Cryptocode

TYPESETTING CRYPTOGRAPHY

Arno Mittelbach
mail@arno-mittelbach.de

November 11, 2018

Abstract

The cryptocode package provides a set of macros to ease the typesetting of pseudocode, algorithms
and protocols (such as the one below). In addition it comes with a wide range of tools to typeset
cryptographic papers (hence the name). This includes simple predefined commands for concepts such
as a security parameter 1" or advantage terms AdvffPRF(n) = negl(n) but also flexible and powerful
environments to layout game-based proofs or black-box reductions.

Alice Bob

T 45 2q

X<+ 4"

G,q,9, X
Y <$Zq
Y « g
Y
ky < Y” kg + XV

Contents

(1

Cryptocode by Example|

2

Cryptographic Notation|

2.1 Security Parameter| oo
2.2 Advantage Terms|. L
[2.3 Math Operators|.
2.4 _Adversaries

[2.14 Complexity|« o o o e e e e e
[2.15 Asymptotics|. e
2.16 Keys| o

[3.4 Syntax Highlighting|

3.4.1 ternative Keywords|

8-5 Line Numbering] e
[3.5.1 Manually Inserting Line Numbers|

13.0.3 Separators|. L e e e e
3.6 Subprocedures| e e e

3.6.1 Numbering in Subprocedures| Lo oo
[3.7 Stacking Procedures| o
3.8 Divisions and Linebreaksl.
3.9 Matrices and Math Environments within pseudocode|
8.10 Fancy Code with Overlays| o

3.10.1 Example: Explain your Code| oo

[4__Tabbing Mode|
E1 laBBing_in Detail] o
11 Overriding The Tabbing Character] i ..

4.1.2 Custom Line Spacing and Horizontal Rules|

[6_Protocolsl

b.1 Tabbing]
.2 Multiline Messages| oL

p.2.1 Multiplayer Protocols|
0.2.2 Divisions e
b.3 Line Numbering in Protocols|
P.3.1 Separators|. L
I;[i|4 :‘i!]tz l l!ll!l! !!hil ...

6.1.1 Highlight Changes|
6.1.2 Boxed games| L
613 Reduction Hintd

[6.1.4 Numbering and Names|.0 0.

[6.1.5 efault Name and Argument| o oo

6.1.7 Styling game procedures|.
6.2 Game Descriptions|o

[7__Black-box Reductions|
[7.1 Nesting of Boxes|
[7.2 Messages and Queries| Lo e

[7.3.1 Communicating with Oracles|

[Challengers|
[741T Communicating with Challengers| i

.D Xamples| L e e e e e e

8 _Known Issues|
8.1 Pseudocode KeepSpacing within Commands|.

8.2 AMDBFonts

Q [] N
O

0 N O Uk W N

9

Chapter 1

Cryptocode by Example

The cryptocode package provides a set of commands to ease the typesetting of pseudocode, protocols,
game-based proofs and black-box reductions. In addition it comes with a large number of predefined
commands. In this chapter we present the various features of cryptocode by giving small examples. But
first, let’s load the package

Note that all the options refer to a set of commands. That is, without any options cryptocode will
provide the mechanisms for writing pseudocode, protocols, game-based proofs and black-box reductions
but not define additional commands, such as \pk or \sk (for typesetting public and private/secret keys)
which are part of the keys option. We discuss the various options and associated commands in Chapter [2}

1.1 Pseudocode

The cryptocode package tries to make writing pseudocode easy and enjoyable. The \pseudocode command
takes a single parameter where you can start writing code in mathmode using \\ as line breaks. Following
is an IND-CPA game definition using various commands from cryptocode to ease writing keys (\pk,\sk),
sampling (\sample), and more:

—

b+s{0,1}

(pk, sk) +—s KGen(1™)

(state, mo, m1) s A(1", pk, c)
¢ s Enc(pk, mp)

b s A(1", pk, c, state)

return b =9

[3, SNV V]

The above code is generated by (the code is actually wrapped in an fbox).

The pseudocode command thus takes a single mandatory argument (the code) plus an optional argu-
ment which allows you to specify options in a key=value fashion. In the above example we used the
linenumbering option (which not surprisingly adds line numbers to the code) as well as the syntaxhigh-
lighting option which highlights certain keywords (in the example it is responsible for setting “return”
as return).

It is easy to define a heading for your code. Either specify the header using the option “head” or use
the \procedure command which takes an additional argument to specify the headline.

IND-CPAZ,
1: b+s{0,1}

(pk, sk) +—s KGen(1™)
(state, mo, m1) s A(1", pk,c)

b s A(1", pk, c, state)

2

3

4: c<sEnc(pk,my)
5

6: returnb=">

Here in the example we have not turned on the automatic syntax highlighting but used the command
\pereturn t0 highlight the return statement. Besides \pcreturn there are a variant of predefined “keywords”
such as \pcfor, \pcit, etc. (all prefixed with pc)

There is a lot more that we will discuss in detail in Chapter [3| Here, for example is the same code
with an overlay explanation and a division of the pseudocode.

IND-CPAZ,.
1: b+s{0,1}

[\

(pk, sk) <—s KGen(1™)

3: (mo,m1) +sA(1", pk,c)
4: ¢ <sEnc(pk,msy)

5: b s A(1", pk, c, state)

6

return b = b’

1
2
3
4
5
6
7
8

1.2 Columns

The \pseudocode and \procedure commands allow the usage of multiple columns. You switch to a new column
by inserting a \>. This is similar to using an align environment and placing a tabbing & characterEl

First SecondThird Fourth
b+s{0,1}b+«+-s{0,1}b«+s{0,1}b+s{0,1}

As you can see the first column is left aligned the second right, the third left and so forth. In order to
get only left aligned columns you could thus simply always skip a column by using \>\>. You can also

use \< a shorthand for \>\>.

First Second Third Fourth
b<«s{0,1}b+s{0,1}b+s{0,1}b<«s{0,1}

1.3 Protocols

Using columns makes it easy to write even complex protocols. Following is a simple three party protocol

Alice Bob Charlie
work

Work result

work

Work result
Bottom message

work

A long message for Alice

finalize

11n fact, the pseudocode command is based on amsmath’s flalign environment.

[

0

R A I
9
The commands \sendmessageright and \sendmessageleft are very flexible and allow to style the sending of
messages in various ways. Also note the \\[J[\ hline] at the end of the first line. Here the first optional
argument allows us to specify the lineheight (similarly to the behavior in an align environment). The
second optional argument allows us to, for example, draw a horizontal line.

In multi player protocols such as the one above the commands \sendmessagerightx and \sendmessageleftx
(note the x at the end) allow to send messages over multiple columns. In the example, as we were using
\< the final message thus spans 8 columns.

For basic protocols you might also utilize the \sendmessageright+ and \sendmessageleft+ commands which
simply take a message which is displayed.

Alice Bob

T s Zq

X+ 4

G,q,9, X
Y s 2Lq
Y + ¢¥
Y
ky < Y7 kg + XY

O © 0 NG W N

We will discuss protocols in greater detail in Chapter [5}

1.4 Game-based Proofs

Cryptocode supports authors in visualizing game-based proofs. It defines an environment gameproof which
allows to wrap a number of game procedures displaying helpful information as to what changes from
game to game, and to what each step is reduced.

some hint
R
Game;(n) Gamey(n)

1: Stepl Step 1
2: Step 2 Step 2 is different
3: Step3 Step3

1
2
3
4

0 N O W N e

©

10

e e e e
0N D O W =

Note that we made use of the option “mode=text” in the above example which tells the underlying
pseudocode command to not work in math mode but in plain text mode. We’ll discuss how to visualize
game-based proofs in Chapter [6]

1.5 Black-box Reductions

Cryptocode provides a strucured syntax to visualize black-box reductions. Basically cryptocode provides
an environment to draw boxes that may have oracles and that can be communicated with. Cryptocode
makes heavy use of TIKZ (https://www.ctan.org/pkg/pgf) for this, which gives you quite some control
over how things should look like. Additionally, as you can specify node names (for example the outer box
in the next example is called “A”) you can easily extend the pictures by using plain TIKZ commands.

input
| m
Reduction Oracle 1
Do something b
Step 2 . m
Adversary [" b Oracle 2
o ——b
g |
more work
m
B —
o
7 |
finalize
output

https://www.ctan.org/pkg/pgf

We'll discuss the details in Chapter [7]

0 N D O W N e

9

e e e
W N DU W N = O

Chapter 2

Cryptographic Notation

In this section we’ll discuss the various commands for notation that can be loaded via package options.

