
create‑theorem
Initializing theorem-like environments with multilingual support

JINWEN XU
August 2022, in Paris

Abstract
The package create‑theorem provides commands for naming, initializing and configuring

theorem-like environments. All of these commands have key-value based interface and
are especially useful in multi-language documents, allowing the easy declaration of

theorem-like environments that can automatically adapt to the language settings.

1
How to load it

First, you need a backend to provide the command \newtheorem with the usual behaviour,
for example, amsthm or ntheorem. After that, you can simply load the current package with:

\usepackage[⟨options⟩]{create-theorem}

ATTENTiON
Since create‑theorem uses cleveref internally, it should usually be placed near the last
of your preamble — notably, it needs to be loaded after varioref and hyperref.

It has the following options:
name as context

When referencing, the resulted names shall correspond to the current context of your
text. For example, the names shall be displayed in English when you are referencing a
theorem-like environment in an English context, no matter in which linguistic context
the target environment appeared.
This is the default behavior.
Synonymous names: name-as-context | nameascontext | regionalref

name as is
When referencing, the resulted names shall correspond to the contexts in which the
target environments appeared. For example, if the target environment is written in an
English context, then its name shall always be displayed in English when referencing,
regardless of the current linguistic context.
Synonymous names: name-as-is | nameasis | originalref

name in link
Include the names in the hyperlinks when referencing.
Synonymous names: name-in-link | nameinlink

no preset names
Disable the preset names. Use this option if you want to define you own name set.
Synonymous names: no-preset-names | nopresetnames

Corresponding to: create‑theorem 2022/08/08a

HOW TO LOAD IT 1

2
How to use it

2.1 Naming theorem-like environments with \NameTheorem
The syntax of \NameTheorem is as follows:

\NameTheorem{⟨name of environment⟩}{⟨key-value configuration⟩}

Supported keys are:
heading = ⟨configuration⟩

The heading of the environment, where ⟨configuration⟩ can be:
∘ a single string in monolingual documents: heading = ⟨string⟩;
∘ a key-value name list in multilingual documents:

heading = {
⟨language name⟩ = ⟨string⟩

}

heading style = ⟨style⟩
The style of the heading, you can specify the font, text style, color, etc.
Synonymous names: heading-style | headingstyle

crefname = ⟨configuration⟩
The name for \cref the environment, where ⟨configuration⟩ can be:
∘ a single string in monolingual documents: crefname = {name}{names};
∘ a key-value name list in multilingual documents:

crefname = {
⟨language name⟩ = {⟨singular name⟩}{⟨plural name⟩}

}

Also supports the syntax of \crefthename, thus you can assign names of the form:

[⟨singular definite article⟩]{⟨singular name⟩}[⟨plural definite article⟩]{⟨plural name⟩}

crefname style = ⟨style⟩
The style of the “crefname”, you can specify the font, text style, color, etc.
Synonymous names: crefname-style | crefnamestyle

Crefname = ⟨configuration⟩
The name for \Cref the environment, its syntax is the same as that of crefname.
Also supports the syntax of \Crefthename.

Crefname style = ⟨style⟩
The style of the “Crefname”, you can specify the font, text style, color, etc.
Synonymous names: Crefname-style | Crefnamestyle

numbering style = ⟨style⟩
The style of numbering in the reference, you can specify the font, text style, color, etc.
Synonymous names: numbering-style | numberingstyle

use name = ⟨list of existed environment(s) separated with semicolon “ ; ”⟩
Use the name(s) and style(s) of the given environment(s). If there are multiple ones
specified, the result would be a string combining the names, separated with “-”.
The definite articles (if exist) are chosen to be that of the last given environment.
Synonymous names: combined | use-name | usename

2.1 Naming theorem-like environments 2

TiP
You can also define the nameswithin \CreateTheoremwhile initializing the theorem-
like environments. \NameTheorem is especially useful for package or class authors
who wish to preset suitable names (with styles) in their packages or classes.

2.2 Initializing theorem-like environments with \CreateTheorem
The syntax of \CreateTheorem is as follows:

\CreateTheorem{⟨list of the name of environments⟩}{⟨key-value configuration⟩}

ATTENTiON
When the ⟨key-value configuration⟩ is empty, don’t forget to include the second pair of
curly brackets, for example, \CreateTheorem{theorem}{}.

