CHEMFORMULA V4.16 2020/12/22 typeset chemical compounds and reactions ## Clemens NIEDERBERGER http://www.mychemistry.eu/forums/forum/chemformula/ contact@mychemistry.eu ## **Table of Contents** | 1. | Intro | oduction | 2 | 7. | Special Input Types | 17 | |----|--|--|----------------------|-----|---------------------------------|----------------------| | 2. | Lice | nce and Requirements | 2 | | 7.1. Single Token Groups | 17
17
18 | | 3∙ | Setu | ıp | 2 | | 7.2. Option Input | 19 | | | The Basic Principle Stoichiometric Factors | | 3 | 8. | Escaped Input 8.1. Text | 20
20
20 | | | | | | 9. | . Arrows | | | 6. | Con | npounds | 6 | | 9.1. Arrow types | 21 | | | 6.1. | Adducts | 7 | | 9.2. Labels | 23 | | | 6.2. | Subscripts | 7 | | 9.3. Customization | 23 | | | 6.3. | Commands | 7 | | 9.4. Modify Arrow Types | 25 | | | 6.4. | Charges and Other Superscripts | 8 | | 9.5. Standalone Arrows | 27 | | | 6.5.6.6. | Bonds | 10
10
10
12 | 10 | Names 10.1. Syntax | 27
27
28
28 | | | 6.7. | Standalone Formulae Extend Compound Properties | 16 | | . Format and Font | 28 | | | υ.ο. | Exteria Compouna Frogeriles | 16 | 11. | . I Ulliat allu Fullt | - 20 | #### 1. Introduction | 12. Usage In Math Equations | 31 | 15. Kröger-Vink Notation | 33 | |---------------------------------|----|------------------------------|----| | 13. Usage with TikZ or pgfplots | | A. History Since Version 4.0 | 34 | | and externalization | 31 | B. References | 37 | | 14. Lewis Formulae | 32 | C. Index | 38 | ## 1. Introduction Probably every chemist using Lagrange aware of the great mhchem package by Martin Hensel. There have always been some difficulties intertwining it with the CHEMMACROS package, though. Also, some other minor points in mhchem always bothered me, but they hardly seemed enough for a new package. They weren't even enough for a feature request to the mhchem author. The challenge and the fun of creating a new package and the wish for a highly customizable alternative led to CHEMFORMULA after all. CHEMFORMULA works very similar to mhchem but is more strict as to how compounds, stoichiometric factors and arrows are input. In the same time CHEMFORMULA offers *many* possibilities to customize the output. ## 2. Licence and Requirements Permission is granted to copy, distribute and/or modify this software under the terms of the Lagrange Public License (LPPL), version 1.3c or later (http://www.latex-project.org/lppl.txt). The software has the status "maintained." The CHEMFORMULA package needs and thus loads the packages l3kernel [L3Pa], xparse, l3keys2e and xfrac (all three are part of the l3packages bundle [L3Pb]), tikz¹ [Tan19], amstext [MSoo], nicefrac [Rei98] and scrlfile (from the KOMA-Script² bundle [Koh19]). ## 3. Setup If you're using CHEMFORMULA as a standalone package options are set up with the following command: $\strut_{\text{setchemformula}}{\column{discrete}{\langle options \rangle}}$ Set up CHEMFORMULA. CHEMFORMULA is tightly intertwined with the CHEMMACROS package. If both packages are loaded together, CHEMFORMULA is integrated into the CHEMMACROS package. Then all of CHEMFORMULA'S options belong to CHEMMACROS' module chemformula. This means if you load it via CHEMMACROS or in addition to CHEMMACROS they can be setup with ^{1.} on CTAN as pgf: http://mirrors.ctan.org/graphics/pgf/ ^{2.} on CTAN as koma-script: http://mirrors.ctan.org/macros/latex/contrib/koma-script/ ``` \chemsetup[chemformula]{\langle options \rangle} ``` Set up options for **CHEMFORMULA** exclusively, or $\chemsetup\{chemformula/\langle option1\rangle, chemformula/\langle option2\rangle\}\$ Set up options for CHEMFORMULA together with others of CHEMMACROS' options. ## 4. The Basic Principle CHEMFORMULA offers one main command. ``` \ch[\langle options \rangle] \{\langle input \rangle\} ``` CHEMFORMULA's main command. The usage will seem very familiar to you if you're familiar with mhchem: ``` H_2O 1 \ch{H20} \par Sb_2O_3 2 \ch{Sb203} \par 3 \ch{H+} \par CrO_4^{2-} 4 \ch{Cr04^2-} \par AgCl_2^- 5 \ch{AgCl2-} \par [AgCl_2]^- 6 \ch{[AgCl2]-} \par 7 \ch{Y^{99}+} \par Y⁹⁹⁺ 8 \ch{Y^{99+}} \par 9 \ch{H2_{(aq)}} \par H_{2(aq)} 10 \ch{N03-} \par NO_3 _{11} \ \ch{(NH4)2S} \ \par (NH_4)_2S 12 \ch{^{227}_{90}Th+} \par ²²⁷₉₀Th⁺ 13 $V_{\ch{H20}}$ \par V_{\rm H_2O} 14 \ch{Ce^{IV}} \par KCr(SO_4)_2 \cdot 12 H_2O ``` However, there are differences. The most notable one: **CHEMFORMULA** distinguishes between different types of input. These different parts *have* to be separated with blanks: ``` \ch{part1 part2 part3 part4} ``` A blank in the input *never* is a blank in the output. This role of the blank strictly holds and disregarding it can have unexpected results and even lead to errors. The most visible differences regard spacing and the shapes of the default arrows: This means that \ch{2H20} is recognized as a *single* part, which in this case is recognized as a compound. This also means, that a part cannot contain a blank since this will automatically divide it into two parts. If you need an extra blank in the output you need to use ~ or \ . However, since commands in most cases gobble a space after them a input like \ch{\command ABC} will be treated as a single part. If you want or need to divide them you need to add an empty group: \ch{\command{}} ABC}. The different input types are described in the following sections. ## 5. Stoichiometric Factors A stoichiometric factor may only contain of numbers and the signs . , _ /() As you can see if you input decimal numbers a missing leading zero is added. You have to be a little bit careful with the right syntax but I believe it is rather intuitive. ``` _1 this won't work but will result in an error: \ch\{1/1_1\} ``` If stoichiometric factors are enclosed with parentheses the fractions are not recognized and missing leading zeros are not added. What's inside the parentheses is typeset as is. ``` ı \ch{(1/2) H20} \ch{1/2 H20} \ch{0.5 H20} ``` $$(1/2) H_2O \frac{1}{2} H_2O 0.5 H_2O$$ You can find many examples like the following for stoichiometric factors in parentheses in the IUPAC Green Book [Coh+o8]: $$(1/5) \text{ KMn}^{\text{VII}} O_4 + (8/5) \text{ HCl} = (1/5) \text{ Mn}^{\text{II}} \text{Cl}_2 + (1/2) \text{ Cl}_2 + (1/5) \text{ KCl} + (4/5) \text{ H}_2 \text{O}$$ There are a few possibilities to customize the output. ``` decimal-marker = \{\langle marker \rangle\} ``` Default: . The symbol to indicate the decimal. Default: math Determines how fractions are displayed. ``` frac-math-cmd = \{\langle command \ sequence \rangle\} ``` Default: \frac Allows you to choose which