Remark. The commands defined so far are far from complete and are currently mostly targeted at
what I needed in my papers (especially once you get to cryptographic notions and primitives). So please
if you feel that something should be added drop me an email.

2.1 Security Parameter

In cryptography we make use of a security parameter which is usually written as 1™ or 1*. The cryptocode

[13e)]

package, when loading either option “n” or option “lambda” will define the commands

The first command provides the “letter”, i.e., either n or A, whereas \secparam points to 1™.

2.2 Advantage Terms

Load the package option “advantage” in order to define the command \advantage used to specify advantage
terms such as:
£
AdVY pre(n) = negl(n)

Specify an optional third parameter to replace the (n).

1! \advantage{prf}{\adv,\ prf}[(arg)]

In order to redefine the styles in which superscript and subscript are set redefine

[

\renewcommand{\ pcadvantagesuperstyle } [1]{\ mathrm{\ MakeLowercase{#1}}}
2 \renewcommand {\ pcadvantagesubstyle } [1]{#1}

2.3 Math Operators

The “operators” option provides the following list of commands:

Command Description Result Example

\sample Sampling from a distribution, or run- < b+s{0,1}
ning a randomized procedure

\floor {42.5} Rounding down |42.5]

\ ceil {41.5} Rounding up [41.5]

\Angle{x,y} Vector product (x,y)

\abs{42.9} Absolute number |42.9]

\norm{x} Norm ||.’£||

\concat Verbose concatenation (I usually prefer || x <+ allb
simply \|)

\emptystring The empty string € T4 €

2.4 Adversaries
The “adversary” option provides the following list of commands:

Command Description Result

\adv Adversary A
\bdv Adversary B
\cdv Adversary C
\ddv Adversary D
\mdv Adversary M
\pdv Adversary P
\sdv Adversary S

The style in which an adversary is rendered is controlled via

1| \renewcommand{\ pcadvstyle }[1]{\ mathcal{#1}}
1

2.5 Landau

The “landau” option provides the following list of commands:
Command Description Result
\bigO{n"2} Big O notation O (n2)
\smallO{n"2} small o notation o(n?
\bigOmega{n"2} Big Omega notation Q(n?)

\bigsmallO{n"2} Big and small O notation © (nQ)

2.6 Probabilities

The “probability” option provides commands for writing probabilities. Use

to write basic probabilities, probabilities with explicit probability spaces and conditional probabilities.

Pr(X = z]

Prx%{()’l}n [X:.’L']
PriX =2 |A=0]
Prmﬁ{o’l}n[l‘:5 |A:b]

You can control the probability symbol (Pr) by redefining

For expectations you can use

yielding

E[X]

Ew,y <—${1,...,6}[m+y]
E[X 1Y |Y >3]
Ea:,y «~s{1,...,6} [iE +y |y > 3]

You can control the expactation symbol (E) by redefining

[

The support Supp (X) of a random variable X can be written as

[

where again the name can be controlled via

For denoting entropy and min-entropy use

Vo=

This yields

2.7 Sets

H(X)

Heo (X)

H(X |Y =5)
Ho(X |Y =5)
Ho(X |Y =5)

The “sets” option provides commands for basic mathematical sets. You can write sets and sequences as

\set {1, \ldots ,

10}

\sequence{l, \ldots, 10}

which is typeset

as

{1,...,10}
(1,...,10)

In addation the following commands are provided

Command Description Result
\bin The set containing 0 and 1 {0,1}
\NN Natural numbers N

\ZZ Integers Z

\QQ Rational numbers Q

\CC Complex numbers C

\RR Reals R

\PP P

\FF F

2.8 Crypto Notions

The “notions” option provides the following list of commands:

Command Description Result
\indcpa IND-CPA security for encryption schemes IND-CPA
\indcca IND-CCA security for encryption schemes IND-CCA
\indccai IND-CCAT1 security for encryption schemes IND-CCA1
\ indccaii IND-CCAZ2 security for encryption schemes IND-CCA2
\priv PRIV security for deterministic public-key encryption schemes PRIV

\ind IND security (for deterministic public-key encryption schemes) IND
\prvcda PRV-CDA security (for deterministic public-key encryption schemes) ~ PRV-CDA
\prvreda PRV$-CDA security (for deterministic public-key encryption schemes) PRV$-CDA
\kiae Key independent authenticated encryption KIAE
\kdae Key dependent authenticated encryption KDAE
\mle Message locked encryption MLE

\uce Universal computational extractors UCE

The style in which notions are displayed can be controlled via redefining

1| \renewcommand{\ pcnotionstyle } [1]{\ ensuremath{\mathrm{#1}}}
1

10

2.9 Logic

The “logic” option provides the following list of commands:

Command Description Result
\AND Logical AND AND
\NAND Logical NAND NAND
\OR Logical OR OR
\NOR Logical NOR NOR
\XOR Logical XOR XOR
\XNOR Logical XNOR XNOR
\NOT not NOT
\xor exclusive or &)
\ false false false
\true true true
2.10 Function Families
The “ff” option provides the following list of commands:

Command Description Result

\kgen Key generation KGen

\pgen Parameter generation Pgen

\eval Evaluation Eval

\invert Inversion Inv

\il Input length il

\ol Output length ol

\kl Key length kl

\nl Nonce length nl

\rl Randomness length rl

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pcalgostyle } [1]{\ ensuremath{\mathsf{#1}}}
1

2.11 Machine Model

The “mm” option provides the following list of commands:

Command Description Result
\CRKT A circuit C

\TM A Turing machine M
\PROG A program P

\uTM A universal Turing machine UM
\uC A universal Circuit uc

\uP A universal Program UEval
\tmtime Time (of a TM) time
\ppt Probabilistic polynomial time PPT

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pcmachinemodelstyle }[1]{\ ensuremath{\mathsf{#1}}}

11

2.12 Crypto Primitives

The “primitives” option provides the following list of commands:

Command Description Result
\prover Proover P

\ verifier Verifier V
\nizk Non interactie zero knowledge NIZK
\hash A hash function H
\gash A hash function G
\fash A hash function F
\enc Encryption Enc
\dec Decryption Dec
\sig Signing Sig

\ verify Verifying Vf
\obf Obfuscation 0]

\iO Indistinguishability obfuscation iO
\diO Differing inputs obfuscation dio
\mac Message authentication MAC
\puncture Puncturing Puncture
\source A source S
\predictor A predictor P
\sam A sampler Sam
\ distinguisher A distinguisher Dist
\ dist A distinguisher D
\simulator A simulator Sim
\ext An extractor Ext

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pcalgostyle } [1]{\ ensuremath{\mathsf{#1}}}
1

o =

2.13 Events

The “events” option provides the following list of commands.

To classify an event use

\event{Event}
\nevent{Event}

where the second is meant as the negation. These are typset as

For bad events, use \bad (bad).

2.14 Complexity

Event

Event

The “complexity” option provides the following list of commands:

12

Command Result

\npol NP
\conpol coNP
\pol P

\bpp BPP
\ppoly P/pOly
\NC{1} NC!
\AC{1} AC!
\TC{1} TC!
\AM AM
\coAM coAM

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pccomplexitystyle }[1]{\ ensuremath{\mathsf{#1}}}

2.15 Asymptotics

The “asymptotics” option provides the following list of commands:

Command Description Result

\negl A negligible function negl(n) (takes an optional argument \negla]
(negl(a)). Write \negl|[] for negl.)