Supported keys are:
name = ⟨configuration⟩ or name style = ⟨configuration⟩

Setting the names. Same as \NameTheorem{⟨name of environment⟩}{⟨configuration⟩}.
Synonymous names: name-style | namestyle

use name = ⟨list of existed environment(s) separated with semicolon “ ; ”⟩
Using existed name(s). Same as in \NameTheorem.
Synonymous names: combined | use-name | usename

style = ⟨theorem style⟩
Specifying the \theoremstyle for the current environment.
Synonymous names: apply style | apply-style | applystyle

qed or qed = ⟨Q.E.D. symbol⟩
Specifying the Q.E.D. symbol for the current environment.
Note that the Q.E.D. symbol has already been put in math mode. If you want regular
text such as “Q.E.D.”, you need to write qed = \mathrm{Q.E.D.}.
If you are using ntheorem as the backend, then youneed to load itwith option thmmarks.
Synonymous names: qed symbol | qed-symbol | qedsymbol

parent counter = ⟨parent counter⟩
Specifying the ⟨parent counter⟩ for the current environment, i.e., numbering will restart
whenever that sectional level is encountered.
Synonymous names: parent-counter | parentcounter |

number within | number-within | numberwithin
shared counter = ⟨shared counter⟩

Specifying the ⟨shared counter⟩ for the current environment, i.e., numberingwill progress
sequentially for all theorem-like environments using this counter.
Synonymous names: shared-counter | sharedcounter |

number like | number-like | numberlike
numberless

Defining the current environment to be unnumbered.
create starred version

Defining a corresponding starred (unnumbered) version of the current environment.
It must be placed before qed if you want the starred version to have a Q.E.D symbol.
Synonymous names: create-starred-version | createstarredversion |

create numberless version | create-numberless-version |
createnumberlessversion

2.2 Initializing theorem-like environments 3

copy existed = ⟨existed environment⟩
Defining the current environment to be the same as ⟨existed environment⟩.
This key is usually useful in the following two situations:
1) To use a more concise name. For example, with \CreateTheorem{thm}{copy

existed = theorem}, one can then use the name thm to write theorems.
2) To remove the numbering of some environments. For example, one can remove

the numbering of the remark environment with \CreateTheorem{remark}{copy
existed = remark*}.

Synonymous names: copy-existed | copyexisted

TiP
The names for the following environments have been preset: application,
assertion, assumption, axiom, claim, conclusion, conjecture, construction,
convention, corollary, definition, example, exercise, fact, hypothesis,
lemma, notation, observation, postulate, problem, property, proposition,
question, recall, remark and theorem. If you are fine with the preset names, then
there is no need to specify the key “name” while creating them, otherwise you shall
have to use the package option “no preset names” to disable the presets and then
define your own ones.

Please note that, for the sake of generality, the environment ⟨env⟩ and its starred relative
⟨env⟩* do not share the same set of names when they are separately defined. However, with
proper usage of create starred version and copy existed, you should already be able
to produce all of the following combinations that shares the same set of names: 1) numbered
⟨env⟩, numbered ⟨env⟩* ; 2) numbered ⟨env⟩, unnumbered ⟨env⟩* ; 3) unnumbered ⟨env⟩,
numbered ⟨env⟩* ; and 4) unnumbered ⟨env⟩, unnumbered ⟨env⟩*. I left it as an easy exercise
for you ;-)

2.3 Configuring theorem-like environments with \SetTheorem
The previous two commands are especially useful for package or class writers, while this
one is more for the users. If you are not satisfied with preset name styles or numbering
settings, then even after initializing the environments, you can still further configure them
by means of \SetTheorem, the syntax of which is as follows:

\SetTheorem{⟨list of the name of environments⟩}{⟨key-value configuration⟩}

Supported keys are:
name = ⟨configuration⟩ and name style = ⟨configuration⟩

Same as \NameTheorem{⟨name of environment⟩}{⟨configuration⟩}.
Note that this configuration can overwrite those already specified in \NameTheorem.
Synonymous names: name-style | namestyle

qed = ⟨Q.E.D. symbol⟩
Specifying the Q.E.D. symbol for the current environment.
Note that this configuration only works if you have already enabled the Q.E.D. symbol
during the creating phase of the corresponding environment.
Synonymous names: qed symbol | qed-symbol | qedsymbol

2.3 Configuring theorem-like environments 4

parent counter = ⟨parent counter⟩
Specifying the ⟨parent counter⟩ for the current environment, i.e., numbering will restart
whenever that sectional level is encountered.
Note that this configuration can overwrite those already specified in \CreateTheorem.
Synonymous names: parent-counter | parentcounter |

number within | number-within | numberwithin
shared counter = ⟨shared counter⟩

Specifying the ⟨shared counter⟩ for the current environment, i.e., numberingwill progress
sequentially for all theorem-like environments using this counter.
Note that this configuration can overwrite those already specified in \CreateTheorem.
Synonymous names: shared-counter | sharedcounter |

number like | number-like | numberlike

In some cases, you may define an internal environment (for example, a generic version) first
and then use it to define the final environment. You may wish to hide the internal names
from the users so that they can use \SetTheorem with the name of the final environments.
This can be done with the following command:

\SetTheoremBinding{⟨list of the name of environments⟩}{⟨the environment to bind with⟩}

2.4 Setting the names in external language configuration files with \NameTheorems
The command \NameTheorem introduced earlier is for defining the names of a given environ-
ment for each language, which is more natural to use within a real-life document. However,
for package/class authors wishing to maintain their language configuration files, it would
be more convenient to use the following \NameTheorems, which assigns the names for a
given language all at once, made it possible to preset the names inside external files.

