
Package curve2e user manual
Claudio Beccari∗

Version 2.2.6 – Last revised 2020-04-02

Contents
1 Installation 1

2 Package pict2e and this ex-
tension curve2e 2

3 Summary and examples of
new commands 6

4 Remark 22

5 Acknowledgements 23

Abstract
This file contains the user manual of the curve2e extension package

to the pict2e bundle; the latter was described by Lamport himself in the
1994 second edition of his LATEX handbook.

Please take notice that on April 2011 a package pict2e upgraded version
has been released that incorporates some of the commands defined in early
versions of this package; apparently there are no conflicts, because curve2e
contains only the advanced features that extend the above package.

Since this extension redefines some commands and introduces some
more drawing facilities (that allow to draw circular arcs and arbitrary
curves with the minimum of user intervention) the user needs a user
manual that contains several actual examples. The software available
to show the code and its result after compilation is incompatible with the
usual LATEX ltxdoc class for code documentation, therefore a separate
user manual has been made available. If the user wants to explore the
curve2e code and its documentation s/he has available the documented
file curve2e.pdf.

1 Installation
If you installed your TEX system with a TEX Live or a MikTEX complete and
updated distribution you already have this package installed; in order to verify
open a terminal or command prompt window and use it to enter the texdoc
curve2e-manual; as soon as the command is executed a screen window should
open displaying this manual. If this does not happen, either you misspelt the
command (it happens more often than not), or your installation is not complete
and updated.

I suggest you to youse your computer installation facilities to install this
bundle. Otherwise, download this curve2e.zip package from one of the CTAN
(Comprehensive TeX Archive Network) archives, to your downloads folder. Be-
fore doing anything else verify if you have a personal temf tree; if not, create

∗E-mail: claudio dot beccari at gmail dot com

1

one reading you distribution instruction; let us assume that your personal texmf
archive is in HOME/texmf (on Windows change the slash with a backslash) and
HOME is a path starting from the root of you hard disk and going though several
other folders. On Windows 10 it might be C:\Users\YouName; on Linux it might
be simply ˜; On Mac it would be ˜\Library, but sometimes the HOME might be
different, especially o Windows platforms. Create the following subfolders:

1. HOME/texmf/source/latex/curve2e/
2. HOME/texmf/doc/latex/curve2e/
3. HOME/texmf/tex/latex/curve2e/

Now move file curve2e.zip to the .../source/latex/curve2e/ folder; the
decompress the .zip file with the software you have on board of your platform.
Run with pdflatex on .dtx file; then do the same with the curve2e-manual.tex.
You might need to repeat these compilations two or three times in order to have
the table of contents and all the references correctly connected.

This done move the .pdf files to the .../doc/latex/curve2e/ folder. and
move the .sty files to the .../tex/latex/curve2e/ folder.

Clear the .../source/latex/curve2e/ folder from the auxiliary files, all
those remaining in the folder except those that have the extensions .zip, .dtx,
.tex, and .txt. Read the README.txt file.

If your TEX system is correctly set up, your files in your persanl tree should
be immediately usable; probably you have to create the file name database with
MikTEX; in this case read the documentation of your MikTEX installation to
discover how to do it.

Remember to delete all these subfolders if you decide to install a complete
updated version of your favourite distribution, and if you keep it updated ap-
proximately once every 7-10 days. This is much simpler than to struggle with
these manual operations.

2 Package pict2e and this extension curve2e
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that has
been accompanying every release of LATEX 2ε since its beginnings in 1994. The
dummy package was just issuing an info message that simply announced the
temporary unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a
LATEX package that contained the macros capable of removing all the limita-
tions contained in the standard commands of the original picture environment;
specifically what follows.

1. The line and vector slopes were limited to the ratios of relative prime
one-digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited num-
ber of specific glyphs contained in the special LATEX picture fonts.

3. Quarter circles were also limited in their radii for the same reason.
4. Ovals (rectangles with rounded corners) could not be too small because of

the unavailability of small radius quarter circles, nor could be too large,

2

in the sense that after a certain radius the rounded corners remained the
same and would not increase proportionally to the oval size.

5. Vector arrows had only one possible shape and matched the limited num-
ber of vector slopes.

6. For circles and inclined lines and vectors just two possible thicknesses were
available.

Package pict2e removes most if not all the above limitations.
1. Line and vector slopes are virtually unlimited; the only remaining limita-

tion is that the direction coefficients must be three-digit integer numbers;
they need not be relatively prime; with the 2009 upgrade even this limi-
tation was removed and now slope coefficients can be any fractional num-
ber whose magnitude does not exceed 16 384, the maximum dimension in
points that TEX can handle.

2. Filled and unfilled circles can be of any size.
3. Ovals can be designed with any specified corner curvature and there is

virtually no limitation to such curvatures; of course corner radii should
not exceed half the lower value between the base and the height of the
oval.

4. There are two shapes for the arrow tips; the triangular one traditional
with LATEX vectors, or the arrow tip with PostScript style.

5. The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension package curve2e adds the following features.
1. Point coordinates my be specified in both cartesian and polar form: inter-

nally they are handled as cartesian coordinates, but the user can specify
his/her points also in polar form. In order to avoid confusion with other
graphic packages, curve2e uses the usual comma separated couple 〈x, y〉
of integer or fractional numbers for cartesian coordinates, and the couple
〈θ〉:〈ρ〉 for polar coordinates (the angle preceding the radius). All graphic
object commands accept polar or cartesian coordinates at the choice of
the user who may use for each object the formalism s/he prefers. Also
the \put and \multiput commands have been redefined so as to accept
cartesian or polar coordinates.
Of course the user should pay attention to the meaning of cartesian vs.
polar coordinates. Both imply a displacement with respect to the actual
origin of the axes. So when a circle is placed at coordinates a, b with a
normal \put command, the circle is placed exactly in that point; with a
normal \put command the same happens if coordinates α:ρ are specified.
But if the \put command is nested into another \put command, the cur-
rent origin of the axes is displaced — this is obvious and the purpose of
nesting \put commands is exactly that. But if a segment is specified so
that its ending point is at a specific distance and in specific direction form
its starting point, polar coordinates appear to be the most convenient
to use; in this case, though, the origin of the axes becomes the stating
point of the segment, therefore the segment might be drawn in a strange
way. Attention has been paid to avoid such misinterpretation, but maybe
some unusual situation may not have come to my mind; feedback is very
welcome. Meanwhile pay attention when you use polar coordinates.