\poly A polynomial poly (n) (takes an optional argument \poly[a]
(poly(a)). Write \poly[] for poly.)

\pp some polynomial p p

\aq some polynomial q q

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pcpolynomialstyle }[1]{\ ensuremath {\mathrm{#1}}}

2.16 Keys
The “keys” option provides the following list of commands:
Command Description Result
\pk public key pk
\vk verification key vk
\sk secret key sk
\key a plain key k
\hk hash key hk
\gk gash key gk
\fk function key fk

The style in which these are displayed can be controlled via redefining

1| \renewcommand{\ pckeystyle } [1]{\ ensuremath{\mathsf{#1}}}
1

13

Chapter 3

Pseudocode

In this chapter we discuss how to write pseudocode with the cryptocode library.

3.1 Basics

The cryptocode package provides the command pseudocode for typesetting algorithms. Consider the
following definition of an IND-CPA game

b<+s{0,1}

(pk, sk) +—s KGen(1™)
(mo, m1) «s.A(1", pk, c)
¢ <—s Enc(pk, my)

b s A(1", pk, c)

return b = b

which is generated as

As you can see the pseudocode command provides a math based environment where you can simply start
typing your pseudocode separating lines by \\.

Boxed appearance Although most examples here appear centered and boxed this is not directly part
of the pseudocode package but due to the examples being typeset as

3.1.1 Customizing Pseudocode

Besides the mandatory argument the \pseudocode command can take an optional argument which consists
of a list of key=value pairs separated by commas (,).

1| \pseudocode [options]|{body}
L

The following keys are available:
head A header for the code

width An exact width. If no width is specified, cryptocode tries to automatically compute the correct
width.

Instart The starting line number when using line numbering.
Instartright The starting line number for right aligned line numberswhen using line numbering.
linenumbering Enables line numbering.

syntaxhighlight When set to “auto” cryptocode will attempt to automatically hightlight keywords
such as “for”, “foreach” and “return”

keywords Provide a comma separated list of keywords for automatic syntax highlighting. To customize
the behavior of automatic spacing you can provide keywords as

keywordsindent After seeing this keyword all following lines will be indented one extra level.

keywordsunindent After seeing this keyword the current and all following lines will be unin-
dented one extra level.

keywordsuninindent After seeing this keyword the current line will be unindented one level.
addkeywords Provide additional keywords for automatic syntax highlighting.

altkeywords Provide a second list of keywords for automatic syntax highlighting that are highlighted
differently.

mode When set to text pseudocode will not start in math mode but in text mode.

space Allows you to enable automatic spacing mode. If set to “keep” the spaces in the input are
preserved. If set to “auto” it will try to detect spacing according to keywords such as “if” and “fi”.

codesize Allows to specify the fontsize for the pseudocode. Set to \ scriptsize for a smaller size.

colspace Allows to insert spacing between columns. In particular this allows to also overlap columns
by inserting negative space.

jot Allows to specify extra space between each line. Use jot=1mm.

beginline Allows to specify a macro that is placed at the beginning of each line.
endline Allows to specify a macro that is placed at the end of each line.

xshift Allows horizontal shifting

yshift Allows horizontal shifting

headlinesep Specifies the distance between header and the line.

bodylinesep Specifies the distance between body and the line.

colsep Defines the space between columns.

addtolength Is added to the automatically computed width of the pseudocode (which does not take
colsep into account).

valign Controls the vertical alignment of the pseudocode. Pseudocode is wrapped in a minipage en-
vironment and valign value is passed as orientation for the minipage. By default valign is set to
44t77.

15

nodraft Forces syntax highlighting also in draft mode.
The following code

1| \ pseudocode [linenumbering , syntaxhighlight=auto ,head=Header]{ return null }
1

creates

Header

1: return null

3.1.2 Customized Pseudocode Commands

Besides the \pseudocode command the command \procedure provides easy access to generate code with a
header. It takes the following form

1| \procedure [options]{Header }{Body}
1

N oG A W N e

Examples

IND-CPAZ

Enc

b+s{0,1}

(pk, sk) «<—s KGen(1™)
(mo,m1) s A(1", pk, c)
¢ <s Enc(pk, my)

b s A(1", pk, c)

return b = b

which is generated as

\procedure{$\indcpa_\enc \adv$}{%
b \sample \bin \\
(\pk,\sk) \sample \kgen(\secparam) \\
(m-0,m_-1) \sample \adv(\secparam, \pk, c) \\
¢ \sample \enc(\pk,m_-b) \\
b’ \sample \adv(\secparam, \pk, c) \\
\pcreturn b = b’ }

You can define customized pseudocode commands which either take one optional argument and two
mandatory arguments (as the procedure command) or one optional and one mandatory argument (as
the pseudocode command). The following

\createprocedurecommand {mypseudocode }{}{}{linenumbering}
\createpseudocodecommand{myheadlesscmd } {}{}{linenumbering}

creates the commands \mypseudocode and \myheadlesscmd with line numbering always enabled. The first
command has an identical interface as the \pseudocode command, the second has an interface as the \
procedure command. The second and third argument that we kept empty when generating the commands
allows us to specify commands that are executed at the very beginning when the command is called
(argument 2) and a prefix for the header.

3.2 Indentation

In order to indent code use \pcind or short \t. You can also usecustomized spacing such as \quad or \hspace
when using the pseudocode command in math mode.

16

for i =1..10 do
T[i] +s{0,1}"
for i =1..10 do
Ti] +s{0,1}"

which is generated as

Ol W N =

You can specify multiple levels via the optional first argument

-

for i =1..10 do
T[] +s{0,1}"
T[] +s{0,1}"
T[i] +s{0,1}"
Ti] +s{0,1}"
T[i] +s{0,1}"

You can customize the indentation shortcut by redefining

Automatic Indentation

The pseudocode command comes with an option “space=auto” which tries to detect the correct inden-
tation from the use of keywords. When it sees one of the following keywords

[

it will increase the indentation starting from the next line. It will again remove the indentation on seeing

-

Additionally, on seeing

-

it will remove the indentation for that particular line. Thus the following

17

for a € [10] do
for a € [10] do
for a € [10] do
if a = b then
some operation
elseif a = c then
some operation
else
some default operation
fi
endfor
endfor
endfor

return a

can be obtained by:

1
2
3
4
5
6
7
8

©

Note that the manual indentation in the above example is not necessary for the outcome. Further note
that the same works when using automatic syntax highlighting (see Section [3.4)).

Keep Input Indentation

The pseudocode package comes with an experimental feature that preserves the spacing in the input.
This can be enabled with the option “space=keep”. Thus the above can also be written as

for i = 1..10 do
T[i] «+s {0,1}"
T[i] +s {0,1}"
T[] «+s {0,1}"
T[] +s {0,1}"
T[] +s {0,1}"

Note that automatic spacing only works when the \pseudocode command is not wrapped within another
command. Thus in order to get a frame box \fbox{\pseudocode[space=keep]{code}} Will not work but you

18

would need to use an environment such as one offered by the mdframed package ((https://www.ctan.
org/pkg/mdframed). Also see Section

3.3 Textmode

By default pseudocode enables INTEX’ math mode. You can change this behavior and tell the pseudocode
command to interpret the content in text mode by setting the option “mode=text”.