command is used with frac-style = {math}. This needs to be a command sequence that takes two arguments that are set in math mode. ``` stoich-space = \{\langle skip \rangle\} ``` Introduced in version 4.1 (2013/08/24) Default: .1667em plus .0333em minus .0117em The space that is placed after the stoichiometric factor. A rubber length. ``` stoich-paren-parse = true|false ``` Default: false If set to true stoichiometric factors enclosed by parentheses also are parsed. ``` stoich-print = \{\langle cs \rangle\} ``` Default: \chstoich This option allows to redefine the macro that prints the stoichiometric factors. $\langle cs \rangle$ should be a macro that takes one mandatory argument. Please note that using this option will disable CHEMFORMULA's stoichiometric parsing as that is done by the default command \chstoich. ``` 1 \ch[decimal-marker={,}]{3.5} \ch[decimal-marker={\cdot}]{3,5} 3,5 3.5 ``` The option frac-style = {xfrac} uses the \sfrac command of the xfrac package. The output strongly depends on the font you use. ``` 1 \ch[frac-style=xfrac]{3/2} \ch[frac-style=xfrac]{1_1/2} \frac{3}{2} 1\frac{1}{2} ``` CHEMFORMULA defines the instance chemformula-text-frac which you can redefine to your needs. See the xfrac documentation for further information. The default definition is this: ``` \DeclareInstance{xfrac}{chemformula-text-frac}{text} { slash-left-kern = -.15em , slash-right-kern = -.15em } } ``` This document uses the font Linux Libertine O and the following definition: The option frac-style = {nicefrac} uses the \nicefrac command of the nicefrac package. ``` \ch[frac-style=nicefrac]{3/2} \ch[frac-style=nicefrac]{1_1/2} 3/2 11/2 ``` The option stoich-space allows you to customize the space between stoichiometric factor and the group following after it. ## 6. Compounds **CHEMFORMULA** determines compounds as the type that "doesn't fit in anywhere else." This point will become more clear when you know what the other types are. ``` \begin{array}{lll} & \text{L}_{2} \\ & \text{L}_{2} \\ & \text{L}_{2} \\ & \text{L}_{3} \\ & \text{L}_{3} \\ & \text{L}_{4} \\ & \text{L}_{2} \\ & \text{L}_{3} \\ & \text{L}_{4} \\ & \text{L}_{2} \\ & \text{L}_{4} \text{L}_{5} \\ & \text{L}_{4} \\ & \text{L}_{5} \text{L}_{5 ``` #### 6.1. Adducts CHEMFORMULA has two identifiers which will create adducts. ``` \ch{A.B} A \cdot B \ch{A*B} A \cdot B ``` Since numbers in a compound always are treated as subscripts (see section 6.2) you sometimes need to introduce stoichiometric factors for the right output: ## 6.2. Subscripts All numbers in a compound are treated as subscripts. If you want a letter to be a subscript you can use the math syntax: ``` _{1} \ch{A_nB_m} A_nB_m ``` The subscript recognizes groups. You can also use math inside it. ``` \label{eq:charge_sign} $$ \ \ch{A_{sn}}B_{m} $$ \ \ch{NaCl_{(aq)}} $$ NaCl_{(aq)} $$ ``` ## 6.3. Commands Commands are allowed in a compound: ``` \label{eq:charge} $$ \ \ \ $^1 \ B3} $$ \ \ \ \ $A_2B_3 \ A_2B_3 $$ ``` However, if the commands demand numbers as argument, *e. g.*, space commands or CHEMMACROS' \ox command the direct use will fail. This is because the numbers are treated as subscripts *before* the command expands. ``` 1 \ch{A\hspace{2mm}B} will raise an error because \hspace
sees something like 2 this: \hspace{$_2$mm}. Actually not at all like this but equally bad\ldots ``` See section 8.1 for a way around this. Please also note that formulas are placed inside a group! ## 6.4. Charges and Other Superscripts **Basics** If a compound *ends* with a plus or minus sign it will be treated as charge sign and typeset as superscript. In other places a plus is treated as a triple bond and a dash will be used as a single bond, see section 6.5. For longer charge groups or other superscripts you can use the math syntax. It recognizes groups and you can use math inside them. Inside these groups neither + nor - are treated as bonds. If a dot . is inside a superscript it is treated as indicator for a radical. A * gives the excited state. ``` A^{x-} 1 \ch{A^{x-}} \par A^{x-} 2 \ch{A^x-} \par A^{x-} 3 \ch{A^{x}-} \par A^{x-} 4 \ch{A^{$x-$}} \par _5 \ch{RN02^{-.}} \par RNO₂ 6 \ch{^31H} \par ^{3}H 7 \ch{^{14}6C} \par 14₆C s \ \ch{^{58}_{-}} \ \par ⁵⁸Fe 9 \ch{N0^*} NO ``` Changed in version 4.5a () Actually a dot . is not always treated as indicator for a radical: if the dot in the superscript is followed by a number it is interpreted as a decimal sign. It is typeset according to the option decimal-marker. This may be a good place to mention that a comma , in a superscript is also typeset according to decimal-marker. ``` \ch{^{22,98}_{11}Na} \ch{^{22.98}_{11}Na}\par \setchemformula{decimal-marker={,}} \ch{^{22,98}_{11}Na} \ch{^{22,98}_{11}Na} \ch{^{22,98}_{11}Na} \ch{^{22,98}_{11}Na} ``` Ions and ion composites with more than one charge can be typeset quite as easy: **Charge Commands** You don't need to use \mch and related commands inside \ch. Indeed, you *shouldn't* use them as they might mess with the subscript and superscript alignment. The CHEMMACROS option circled is obeyed by \ch. CHEMFORMULA knows the options circled and circletype also on its own. ``` \label{eq:continuity} $$_1 \\sec chemformula\{circled=all\}$$ $_2 \ch\{H++OH^{\bigcirc} \iff H_2O$$ ``` These options are coupled with CHEMMACROS options, *i. e.*, setting CHEMMACROS' options will also set CHEMFORMULA's equivalents. The other way around the options act independently: setting CHEMFORMULA's options will *not* set CHEMMACROS' options. ``` circled = formal|all|none ``` Default: formal CHEMFORMULA uses two different kinds of charges which indicate the usage of real (+/-) and formal (\oplus/\ominus) charges. The choice formal distinguishes between them, choice none displays them all without circle, choice all circles all. ``` circletype = chem|math ``` Default: chem This option switches between two kinds of circled charge symbols: \fplus ⊕ and \$\oplus\$ ⊕. **Behaviour** The supercripts behave differently depending on their position in a compound, if there are super- and subscripts following each other directly. - If a compound *starts* with a sub- or superscript both sub- and superscript are aligned to the *right* else to the *left*. - If a compound *does not start* with a sub- or superscript and there is both a sub- and a superscript, the superscript is shifted additionally by a length determined from the option charge-hshift = {\langle dim\rangle}, also see page 13f. The second point follows IUPAC's recommendations: In writing the formula for a complex ion, spacing for charge number can be added (staggered arrangement), as well as parentheses: SO_4^{2-} , $(SO_4)^{2-}$. The staggered arrangement is now recommended. **IUPAC Green Book [Coh+o8, p. 51] ## **6.5.