3

2. Most if not all cartesian coordinate pairs and slope pairs are treated as
ordered pairs, that is complex numbers; in practice the user does not no-
tice any difference from what s/he was used to, but all the mathematical
treatment to be applied to these entities is coded as complex number op-
erations, since complex numbers may be viewed non only as ordered pairs,
but also as vectors or as roto-amplification operators.

3. Commands for setting the line terminations were introduced; the user can
chose between square or rounded caps; the default is set to rounded caps;
now this feature is directly available with pict2e.

4. Commands for specifying the way two lines or curves join to one another.
5. Originally the \line macro was redefined so as to allow large (up to three

digits) integer direction coefficients, but maintaining the same syntax as in
the original picture environment; now pict2e removes the integer number
limitations and allows fractional values, initially implemented by curve2e.

6. A new macro \Line was originally defined by curve2e so as to avoid the
need to specify the horizontal projection of inclined lines; now this func-
tionality is available directly with pict2e; but this curve2e macro name
now conflicts with pict2e 2009 version; therefore its name is changed to
\LIne and supposedly it will not be used very often, if ever, by the end
user (but it is used within this package macros).

7. A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behaviour of the \Line macro of
pict2e so that in this package \LINE is now renamed \segment; there is
no need to use the \put command with this segment specification.

8. A new macro \DashLine (alias: \Dline) is defined in order to draw dashed
lines joining any two given points; the dash length and gap (equal to one
another) get specified through one of the macro arguments.The starting
point may be specified in cartesiano or polar form; the end point in carte-
sian format specifies the desired end point; while if the second point is in
polar form it is meant relative to the starting point, not as an absolute end
point. See the examples further on.

9. A similar new macro \Dotline is defined in order to draw dotted straight
lines as a sequence of equally spaced dots, where the gap can be specified
by the user; such straight line may have any inclination, as well as the
above dashed lines.Polar coordinates for the second point have the same
relative meaning as specified for the \Dashline macro. The dot diameter
may be specified with an optional argument; by default this diameter
equals the 1pt width.

10. Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed; \Vector gets speci-
fied with its two horizontal and vertical components in analogy with \LIne;
\VECTOR joins two specified points (without using the \put command) with
the arrow pointing to the second point.

11. A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.
Vertices may be specified with polar coordinates and are always relative
to the preceding point.

12. The pict2e polygon macro to draw closed polylines (in practice general

4

polygons) has been redefined in such a way that it can accept the various
vertices specified with (relative) polar coordinates. The polygon* macro
produces a color filled polygon; the default color is black, but a different
color may be specified with the usual \color command given within the
same group where \polygon* is enclosed.

13. A new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary aperture (angle amplitude); this amplitude is specified in
sexagesimal degrees, not in radians; a similar functionality is now achieved
with the \arc macro of pict2e, which provides also the starred version
\arc* that fills up the interior of the generated circular arc with the
current color. It must be noticed that the syntax is slightly different, so
that it’s reasonable that these commands, in spite of producing identical
arcs, might be more comfortable with this or that syntax.

14. Two new macros \VectorArc and \VectorARC are defined in order to draw
circular arcs with an arrow at one or both ends.

15. A new macro \Curve is defined so as to draw arbitrary curved lines by
means of cubic Bézier splines; the \Curve macro requires only the curve
nodes and the directions of the tangents at each node. The starred version
fills up the interior of the curve with the current color.

16. the above \Curve macro is a recursive macro that can draw an unlimited
(reasonably limited) number of connected Bézier spline arcs withspecifi-
cation of the tangent direction at the interpolation nodes. It is possible to
use a lower level macro \CbezierTo that does the same but lets the user
specify the control points of each arc; it is more difficult to use but it is
more performant.

17. The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they
are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different form those used by Curve, but the
final command, \FillCurve, should be used in place of \CurveFinish, so
as to fill up the closed path with the locally specified color; see figure 10.
It is much more convenient to use the starred version of the \Curve macro.

The pict2e package already defines macros such as \moveto, \lineto, \curveto,
\closepath, \fillpath, and \strokepath; of course these macros can be used
by the end user, and sometimes they perform better than the macros defined in
this package, because the user has a better control on the position of the Bézier
splines control points, while here the control points are sort of rigid. It would
be very useful to resort to the hobby package, but its macros are compatible
with those of the tikz and pgf packages, not withcurve2e; an interface should
be created in order to deal with the hobby package, but this has not been done
yet. In any case they are redefined so as to accept symbolic names for the point
coordinates in both the cartesian and polar form.

In order to make the necessary calculations many macros have been defined
so as to use complex number arithmetics to manipulate point coordinates, di-
rections (unit vectors, also known as ‘versors’), rotations and the like. In the
first versions of this package the trigonometric functions were also defined in
a way that the author believed to be more efficient than those defined by the
trig package; in any case the macro names were sufficiently different to ac-
commodate both definition sets in the same LATEX run. With the progress of

5

the LATEX 3 language, package xfp has recently become available, by which any
sort of calculations can be done with floating point decimal numbers; there-
fore the most common algebraic, irrational and transcendental functions can be
computed in the background with the stable internal floating point facilities.
We maintain some computation with complex number algebra, but use the xfp
functionalities for other computations.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in
the pict2e package. The \Curve algorithm, as said before, might be redefined so
as to use the macros introduced by the hobby package, that implements for the
tikz and pgf packages the same functionalities that John Hobby implemented
for the METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Gäßlein, Niepraschk, and Tkadlec who are the prime maintainers of pict2e; they
are the only ones who can decide whether or not to incorporate new macros in
their package.

3 Summary and examples of new commands
This package curve2e extends the power of pict2e with the following modifica-
tions and the following new commands.