This is
simply text

\pseudocode [mode=text | {%
This is \\
\t simply text}

3.4 Syntax Highlighting

In the above examples we have used commands \pcreturn and \pcfor to highlight certain keywords. Besides
the pereturn, pcfor and pedo (where the pe stands for pseudocode) that were used in the above examples
the package defines the following set of constants:

name
pcabort
pccontinue
pccomment
pcdo
pcdone
pcfail
pcfalse

pcif

pcfi
pcendif
pcelse
pcelseif
pcfor
pcendfor
pcforeach
pcendforeach
pcglobvar
pcin

pcnew
penull
pcparse
pcrepeat
pcreturn
pcuntil
pcthen
pctrue
pcwhile
pcendwhile

usage
\pcabort
\pccontinue
\pccomment{comment }
\pcdo
\pcdone

\ pcfail

\ pcfalse

\ pcif

\pcfi

\pcendif
\pcelse

\ pcelseif
\pcfor
\pcendfor
\pcforeach
\pcendforeach
\pcglobvar
\pcin

\pcnew
\pcnull
\pcparse
\pcrepeat{10}
\pcreturn
\pcuntil
\pcthen
\pctrue
\pcwhile
\pcendwhile

outcome
abort
continue
// comment
do

done
fail

false

if

fi

endif
else
elseif

for
endfor
foreach
endforeach
gbl

in

new

null
parse
repeat 10 times
return
until
then
true
while
endwhile

Note that \pcdo, \pcin and \pcthen have a leading space. This is due to their usual usage scenarios such as

19

https://www.ctan.org/pkg/mdframed
https://www.ctan.org/pkg/mdframed

for i in{1,...,10}

Furthermore all constants have a trailing space. This can be removed by adding the optional parameter
[] such as

for iin{1,...,10}

-

In order to change the font you can overwrite the command \highlightkeyword Which is defined as

-

Automatic Syntax Highlighting

The pseudocode command comes with an experimental feature to automatically highlight keywords.
This can be activated via the option “syntaxhighlight=auto”. The preset list of keywords it looks for are

[

Note that the keywords are matched with spaces and note the grouping for trailing spaces. That is, the
“ do ” keyword won’t match within the string “don’t”. Via the option “keywords” you can provide a
custom list of keywords. Thus the following bubblesort variant (taken from http://en.wikipedia.org/|

wiki/Bubble_sort)

Bubblesort(A : list of items)

n < length(A)
repeat
s < false
for i = 1ton — 1do
// if this pair is out of order
if Ali —1] > A[i] then
/| swap them and remember something changed
swap(Afi — 1], A[4])
s < true

until —s

can be typeset as

H O © 0N U s W N

o

You can also define additional keywords using the “addkeywords” option. This would allow us to
specify “length” and “swap” in the above example. Combined with automatic spacing we could thus get

20

http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Bubble_sort

Bubblesort(A : list of items)

n < length(A)
repeat
s <« false
fori=1ton—1do
// if this pair is out of order
if A[i —1] > A[i] then
// swap them and remember something changed
swap(A[i — 1], Ald])
s < true

until —s

Simply by writing (note the \neg{} in order to not have a space before s):

1

= O © 0 NG A W N

=

Also note that a simple \fbox around the above \procedure command has the effect that the automatic
spacing fails. For this also see Section As an alternative we could use automatic spacing and insert
“group end” keywords such as “fi”:

Bubblesort(A : list of items)

n « length(A)
repeat
s < false
for i = 1ton — 1do
// assuming this pair is out of order
if Ali —1] > A[i] then
/| swap them and remember something changed
swap(A[i — 1], A[i])
s < true
endif
endfor

until —s

The last example is generated as (note that here fbox is fine.)

13

3.4.1 Alternative Keywords

There is a second keyword list that you can add keywords to which are highlighted not via \nighlightkeyword
but via \highlightaltkeyword where alt stands for alternate. This allows you to have two different keyword
styles which are by default defined as

S

This allows you to rewrite the above example and highlight the different nature of swap and length.

Bubblesort(A : list of items)

n < length(A)
repeat
s < false
for i = 1ton — 1do
/| assuming this pair is out of order
if Ali —1] > A[i] then
/| swap them and remember something changed
swap(A[i — 1], A[i])
s < true
endif

endfor

until —s

3.4.2 Draft Mode

Automatic syntax highlighting is a somewhat expensive operation as it requires several rounds of regular
expression matching. In order to speed up compilation the pseudocode command will not attempt
automatic highlighting when the document is in draft mode. When in draft mode and you want to force
a specific instance of \pseudocode to render the code with automatic syntax highlighting you can use the
OptiOIl nodraft.

3.5 Line Numbering

The pseudocode command allows to insert line numbers into pseudocode. You can either manually
control line numbering or simply turn on the option “linenumbering”.

22

IND-CPAZ

Enc

1: b+s{0,1}

(pk, sk) +—s KGen1™)
(mo, m1) <. A(1", pk, c)
¢ s Enc(pk, ms)

b s A(1", pk, c)

return b = b’

DUt s W N

is generated by

Note how you can use labels such as \label{tmp:line:label} which now points to [3}

3.5.1 Manually Inserting Line Numbers

In order to manually insert line numbers use the command \pcln.

IND-CPAZ,.
1: b<s{0,1}

2: (pk,sk) <sKGenl™)

3 (mo, m1) <s.A(1", pk, ¢)
4: ¢ <+sEnc(pk, msy)

5: b «sA(1", pk,c)

6

return b = b’

is generated by

Note that the label tmp:line:label2 now points to line number [3]

3.5.2 Start Values

You can specify the start value (-1) of the counter by setting the option “Instart”.

._.
[N}
w

0 N D O W N e

o e
V= O ©

IND-CPAZ .

11: b+s{0,1}

12: (pk,sk) <—s KGenl™)

13: (mo,m1) +s.A(1", pk, c)
14 : ¢ <sEnc(pk, ms)

15: b <sA(1", pk,c)

16: returnb=1"5

3.5.3 Separators

The commands \pclnseparator defines the separator between the pseudocode and the line numbering. By
default the left separator is set to (:) colon. Also see Section [5.3.1}

3.6 Subprocedures

The pseudocode package allows the typesetting of sub procedures such as

IND-CPAZ .
1: b+s{0,1}

2: (pk,sk) <—sKGen(1")

-
3: (mo,mi) s A(1", pk, ¢)

return mo, m1
P |

4: c<+sEnc(pk,msp)
5: b «s A", pk,c)

6: returnb=1"V

To create a subprocedure use the subprocedure environment. The above example is generated via

\procedure [linenumbering|{$\ indcpa_\enc \adv$}{%
b \sample \bin
(\pk,\sk) \sample \kgen(\secparam) \\
(m-0,m-1) \sample \begin{subprocedure}%
\dbox{\ procedure {$\adv (\secparam, \pk, c)$}{%
\text{Step 1} \\
\text{Step 2} \\
\pcreturn m_-0, m-1 }}
\end{subprocedure} \
¢ \sample \enc(\pk,m-b) \\
b’ \sample \adv(\secparam, \pk, c) \\
\pcreturn b = b’ }

Here the dbox command (from the dashbox package) is used to generate a dashed box around the sub
procedure.

3.6.1 Numbering in Subprocedures

Subprocedures as normal pseudocode allow you to create line numbers. By default the line numbering
starts with 1 in a subprocedure while ensuring that the outer numbering remains intact. Also note that
the linenumbering on the outer procedure in the above example is inherited by the subprocedure. For
more control, either use manual numbering or set the option “linenumbering=off” on the subprocedure.

24

IND-CPAZ,.

1: b+«s{0,1}
(pk, sk) +—s KGen(1™)

]

I
I
I I
1 1: Stepl |
I I
1 2: Step 2 I
I I
I I

3: return mo,my
|

4: c<«sEnc(pk,msp)
5: b <sA(1", pk,c)

6: returnb=1"0

e N I S

©

o
N o= O

3.7 Stacking Procedures

2

You can stack procedures horizontally or vertically using the environments “pchstack” and “pcvstack”.

N

The following example displays two procedures next to one another. As a spacing between two
horizontally outlined procedures use \pchspace which takes an optional length as a parameter.

IND-CPAZ,. Oracle O
1: b<s{0,1} 1: linel

2: (pk,sk) +sKGen(1™) 2: line 2
3: (mo,mi) +s.A° (1", pk)

4: c<+sEnc(pk,ms)

5: b s A(1", pk,c)

6

return b = b’

1
2
3
4
5
6
7
8

e e e
G W N = O ©

-
=

Similarly you can stack two procedures vertically using the “pcvstack” environment. As a spacing
between two vertically stacked procedures use \pcvspace which takes an optional length as a parameter.