** Bonds #### 6.5.1. Native Bonds There are three kinds of what I will call "native bonds": ``` \begin{array}{lll} & single: \ch{CH3-CH3} \par & single: CH_3-CH_3 \\ & 2 \double: \ch{CH2=CH2} \par & double: CH_2=CH_2 \\ & 3 \triple: \ch{CH+CH} & triple: CH=CH \\ \end{array} ``` ## 6.5.2. Flexible Bonds **Predefined Bonds** In addition to the three native bonds there are a few more which can be called by ``` \box{bond} \{\langle bond \ name \rangle\} ``` Prints the bond type specified by \(\langle bond name \rangle \). The predefined bond types are shown in table 1 on the following page. TABLE 1: Bonds available with \bond. | name | appearance | aliases | |---|---------------|------------| | single | _ | normal, sb | | double | = | db | | triple | = | tp | | dotted | • | semisingle | | deloc | <u></u> | semidouble | | tdeloc | = | semitriple | | C0> | \rightarrow | coordright | | <c0< td=""><td>\leftarrow</td><td>coordleft</td></c0<> | \leftarrow | coordleft | 1 \ch{C\bond{sb}C\bond{db}C\bond{tp}C\bond{deloc}C\bond{tdeloc}C\bond{co>}C\ bond{<co}C}</pre> $$C-C=C\equiv C=C=C\rightarrow C\leftarrow C$$ **Own Bonds CHEMFORMULA** offers commands to define own bond types: ## $\NewChemBond\{\langle name \rangle\}\{\langle code \rangle\}$ Introduced in version 4.3 (2014/01/24) Define the new bond type $\langle name \rangle$. Issue an error if a bond $\langle name \rangle$ already exists. $\DeclareChemBond\{\langle name \rangle\}\{\langle code \rangle\}$ Define the new bond type $\langle name \rangle$ or overwrite it if it already exists. $\RenewChemBond\{\langle name \rangle\}\{\langle code \rangle\}$ Redefine the existing bond type $\langle name \rangle$. Issue an error if a bond $\langle name \rangle$ doesn't exist. $\ProvideChemBond\{\langle name \rangle\}\{\langle code \rangle\}\$ Define the new bond type $\langle name \rangle$ only if it doesn't exist yet. Introduced in version 4.12a (2015/08/29) (2015/08/29) Introduced in version 4.3 $\NewChemBondAlias\{\langle new\ name \rangle\}\{\langle old\ name \rangle\}$ Declare the bond type $\langle new \ name \rangle$ to be an alias of $\langle old \ name \rangle$. Issue an error if a bond $\langle new \ name \rangle$ already exists. \DeclareChemBondAlias{\(new name \)} {\(old name \)} Declare the bond type $\langle new \ name \rangle$ to be an alias of $\langle old \ name \rangle$. $\ShowChemBond\{\langle name \rangle\}\$ Print the definition of bond type $\langle name \rangle$. The usage is best described with an example. So let's see how the single bond and the cobond are defined: Two points are important: - the names of the starting and the ending coordinates, chemformula-bond-start and chemformula-bond-end, - and the TikZ style of the bonds chembond. So, let's say you want to define a special kind of dashed bond. You could do this: ``` \usetikzlibrary{decorations.pathreplacing} ₂ \makeatletter 3 \NewChemBond{dashed} { \draw[chembond, decorate, decoration={ ticks, segment length=\chemformula@bondlength/10,amplitude=1.5pt 11 (chemformula-bond-start) -- (chemformula-bond-end); 12 } 14 \makeatother \setchemformula{bond-length=2ex} 16 \ch{C\bond{dashed}C} C ``` The last example showed you another macro: \chemformula@bondlength. It only exists so you can use it to access the bond length as set with bond-length directly. #### 6.6. Customization These options allow you to customize the ouptut of the compounds: ``` Subscript-vshift = \{\langle dim \rangle\} Default: 0pt Extra vertical shift of the subscripts. This only works when math-scripts = \{false\} is in effect. ``` #### 6. Compounds subscript-style = text|math Default: text Style that is used to typeset the subscripts. charge-hshift = $\{\langle dim \rangle\}$ Default: .25em Shift of superscripts when following a subscript. Default: 0pt charge-vshift = $\{\langle dim \rangle\}$ Extra vertical shift of the superscripts. This only works when math-scripts = {false} is in effect. Default: text charge-style = text|math Style that is used to typeset the superscripts. math-scripts = true|false Default: false Switches to TeX's native subscript and superscript mechanism which might be your option of choice for the sake of typographical consistency. This option is experimental. Please report any problems you experience with this option to CHEMFORMULA's bug tracker. circled = formal|all|none Default: formal Like CHEMMACROS' package option but local to CHEMFORMULA'S \ch. That is: since CHEMin version 4.6 MACROS' macros use CHEMFORMULA's mechanism this is effectively an alias. Default: chem circletype = chem|math Like CHEMMACROS' package option but local to CHEMFORMULA'S \ch. That is: since CHEM-Introduced in MACROS' macros use CHEMFORMULA's mechanism this is effectively an alias. $adduct-space = \{\langle dim \rangle\}$ Default: .1333em Space to the left and the right of the adduct point. adduct-penalty = $\{\langle num \rangle\}$ Default: 300 The penalty inserted after the adduct point for (dis-)allowing line breaks. Introduced in Default: .5833em bond-length = $\{\langle dim \rangle\}$ The length of the bonds. Default: .07em bond-offset = $\{\langle dim \rangle\}$ Space between bond and atoms. bond-style = $\{\langle TikZ \rangle\}$ (initially empty) TikZ options for the bonds. Default: 10000 bond-penalty = $\{\langle num \rangle\}$ The penalty that is inserted after a bond for (dis-)allowing line breaks. Introduced in radical-style = $\{\langle TikZ \rangle\}$ (initially empty) TikZ options for the radical point. $radical - radius = \{\langle dim \rangle\}$ Default: .2ex ☆ New Introduced (2014/06/30) version 4.6 version 4.14 (2015/10/21) version 4.0a (2013/07/26) The radius of the radical point. ``` radical-hshift = \{\langle dim \rangle\} Default: .15em ``` Horizontal shift before the radical point is drawn. ``` radical-vshift = \{\langle dim \rangle\} Default: .5ex ``` Vertical shift relative to the current baseline. ``` radical-space = \{\langle dim \rangle\} Default: .15em ``` Horizontal shift after the radical point is drawn. Maybe you have noticed that charges of certain ions are shifted to the right. They are shifted if they *follow* a subscript which follows IUPAC recommendations [Coh+o8, p. 51]. The amount of the shift can be set with the option charge-hshift. ``` \ch{S04^2-} \ch{NH4+} \ch{Na+} \par \(\setchemformula{charge-hshift=.5ex} \) \(\ch{S04^2-} \ch{NH4+} \ch{Na+} \par \(