1. This package curve2e calls directly the LATEX packages color and pict2e;
it passes to the latter one any possible option that it can receive; actually
the only options that make sense for pict2e are those concerning the arrow
tips, either LATEX or PostScript styled, because it is assumed that if this
package is used, the original LATEX commands are of no interest: see the
pict2e documentation in order to see the correct options pict2e can receive.
If the user wants to use the xcolor package, it has to load this one before
curve2e.

2. The user is offered new commands in order to control the line terminators
and the line joins; specifically:

• \roundcap: the line is terminated with a semicircle;
• \squarecap: the line is terminated with a half square;
• \roundjoin: two lines are joined with a rounded join;
• \beveljoin: two lines are joined with a bevel join;
• \miterjoin: two lines are joined with a miter join.

All the above commands should respect the intended range; but since
they act at the PostScript or PDF level, not at TEX level, it might be
necessary to issue the necessary commands in order to restore the previous
terminator or join; in other words, groups and environments do not have
any influence on these commands.

3. The commands \linethickness, \thicklines, \thinlines together with
\defaultlinethickness always redefine the internal \@wholewidth and
\@halfwidth so that the latter ones always refer to a full width and to a

6

\unitlength=0.01\linewidth
\begin{picture}(80,20)
\AutoGrid
\put(0,0){\vector(1.5,2.3){10}}
\put(20,0){\Vector(10,15.33333)}
\VECTOR(40,0)(50,15.33333)
\ifdefined\VVECTOR \VVECTOR(60,0)(80,10)\fi
\end{picture}

Figure 1: Three (displaced) identical vectors obtained with the three vector
macros; a double tipped vector is also shown.

half of it in this way: if you issue the command \defaultlinethickness{2pt}
all thin lines will be drawn with a thickness of 1 pt while, if a drawing com-
mand directly refers to the internal value \@wholewidth, its line will be
drawn with a thickness of 2 pt. If one issues the declaration \thinlines
all lines will be drawn with a 1 pt width, but if a command refers to the in-
ternal value \@halfwidth the line will be drawn with a thickness of 0.5 pt.
The command \linethickness redefines the above internals but does not
change the default width value; all these width specifications apply to all
lines, straight ones, curved ones, circles, ovals, vectors, dashed lines, and
so on. It’s better to recall that \thinlines and \thicklines are decla-
rations that do not take arguments; on the opposite the other commands
follow the standard syntax:

\linethickness{〈dimensioned value〉}
\defaultlinethicknes{〈dimensioned value〉}

where 〈dimensioned value〉 means either a length specification complete
of its units, or a dimensional expression.

4. Straight lines and vectors are redefined in such a way that fractional slope
coefficients may be specified; the zero length line does not produce errors
and is ignored; the zero length vectors draw only the arrow tips.

5. New line and vector macros are defined that avoid the necessity of spec-
ifying the horizontal component; \put(3,4){\LIne(25,15)} specifies a
segment that starts at point (3, 4) and goes to point (3 + 25, 4 + 15); the
command \segment(3,4)(28,19) achieves the same result without the
need of using the \put command. Therefore \LIne is just for internal
usage, rather than a user command. Now curve2e has available also the
“arc vectors” with the arrow tip at one or at both ends.
The same applies to the vector commands \Vector and \VECTOR and
\VVECTOR; the latter command behaves as \VECTOR but draws a vector
with arrow tips at both ends; furthermore this command is available only
with main versions 2 or higher of curve2e.
Experience has shown that the commands intended to join two specified
points are particularly useful.

6. The \polyline command has already been introduced in pict2e: in curve2e
it is redefined so as to accept also polar coordinates this new version of
\polyline accepts also an optional argument to specify how two consec-
utive segments join together;; it accepts an unlimited list of point coordi-

7

nates, possibly stored in macros, enclosed within round parentheses; the
command draws a sequence of connected segments that join in order the
specified points; the syntax is:

\polyline[〈optional join style〉](〈P1〉)(〈P2〉)...(〈Pn〉)

See figure 2 where a regular pentagon is drawn; usage of polar coordinates
is also shown; please notice how polar coordinates act in this figure.

\unitlength=.5mm
\begin{picture}(40,32)(-20,-17)
\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
\end{picture}

Figure 2: Polygonal line obtained by means of the \polyline command; vertex
coordinates are in polar form.

Examples of using polar and cartesian coordinates are shown in figure 3.

\unitlength =0.02\textwidth
\begin{picture}(40,30)
\AutoGrid(40,30)
\Zbox(40,0)[l]{40,0}[1]
\Zbox(90:30)[bc]{90{:}30}[1]
\Zbox(60:30)[bc]{60{:}30}[1]
\Zbox(30,30)[bc]{30,30}[1]
\multiput(0,0)(30:10){5}%

{\makebox(0,0){\rule{1.5mm}{1.5mm}}}
\end{picture} 40, 0

90:30
60:30

30, 30

Figure 3: Use of cartesian and absolute polar coordinates. The \Zbox macro is
just a shortcut to set a small dot with a (math) legend close to it.

A similar example may be obtained with the \polygon macro that does
not require to terminate the polyline at the starting point. Figure 4 shows
how to get a coloured filled pentagon.

\unitlength =.5mm
\begin{picture}(40,32)(-20,-20)
\color{magenta}
\polygon*(90:20)(162:20)(234:20)(306:20)(378:20)
\end{picture}

Figure 4: A pentagon obtained by means of the \polygon* command; vertex
coordinates are in relative polar form.

7. The new command \Dashline (alias: \Dline for backwards compatibil-
ity):

\Dashline(〈first point〉)(〈second point〉){〈dash length〉}

8

draws a dashed line containing as many dashes as possible, just as long as
specified, and separated by a gap exactly the same size; actually, in order
to make an even gap-dash sequence, the desired dash length is used to do
some computations in order to find a suitable length, close to the one spec-
ified, such that the distance of the end points is evenly divided in equally
sized dashes and gaps. The end points may be anywhere in the drawing
area, without any constraint on the slope of the joining segment. The
desired dash length is specified as a fractional multiple of \unitlength;
see figure 5.

