).
The optional argument accepts its input as a comma-separated list of key=value pairs,[⟨key=value⟩]
which overrides the package’s default options for the keys given. Leaving out this
argument, then the derivative will use the package’s default settings.

24

6 The mixed order
6.1 Sorting algorithms
A unique feature of this package is that the sorting method behind the mixed order
may be changed using built-in algorithms and there are currently three algorithms
available: sign, symbol and abs which are explained below. The algorithms have been
chosen such that it the terms in the mixed order may be arranged in many ways with
as few algorithms as possible to suit your liking. A sorting method may consist of up
to three algorithms which are applied in layers.

• The sorting algorithm sign separates the positive and negative terms, putting the
former terms first and the latter terms last in the mixed order. Using the option
sort-sign-reverse=true, then this ordering is reversed such that the negative
terms appear before the positive terms.

• The sorting algorithm symbol separates the terms by their symbolic length, where
the terms are ordered in a descending manner according to their length. Using
the option sort-symbol-reverse=true, then the terms are ordered in a ascending
manner instead.

• The sorting by abs separates the terms by their absolute value, where the terms
are ordered in a descending manner according to their absolute value. Using
the option sort-abs-reverse=true, then the terms are ordered in an ascending
manner instead.

When using the option sort-method={...}, the number of algorithms determines the
number of layers e.g. sort-method=sign,symbol is a sorting method with two layers,
where the algorithms sign and symbol are applied in layer 1 and layer 2, respectively. It
should be understood as that the sign algorithm splits the terms into two groups, one
with positive terms and one with negative terms. Then the symbol algorithm will order
the terms within each groups according to the terms symbolic length. The mixed order
is then formed by combining these two groups such that the positive terms comes first.

The next subsubsection is dedicated to give some examples of how the algorithms in
this package sorts the mixed order.

6.1.1 Examples

The examples are constructed of a partial derivative with the comma separated list
of orders given by [3a-3hh-2b, 4c+4gg+2ff, -5d-5ee] and a close up view of the
mixed order. Square brackets are used to indicate grouping of terms and the text below
a group refers to the algorithm applied. Here the words positive and negative, long
and short, and big and low refers to the sign, symbol, and abs algorithms, respectively.
A row of square brackets represents a layer.

The packages default sorting method is sort-method=sign,symbol,abs, which is used
below. The sign algorithm separate the positive and negative terms in the first layer.

25

While in the second layer, the terms are separated by symbol length etc.

𝜕4𝑔𝑔+2𝑓𝑓+4𝑐+3𝑎−5𝑒𝑒−3ℎℎ−5𝑑−2𝑏𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔⎵
big

+ 2𝑓𝑓⎵
low⎵⎵⎵⎵

long

+ 4𝑐⎵
big

+ 3𝑎⎵
low⎵⎵⎵

short⎵⎵⎵⎵⎵⎵⎵⎵⎵
positve

− 5𝑒𝑒⎵
big

− 3ℎℎ⎵
low⎵⎵⎵⎵

long

− 5𝑑⎵
big

− 2𝑏⎵
low⎵⎵⎵

short⎵⎵⎵⎵⎵⎵⎵⎵⎵
negative

as expected. Interchanging sign and symbol algorithms from the previous example i.e
sort-method=symbol, sign, abs, then the symbol sign algorithms are now applied in
the first and second layer, respectively. The result is shown below

𝜕4𝑔𝑔+2𝑓𝑓−5𝑒𝑒−3ℎℎ+4𝑐+3𝑎−5𝑑−2𝑏𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔⎵
big

+ 2𝑓𝑓⎵
low⎵⎵⎵⎵

positive

− 5𝑒𝑒⎵
big

− 3ℎℎ⎵
low⎵⎵⎵⎵

negative⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
long

+ 4𝑐⎵
big

+ 3𝑎⎵
low⎵⎵⎵

positive

− 5𝑑⎵
big

− 2𝑏⎵
low⎵⎵⎵

negative⎵⎵⎵⎵⎵⎵⎵⎵
short

where a clear difference is seen between the above two examples.
The above two examples used 3-layer sorting methods but as mentioned earlier, the

sorting method can also be constructed with one and two algorithms i.e. 1-layer and
2-layer sorting methods. A sorting method with two layers could be constructed as
sort-method=sign,symbol and with it, the terms are ordered by sign and then symbolic
length. In this case, there is not a third layer. Instead, the terms ‘appear randomly’
according to their absolute value as shown below