\setchemformula{charge-hshift=.5pt} \) \(\setchemformula{charge-hshift=.5pt} \) \(\setch{S04^2-} \ch{NH4+} \ch{Na+} \) \(SO_4^2 \NH_4^+ \Na^+ \SO_4^2 \NH_4^2 \NA^2 ``` Despite IUPAC's recommendation CHEMFORMULA does not make fully staggered arrangements in the default setting as I find it hard to read in some cases and ugly in others. Since this is a subjective decision CHEMFORMULA not only let's you define the absolute amount of the shift but also provides a possibility for full staggered arrangements. For this you have to use charge-hshift = {full}. If you don't want the charges to be typeset in text mode you can switch to math mode: ``` 1 \ch{M^x+} \ch{S04^2-} \par 2 \setchemformula{charge-style = math} 3 \ch{M^x+} \ch{S04^2-} M^{x+} SO₄ M^{x+} SO₄ M^x+ ``` The option subscript-vshift can be used to adjust the vertical shift of the subscripts: ``` \label{eq:continuous} $$ \ \ch{H2S04} \ \ch{Na3P04} \ \par $$ \ \ch{H2S04} \ \ch{Na3P04} \ \par $$ \ \setchemformula{subscript-vshift=-.2ex} $$ \ \ch{H2S04} \ \ch{Na3P04} $$ \ \ch{H2S04} \ \ch{Na3P04} $$ \ \ch{SO_4} \ \Na_3PO_4 $$ \ \ch_2SO_4 \ \ch_3PO_4 $$ \ch_2SO_4 \ \ch_3PO_4 $$ \ch_2SO_4 \ \ch_2SO_ ``` You can choose the mode subscripts are typeset in the same way as it is possible for the charges: The option adduct-space sets the space left and right to the adduct symbol \cdot . ``` \label{eq:linear_control_loss} $$ \ch{Na3P03*H20} \rightarrow \ch{Na3P03*H20}$$ $$ Na_3PO_3 \cdot H_2O $$ $$ Na_3PO_3 \cdot H_2O ``` Changing the length of the bonds: ``` \label{eq:charge_single} $$ \sum_{\substack{1 \leq i \leq CH3-CH3} \leq 2 \\ \text{single: } \\ \text{single: } \\ \text{ch}\{CH3-CH3\} \\ \text{gar} \\ \text{gouble: } \\ \text{ch}\{CH2=CH2\} \\ \text{par} \\ \text{diple: } \\ \text{ch}\{CH+CH\} $$ $$ $$ single: CH_3-CH_3 $$ $$ double: $CH_2=CH_2$ $$ triple: $CH=CH$ $$ ``` You can change the distance between bond and atom, too: #### 6.7. Standalone Formulae Introduced in version 4.0 (2013/07/06) CHEMFORMULA offers a command that *only accepts* the "compound" input type: $\checkline \checkline \checklin$ Typeset single compounds. ## 6.8. Extend Compound Properties Introduced in version 4.10 (2015/03/16) It is possible to extend the range of special input symbols within compounds. In the default setting those are *.-=+' and arabic numerals. Others can be added or the existing ones be changed with one of the following commands: ``` \NewChemCompoundProperty{\langle token \rangle}{\langle replacement \rangle} ``` $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is not yet part the compounds' property list. Otherwise an error is issued. ``` \ProvideChemCompoundProperty{\langle token \rangle}{\langle replacement \rangle} ``` Introduced in version 4.12a $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is not yet part the compounds' property list. ``` \ensuremath{\mbox{RenewChemCompoundProperty}\{\langle token \rangle\}\{\langle replacement \rangle\}} ``` $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is already part the compounds' property list. Otherwise an error is issued. ``` \DeclareChemCompoundProperty{\langle token \rangle} {\langle replacement \rangle} ``` ⟨token⟩ will be replaced by ⟨replacement⟩ within compounds. The property silently overwrites any previously set $\langle replacement \rangle$ for $\langle token \rangle$ if $\langle token \rangle$ is already part the compounds' property list. ### $\RemoveChemCompoundProperty{\langle token \rangle}$ Removes \(\lambda token \rangle\) from the compounds' property list. For example you can use ``` 1 \NewChemCompoundProperty{\}{\slash} ``` to allow line breaks after slashes in compounds. ## 7. Special Input Types There are some "special type" input groups. ## 7.1. Single Token Groups The first kind are groups which consist of only one token. They are again divided into two groups, "addition symbols" and "symbols". ``` 7.1.1. Addition Symbols ``` ``` \ch{ + } + ``` Creates the plus sign between compounds with space around it: ``` ch{2 Na + Cl2} 2Na + Cl_2 ``` ``` \ch{ } - \ \ - ``` Introduced in version 4.3a () Creates the minus sign between compounds with space around it: ``` \ch\{M - H\} M - H ``` Addition symbols are surrounded with space which can be customized according to options explained in a bit. There is also some penalty prohibiting a line break after them which also can be customized with an option. You can define/redefine your own addition symbols: ``` \NewChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle} ``` Introduced in version 4.11 Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$. (2015/06/30) Introduced in version 4.12a $\label{lem:provideChemAdditionSymbol} $$ \Pr o(\text{continuity}) $$ ProvideChemAdditionSymbol} $$ (\text{continuity}) $$ ProvideChemAdditionSymbol} $$ (\text{continuity}) $$$ Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$ only no addition symbol with then name $\langle name \rangle$ doesn't exist. ``` \RenewChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle} ``` Introduced in version 4.11 Redefines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$. $\DeclareChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle}$ Introduced in version 4.11 (Re-)Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$ without checking if the symbol exists or not. The space left and right of the plus and the minus sign and the signs themselves can be set with the following options: plus-space = $\{\langle skip \rangle\}$ Default: .3em plus .1em minus .1em A rubber length. $plus-penalty = \{\langle num \rangle\}$ Default: 700 Introduced in version 4.0a The penalty that is inserted after the plus sign for (dis-)allowing line breaks. Introduced The $\langle code \rangle$ that is used for the plus sign. Default: + in version 4.9 (2014/10/07) Introduced in version 4.9 $minus-space = \{\langle skip \rangle\}$ $plus-output-symbol = \{\langle code \rangle\}$ Default: .3em plus .1em minus .1em A rubber length. minus-penalty = $\{\langle num \rangle\}$ Introduced in version 4.9 The penalty that is inserted after the minus sign for (dis-)allowing line breaks. minus-output-symbol = $\{\langle code \rangle\}$ Default: \$-\$ Default: 700 Introduced in version 4.9 The $\langle code \rangle$ that is used for the minus sign. The corresponding three options are defined when \NewChemAdditionSymbol or one of the variants is used, $\langle name \rangle$ -space and $\langle name \rangle$ -penalty both with the same defaults as above, and $\langle name \rangle$ -output-symbol. 