IND-CPAZ,
1: b<s{0,1}

2: (pk,sk) «sKGen(1™)

3. (mo,ma) «s.A°(1", pk)
4: c<sEnc(pk,msy)

5 b s A(1", pk, c)

6

return b = b’

Oracle O
1: linel
2: line 2

1
2
3
4
5
6
7
8

Horizontal and vertical stacking can be combined

IND-CPAZ,. IND-CPAZ,
1: b<s{0,1} 1: b<+s{0,1}

(pk, sk) +—s KGen(1™)
(mo,my) s AZHLH2(1™ pl)

2 (pk, sk) +—s KGen(1™)
3

4: c<sEnc(pk,ms)

5

6

(mo, m1) s A° (1", pk)
¢ s Enc(pk, mp)
b s A(1", pk, c)

return b =9

b s A(1", pk, c)

return b =10’

[L BV N

Oracle O Oracle H; Oracle H,

1: linel 1: linel 1: linel
2: line2 2: line2 2: line?2

1
2
3
4
5
6
7
8
9
0

[

3.8 Divisions and Linebreaks

Within the pseudocode command you generate linebreaks as \\. In order to specify the linewidth you

can add an optional argument

—

Furthermore, you can add, for example a horizontal line by using the second optional argument and

write

-

IND-CPAZA

Enc

1:

b+s{0,1}

(<> BN G V)

(pk, sk) s KGen(1™)
(mo, m1) +s A% (1", pk)
¢ <s Enc(pk, my)

b s A(1", pk, c)

return b = b’

27

3.9 Matrices and Math Environments within pseudocode

In order to work its magic, cryptocode (in particular within the \pseudocode command) mingles with
a few low level commands such as \\ or \halign. The effect of this is, that when you use certain math
environments, for example, to create matrices, within pseudocode the result may be unexpected. Consider
the following example

S S

which, somewhat unexpectedly, yields

A
compute P = < B C>

That is, the alignment is somewhat off. In order, to allow for the pmatriz environment to properly
work without interference from \pseudocode you can wrap it into a pembox environment (where pcmbox
is short for pseudocode math box). This ensures that the low-level changes introduced by \pseudocode are
not active.

A
compute P = <B n C’)

3.10 Fancy Code with Overlays

Consider the IND-CPA game. Here we have a single adversary A that is called twice, first to output two
messages then given the ciphertext of one of the messages to “guess” which one was encrypted. Often
this is not visualized. Sometimes an additional state state is passed as we have in the following example
on the left. On the right, we visualize the same thing in a bit more fancy way.

IND-CPAZ,. IND-CPAZ,.
1: b<+s{0,1} 1: b<+s{0,1}

2: (pk,sk) «sKGen(1") 2: (pk,sk) «sKGen(1™)

3 (state, mo, m1) < A(1", pk,) 3 (mo, m1) «s.A(1", pk, ¢)

4: c<+sEnc(pk, msy) 4: c<sEnc(pk, ms) >state
5: b <sA(1", pk,c, state) 5: b <sA(1", pk,c, state)

6: 6

return b =9 return b =9

The image on the right is generated by:

1
2
3
4
5
6
7
8
9

In order to achieve the above effect cryptocode utilizes TIKZ underneath. The pcnode command
generates TIKZ nodes and additionally we wrapped the pseudocode (or procedure) command in an \
begin{pcimage}\end{pcimage} environment which allows us to utilize these nodes later, for example using the
\pedraw command. We can achieve a similar effect without an additional pcimage environment as

1
2
3
4
5
6
7
8

3.10.1 Example: Explain your Code

As an exmaple of what you can do with this, let us put an explanation to a line of the code.

IND-CPAZ,.

1: b<s{0,1}
(pk, sk) «<—s KGen(1™)
(mo, m1) s A(1", pk, c)
¢ s Enc(pk, mp)
b s A(1", pk, ¢, state)

return b = b

S ot s WN

30

Chapter 4

Tabbing Mode

In the following chapter we discuss how to create multiple columns within a pseudocode command. Within
a pseudocode command you can switch to a new column by inserting a \>. This is similar to using an align
environment and placing a tabbing character (&). Also, similarly to using align you should ensure that
the number of \> are identical on each line.

First SecondThird Fourth
b<s{0,1}b+-s{0,1}b+s{0,1}b+«s{0,1}

0 N

\pseudocode {%
\textbf{First} \> \textbf{Second} \> \textbf{Third} \> \textbf{Fourth} \\
b \sample \bin \> b \sample \bin \> b \sample \bin \> b \sample \bin}

As you can see the first column is left aligned the second right, the third left and so forth. In order to
get only left aligned columns you could thus simply always skip a column by using \>\>. You can also
use \< a shorthand for \>\>.

First Second Third Fourth
b<-s{0,1}b<-s{0,1}b<s{0,1}b+-s{0,1}

S

\pseudocode{%
\textbf{First} \< \textbf{Second} \< \textbf{Third} \< \textbf{Fourth} \\
b \sample \bin \< b \sample \bin \< b \sample \bin \< b \sample \bin}

Column Spacing You can control the space between columns using the option “colsep=2em”. Note
that when doing so you should additionally use “addtolength=>5em” (where 5em depends on the number
of columns) in order to avoid having overfull hboxes.

First Second Third Fourth
b<+s{0,1} b<s{0,1} b<+s{0,1} b+<«s{0,1}

W N =

\pseudocode{%

\pseudocode [colsep=lem, addtolength=10em] {%

\textbf{First} \< \textbf{Second} \< \textbf{Third} \< \textbf{Fourth} \\
b \sample \bin \< b \sample \bin \< b \sample \bin \< b \sample \bin}

This is basically all you need to know in order to go on to writing protocols with the cryptocode
package. So unless you want to know a bit more about tabbing (switching columns) and learn some of
the internals, feel free to proceed to Chapter

31

o W e

N U W N

4.1 Tabbing in Detail

At the heart of the pseudocode package is an align (or rather a flalign*) environment which allows
you to use basic math writing. Usually an align (or flalign) environment uses & as tabbing characters.
The pseudocode comes in two modes the first of which changes the default align behavior. That is, it
automatically adds a tabbing character to the beginning and end of each line and changes the tabbing
character to \>. This mode is called mintabmode and is active by default.

In mintabmode in order to make use of extra columns in the align environment (which we will use
shortly in order to write protocols) you can use \> as you would use & normally. But, don’t forget that
there is an alignment tab already placed at the beginning and end of each line. So the following example

Alice Bob
b+s{0,1}

send over b

do something

is generated by

\pseudocode{%

\textbf{Alice} \> \> \textbf{Bob} \\

b \sample \bin \> \> \\

\> \xrightarrow{\text{send over } b} \> \\
\> \> \text{do something}}

In Chapter [l we’ll discuss how to write protocols in detail. The next two sections are rather technical,
so feel free to skip them.

4.1.1 Overriding The Tabbing Character

If you don’t like \> as the tabbing character you can choose a custom command by overwriting \pctabname.
For example

\renewcommand {\ pctabname }{\myTab}

\pseudocode{%

\textbf{Alice} \myTab \myTab \textbf{Bob} \\

b \sample \bin \myTab \myTab \\

\myTab \xrightarrow {\text{send over } b} \myTab \\
\myTab \myTab \text{do something}}

4.1.2 Custom Line Spacing and Horizontal Rules

As explained underlying the pseudocode command is an flalign environment. This would allow the use
of \\[spacing] to specifiy the spacing between two lines or of [\\\hline] to insert a horizontal rule. In order
to achieve the same effect within the pseudocode command you can use \\[spacing][\ hline]. You can also
use \pclb to get a line break which does not insert the additional alignment characters.

32

Chapter 5

Protocols

The pseudocode package can also be used to write protocols such as

My Protocol

Alice Bob
b+s{0,1}

send over b
—_—

do something

send over sth. else

finalize

which uses the tabbing feature of align and is generated as

1
2
3
4
5
6
7
8

In order to get nicer message arrows use the commands \sendmessageright+{message} and \sendmessagelefts{
message}. Both take an additional optional argument specifying the length of the arrow and both are run
in math mode.