𝜕4𝑔𝑔+2𝑓𝑓+3𝑎+4𝑐−3ℎℎ−5𝑒𝑒−2𝑏−5𝑑𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔 + 2𝑓𝑓⎵⎵⎵⎵
long

+ 3𝑎 + 4𝑐⎵⎵⎵
short⎵⎵⎵⎵⎵⎵⎵⎵

positive

− 3ℎℎ − 5𝑒𝑒⎵⎵⎵⎵
long

− 2𝑏 − 5𝑑⎵⎵⎵
short⎵⎵⎵⎵⎵⎵⎵⎵

negative

It is seen that the first two terms came out in a descending manner according to their
absolute value, while the next two terms came out in a ascending manner. Hence the
choice of word: ‘appear randomly’. The last example shows a 1-layer sorting method
given as sort-method=symbol which gives the result

𝜕−3ℎℎ+4𝑔𝑔+2𝑓𝑓−5𝑒𝑒+3𝑎−2𝑏+4𝑐−5𝑑𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

− 3ℎℎ + 4𝑔𝑔 + 2𝑓𝑓 − 5𝑒𝑒⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
long

+ 3𝑎 − 2𝑏 + 4𝑐 − 5𝑑⎵⎵⎵⎵⎵⎵⎵
short

where it can be see that the terms are not ordered by sign nor absolute value. A fourth
sorting algorithm might be implemented in the future, see consideration 8.3(viii) for
more information.

26

6.2 The numerical term
With the symbolic part of the mixed order treated, it is time to look at the numerical
term3. For this reason it is treated differently than the symbolic terms. Currently it is
only possible to control its position in the mixed order.

The numerical term may be placed either at the beginning or at the end of the
mixed order with the values first and last, respectively. Thought it is also possible
to have the package automatically determine where to place the term with the value
auto. Compare below

sort-numerical=auto: 𝜕𝛽+2𝑓
𝜕𝑥𝛽 𝜕𝑦2

𝜕𝛽−2𝑓
𝜕𝑥𝛽 𝜕𝑦−2

𝜕2−𝛽𝑓
𝜕𝑥−𝛽 𝜕𝑦2

𝜕−2−𝛽𝑓
𝜕𝑥−𝛽 𝜕𝑦−2

sort-numerical=first: 𝜕2+𝛽𝑓
𝜕𝑥𝛽 𝜕𝑦2

𝜕−2+𝛽𝑓
𝜕𝑥𝛽 𝜕𝑦−2

𝜕2−𝛽𝑓
𝜕𝑥−𝛽 𝜕𝑦2

𝜕−2−𝛽𝑓
𝜕𝑥−𝛽 𝜕𝑦−2

sort-numerical=last: 𝜕𝛽+2𝑓
𝜕𝑥𝛽 𝜕𝑦2

𝜕𝛽−2𝑓
𝜕𝑥𝛽 𝜕𝑦−2

𝜕−𝛽+2𝑓
𝜕𝑥−𝛽 𝜕𝑦2

𝜕−𝛽−2𝑓
𝜕𝑥−𝛽 𝜕𝑦−2

These three options should satisfy every need, but there might come more options, see
consideration 8.3(vii).

6.3 Reversing the sort algorithm
The three reverse keys serves to reverse the sorting order of the sorting algorithms. This
allows for even greater flexibility over the sorting method by ‘doubling’ the number of
algorithms. So if the default ordering of an algorithm is not wished it may be reversed
with the corresponding reverse key. For example, the sign algorithm places the positive
terms first and the negative terms last, but using the option sort-sign-reverse=true
will place the negative terms first and positive terms last. The reverse keys in action
are shown below