\unitlength =1mm
\begin{picture}(40,40)
\AutoGrid(40,40)
\Dashline(0,0)(40,10){4}
\put(0,0){\circle*{2}}
\Dashline(40,10)(0,25){4}
\put(40,10){\circle*{2}}
\Dashline(0,25)(20,40){4}
\put(0,25){\circle*{2}}
\put(20,40){\circle*{2}}
\Dotline(0,0)(40,40){2}[0.75mm]
\put(40,40){\circle*{2}}
\end{picture}

Figure 5: Dashed lines and graph grid

Another example of usage of cartesian and polar coordinates usage is
shown in figure 3 together with its code.

8. Analogous to \Dashline, a new command \Dotline draws a dotted line
with the syntax:

\Dotline(〈first point〉)(〈end point〉){〈dot gap〉}

See figures 5 and 7 for examples.
9. \GraphGrid and \AutoGrid are commands that draw a red grid under

the drawing with lines separated 10\unitlengths apart; it is described
only with a comma separated couple of numbers, representing the base
and the height of the grid, see figure 5; it’s better to specify multiples of
ten and the grid can be placed anywhere in the drawing canvas by means
of \put, whose cartesian coordinates are multiples of 10; nevertheless the
grid line distance is rounded to the nearest multiple of 10, while the point
coordinates specified to \put are not rounded at all; therefore some care
should be used to place the working grid on the drawing canvas. This
grid is intended as an aid while drawing; even if you sketch your drawing
on millimetre paper, the drawing grid turns out to be very useful; one
must only delete or comment out the command when the drawing is fin-
ished. Several examples of usage of such grid are shown in several figures.
\Autogrid does not require arguments; if the latter are specified they are
simply ignored.

10. New trigonometric function macros have been computed by means of the
functionalities of the xfp package. The difference with the other exist-

9

\unitlength =0.025\textwidth
\begin{picture}(40,30)
\AutoGrid(40,30)
\Dashline(0,0)(40,10){2}
\Dashline(0,0)(40,20){2}
\Dashline(0,0)(40,30){2}
\Dashline(0,0)(30,30){2}
\Dashline(0,0)(20,30){2}
\Dashline(0,0)(10,30){2}
{\color{blue}%
\Dashline(40,0)(108:30){2}
\Dashline(40,0)(126:30){2}
\Dashline(40,0)(144:30){2}
\Dashline(40,0)(162:30){2}}
\end{picture}

Figure 6: Different length dashed lines with the same nominal dash length;
notice the relative polar coordinates used for the dashed lines starting at the
grid lower right vertex.

ing macros is that angles are specified in sexagesimal degrees, so that the
users need not transform to radians. The computations are done taking
into account that “abnormal” values can occasionally be avoided, for ex-
ample tan 90◦ must be avoided and replaced with a suitably large number,
because the TeX system does not handle “infinity”.
These trigonometric functions are used within the complex number macros;
but if the user wants to use them the syntax is the following:
\SinOf〈angle〉to〈control sequence〉
\CosOf〈angle〉to〈control sequence〉
\TanOf〈angle〉to〈control sequence〉
The 〈control sequence〉 may then be used, for example, as a multiplying
factor of a length.

11. Arcs can be drawn as simple circular arcs, or with one or two arrows at
their ends (curved vectors); the syntax is:
\Arc(〈center〉)(〈starting point〉){〈angle〉}
\VectorArc(〈center〉)(〈starting point〉){〈angle〉}
\VectorARC(〈center〉)(〈starting point〉){〈angle〉}
If the angle is specified numerically it must be enclosed in braces, while
if it is specified with a control sequence the braces (curly brackets) are
not necessary. The above macro \Arc draws a simple circular arc without
arrows; \VectorArc draws an arc with an arrow tip at the ending point;
\VectorARC draws an arc with arrow tips at both ends; see figure 8.

12. A multitude of commands have been defined in order to manage complex
numbers; actually complex numbers are represented as a comma sepa-
rated pair of fractional numbers (here we use only cartesian coordinates).
They are used to address specific points in the drawing plane, but also as
operators so as to scale and rotate other objects. In the following 〈vec-
tor〉 means a comma separated pair of fractional numbers, 〈vector macro〉

10

\unitlength =0.025\textwidth
\begin{picture}(40,30)
\AutoGrid(40,30)
\Dotline(0,0)(40,10){1.5}[2pt]
\Dotline(0,0)(40,20){1.5}[2pt]
\Dotline(0,0)(40,30){1.5}[2pt]
\Dotline(0,0)(30,30){1.5}[2pt]
\Dotline(0,0)(20,30){1.5}[2pt]
\Dotline(0,0)(10,30){1.5}[2pt]
{\color{red}\relax
\Dotline(40,0)(108:30){1.5}
\Dotline(40,0)(126:30){1.5}[2pt]
\Dotline(40,0)(144:30){1.5}[2pt]
\Dotline(40,0)(162:30){1.5}[2pt]}%
\end{picture}

Figure 7: Different length dotted lines with the same nominal dot gap; again
notice the relative polar coordinates for the dotted lines starting at the grid
lower right vertex.

\unitlength =0.5mm
\begin{picture}(60,40)
\GraphGrid(60,40)
\Arc(0,20)(30,0){60}
\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
\VectorArc(0,20)(15,10){60}
\put(20,20){\makebox(0,0)[l]{$60ˆ\circ$}}
\VectorARC(60,20)(60,0){-180}
\end{picture}

60◦

Figure 8: Arcs and curved vectors

means a macro that contains a comma separated pair of fractional num-
bers; 〈angle macro〉 means a macro that contains the angle of a vector in
sexagesimal degrees; 〈argument〉 means a brace delimited numeric value,
even a macro; 〈numeric macro〉 means a macro that contains a fractional
number; macro is a valid macro name, i.e. a backslash followed by letters,
or anything else that can receive a definition. A direction of a vector is
its versor; the angle of a vector is the angle between the vector and the
positive x axis in counterclockwise direction, as it is used in the Euler
formula ~v = Mejϕ.