The syntax of \NameTheorems is as follows (please note that the ⟨language name⟩ here should
be consistent with \languagename):

\NameTheorems{⟨language name⟩}{⟨key-value configuration⟩}

Supported keys are (notice that you cannot set the styles via \NameTheorems):
heading = ⟨configuration⟩

The headings of the environments, where ⟨configuration⟩ is a key-value name list:

heading = {
⟨name of environment⟩ = ⟨string⟩

}

crefname = ⟨configuration⟩
The names for \cref the environments, where ⟨configuration⟩ is a key-value name list:

crefname = {
⟨name of environment⟩ = {⟨singular name⟩}{⟨plural name⟩}

}

Also supports the syntax of \crefthename, thus you can assign names of the form:

[⟨singular definite article⟩]{⟨singular name⟩}[⟨plural definite article⟩]{⟨plural name⟩}

2.4 Setting the names in external language configuration files 5

Crefname = ⟨configuration⟩
The names for \Cref the environments, its syntax is the same as that of crefname.
Also supports the syntax of \Crefthename.

If you’re feeling confused, don’t worry. Let’s now take a look at some examples.

3
Examples

3.1 The environment idea
First, let’s getting familiar with these two commands by creating the environment idea.

\NameTheorem{idea}
{

heading = Idea,
crefname = {idea}{ideas},
Crefname = {Idea}{Ideas},

}
\CreateTheorem{idea}{ parent counter = section }

or to do it in one turn:

\CreateTheorem{idea}
{

name = {
heading = Idea,
crefname = {idea}{ideas},
Crefname = {Idea}{Ideas},

},
parent counter = section,

}

This is not exciting at all. Now, let’s saywe arewriting a bilingual note in English and French.
(I shall omit the \NameTheorem version and do it all at once in \CreateTheorem.)

\CreateTheorem{idea}
{

name = {
heading = { english = Idea,

french = Idée, },
crefname = { english = {idea}{ideas},

french = [l']{idée}[les]{idées}, },
Crefname = { english = {Idea}{Ideas},

french = [L']{idée}[Les]{idées}, },
},

parent counter = section,
}

3.1 The environment idea 6

With this, if you use \selectlanguage{french}, the idea environment shall be automati-
cally displayed as “Idée”. And if you \crefthe it, the definite article and the name showed
up properly just as expected.

Next we shall deal with the problem of numbering. Let’s continue to use this environment
idea for demonstration – suppose that we have already set the names with \NameTheorem.

3.2 Let’s play with numbering

Remember the exercise I left you in the previous section? Let’s do it together now.

3.2.1 Numbered idea and numbered idea*
This is easy, copy existed suffices:

\CreateTheorem{idea}{parent counter = section}
\CreateTheorem{idea*}{copy existed = idea}

3.2.2 Numbered idea and unnumbered idea*
This is the most common situation, create starred version will do.

\CreateTheorem{idea}
{

parent counter = section,
create starred version,

}

ATTENTiON
Please note that you cannot use \CreateTheorem{idea*}{numberless} here, since
we don’t have the names defined for idea*.

3.2.3 Unnumbered idea and numbered idea*
This is a bit tricky: by default we can only create numbered idea or unnumbered idea*,
and the question is how to switch them. We shall need an intermediary for this purpose.

\CreateTheorem{idea}{create starred version}
\CreateTheorem{idea-temp}{copy existed = idea*}
\CreateTheorem{idea*}{copy existed = idea}
\CreateTheorem{idea}{copy existed = idea-temp}

3.2.4 Unnumbered idea and unnumbered idea*
This is essentially the combination of the first two cases — we need to create idea* first and
then copy it to idea:

\CreateTheorem{idea}{create starred version}
\CreateTheorem{idea}{copy existed = idea*}

In each case, the two environments idea and idea* share the same set of names.

ATTENTiON
The sole purpose of this section is to demonstrate the feature of this package – some
combinations are not recommended to use in the actual documents.