sort-sign-reverse=false: 𝜕𝑎−𝑏𝑓
𝜕𝑥𝑎 𝜕𝑦−𝑏 sort-sign-reverse=true: 𝜕−𝑏+𝑎𝑓

𝜕𝑥𝑎 𝜕𝑦−𝑏

sort-symbol-reverse=false: 𝜕𝑎𝑏+𝑐𝑓
𝜕𝑥𝑎𝑏 𝜕𝑦𝑐 sort-symbol-reverse=true: 𝜕𝑐+𝑎𝑏𝑓

𝜕𝑥𝑎𝑏 𝜕𝑦𝑐

sort-abs-reverse=false: 𝜕2𝑎+𝑏𝑓
𝜕𝑥2𝑎 𝜕𝑦𝑏 sort-abs-reverse=true: 𝜕𝑏+2𝑎𝑓

𝜕𝑥2𝑎 𝜕𝑦𝑏

27

7 Miscellaneous
7.1 Slashfrac
[⟨scale⟩]{⟨numerator⟩}{⟨denominator⟩}\slashfrac

A text-styled fraction i.e. 𝑎/𝑏, is commonly used in text-mode. While \slashfrac{a}{b}
is certainly longer to write than a/b, which only requires three keystrokes, but for the
implementation of text-styled derivatives, a macro is needed anyway.
The optional argument is the scaling parameter for the slash and takes the inputs as[⟨scale⟩]
shown below. Leaving out [⟨scale⟩] sets the scaling parameter to auto

\slashfrac[auto]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[none]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[big]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[Big]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[bigg]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[Bigg]{y_f}{x} ⟹ 𝑦𝑓/𝑥

This argument is subject to change, see considerations 8.3(ix) and 8.3(x) for more
information.
This argument typeset the fraction’s numerator.{⟨numerator⟩}

This argument typeset the fraction’s denominator.{⟨denominator⟩}

28

8 To do
Entries marked with ✓ will be implemented in a future release specified in the entry.
Entries marked with ⨯ will not be implemented.

8.1 Future implementation
The list describes what will be added to the package in a later release.

(i) Define commands that can create variants of infinitesimal like d, 𝜕, 𝛿 etc. for use
in integrals ∫ 𝑓(𝑥) d𝑥, in differential equations 𝜕𝑓

𝜕𝑥 d𝑥 + 𝜕𝑓
𝜕𝑦 d𝑦 and a shorthand

notation of the partial derivative 𝜕𝑥𝑥𝑓(𝑥, 𝑦).

(ii) Implement the option to turn off the sorting of the terms in the mixed order.
This could be made as a draft / final option.

8.2 Future changes
The list describes what will be changed in the package in a later release.

(i) A complete rewrite of the options misc-add-delims and misc-remove-delims is
necessary so that they have a clearer syntax. Moreover, the value var needs to
work differently (and correctly) for the partial derivatives and variants hereof
(pretty much useless here).

8.3 Future considerations
The list describes what might be changed or added to the package in a later release.

(i) As mentioned earlier in the documentation, I heavily consider to change the
optional argument [⟨order⟩] to a [⟨key=value⟩] argument. Of course this will lead
to some changes:

• I would need a way to set the order of differentiation. I am thinking of
something like a key value option; order={⟨cs-orders⟩}.

• Such an option should not be possible to be set with \derivset or in the
definition of a new derivative (or maybe if one really needs a lot of higher
order derivative).

✓Conclusion: I truly believe this is the right way forward and is coming in the
next release. More features can easily be added in a key-value style. The order
argument will be replaced with a key-value argument and a order key introduced;
ord=⟨order⟩.

(ii) With the above consideration, than it would only be natural to remove the mixed
order and then have an option mixed-order={⟨mixed-order⟩}. Likewise, it should
not be possible to be set with \derivset or in the definition of a new derivative.

29

✓Conclusion: The mixed order argument will be removed due to the introduc-
tion of a key-value argument as mentioned above in the next release. The mixed
order can be set with the knew key m-ord=⟨mixed-order⟩.

(iii) Currently \derivset’s optional argument [⟨key=val⟩], when not given, sets the
derivatives options to the package default settings. This should probably be
changed to the options set in the definition of the derivative.
✓Conclusion: I believe this would a nice change for the future, but I do not
have the time to make the implementation for the next release.

(iv) It can become rather cumbersome to read a derivative with a very long function.
To ease this up, I am considering to add a switch that exchange the variable
and the function arguments. But this might be against the LATEX way of using
arguments, which is the reason it have not been done and I would like feedback
on it.

(v) Should I add a key, possible a switch, that turn on/off the local behaviour
misc-add-delims and misc-remove-delims inside derivative?