• \MakeVectorFrom〈numeric macro〉〈numeric macro〉to〈vector macro〉
• \CopyVect〈first vector〉to〈second vector macro〉
• \ModOfVect〈vector〉to〈modulus macro〉
• \DirOfvect〈vector〉to〈versor macro〉
• \ModAndDirOfVect〈vector〉to〈modulus macro〉and〈versor macro〉
• \ModAndAngleOfVect〈vector〉to〈modulus macro〉and〈angle macro〉

11

• \DistanceAndDirOfVect〈1st vector〉 minus〈2nd vector〉 to〈distance
macro〉 and〈versor macro〉

• \XpartOfVect〈vector〉to〈macro〉
• \YpartOfVect〈vector〉to〈macro〉
• \DirFromAngle〈angle〉to〈versor macro〉
• \ArgOfVect〈vector〉to〈angle macro〉
• \ScaleVect〈vector〉by〈scaling factor〉to〈vector macro〉
• \ConjVect〈vector〉to〈conjugate vector macro〉
• \SubVect〈subtrahend vector〉from〈minuend vector〉to〈vector macro〉
• \AddVect〈first vector〉and〈second vector〉to〈vector macro〉
• \Multvect{〈first vector〉}*{〈second vector〉}*{〈vector macro〉} (the

asterisks are optional; either one changes the second vector into its
complex conjugate)

• \MultVect〈first vector〉by〈second vector〉to〈vector macro〉 (discour-
aged; maintained for backwards compatibility)

• \MultVect〈first vector〉by*〈second vector〉to〈vector macro〉 (discour-
aged; maintained for backwards compatibility)

• \Divvect{〈dividend vector〉}{〈divisor vector〉}{〈 vector macro〉}
• \DivVect〈dividend vector〉by〈divisor vector〉to〈vector macro〉 (main-

tained for backwards compatibility)

13. General curves can be drawn with the pict2e macro \curve but it requires
the specification of the third-order Bézier-spline control points; sometimes
it’s better to be very specific with the control points and there is no other
means to do a decent graph; sometimes the curves to be drawn are not
so tricky and a general set of macros can be defined so as to compute the
control points, while letting the user specify only the nodes through which
the curve must pass, and the tangent direction of the curve in such nodes.
Such commands are the following:

• \Curve draws a sequence of arcs as explained above, using third order
(cubic) Bézier splines. The starred version of this command fills the
internal part of the curve with the current color; if the last arc finishes
where the fist arc starts, it is clear what is the interior; if it does not,
the driver (not the code of this package, but the driver between this
code and the physical representation on paper or screen) assumes a
straight line closure of the whole path.

• \Qurve is similar to \Curve, but with second order (quadratic) Bézier
splines. The starred version fills the interior with the current color.

• \CurveBetween draws a single cubic Bézier spline between two given
nodes and with two given directions vectors.

• \CBezierBetween draws a single cubic Bézier spline between two
given nodes, with two given direction versors along which the control
node distances are specified. This is the most general macro (rather
difficult to use) with which not only the arc end points are specified
but also the control nodes coordinates are given.

12

The main macro is \Curve and must be followed by an “unlimited” se-
quence of node-direction coordinates as a quadruple defined as

(〈node coordinates〉)<〈direction vector〉>

Possibly if a sudden change of direction has to be performed (cusp) another
item can be inserted after one of those quadruples in the form

. . . (〈...〉)<〈...〉>[〈new direction vector〉](〈...〉)<〈...〉>. . .

Possibly it is necessary to specify the “tension” or the “looseness” of a
specific Bézier arc; such tension parameters range from 0 (zero) to 4;
the zero value implies a very stiff arc, as if it was a string subject to a
high tension (i.e. with zero looseness); a value of 4 implies a very low
tension (very high looseness), almost as if the string was not subject to
any tension. In METAFONT or METAPOST language such a concept is
used very often; in this package, where the Hobby algorithms are not
used, the parameter value appears to mean the opposite of tension. A
couple of comma separated tension values may be optionally used, they
are separated with a semicolon form the direction vector, and they apply
to the arc terminating with the last node; their specification must precede
any possible change of tangent according to this syntax1:

. . . (〈...〉)<〈direction vector;start tension,end tension〉>(〈...〉)<〈...〉>. . .

The \Curve macro does not (still) have facilities for cycling the path,
that is to close the path from the last specified node-direction to the first
specified node-direction; but, as already mentioned, if the ending node of
the last arc does not coincide with the starting node of the first arc, a
straight line is assumed to join such nodes; this line does not get drawn,
but with starred commands no lines are drawn because only the interior is
coloured. The tangent direction need not be specified with a unit vector,
although only its direction is relevant; the scaling of the specified direction
vector to a unit vector is performed by the macro itself. Therefore one
cannot specify the fine tuning of the curve convexity as it can be done
with other programs or commands, as, for example, with METAFONT or
the pgf/tikz package and environment. See figure 9 for an example.
With the starred version of \Curve, instead of stroking the contour, the
macro fills up the contour with the selected current color, figure 10.
Figure 11 shows a geometric construction that contains the geometric
elements and symbols used to determine the parameters of a cubic spline
required to draw a quarter circle. This construction contains many of the
commands described so far.
To show what you can do with \CurveBetween see the code and result
shown in figure 12. Notice the effect of changing the directions at both or
a the end nodes of a single cubic spline. The directions are conveniently
expressed with unit vectors described by polar coordinates.
A little more complicated is the use of the \CBezierBetween macro, fig-
ure 13. The directions are specified with unit vectors in polar form; the

1The tension may be specified only for cubic splines, because the quadratic ones do not use
enough parameters to control the tension; not all commands for drawing cubic splines accept
this optional tension specification.