7.1.2. Symbols \ch{ v } ↓ Sign for precipitate: \ch{BaS04 v} BaSO₄↓ \ch{ ^ } ↑ Sign for escaping gas 3 : \ch{H2 ^} H_2 You can define/redefine your own symbols: $\NewChemSymbol{\langle input\rangle}{\langle output\rangle}$ Introduced in version 4.11 Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$. ^{3.} Is this the correct English term? Please correct me if it isn't. ``` \ProvideChemSymbol{\langle input\rangle}{\langle output\rangle} ``` Introduced in version 4.12a Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$ only if no symbol with input $\langle input \rangle$ exists. ``` \RenewChemSymbol{\langle input\rangle}{\langle output\rangle} ``` Introduced in version 4.11 Redefines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$. ``` \DeclareChemSymbol{\langle input\rangle}{\langle output\rangle} ``` Introduced in version 4.11 (Re-)Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$ without checking if the symbol exists or not. #### 7.2. Option Input Sometimes you might want to apply an option only to a part of a, say, reaction. Of course you have the possibility to use \ch several times. This, however, interrupts the input in your source and *may* mess with the spacing. That's why there is an alternative: The options specified this way will be valid *only* until the next compound is set. ## 8. Escaped Input In some cases it may be desirable to prevent **CHEMFORMULA** from parsing the input. This can be done in two ways. #### 8.1. Text If you put something between " " or ' ' then the input will be treated as normal text, except that spaces are not allowed and have to be input with ~. ``` \ch{ (escaped text)} ``` One of two possibilities to escape CHEMFORMULA's parsing. ``` \ch{ '\langle escaped text \rangle' } ``` The second of two possibilities to escape CHEMFORMULA's parsing. In many cases you won't need to escape the input. But when you get into trouble when using a command inside \ch try hiding it. #### 8.2. Math If you especially want to input math you just enclose it with \$ \$. This output is different from the escaped text as it is followed by a space. The reasoning behind this is that I assume math will mostly be used to replace stoichiometric factors. ``` \ch{ $\langle escaped math \rangle $ } ``` One of two possibilities to escape CHEMFORMULA's parsing into math mode. ``` \ch\{ (\langle escaped \ math \rangle) \} ``` The second of two possibilities to escape CHEMFORMULA's parsing into math mode. ``` escaped text: \ch{"x" H20} \par escaped text: xH_2O also escaped math: \ch{\(x\) H20} \par escaped math: xH_2O also escape ``` The space that
is inserted after a math group can be edited: ``` \frac{\mathsf{math} \cdot \mathsf{space}}{\mathsf{and} \cdot \mathsf{space}} = \{\langle \mathit{skip} \rangle\} ``` Default: .1667em plus .0333em minus .0117em A rubber length. ``` \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \text{Ch} \\ \text{S2n\$} & \text{Na} \\ \end{array} & \text{Setchemformula} \\ \text{math-space=.25em} \end{array} \\ \begin{array}{c} 3 \\ \text{Ch} \\ \text{$\$$2n\$} & \text{Na} \\ \end{array} & \text{Sn} \\ \end{array} & \text{Na} \\ \begin{array}{c} \text{S2n\$} & \text{NaCl} \\ \text{SA->B\$} \end{array} \\ \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Cl} \\ \text{2n} \\ \text{Na} \\ \end{array} & \text{Na} \\ \end{array} & \text{Na} \\ \end{array} & \begin{array}{c} \begin{array}{c} \text{Cl} \\ \text{2n} \\ \text{Na} \\ \end{array} & \text{Na} \\ \end{array} & \begin{array}{c} \begin{array}{c} \text{Cl} \\ \text{2n} \\ \text{Na} \\ \end{array} & \begin{array}{c} \text{NaCl} \\ \text{2n} \\ \text{Na} \\ \end{array} & \begin{array}{c} \text{NaCl} \\ \text{2n} \\ \text{Na} \\ \end{array} & \begin{array}{c} \text{NaCl} \\ \end{array} \\ \begin{array}{c} \text{A->B} \end{array} \\ \end{array} ``` ## 9. Arrows #### 9.1. Arrow types Arrows are input in the same intuitive way they are with mhchem. There are various different types: ``` -> → standard right arrow <- ← standard left arrow -/> → does not react (right) </- ← does not react (left) <-> ← resonance arrow <> ⇌ reaction in both directions == = stoichiometric equation <=> ⇌ equilibrium arrow >=< ← reversed equilibrium arrow ``` Introduced in version 4.5 (2014/04/07) ``` unbalanced equilibrium arrow to the right reversed unbalanced equilibrium arrow to the right Introduced in version 4.5 <<=> ~ unbalanced equilibrium arrow to the left Introduced in reversed unbalanced equilibrium arrow to the left version 4.5 <=0> ~~~ quasi equilibrium arrow Introduced in version 4.15 (2016/05/11) unbalanced quasi equilibrium arrow to the right Introduced in version 4.15 unbalanced quasi equilibrium arrow to the left Introduced in version 4.15 <0> <0> isolobal arrow <==> <=> ``` Introduced in version 4.5 I've seen this one used. I'm not sure it actually has a meaning in chemical equations. If you have some official reference for this arrow type please feel free to contact me. All these arrows are drawn with TikZ. #### 9.2. Labels The arrows take two optional arguments to label them. ``` ->[\langle above \rangle][\langle below \rangle] ``` Add text above or under an arrow. The label text can be parsed seperately from the arrow. The recipe is easy: leave blanks. If you leave the blanks **CHEMFORMULA** treats the groups inside the square brackets as seperated input types. The arrow reads its arguments *afterwards*. As you can see the arrows "grow" with the length of the labels. What stays constant is the part that protrudes the labels. ``` 1 \ch{A ->[a] B} \par 2 \ch{A ->[ab] B} \par 3 \ch{A ->[abc] B} \par 4 \ch{A ->[abc~abc] B} \par 5 % needs the `chemfig' package: 6 \setchemfig{atom sep =15pt} 7 \ch{A ->["\chemfig{-[:30]-[:-30]0H}"] B} \par A \(\frac{a}{ab} \) B A \(\frac{abc}{abc} \) B A \(\frac{abc}{abc} \) B A \(\frac{abc}{OH} \) B ``` ### 9.3. Customization These are the options which enable you to customize the arrows: $$arrow-offset = \{\langle dim \rangle\}$$ Default: .75em This is the length that an arrow protrudes a label on both sides. This means an empty arrow's length is two times arrow-offset. $arrow-min-length = \{\langle dim \rangle\}$ Default: 0pt Introduced in version 3.6b (2013/04/19) The minimal length an error must have unless two times arrow-offset plus the width of the label is larger. $arrow-yshift = \{\langle dim \rangle\}$ Default: 0pt Shifts an arrow up (positive value) or down (negative value). $arrow-ratio = \{\langle < factor > \rangle\}$ Default: .6 The ratio of the arrow lengths of the unbalanced equilibrium. .4 would mean that the length of the shorter arrow is $0.4 \times$ the length of the