1
2

My Protocol

Alice Bob
b+«s{0,1}

send over b

do something

send over sth. else

finalize

Besides the starred version there is also the unstarred version which allows more flexibility. Note that
a crucial difference between the starred and unstarred versions are that \sendmessageleft+{message} wraps an
aligned environment around the message.

My Protocol

Alice Bob
b+s{0,1}

send over b

Text below
do something

send over sth. else

finalize

The unstarred commands take key-value pairs. The following keys are available:
top The content to display on top of the arrow.

bottom The content to display below the arrow.

left The content to display on the left of the arrow.

right The content to display on the right of the arrow.
topstyle The TIKZ style to be used for the top node.
bottomstyle The TIKZ style to be used for the bottom node.
rightstyle The TIKZ style to be used for the right node.
leftstyle The TIKZ style to be used for the left node.

length The length of the arrow.

style The style of the arrow.

width The width of the column

centercol Can be used to ensure that the message is displayed in the center. This should be set to the
column index. In the above example, the message column is the third column (note that there is
a column left of alice that is automatically inserted.).

5.1 Tabbing

When typesetting protocols you might find that using two tabs instead of a single tab usually provides a
better result as this ensures that all columns are left aligned. For this you can use \< instead of \> (see
Chapter [4).

Following is once more the example from before but now with double tapping.

My Protocol

Alice Bob
b+«+s{0,1}

send over b

do something

send over sth. else

finalize

5.2 Multiline Messages

Using the send message commands you can easily generate multiline messages as the command wraps
an aligned environment around the message.

My Protocol

Alice Bob
b+s{0,1}

send over b

second line

do something

left aligned

multiline message

finalize

5.2.1 Multiplayer Protocols

You are not limited to two players. In order to send messages skipping players use \sendmessagerightx and

\sendmessageleftx.

1
[y]
35

Multiparty Protocol

Alice Bob Charlie

work

Work result

work

Work result
Bottom message

work

A long message for Alice

finalize

O © W N oA W N

[

Note that for the last message from Charlie to Alice we needed to specify the number of passed over
colums (\sendmessageleftx[7cm] {8} {message}). As we were passing 4 \< where each creates 2 columns, the total
was 8 columns.

5.2.2 Divisions

You can use \pcintertext in order to divide protocols (or other pseudocode for that matter).
[petneervexcfaonedicontertoivision ted]

Note that in order to use the \pcintertext you need to use \pcib as the line break for the line before. Also
see Chapter [4

My Protocol

Alice Bob
b+«s{0,1}

send over b

do something

message

finalize

1
2
3
4
5
6
7
8
9

5.3 Line Numbering in Protocols

Protocols can be numbered similarly to plain pseudocode. Additionally to the \pcin there are the com-
mands \pclnr and \perln. The first allows you to right align line numbers but uses the same counter as

\pcln. The second uses a different counter.

My Protocol

1: Alice
2: b+s{0,1}

send over b

send over sth. else

6 : finalize

do something

3

4

Which is generated as

And using \perin:

My Protocol

1: Alice
2: b+s{0,1}

send over b

send over sth. else

3: finalize

1
do something 2

3

Which is generated as

5
6
7

5.3.1 Separators

The commands \pclnseparator and \pcrlnseparator define the separators between the pseudocode and line
numbering. By default the left separator is set to (:) colon and the right separator is set to a space of 3

pt.

5.4 Sub Protocols

Use the “subprocedure” function also to create sub protocols.

My Protocol

Alice Bob
b<«-s{0,1}

send over b

do something
r-—"T>""~>"~"~"~"~"~" =" " =" " =" " " =" =" " =" - =T °-"=-°-°=°7°7 "
I
I

Subprotocol

Charlie

something more

message
_—

some processing

more processing

message
-—

message
_—

message

send over sth. else

finalize

1
2
3
4
5
6
7
8

e e e
D Uk W= O ©

-
S

38

39

[

Chapter 6

Game Based Proofs

6.1 Basics

Besides displaying pseudocode the package also comes with commands to display game based proofs. A
proof is wrapped in the gameproof environment.

Within the proof environment you can use the command \gameprocedure which works similarly to the
pseudocode command and produces a heading of the form Gamecounter Where counter is a consecutive
counter. Thus, we can create the following setup

Game;(n) Gamey(n)

1: Stepl Step 1l
2: Step 2 Step 2

by using

O © 0N DU W N =

6.1.1 Highlight Changes

In order to highlight changes from one game to the next use \gamechange.

Game;(n) Gamey(n)

1: Stepl Step1l
2: Step 2 Step 2

6.1.2 Boxed games

Use \tbxgameprocedure in order to create two consecutive games where the second game is bozxed. Use \pcbox
to create boxed statements.

Game;(n) Gameg(n)|Games(n) Gamey(n)

1: Step 1 Step 1;| Alternative step 1 | Step 1
2 Step 2 Gtep 2 is different Step 2

e B I

9

6.1.3 Reduction Hints

In a game based proof in order to go from one game to the next we usually give a reduction, for example,
we show that the difference between two games is bound by the security of some pseudorandom generator
PRG. To give a hint within the pseudocode that the difference between two games is down to “something”
you can use the \addgamehop command.

[

Here options allows you to specify the hint as well as the style. The following options are available
hint The hint text

nodestyle A TIKZ style to be used for the node.

pathstyle A TIKZ style to be used for the path.

edgestyle A TIKZ style to be used for the edge. This defaults to “bend left”.

some hint
7 ™~

Gamej(n) Gamex(n)

1: Step 1l Step 1
2: Step 2 Step 2 is different

1
2
3
4
5
6
7
8
9
0
1

o

The edgestyle allows you to specify how the hint is displayed. If you, for example want a straight line,
rather than the curved arrow simply use

-

If game proofs do not fit into a single picture you can specify start and end hints using the commands

N

some hint

some hint s some outgoing hint
Gamej(n) Gamey(n)———

1: Step 1 Step 1
2: Step 2 Step 2 is different

1
2
3
4
5
6
7
8

©

6.1.4 Numbering and Names

By default the gameproof environment starts to count from 1 onwards. Its optional parameters allow
you to specify a custom name for your game and the starting number.

-

some ingoing hint some hint some outgoing hint

/\M/\/‘\

yGameg(1™) MyGame,(1™)

1: Stepl Step 1
2: Step2 Step 2 is different

42

6.1.5 Default Name and Argument

The default name and argument are controlled via the commands \pcgamename and \gameprocedurearg.

Command Default
\pcgamename \mathsf{Game}

\gameprocedurearg (\secpar)

6.1.6 Two Directional Games
You can use the \bxgameprocedure to generate games for going in two directions. Use the \addloopgamehop to

add the gamehop in the middle.

some hint

Gamey(n) Games(n)
some loop hint

some hint some hint
[——

Game; (n) Gamesz(n)
1: Step 1;| Alternative | Step 1;| Alternative
2: Step 2 Step 2 is different

1
2
3
4
5
6
7
8

R e e e
B W N = O ©

6.1.7 Styling game procedures

It may come in handy to define default style arguments for the underlying pseudocode command used
by \gameprocedure. For this you can define the default arguments by calling \setgameproceduredefaultstyle tO
for example:

[

The default is to not set any options.

reduction target

w N

I

N o«

6.2 Game Descriptions
Cryptocode also comes with an environment to provide textual descriptions of games such as

MyGames(n): This is the third game. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis
condimentum velit et orci volutpat, sed ultrices lorem lobortis. Nam vehicula, justo eu varius
interdum, felis mi consectetur dolor, ac posuere nulla lacus varius diam. Etiam dapibus blandit

leo, et porttitor augue lacinia auctor.

MyGamey(n): This is the second game. The arrow at the side indicates the reduction target.