13

\unitlength =8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\Curve(2.5,0)<0.1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>

\end{picture}

Figure 9: A heart shaped curve with cusps drawn with \Curve

\unitlength =8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap

\color{green}\relax
\Curve*(2.5,0)<0.1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>

\end{picture}

Figure 10: Coloring the inside of a closed path drawn with \Curve*

14

\unitlength=0.007\textwidth
\begin{picture}(100,90)(-50,-50)
\put(-50,0){\vector(1,0){100}}\put(50,1){\makebox(0,0)[br]{x}}%
\put(20,-1){\makebox(0,0)[t]{s}}%
\put(0,0){\circle*{2}}\put(-1,-1){\makebox(0,0)[tr]{M}}%
\legenda(12,-45){s=\overline{MP_2}=R\sin\theta}%
\put(0,-50){\vector(0,1){90}}%
\put(1,40){\makebox(0,0)[tl]{y}}%
\put(0,-40){\circle*{2}}\put(1,-41){\makebox(0,0)[lt]{C}}%
\segment(0,-40)(-40,0)\segment(0,-40)(40,0)%
\put(-41,1){\makebox(0,0)[br]{P_1}}\put(-40,0){\circle*{2}}%
\put(41,1){\makebox(0,0)[bl]{P_2}}\put(40,0){\circle*{2}}%
\put(0,0){\linethickness{1pt}\Arc(0,-40)(40,0){90}}%
\segment(-40,0)(-20,20)\put(-20,20){\circle*{2}}%
\put(-20,21.5){\makebox(0,0)[b]{C_1}}%
\segment(40,0)(20,20)\put(20,20){\circle*{2}}%
\put(20,21.5){\makebox(0,0)[b]{C_2}}%
\put(0,-40){\put(0,56.5685){\circle*{2}}%
\put(1,58){\makebox(0,0)[bl]{P}}}%
\VectorARC(0,-40)(15,-25){45}\put(10,-18){\makebox(0,0)[c]{θ}}%
\VectorARC(40,0)(20,0){-45}\put(19,5){\makebox(0,0)[r]{θ}}%
\VectorARC(-40,0)(-20,0){45}\put(-19,5){\makebox(0,0)[l]{θ}}%
\put(-20,-18){\makebox(0,0)[bl]{R}}%
\put(-32,13){\makebox(0,0)[bl]{K}}%
\put(32,13){\makebox(0,0)[br]{K}}%
\end{picture}

x
sM

s = MP2 = R sin θ

y

C

P1 P2

C1 C2
P

θ

θθ

R

K K

Figure 11: The code to display the nodes and control points for an arc to be
approximated with a cubic Bézier spline

15

Figure 12: Curves between two points with different start and end slopes

\unitlength=0.1\textwidth
\begin{picture}(10,3)
\CurveBetween0,0and10,0WithDirs1,1and{1,-1}
\color{red}%
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists4And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists6And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists8And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists10And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists12And{1}
\end{picture}

Figure 13: Comparison between similar arcs drawn with \CurveBetween (black)
and \CbezierTo (red)

control points are specified by adding their distances from their neigh-
bouring nodes; actually the right distance is maintained to the value 1,
while the left one increases from 4 to 10. The black line corresponds to
the standard \CurveBetween where the default distance is computed to
trace an arc of a circle and is approximately 3.5.
In figure 14 the effect of tension specification is shown. The red line cor-
responds to the default tension, since the tension values are not specified.
The black lines correspond to the various values used in the various com-
mands to the \Curve macro. With a tension of zero, the spline is almost
coincident with the horizontal base line of the frame. Increasing the pa-
rameter value to 4.5, the curved becomes taller and taller, until it wraps
itself displaying an evident loop. We would say that the value of 2 is a
reasonable maximum and increasing that value is just to obtain special
effects.
Figure 15 displays two approximations of a sine wave; Bézier splines can
approximate transcendental curves, but the approximation may be a poor
one, depending on the approximated curve, when few arcs are used to
draw it. With arcs specified with more complicated macros the approx-

16

\unitlength =0.01\textwidth
\begin{picture}(70,70)
\put(0,0){\color{blue}\framebox(70,70){}}
\put(0,0){\color{red}%

\Curve(0,0)<1,1>(70,0)<1,-1>}
\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
\end{picture}

Figure 14: The effects of tension factors

imation is better even with a lower number of arcs. With many arcs it
is possible to approximate almost anything. On the left side a modest
approximation is obtained with just three standard arcs obtained with
\Curve and four node specifications; on the right we have just two arcs
created with CBezierBetween with tension specification and control point
distances; this drawing is almost undistinguishable from a real sinusoid.
In figure 16 some lines drawn are shown; they are drawn with quadratic
splines by means of the \Qurve macro. In the left there are some open
and closed curves inscribed within a square. On the right a “real” circle is
compared to a quadratic spline circle; the word “real” is emphasised be-
cause it actually is an approximation with four quarter-circle cubic splines
that, in spite of being drawn with third degree parametric polynomials,
approximate very well a real circle; on the opposite the quadratic spline
circle is clearly a poor approximation even if the maximum radial error
amounts just to about 6% of the radius.
Notice that the previous version of curve2e contained an error and would
color the outside of the green four-pointed star. The curve2e-v161, at-
tached to this bundle, has been corrected; therefore it is not actually iden-
tical to the previous version, although the latter one performed correctly
for everything else except for color-filled quadratic paths.

14. The new version of \multiput is backwards compatibile with the original
version contained in the LATEX kernel. The new macro adds the handling
of the coordinate increments from one position to the next for the 〈object〉
to include in the drawing.
On page ?? we show the code for the figure shown there. The red grid
is nothing new, except that it displays the traditional \multiput used
in this code, shown in a previous example, produces exactly the same
result. But the for “graphs” on the grid, it display an alignment of black
dots along the diagonal of the grid (again traditional \multiput rendered
with the new version); a number of blue dots along a parabola; another
number of magenta dots alined along a half sine wave; a number of little
green squares aligned along a −15 ◦ line starting from the center of the
grid; notice the polar values that are used as polar relative coordinate
increments.

A new command \xmultiput (not available with the previous versions of

17

\unitlength=0.01\textwidth
\begin{picture}(100,50)(0,-25)
\put(0,0){%
\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
\Pbox(45,0)[b]{x}[0]\Pbox(0,26)[tl]{y[0]}
\Curve(0,0)<77:1>(10,20)<1,0;2,0.4>(30,-20)<1,0;0.4,0.4>(40,0)<77:1;0.4,2>
}
\put(55,0){%
\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
\Pbox(45,0)[b]{x}[0]\Pbox(0,26)[tl]{y}[0]
\CbezierBetween0,0And20,0WithDirs77:1And-77:1UsingDists28And{28}
\CbezierBetween20,0And40,0WithDirs-77:1And77:1UsingDists28And{28}}
\end{picture}

x

y

x

y

Figure 15: A sequence of arcs; the left figure has been drawn with the \Curve
command with a sequence of four couples of point-direction arguments; the right
figure has been drawn with two commands \CbezierBetween that include also
the specification of the control points

curve2e) extended with respect to the original \multiput is defined by us-
ing some L3 functions; in particular the cycling counter is accessible to the
LATEX commands and it is stepped forward from 1 to the value specified
in the proper command argument (in the original command it starts from
that value and is stepped down to zero). See the figure on page 18 to in-
spect its usage. It is important to notice that if the command\rotatebox
has to be used, as in the example of figure 18, the package graphics
should be also loaded, because curve2e does not do it.