3.2 Let’s play with numbering 7

3.3 The proofless version – theorems with a Q.E.D. symbol

Sometimes you may encounter a theorem without a proof, in which case you might want a
Q.E.D. symbol when the theorem is finished. This can be easily achieved via:

\CreateTheorem { theorem } { create starred version }
\CreateTheorem { theorem+ } { copy existed = theorem, qed }
\CreateTheorem { theorem+* } { copy existed = theorem*, qed }

The code above defines two new environments theorem+ and theorem+* in addition to
theorem and theorem*. The + version behaves exactly the same as the usual version, except
that it has a Q.E.D. symbol.

3.4 Redefine the proof environment

If youwish to have a proof environmentwith a custom theorem style, or to have a numbered
version proof* of it, the following code could be helpful:

\ExplSyntaxOn

\newcounter { proof }
\tl_new:N \l_mymodule_name_of_proof_tl
\CreateTheorem { proof_inner }

{
name = { heading = { \l_mymodule_name_of_proof_tl } },
create-starred-version,
style = remark,
qed,
shared-counter = proof,

}

\cs_undefine:c { proof }
\cs_undefine:c { endproof }
\NewDocumentEnvironment { proof } { O{\proofname} }

{
\tl_set:Nn \l_mymodule_name_of_proof_tl { #1 }
\begin { proof_inner* }

}
{

\end { proof_inner* }
}

\NewDocumentEnvironment { proof* } { O{\proofname} }
{

\tl_set:Nn \l_mymodule_name_of_proof_tl { #1 }
\begin { proof_inner }

}
{

\end { proof_inner }
}

3.4 Redefine the proof environment 8

\SetTheoremBinding { proof } { proof_inner* }
\SetTheoremBinding { proof* } { proof_inner }

\ExplSyntaxOff

It defines an environment proof_inner (with its starred variant) with theorem style remark
tomimic the default style (you arewelcome to use your own style here), andwith the name to
be a variablewhich is latter used to define the actual environments proof and proof*. These
two environments are defined in such a way that proof is the usual unnumbered version
and proof* is the numbered version. The \SetTheoremBinding lines are to ensure that
user can directly write \SetTheorem{proof} instead of \SetTheorem{proof_inner*}.

ATTENTiON
The code above requires amsthm. If you are using ntheorem as the backend, then you
need to load it with option amsthm, and remove the \newcounter line.

3.5 Advanced topic: setting the names in an external file

A typical configuration looks like this:

\NameTheorems { english }
{

, heading = {
, theorem = Theorem
, proposition = Proposition
...

}
, crefname = {

, theorem = {theorem}{theorems}
, proposition = {proposition}{propositions}
...

}
, Crefname = {

, theorem = {Theorem}{Theorems}
, proposition = {Proposition}{Propositions}
...

}
}

Here is another example for French:

\NameTheorems { french }
{

, heading = {
, theorem = Théorème
, proposition = Proposition
, example = Exemple
...

}

3.5 Advanced topic: setting the names in an external file 9

, crefname = {
, theorem = [le]{théorème}[les]{théorèmes}
, proposition = [la]{proposition}[les]{propositions}
, example = [l']{example}[les]{examples}
...

}
, Crefname = {

, theorem = [Le]{théorème}[Les]{théorèmes}
, proposition = [La]{proposition}[Les]{propositions}
, example = [L']{example}[Les]{examples}
...

}
}

The configuration using \NameTheorems is compatible with that using \NameTheorem and
there is no need to worry about duplicated definitions – new settings will automatically
overwrite the old ones.

4
Known issues

• The current mechanism does not work well for German, a problem originated in the pack-
age crefthe. The author plans to adopt a more refined approach in a later version so as to
support the various grammatical situations in German.

• create‑theoremmodifies someundocumented internalmacros of cleveref, so the behaviour
might not be stable if cleveref gets updated.

• The counter aliasing function is still not perfect, (sometimes) causing incorrect ordering
in the result of \cref.

• There might be inaccuracies in the translation of those preset names.

If you run into any issues or have ideas for improvement, feel free to discuss on:

https://github.com/Jinwen-XU/create-theorem/issues

or email me via ProjLib@outlook.com.

KNOWN ISSUES 10

https://github.com/Jinwen-XU/create-theorem/issues
mailto:ProjLib@outlook.com

	1. How to load it
	2. How to use it
	2.1. Naming theorem-like environments
	2.2. Initializing theorem-like environments
	2.3. Configuring theorem-like environments
	2.4. Setting the names in external language configuration files

	3. Examples
	3.1. The environment idea
	3.2. Let's play with numbering
	3.2.1. Numbered idea and numbered idea*
	3.2.2. Numbered idea and unnumbered idea*
	3.2.3. Unnumbered idea and numbered idea*
	3.2.4. Unnumbered idea and unnumbered idea*

	3.3. The proofless version – theorems with a Q.E.D. symbol
	3.4. Redefine the proof environment
	3.5. Advanced topic: setting the names in an external file

	4. Known issues