The above example is generated as

\begin{gamedescription } [name=MyGame, nr =2]

\describegame

This is the third game. Lorem ipsum dolor sit amet,
condimentum velit et orci volutpat, sed ultrices
varius interdum, felis mi consectetur dolor,
dapibus blandit leo, et porttitor augue

consectetur adipiscing elit. Duis
lorem lobortis. Nam vehicula, justo eu

ac posuere nulla lacus varius diam. Etiam
lacinia auctor.

\describegame [inhint=reduction target]
This is the second game. The arrow at the side

indicates the reduction target.
\end{gamedescription}

The gamedescription environment takes an optional argument to specify name and counter (defaults

to Game and 0). The command \describegame starts a new game description and can allows you to provide
a reduction hint using the option parameter inhint.

Parameter Description

inhint Displays an ingoing arrow to denote the reduction target for this game hop.
length Allows to control the length of the arrow.

nodestyle Allows to control the style of the node.

hint Instead of having an ingoing arrow, this adds an outgoing arrow.

44

Chapter 7

Black-box Reductions

The cryptocode package comes with support for drawing basic black box reductions. A reduction is
always of the following form.

That is, a “bbrenv” (where bbr is short for black-box reduction) environment which takes a single
“bbrbox” environment and some additional commands.
The following is a simple example drawing one (black)box with some code and input output:

input

l

step 1

Box Name

step 2
for some condition do

step 3

!

output

This box is generated as

1
2
3
4
5
6
7
8

©

The commands bbrinput and bbroutput allow to specify input and output for the latest “bbrenv” en-
vironment. The optional parameters for the bbrenv environment allow to specify leading and trailing
space (this may become necessary when using inputs and outputs). The single argument to the bbrenv

45

environment needs to specify a unique identifier (unique for the current reduction). This id is used as
an internal TIKZ node name (https://www.ctan.org/pkg/pgt)).

[

As we are drawing a TTKZ image, note that we can easily later customize the image using the labels
that we have specified on the way.

input

Box Name

Y step 2 Y

for some condition do

step 3
L
|

output

1
2
3
4
5
6
7
8

e e e i
N O e W N O ©

The “bbrbox” takes as single argument a comma separated list of key value pairs. In the example we
have used

to specify the label. The following options are available

Option Description

name Specifies the box’s label

namepos Specifies the position (left, center, right, top left, top center, top right, middle)
namestyle Specifies the style of the name

abovesep Space above box (defaults to \baselineskip)

minheight The minimal height

addheight ~ Additional height at the end of the box

xshift Allows horizontal positioning
yshift Allows horizontal positioning
style allows to customize the node

https://www.ctan.org/pkg/pgf

7.1 Nesting of Boxes

Boxes can be nested. For this simply insert a bbrenv (together with a single bbrbox) environment into
an existing bbrbox.

input

|

step 1

Box Name

step 2
for some condition do

step 3

Inner Box
inner step 1

inner step 2

step 4
step 5

!

output

e N S S

=
N = O ©

13

NONNNN NN =R R e e
D Uk W= O O 00N D U

7.2 Messages and Queries

You can send messages and queries to boxes. For this use the commands

47

By convention messages are on the left of boxes and queries on the right. Commands ending on to make
an arrow to the right while commands ending on from make an arrow to the left. The options define
how the message is drawn and consists of a key-value pairs separated by “,”.

For example, to draw a message with a label on top and on the side use

1_

W

If your label contains a “,” (comma), then group the label in {} (curly brackets).
[\vbemegio(top=top tabel, sidestoive, vavery]
Following is a complete example. Notice that cryptocode takes care of the vertical positioning.

input

|

step 1

Box Name

step 2

for some condition do
step 3
mo, My mo, my
B — —

Inner Box

q

inner step 1

inner step 2

step 4
step 5

output

0 N O U W N

e e e
G W N = O ©

16

WONNNNNNNNNN R e
O © 00 NGk WN - O O W

w
s

48

32
33
34

7.2.1 Options

Besides specifying labels for top, side and bottom you can further specify how cryptocode renders the
message. Remember that underneath the reduction commands is a TIKZ image (https://www.ctan.|
g/pkg/pgf/)). For each label position (top, side, bottom) a node is generated. You can provide

additional properties for this node using the options:

e topstyle
e sidestyle
e bottomstyle
You can additionally provide custom names for the nodes for later reference using
e topname
e sidename
e osidename
e bottomname
The “osidename” allows you to provide a name for the “other side”. Via the option “length” you can

specify the length of the arrow.

input

|

step 1

Box Name

step 2
for some condition do

step 3

mo, My
Side Label -

b Inner Box

inner step 1

inner step 2

step 4
step 5

output

49

https://www.ctan.org/pkg/pgf/
https://www.ctan.org/pkg/pgf/

© 0 NG s W N

o
= O

12

R R e e e e B~ S
- I

7.2.2 Add Space

If the spacing between messages is not sufficient you can use the bbrmsgspace and bbrqryspace commands to
add additional space.

input
Reduction
Do something
m m
Adversary
o
¢
o
g |

output

23
24
25
26

7.2.3 Loops

Often an adversary may send poly many queries to an oracle, or a reduction sends many queries to an
adversary. Consider the following setting

input

|

Reduction
Do something
m
Adversary
.9 |

output

W N D O W e

©

10

I I
H O © 00N oW N

First note that by specifying the minheight and xshift option we shifted the adversary box a bit to
the right and enlarged its box. Further we specified custom names for the node on the side of the two
messages. We can now use the bbrloop command to visualize that these two messages are exchanged ¢
many times

-

The bbricop command takes two node names and a config which allows you to specify if the label is to be
shown on the left, center or right. Here is the result.

input

Reduction
Do something
m
Adversary
o
A

output

1
2
3
4
5
6
7
8

7.2.4 Intertext

If your reduction needs to do some extra work between queries use the \bbrmsgtxt and \bbrqrytxt commands.

1
I
52

input

Reduction
Do something
m m
—_ —
Adversary
do
""" |
some i do !
1 1
work ! some :
Lwork |
o o =---- !
— —

output

0 N O U W N

e v
N OO W N = O ©

18

W oW Ww W wWwNNNNNNNNNN e
B W N = O © 00N DO R W N = O ©

7.3 Oracles

Each box can have one or more oracles which are drawn on the right hand side of the box. An oracle is
created similarly to a bbrenv environment using the bbroracle environment. Oracles go behind the single
bbrbox environment within an bbrenv enviornment.

53

input

Reduction Oracle 1

Do something

Adversary

Oracle 2

output

0 N O Uk W N

o e e
W N = O ©

14

NONNNN NN R R e e e
QTR W N = O © O U

Via the option “hdistance=length” and “vdistance=length” you can control the horizontal and vertical
position of the oracle. By default this value is set to 1.5cm and \baselineskip.

7.3.1 Communicating with Oracles

As oracles use the bbrbor environment we can directly use the established ways to send messages and
queries to oracles. In addition you can use the \bbroracleqryfrom and \bbroraclegryto.

1
2

Here options allow you to specify where the label goes (top, bottom). In addition you can use \
bbroracleqryspace tO generate extra space between oracle messages. Note that oracle messages need to
be added after the closing \end{bbroracle} command.

input

Reduction Oracle 1
Do something b
Adversary
m Oracle 2
—_—
b

output

0 N O Uk W N

e e e
G W N RO ©

16

WM NNNNN DR e
O © 0 NG A WN O O W

7.4 Challengers

Each box can have one or more challengers which are drawn on the left hand side of the box. Challengers
behave identically to oracles with the exception that they are to the left of the box. A challenger is created
similarly to a bbrenv environment using the bbrchallenger environment. Challengers go behind the single
bbrboz environment within an bbrenv enviornment.

input

|

Challenger Adversary

Do something

output

55

1
2
3
4
5
6
7
8

Via the option “hdistance=length” and “vdistance=length” you can control the horizontal and vertical
position of the challenger. By default this value is set to 1.5cm and \baselineskip.