15. This implementation of curve2e includes an extension to package xfp, in
the sense that adds two more L3 commands: \fptest and \fpdowhile
to the two already contained and documented in the latter package. The
syntax of such new commands is the following

\fptext{〈test〉}{〈true〉}{〈false〉}
and
\fpdowhile〈test〉〈operations to be repeated〉

18

\unitlength=0.0045\textwidth
\begin{picture}(100,100)
\put(0,0){\framebox(100,100){}}
\put(50,50){%

\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
\color{green}

\Qurve*(0,-50)<0,1>(50,0)<1,0>[-1,0](0,50)<0,1>[0,-1](-50,0)<-1,0>[1,0](0,-50)<0,-1>
}
\Qurve(0,0)<1,4>(50,50)<1,0>(100,100)<1,4>
\put(5,50){\Qurve(0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>%
(67.5,-20)<1,0>(90,0)<1,1.5>}
\Zbox(0,0)[tc]{0,0}\Zbox(100,0)[tc]{100,0}
\Zbox(100,100)[bc]{100,100}\Zbox(0,100)[bc]{0,100}
\Pall[2](0,0)\Pall[2](100,0)\Pall[2](100,100)\Pall[2](0,100)
\end{picture}
\hfill
\begin{picture}(100,100)
\put(0,0){\framebox(100,100){}}
\put(50,50){%
\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
\Curve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}
\Zbox(50,50)[t]{O}\Pall[2](50,50)\put(50,50){\Vector(45:50)}\Zbox(67,70)[tl]{R}
\end{picture}

0, 0 100, 0

100, 1000, 100

O

R

Figure 16: Several graphs drawn with quadratic Bézier splines. On the right a
quadratic spline circle is compared with a cubic line circle.

The macro \fptest requires two further arguments that contain what to
do if the 〈test〉 is true, and what to do if the 〈test〉 is false. The 〈test〉 is
a logical expressions that connects math relation expressions, even float-
ing point ones, by means of logical operators; such operators are ||, &&,
and !, respectively for OR, AND, NOT; for example !< means “not lower
than”, which is equivalent to “equal or grater than”. The logical expres-
sion is parsed left to right and normal parentheses may be used to alter
this sequence. The logical operators work also between logical variables,
therefore the 〈test〉 may contain an interesting mixture of relation and
logical operators.
Before using \fpdowhile the arguments the 〈test〉 depends from must
be set so that the test is true; during the execution of the 〈operations

19

\unitlength=0.01\linewidth
\begin{picture}(100,100)
\GraphGrid(100,100)
\multiput(0,0)(10,10){11}{\circle*{2}}
\color{blue!70!white}
\multiput(0,0)(10,0){11}{\circle*{2}}%

[\GetCoord(\R)\X\Y
\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{(\X/10)**2}}
\CopyVect\X,\Y to\R]

\color{magenta}
\multiput(0,0)(10,1){11}{\circle*{2}}%

[\GetCoord(\R)\X\Y
\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{sind(\X*1.8)*100}}
\CopyVect\X\Y to\R]

\color{green!80!black}
\multiput(50,50)(-15:5){11}}{%
\polygon*(-1,-1)(1,-1)(1,1)(-1,1)}
\end{picture}

Figure 17: Some examples of the 〈handler〉 optional argument

\unitlength=0.0095\linewidth
\begin{picture}(100,100)
\GraphGrid(100,100)
\put(50,50){\thicklines\circle{100}}
\xmultiput[50,50](60:40)(-30:1){12}%

{\makebox(0,0){\circle*{2}}}%
[\MultVect\R by\D to\R]%

\xmultiput[50,50](60:46)(-30:1){12}%
{\ArgOfVect\R to\Ang
\rotatebox{\fpeval{\Ang-90}}%
{\makebox(0,0)[b]{\Roman{multicnt}}}}%
[\Multvect{\R}{\D}\R]

\end{picture}

I

II
III

IV

V
VIVII

VI
II

IX
X

XI XII

Figure 18: Usage example of the \xmultiput command

to be repeated〉 there must be some setting that eventually renders the
〈test〉 false. The user should pay attention to set the elements that 〈test〉
depends from, because the risk is to enter an infinite loop and end up with
some error message stating that the working memory of the program is
full.
Nevertheless such commands are very useful also for drawing graphics; the
xmultiput already makes use of such L3 functions.
As an example of use, we show how to plot a mathematical function ex-
pressed in parametric form: {

x = f1(t)
y = f2(t)

The plot is executed with a piecewise linear approximation of the curve;
if the t steps are sufficiently small, the plot turns out to be very nice; here

20

we show an example where we plot a Lissajous curve with two sinusoids
of different period.
We start by defining the Lissajous function with arguments to specify the
parameter t, the sinusoid amplitudes A1, A2, the respective “frequencies”,
by means of integer multiples of a unit pulsation, N1, N2, and the initial
phases φ1, φ2 of such sinusoids. It is better to keep apart the input of the
curve coefficients from the actual curve argument/parameter and output
point coordinates:

\def\LissajousCoefs#1,#2,#3,#4,#5,#6!{%
\edef\LAu{#1}\edef\LNu{#2}\edef\LFu{#3}%
\edef\LAd{#4}\edef\LNd{#5}\edef\LFd{#6}}

\def\LissajousCode#1#2{%
\edef\X{\fpeval{\LAu*cosd(\LNu*#1+\LFu)}}%
\edef\Y{\fpeval{\LAd*cosd(\LNd*#1+\LFd)}}%
\CopyVect\X,\Y to#2\ignorespaces}

As it is shown, the coefficients are specified as a comma separated list; the
! list terminator is taken care by the actual drawing command.
Then the curve drawing command requires the coefficient specification
only the first time it is used; some messages2 are output if the coefficients
have been “forgotten”.