longer arrow. compound-sep = $\{\langle dim \rangle\}$ Default: .5em The space between compounds and the arrows. $label-offset = \{\langle dim \rangle\}$ Default: 2pt The space between the labels and the arrows. $label-style = \{\langle font \ command \rangle\}$ Default: \footnotesize The relative font size of the labels. $arrow-penalty = \{\langle num \rangle\}$ Default: 0 Introduced in version 4.0a The penalty that is inserted after an arrow for (dis-)allowing line breaks. $arrow-style = \{\langle TikZ \rangle\}$ (initially empty) Introduced in Additional TikZ keys for formatting the arrows. version 4.1a () The following code shows the effect of the different options on the <=>> arrow: ``` standard: \ch{A <=>>[x][y] B} \par ``` 2 longer: \ch[arrow-offset=12pt]{A <=>>[x][y] B} \par 3 higher: \ch[arrow-yshift=2pt]{A <=>>[x][y] B} \par 4 more balanced: \ch[arrow-ratio=.8]{A <=>>[x][y] B} \par $_5$ labels further away: \ch[label-offset=4pt]{A <=>>[x][y] B} \par 6 larger distance to compounds: \ch[compound-sep=2ex]{A <=>>[x][y] B} \par 7 smaller labels: \ch[label-style=\tiny]{A <=>[x][y] B} standard: A $\frac{x}{y}$ B longer: A $\frac{x}{y}$ B higher: A $\frac{x}{y}$ B more balanced: A \xrightarrow{x} B labels further away: A \xrightarrow{x} B larger distance to compounds: A $\frac{x}{y}$ B smaller labels: A \xrightarrow{x} B Introduced in version 4.7 (2014/08/04) Introduced in version 4.12a If you want to have different arrow tips there is an easy way to use existing arrow tips (as defined by TikZ). CHEMFORMULA uses three different arrow tips: cf, left cf and right cf. If you want them to match those of chemfig [Tel19] for example you could do: ``` \pgfkeys{ cf /.tip = {CF@full} , 3 left cf /.tip = {CF@half} 4 } ``` chemfig has no equivalent of right cf. This mechanism relies on TikZ version 3.0.0 and the new arrows.meta library. ## 9.4. Modify Arrow Types The arrows are defined with the commands ``` \NewChemArrow{\langle type \rangle}{\langle TikZ \rangle} ``` Define the new arrow type $\langle type \rangle$. Issue an error if an arrow type $\langle type \rangle$ already exists. ``` \ProvideChemArrow{\langle type \rangle}{\langle TikZ \rangle} ``` Define the new arrow type $\langle type \rangle$ only if it doesn't exist, yet. ``` \DeclareChemArrow{\langle type \rangle}{\langle TikZ \rangle} ``` Define the new arrow type $\langle type \rangle$ or overwrite it if it already exists. ``` \RenewChemArrow{\langle type \rangle}{\langle TikZ \rangle} ``` Redefine the arrow type $\langle type \rangle$. Issue an error if an arrow type $\langle type \rangle$ doesn't exist. Print out the current definition of the arrow type $\langle type \rangle$. $\langle type \rangle$ is the sequence of tokens that is replaced with the actual arrow code. For example the basic arrow is defined via ``` 1 \NewChemArrow{->}{ 2 \draw[chemarrow,-cf] (cf_arrow_start) -- (cf_arrow_end); 3 } ``` In order to define arrows yourself you need to know the basics of TikZ.⁴ The predefined arrows use the arrow tips cf, left cf and right cf. They also all except the net reaction arrow == use the TikZ-style chemarrow that you should use, too, if you want the option arrow-style to have an effect. There are some predefined coordinates you can and should use. For completeness' sake the arrow tips and the TikZ-style are also listed: ^{4.} Please see the pgfmanual for details. ``` (cf_arrow_start) The beginning of the arrow. (cf_arrow_end) The end of the arrow. (cf_arrow_mid) The mid of the arrow. (cf_arrow_mid_start) The beginning of the shorter arrow in types like <=>>. (cf_arrow_mid_end) The end of the shorter arrow in types like <=>>. cf A double-sided arrow tip. left cf A left-sided arrow tip. right cf A right-sided arrow tip. chemarrow CHEMFORMULA'S TikZ-style that is applied to the arrows and set with arrow-style 1 \NewChemArrow{.>}{ \draw[chemarrow,-cf,dotted,red] (cf_arrow_start) -- (cf_arrow_end); 3 } 4 \NewChemArrow{n>}{ \draw[chemarrow,-cf] (cf_arrow_start) .. controls ([yshift=3ex]cf_arrow_mid) .. (cf_arrow_end); 9 } _{10} \ \ch{A .> B} \ \ch{A .> [a][b] B} \ \ch{A n> B} A \longrightarrow B A \longrightarrow B A \longrightarrow B 1 \texttt{\ShowChemArrow{->}} \par 2 \RenewChemArrow{->}{\draw[chemarrow,->,red] (cf_arrow_start) -- (cf_arrow_end 3 \texttt{\ShowChemArrow{->}} \par 4 \ch{A -> B} ``` ``` \draw [chemarrow,-cf](cf_arrow_start)--(cf_arrow_end); \draw [chemarrow,->,red] (cf_arrow_start) -- (cf_arrow_end) ; A \longrightarrow B ``` #### 9.5. Standalone Arrows Introduced in version 4.0 **CHEMFORMULA** offers a command that *only accepts* the "arrow" input type: ``` \charrow{\langle type \rangle} [\langle above \rangle] [\langle below \rangle] Print the arrow type \langle type \rangle. ``` This command is internally used for the arrows, too, when \ch is parsed. #### 10. Names ### 10.1. Syntax **CHEMFORMULA** has a built-in syntax to write text under a compound. In a way it works very similar to the arrows. ``` \ch{ !(\langle text \rangle) (\langle formula \rangle) } Writes \langle text \rangle below \langle formula \rangle. ``` If an exclamation mark is followed by a pair of parentheses **CHEMFORMULA** will parse it this way: ``` CH₃CH₂OH ethanol ``` The same what's true for the arrows arguments holds for these arguments: if you leave blanks the different parts will be treated according to their input type before the text is set below the formula. ``` 1 \ch{!(water)(H20)} \quad 2 \ch{!("\textcolor{blue}{water}")(H20)} \quad 3 \ch{!($2n-1$)(H20)} \quad 4 \ch{!(H20)(H20)} \quad 5 \ch{!(oxonium)(H30+)} H2O H₂O H₂O H₂O H₃O⁺ water water 2n-1 H₂O oxonium ``` If for some reason you want to insert an exclamation mark *without* it creating a name you only have to make sure it isn't followed by parentheses. ``` 1 \ch{H20~(!)} \par H2O (!) 2 \ch{A!{}()} A!() ``` #### 10.2. Customization