7.4.1 Communicating with Challengers

As challengers use the bbrbox environment we can directly use the established ways to send messages
and queries to oracles. In addition you can use the \bbrchallengergryfrom and \bbrchallengerqryto.

1
2

Here options allow you to specify where the label goes (top, bottom). In addition you can use \
bbrchallengergryspace t0 generate extra space between oracle messages. Note that challenger messages need
to be added after the closing \end{bbrchallenger} command.

input

m

Challenger Adversary

Do something

output

e I S I S

©

10

e e e
0 N D UAs W N =

[
©

7.5 Examples

A reduction for full domain hash.

fk <—s F.KGen(1™)
(fk,y) . |
REDUCTION B k :Z’ s {0 1}F,|I(n) :

J<sld] y + F.Eval(fk, z)

|
|
U P -

/* begin simulation */fk

m m
- -

—_—

Sign

SIMULATION OF RANDOM ORACLE

my
—
—_—

5

/* end simulation */ 9

Yo .
——y e F (fk,x)

1| \begin{bbrenv }{Red}

2

3 \begin{bbrbox } [name=\textsc{Reduction }\bdv§]

4

5 \pseudocode{

6 i \sample [q]

7

8

9 \vspace{2ex}

10 \emph{/* begin simulation */}

11

12 \begin{bbrenv}{Adv}

13 \begin{bbrbox } [name=\adv,minheight=7.5cm, style={fill=black},namestyle={color=white },
xshift=3cm, yshift =0.75cm]

14 \end{bbrbox}

15

16 \bbrinput {$\ fk$}

17 \bbroutput {σ}

18

19 \bbrmsgfrom{top=%m_1$}

20 \bbrmsgto{bottom=8$\$$,beforeskip=—0.5\baselineskip , afterskip=—0.5\baselineskip}

21

22 \bbrmsgvdots

23

24 \bbrmsgfrom{top=%m_{j—1}$}

58

1

Gk W e

Chapter 8

Known Issues

8.1 Pseudocode KeepSpacing within Commands

The “space=keep” option of pseudocode which should output spacing identical to that of the input will
fail, if the pseudocode command is called from within another command. An example is to wrap the
\pseudocode command with an \fbox. As a workaround for generating frame boxes you should hence use
a package such as mdframed (https://www.ctan.org/pkg/mdframed) which provides a frame environ-
ment.

Pseudocode with - spaces -

\pseudocode [space=keep ,mode=text |{ Pseudocode with — spaces —} J

As an alternative you could use a saveboz (in combination with the Ibox environment):

‘ Pseudocode with - spaces - ‘

\newsavebox {\mypcbox}

\begin{lrbox }{\mypcbox}%

\pseudocode [space=keep ,mode=text] { Pseudocode with — spaces —}%
\end{lrbox}

\fbox {\usebox {\mypcbox}}

8.2 AMSFonts

Some packages are not happy with the “amsfonts” package. Cryptocode will attempt to load amsfonts
if it is loaded with either the “sets” or the “probability” option. In order to not load amsfonts you can
additionally add the “noamsfonts” at the very end. Note that in this case you should ensure that the
command \mathbb is defined as this is used by most of the commands in “sets” and some of the commands
in “probability”.

8.3 Hyperref

The hyperref package (https://www.ctan.org/pkg/hyperref) should be loaded before cryptocode. If
this is not possible call the \pcfixhyperref after \begin{document}.

59

https://www.ctan.org/pkg/mdframed
https://www.ctan.org/pkg/hyperref

Index

&, [32

\<,

\>,

\addgamehop,
\addloopgamehop,

\bbrchallengerqryfrom,
\bbrchallengerqryto,
\bbrinput, [46

\bbrloop,
\bbrmsgfrom,
\bbrmsgspace,
\bbrmsgto, 48
\bbrmsgtxt
\bbroracleqryfrom,
\bbroracleqryto,
\bbroutput,

\bbrqryfrom,
\bbrqryspace,

\bbrgryto,
\bbrqrytxt,
\bxgameprocedure,

\createprocedurecommand,

\createpseudocodecommand,

\fbox,
\gamechange,
\highlightkeyword,
\hline,
\pccomment,
\pccontinue,
\pedo,
\pcdone,
\pcelse,
\pcelseif,
\pcendforeach,
\pcendif,
\pcendwhile,
\pcf,

\pcforeach,
\pcglobvar, [20)

\pcindentname,
\pclb,

\pln,

\pclnr,
\pclnseparator,

\pcnew,
\pcnull
\pcparse,
\pcrepeat,
\pcreturn,
\perln,

\pctabname,
\pcthen,

\pctrue,

\sendmessageright™*,

\t,
\tbxgameprocedure,

addkeywords,
addtolength,

adversary, see package options
altkeywords,

amsfonts,

asymptotics, see package options

bbrbox, [46]
bbrchallenger, [50]
bbrenv,
bbroracle,
beginline,
bodylinesep,

codesize,
colsep,

complexity, see package options
Crypto notions, see package options
Crypto primitives, see package options

draft mode, 23|

emphasize, see hghlight keywordg2]]
endline,
events, see package options

ff, see package options

framebox,

function families, see package options

gameprocedure,
gameproof,

hdistance, [54] [56]

head,

headlinesep,

highlight game change,
highlight keywords,

indentation,
jot, [I5]

keys, see package options
keywords,
keywordsindent,
keywordsunindent,
keywordsuninindent,

Landau, see package options
line numbering,
linebreaks,
linenumbering,

Instart,

Instartright,
logic, see package options

machine model, see package options
math operators, see package options
minheight, [47]

mm, see package options

mode, [T5]

namepos, [47]
namestyle,
noamsfonts, see package options

nodraft,

notions, see package options
operators, see package options

package options,
adversary, [9]
asymptotics, [I4]
complexity,
events, [I3]
1
keys,
Landau, [9]
logic,
mm, [T2]
noamsfonts,
notions, [I]
operators, [J]
primitives, [12]
probabilities,

61

security parameter,

sets, [T7]

performance, 23]
primitives, see package options
probability, see package options

security parameter, see package options
sets, see package options

space, [19]
subprocedure,
syntaxhighlight,

Tabbing Mode,
text mode,

vdistance,

xshift, [T5] [47]
yshift, [15] [47]

	Cryptocode by Example
	Pseudocode
	Columns
	Protocols
	Game-based Proofs
	Black-box Reductions

	Cryptographic Notation
	Security Parameter
	Advantage Terms
	Math Operators
	Adversaries
	Landau
	Probabilities
	Sets
	Crypto Notions
	Logic
	Function Families
	Machine Model
	Crypto Primitives
	Events
	Complexity
	Asymptotics
	Keys

	Pseudocode
	Basics
	Customizing Pseudocode
	Customized Pseudocode Commands

	Indentation
	Textmode
	Syntax Highlighting
	Alternative Keywords
	Draft Mode

	Line Numbering
	Manually Inserting Line Numbers
	Start Values
	Separators

	Subprocedures
	Numbering in Subprocedures

	Stacking Procedures
	Divisions and Linebreaks
	Matrices and Math Environments within pseudocode
	Fancy Code with Overlays
	Example: Explain your Code

	Tabbing Mode
	Tabbing in Detail
	Overriding The Tabbing Character
	Custom Line Spacing and Horizontal Rules

	Protocols
	Tabbing
	Multiline Messages
	Multiplayer Protocols
	Divisions

	Line Numbering in Protocols
	Separators

	Sub Protocols

	Game Based Proofs
	Basics
	Highlight Changes
	Boxed games
	Reduction Hints
	Numbering and Names
	Default Name and Argument
	Two Directional Games
	Styling game procedures

	Game Descriptions

	Black-box Reductions
	Nesting of Boxes
	Messages and Queries
	Options
	Add Space
	Loops
	Intertext

	Oracles
	Communicating with Oracles

	Challengers
	Communicating with Challengers

	Examples

	Known Issues
	Pseudocode KeepSpacing within Commands
	AMSFonts
	Hyperref