\NewDocumentCommand\Lissajous{m o m}{%
\IfValueTF{#2}{\LissajousCoefs#2!\relax
\LissajousCode{#1}{#3}}%
{\ifcsname LAu\endcsname
\LissajousCode{#1}{#3}%
\else\PackageError{curve2e}%

{This Lissajous’ curve coefficients\MessageBreak
are missing}{Nothing done}\fi}%

\ignorespaces}

The syntax is the following:

\Lissajous{〈in〉}[〈A1〉,〈N1〉,〈φ1〉,〈A2〉,〈N2〉,〈φ2〉]〈Pout〉

where 〈Pout〉 is a macro that gets defined with the cartesian coordinates
of the computed output point.Arguments 〈in〉 (the t parameter) and 〈out〉
(the computed coordinates) need not be enclosed within braces if they are
given as macros; actually the code shown in figure 19 shows such procedure
that renders the input code simpler to read.
After this definition the diagram is plotted in figure 19.
For the independent variable t, the parameter of the Lissajous paramet-
ric equations, it is better to work with degrees instead of radians, and
with integer numbers, so that the whole range from 0◦ to 360◦ is certainly

2Here it would be better to have available a “Macro Error” message; such a macro is
not available, but it would be possible to define it by means of the \GenericError macro
provided by the LATEX2e kernel. Here we skip this definition in order to avoid overloading
this documentation with such details.

21

\unitlength=0.01\linewidth
\begin{picture}(100,100)(-50,-50)
\GraphGrid(-50,-50)(100,100)
\VECTOR(-50,0)(50,0)\Pbox(50,0)[tr]{x}[0]
\VECTOR(0,-50)(0,50)\Pbox(0,50)[tr]{y}[0]
\Pbox(0,0)[tr]{O}[2]
%
{\countdef\I=2560 \I=0
\fpdowhile{\I !> 360}{%

\fptest{\I=0}%
{\Lissajous\I[40,2,90,40,3,0]\Pout

\moveto(\Pout)}%
{\Lissajous\I\Pout

\lineto(\Pout)}%
\advance\I by1}\strokepath}%

\end{picture}

x

y

O

Figure 19: A Lissajous diagram

spanned. Notice the braces that include the code for the Lissajous dia-
gram; they may be useful to render that group suitable to be \put some-
where else than with its center at the origin of the canvas axes, and/or to
be used as the second argument of a \rotatebox{〈angle〉} command so
as to rotate the whole diagram.

4 Remark
In spite of the relative simplicity of the macros contained in this package, the
described macros, as well as the original ones included in the pict2e package,
they allow to produce fine drawings that were unconceivable with the original
LATEX picture environment. Leslie Lamport himself announced an extension to
his environment when LATEX 2ε was first released in 1994; in the latexnews
news-letter of December 2003, the first implementation of Lamport’s extension
was announced; the first version of this package curve2e was issued in 2006. It
was time to have a better drawing environment; this package is a simple attempt
to follow the initial path while further extending the drawing facilities.

There are other packages in the ctan archives that deal with tracing curves
of various kinds. PSTricks and pgf/tikz are the most powerful ones. And they
are becoming the standard for programmed drawing. Their documentation is
huge and the multitude of extra modules to perform special tasks is countless.
Therefore they are difficult to use; when the user gets used to their particular
syntax and got sufficient familiarity with several modules, s/he can uses these
bundles very comfortably.

This difficulty in getting a TikZ or PS expert is why I think a simpler drawing
machinery should be appreciated; I admit it: I like the picture environment; and
I like to deal with simple codes so as to create my own macros.

But there is also curves that is intended to draw almost anything by using
little dots or other symbols partially superimposed to one another. It uses only
quadratic Bézier curves and the curve tracing is eased by specifying only the
curve nodes, without specifying the control nodes; with a suitable option to the

22

package call, it is possible to reduce the memory usage by using short straight
segments drawn with the PostScript facilities offered by the dvips driver.

Another package, ebezier performs about the same as curve2e but draws its
Bézier curves by using little dots partially superimposed to one another. The
documentation is quite interesting since it explains very clearly what exactly
are the Bézier splines. Apparently ebezier should be used only for DVI output
without recourse to PostScript or PDF machinery.

The picture package extends the performance of the picture environment
(extended with pict2e) by accepting coordinates and lengths in real absolute
dimensions, not only as multiples of \unitlength; it provides commands to
extend that functionality to other packages. In certain circumstances it may be
very useful.

Package xpicture builds over the picture LATEX environment so as to allow to
draw the usual curves that are part of an introductory analytic geometry course;
lines, circles, parabolas, ellipses, hyperbolas, and polynomials; the syntax is
rather comfortable, although it is not a simple extension of the picture own
syntax; for all these curves it uses the quadratic Bézier splines.

Package hobby extends the cubic Bézier spline handling with the algorithms
John Hobby created for METAFONT and METAPOST. But by now this package
interfaces very well with tikz; it has not (yet) been adapted to the common
picture environment extended with pict2e, and, why not, with curve2e.

5 Acknowledgements
I wish to express my deepest thanks to Michel Goosens who spotted some errors
and very kindly submitted them to me so that I was able to correct them.

Josef Tkadlec and the author collaborated extensively in order to implement
a better real long division so as to get correctly the quotient fractional part
and to avoid as much as possible any numeric overflow; many Josef’s ideas are
incorporated in the macro that was implemented in the previous version of this
package, although the macro used by Josef was slightly different. Both versions
aim/aimed at a better accuracy and at widening the operand ranges. In this
version of curve2e we abandoned our long division macro, and substituted it
with the floating point division provided by the xfp package.

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see in the code documentation curve2e.pdf
file.

Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but
crucial modification in order to have curve2e work smoothly also with XeTeX
(XeLaTeX). Actually if pict2e, version 0.2x or later dated 2009/08/05 or later,
is being used, such modification is not necessary any more, but it is true that
it becomes imperative when legacy versions were used.

23