(vi) It was mentioned in section 5, that the second argument of \…Variant should
be a single token, e.g. meaning that \NewOdvVariant{\myvariant}{\partial_\mu}
is not allowed but \NewOdvVariant{\myvariant}{{\partial_\mu}} is. It can easily
be change to accept a multi token input.
✓Conclusion: This have already been changed in this release, since it is an
unnecessary constraint.

(vii) Should I add the option to sort-numerical, so that it is treated as a symbolic
term instead of a numerical term?
✓Conclusion: Yes. Yes I should. This feature will be added in the next release.

(viii) Should I add a sorting algorithm that order the terms according to their number
(including sign)?
✓Conclusion: Yes. Yes I should. This feature will be added in the next release.

(ix) I am considering making the optional argument of \slashfrac into a [⟨key=value⟩]
argument with something like scale={⟨scaling⟩}.
✓Conclusion: I want an key-value implementation like this in the future, but
it will not be added it the next release.

(x) Should the default scaling for \slashfrac be auto or none? Or should it be possible
to set it with something like \slashfracset[⟨key=value⟩]?
⨯Conclusion: The package default should be auto, but it will be possible to
change it, when the key-value is implemented or \slashfrac.

30

Index
Numbers in bold refer to the page where the entry is defined.

Index of Options

delims
delims-eval, 13, 17
delims-eval-/, 13, 17
delims-frac, 13, 17
delims-frac-/, 13, 17
delims-fun, 13, 17
delims-var, 13, 17

misc
misc-add-delims, 13, 14, 15, 15–18, 19,
20
misc-remove-delims, 15, 15, 16, 19, 20

scale
scale-auto, 21
scale-eval, 12, 16
scale-eval-/, 12, 16
scale-frac, 13, 17
scale-frac-/, 13, 17
scale-fun, 12, 17
scale-var, 13, 17

sep
sep-eval-sb, 14, 19

sep-eval-sp, 14, 19
sep-inf-fun, 14, 18
sep-inf-ord, 14, 18
sep-inf-var, 14, 18
sep-ord-fun, 14, 18
sep-ord-inf, 18
sep-var-inf, 18
sep-var-ord, 14, 18

sort
sort-abs-reverse, 21, 25, 27
sort-method, 20, 25, 26
sort-numerical, 21, 27
sort-sign-reverse, 21, 25, 27
sort-symbol-reverse, 21, 25, 27

style
style-frac, 12, 15, 16, 19
style-frac-/, 12, 15, 16, 19
style-inf, 12, 16

switch
switch-*, 4, 8, 15, 19
switch-/, 5, 9, 12–14, 15, 16–18, 19

Index of Commands

A
\adv, 6, 6

D
\DeclareOdvVariant, 23, 23
\DeclarePdvVariant, 23, 24
\derivset, 11, 11, 21

F
\fdv, 6, 6

J
\jdv, 6, 6

M
\mdv, 6, 6

N
\NewOdvVariant, 23, 23
\NewPdvVariant, 23, 24

31

O
\odv, 4, 4, 11, 12, 23

P
\pdv, 8, 8, 16, 24
\ProvideOdvVariant, 23, 23
\ProvidePdvVariant, 23, 24

R
\RenewOdvVariant, 23, 23
\RenewPdvVariant, 23, 24

S
\slashfrac, 28, 28

32

Change history
• First release of the package. The package is currently in a beta version.v0.9

2019-07-21

Beta

• Second beta release of the package.v0.95
2019-09-18

Beta • Removed the single token restriction of the infinitesimal since it made no sense.

• Fixed the documentation errors and typos.

• Minor fixes to the code.

33

	1 Introduction
	2 Ordinary derivative
	2.1 Variants

	3 Partial derivative
	3.1 Variants

	4 Package options
	4.1 Categories
	4.2 Ordinary derivative
	4.3 Partial derivative
	4.4 All derivatives

	5 Defining variants
	5.1 Variants of the ordinary derivative
	5.2 Variants of the partial derivative

	6 The mixed order
	6.1 Sorting algorithms
	6.1.1 Examples

	6.2 The numerical term
	6.3 Reversing the sort algorithm

	7 Miscellaneous
	7.1 Slashfrac

	8 To do
	8.1 Future implementation
	8.2 Future changes
	8.3 Future considerations

	Index
	Index of Options
	Index of Commands

	Change history