CHEMFORMULA provides two options to customize the output of the names: ``` name-format = \{\langle commands \rangle\} Default: \scriptsize\centering ``` The format of the name. This can be arbitrary input. ``` name-width = \langle dim \rangle | auto Default: auto ``` The width of the box where the label is put into. auto will detect the width of the name and set the box to this width. #### 10.3. Standalone Names Introduced in version 4.0 CHEMFORMULA offers a command that allows the usage of the "name" syntax in normal text. This is the command that a bang is replaced with in CHEMFORMULA's formulas, actually. Both arguments are mandatory. ``` \chiname(\langle text 1 \rangle)(\langle text 2 \rangle) ``` The command that is useed internally for placing $\langle text \ 1 \rangle$ below of $\langle text \ 2 \rangle$. #### 11. Format and Font In the standard setting CHEMFORMULA doesn't make any default changes to the font of the formula output. Let's take a look at a nonsense input which shows all features: Now we're going to change different aspects of the font a look what happens: ``` \begin{array}{c} {}_{1} \setminus \text{sffamily Hallo } \setminus \text{sample } \setminus \text{normalfont } \setminus \text{sample Hallo } \setminus \text{sample } \setminus \text{normalfont } \setminus \text{sample Hallo } \setminus \text{sample } \setminus \text{normalfont } \setminus \text{sample Hallo } \setminus \text{sample } \cdot \text{hallo } \setminus \text{sample Hallo } \setminus \text{sample } \cdot \text{hallo \text{ha ``` As you can see most features adapt to the surrounding font. If you want to change the default format you need to use this option: Introduced in version 4.13 (2015/01/01) This adds $\langle code \rangle$ before each formula. This allows to specify a format for the chemical formulas only and have a different format for the rest of the chemical equation. ``` 1 \definecolor{newblue}{rgb}{.1,.1,.5} 2 \setchemformula{format=\color{newblue}\sffamily} 3 \sffamily Hallo \sample \\ 4 \ttfamily Hallo \sample \normalfont \\ 5 \bfseries Hallo \sample \normalfont \\ 6 \itshape Hallo \sample ``` Hallo $$H_{2}C-C \equiv C-CH = CH^{+} + CrO_{4}^{2-} \xrightarrow{X} 2.5 Cl^{-\bullet} + 3\frac{1}{2} \text{Na} \cdot OH_{(aq)} + A^{n} \text{ LATEX } 2\varepsilon$$ Hallo $H_{2}C-C \equiv C-CH = CH^{+} + CrO_{4}^{2-} \xrightarrow{X} 2.5 Cl^{-\bullet} + 3\frac{1}{2} \text{Na} \cdot OH_{(aq)} + A^{n} \text{ LATEX } 2\varepsilon$ Hallo $H_{2}C-C \equiv C-CH = CH^{+} + CrO_{4}^{2-} \xrightarrow{X} 2.5 Cl^{-\bullet} + 3\frac{1}{2} \text{Na} \cdot OH_{(aq)} + A^{n} \text{ LATEX } 2\varepsilon$ Hallo $H_{2}C-C \equiv C-CH = CH^{+} + CrO_{4}^{2-} \xrightarrow{X} 2.5 Cl^{-\bullet} + 3\frac{1}{2} \text{Na} \cdot OH_{(aq)} + A^{n} \text{ LATEX } 2\varepsilon$ Hallo $H_{2}C-C \equiv C-CH = CH^{+} + CrO_{4}^{2-} \xrightarrow{X} 2.5 Cl^{-\bullet} + 3\frac{1}{2} \text{Na} \cdot OH_{(aq)} + A^{n} \text{ LATEX } 2\varepsilon$ name You can also specifically change the fontfamily, fontseries and fontshape of the output. $font-family = \{\langle family \rangle\}$ (initially empty) Changes the fontfamily of the output with $\footnote{family}{\langle family \rangle}$. $$font-series = {\langle series \rangle}$$ (initially empty) Changes the fontseries of the output with $\fontseries{\langle series \rangle}$. $$font-shape = {\langle shape \rangle}$$ (initially empty) Changes the fontshape of the output with $fontshape{\langle shape \rangle}$. ``` | \setchemformula{font-series=bx} | \frac{1}{2} \text{ Hallo \sample \par} | \frac{1}{2} \text{ Hallo \sample \par} | \frac{1}{2} \text{ Hallo \sample \par} | \frac{1}{2} \text{ Na \cdot OH}_{(aq)} + \frac{A^n}{2} \text{ Large \c ``` If you're using XqIATeX or LualATeX and have loaded fontspec you have the possibilty to set the font with it: ``` font-spec = \{\langle font \rangle\} (initially empty) ``` Use font $\langle font \rangle$ for **CHEMFORMULA**'s formulas. or with options ``` font-spec = \{ [\langle options \rangle] \langle font \rangle \} ``` Use font $\langle font \rangle$ with options $\langle options \rangle$ for CHEMFORMULA's formulas. Since this document is typeset with pdfIATFX the option cannot be demonstrated here. ## 12. Usage In Math Equations The \ch command can be used inside math equations. It recognizes \\ and & and passes them on. However, you can't use the optional arguments of \\ inside \ch. ``` 1 \begin{align} \ch{ H20 \& ->[a] H2S04 \setminus Cl2 & ->[x][y] CH4 6 \end{align} 7 \begin{align*} RN02 &<=>[+ e-] RN02^{-.} \\ RN02^{-.} \& = [+ e-] RN02^{-.} 12 \end{align*} H_2O \xrightarrow{a} H_2SO_4 (1) Cl_2 \xrightarrow{x} CH_4 (2) RNO_2 \xrightarrow{+e^-} RNO_2^{-\bullet} RNO_2^{-\bullet} \xrightarrow{+ e^-} RNO_2^{2-} ``` ## 13. Usage with TikZ or pgfplots and externalization Introduced in version 4.1 Since CHEMFORMULA uses TikZ to draw reaction arrows and bonds they would be externalized, too, if you use that facility with TikZ or pgfplots [Feu18]. This may not be desirable since they are very small pictures maybe containing of a single line. This is why CHEMFORMULA's default behaviour is to disable externalization for it's bonds and arrows. This can be turned on and off through the following option: ``` tikz-external-disable = true | false Default: true dis- or enable TikZ' externalization mechanism for CHEMFORMULA's arrows and bonds. ``` If you should be using a formula that contains bonds or arrows inside of a tikzpicture that is externalized you should locally enable it for CHEMFORMULA, too: ^{5.} on CTAN as pgfplots: http://mirrors.ctan.org/macros/latex/contrib/pgfplots/ ``` begin{tikzpicture} \setchemformula{tikz-external-disable=false} \begin{axis}[xlabel={\ch{2 H+ + 2 e- -> H2}}] \addplot ...; \end{axis} \end{tikzpicture} ``` ## 14. Lewis Formulae Introduced in version 4.2 (2013/10/24) CHEMFORMULA offers a command to typeset Lewis formulae. This does not mean Lewis structures! Those can be achieved using the chemfig package [Tel19]. CHEMFORMULA provides the possibility to draw electrons as dots and pairs of dots or a line around an atom. ``` \chlewis[\langle options \rangle]{\langle electron\ spec \rangle}{\langle atom \rangle} Draws electrons around the \langle atom \rangle according to \langle electron\ spec \rangle. ``` Electrons are specified by the angle to the horizontal in the couter-clockwise direction. The default appearance is a pair of electrons drawn as a pair of dots. Other specifications can be chosen. The specification follows the pattern $\langle angle \rangle \langle separator \rangle$. $\langle angle \rangle$ is a positiv or negativ integer denoting the angle counter clockwise to the horizontal where the electrons should be drawn. $\langle separator \rangle$ is either a dot (., single electron), a colon (:, electron pair), a vertical line (|, electron pair), an o (o, empty pair), or a comma (, default spec). ``` \label{lem:chlewis} $$ \angle 1 \angle 2 \angle 2 \angle 2 \angle 2 \angle 2 \angle 3.270. $$ {\angle 2 \angle 2 \angle 3.270. }$$ for example: $$ \chlewis {0,180} {0} gives : O: and \chlewis {0.90.180.270. }$$ {C} angle 2 \angle 2 \angle 2 \angle 2 \angle 2 \angle 3 \angle 2 \angle 2 \angle 3 \angle 2 \angle 3 \angle 3 \angle 3 \angle 4 \a ``` The appearance can be influenced by a number of options: lewis-default = .|:|||o|single|pair|pair (dotted)|pair (line)|empty Default: pair Sets the default type that is used when no type is given in $\langle electron \ spec \rangle$. ``` lewis-distance = \{\langle dim \rangle\} Default: 1ex ``` The distance of two electrons in a pair. ``` lewis-line-length = \{\langle dim \rangle\} Default: 1.5ex ``` The length of the line representing an electron pair. ``` lewis-line-width = \{\langle dim \rangle\} Default: 1pt ``` The thickness of a line representing an electron pair. ``` lewis-offset = \{\langle dim \rangle\} Default: .5ex ``` The distance of the symbols from the atom. The dots are drawn according to the radical-radius option mentioned in section 6.6. The basic usage should be more or less self-explaining: ``` 1 \chlewis{0:90|180.270}{0} 2 \quad 3 \chlewis{45,135}{0} 4 \quad 5 \chlewis{00}{Na} ``` The next example shows the effect of some of the options: ``` 1 \chlewis[lewis-default=.]{23,68,113,158,203,248,293,338}{X} 2 \quad 3 \chlewis{0,90,180,270}{X} 4 \quad 5 \chlewis[lewis-distance=1.25ex]{0,90,180,270}{X} 6 \quad 7 \chlewis[lewis-distance=.75ex,radical-radius=.5pt]{0,90,180,270}{X} 8 \quad 9 \chlewis[10 radical-radius=.5pt, 11 lewis-default=. 12]{23,68,113,158,203,248,293,338}{X} ``` ## 15. Kröger-Vink Notation Introduced in version 4.5 **CHEMFORMULA** also supports the Kröger-Vink notation. kroeger-vink = true|false Default: false Enable the Kröger-Vink notation. As most options this can be enabled globally via the setup command or locally as option to \ch. With this option enabled several changes come into effect: ' produces a prime, a x in a superscript produces x, and both a . and a y produce a little filled circle. In the Kröger-Vink notation a prime denotes a negative relative charge, the circle a positive relative charge, and the cross denotes a neutral relative charge. ``` \setchemformula{kroeger-vink=true} 2 \ch{Al_{Al}^'} Al'_{Al} Al'_{Al} 3 \ch{Al_{Al}'}\par 4 \ch{Ni_{Cu}^{x}}\par Ni_{Cu}^{\times} 5 \ch{V_{Cl}^.} V_{Cl}^{\bullet} V_{Cl}^{\bullet} 6 \ch{V_{Cl}^*}\par 7 \ch{Ca_i^{..}}\par 8 \ch{e^'}\par Cl_i Cl_i 9 \ch{Cl_i^'} O_i'' O_i'' 10 \ch{Cl_i'}\par _{11} \ \ch{0_i^{('')}} _{12} \ \ch{0_i''} ``` There are a number of options for customizations: ``` kv-positive-style = \{\langle TikZ \rangle\} (initially empty) TikZ code for positive charge dot. Default: .3ex kv-positive-radius = \{\langle dim \rangle\} Radius of positive charge dot kv-positive-hshift = \{\langle dim \rangle\} Default: .15em Horizontal shift of positive charge dot kv-positive-vshift = \{\langle dim \rangle\} Default: .5ex Vertical shift positive charge dot kv-positive-offset = \{\langle dim
\rangle\} Default: .4em The offset of two consecutive positive charge dots kv-neutral-symbol = \{\langle T_E X code \rangle\} Default: \times Symbol for neutral particles. ``` ## A. History Since Version 4.0 #### Version 4.0 (2013/07/06) Introduced in version 4.0 • Since version 4.0, the CHEMFORMULA package is distributed independently from CHEMMACROS. #### Version 4.1 (2013/08/24) - New option tikz-external-disable. - New option frac-math-cmd. #### Version 4.2 (2013/10/24) - New option arrow-style. - New command \chlewis that allows to add Lewis electrons to an atom, see section 14. ### Version 4.3 (2014/01/24) - New option stoich-print. - New command \chstoich. - The commands \DeclareChem(...) now don't give an error any more if the command already exists. This is more consistent with Lagarage Technology. This is more consistent with Lagarage Technology. The command is already defined. #### Version 4.4 (2014/01/29) • A single dash - in \ch is now treated as a minus sign. This is consistent with the behaviour of a +. #### Version 4.5 (2014/04/07) - New arrow types >=<, >=<< and <==>. - Internal changes to \ch allow usage of optional arguments of \\ and \label in CHEM-MACROS' reactions environment. ## Version 4.6 (2014/06/30) • New options circled and circletype. this allows to set the behaviour as described on CHEMMACROS' manual for a specific usage of \ch. ## Version 4.7 (2014/08/04) • Dependency change: CHEMFORMULA now requires the TikZ library arrows. meta instead of the library arrows. This requires TikZ version 3.0.0. #### Version 4.8 (2014/08/08) • The CHEMFORMULA package now is no longer part of the CHEMMACROS bundle but is distributed as a package of it's own. #### Version 4.9 (2014/10/07) - New options minus-space and minus-penalty equivalent to the existing plus-space and plus-penalty - New options plus-output-symbol and minus-output-symbol for customizing the plus and minus signs in the output. #### Version 4.10 (2015/03/16) • New macro set \NewChemCompoundProperty, see section 6.8 for a description. ### Version 4.11 (2015/06/30) - New macro set \NewChemAdditionSymbol, see section 7.1.1. - New macro set \NewChemSymbol, see section 7.1.2. #### Version 4.12 (2015/08/12) • Change package requirement: **CHEMFORMULA** now not loads complete amsmath but only amstext. ## Version 4.13 (2015/01/01) - Check for blank input parts and don't process them. - Drop support for \[and \] as replacement for [and] inside arrow captions. - New option atom-format. #### Version 4.14 (2015/10/21) • New option adduct-penalty. ## Version 4.15 (2016/05/11) - The order of arrow definitions doesn't matter any more. - New quasi equilibria arrows. - · Require amsmath. - Allow name-format to end with a macro that takes an argument. - · Various bug fixes. #### Version 4.16 (2020/12/22) - New option math-scripts - Use LaTeX's new hooks and get rid of redundant package dependencies and code. #### **B.** References - [Coh+o8] E. Richard Cohan et al. "Quantities, Symbols and Units in Physical Chemistry", IUPAC Green Book. 3rd Edition. 2nd Printing. IUPAC & RSC Publishing, Cambridge, 2008. - [Feu18] Christian Feuersänger. pgfplots. Version 1.16. Mar. 28, 2018. URL: http://mirror.ctan.org/graphics/pgf/contrib/pgfplots/. - [Koh19] Markus Kohm. KOMA-Script. Version 3.25. Jan. 14, 2019. URL: http://mirror.ctan.org/macros/latex/contrib/koma-script/. - [L3Pa] THE LATEX3 PROJECT TEAM. l3kernel. Sept. 19, 2019. URL: http://mirror.ctan.org/macros/latex/contrib/l3kernel/. - [L₃Pb] THE LATEX3 PROJECT TEAM. *l₃packages*. Sept. 19, 2019. URL: http://mirror.ctan.org/macros/latex/contrib/l₃packages/. - [MSoo] Frank MITTELBACH and Rainer SCHÖPF. *amstext*. Version 2.01. June 29, 2000. URL: http://mirror.ctan.org/macros/latex/required/amstext/. - [Rei98] Axel Reichert. *nicefrac*. Version o.9b. Aug. 4, 1998. URL: http://mirror.ctan.org/macros/latex/contrib/units/. - [Tan19] Till TANTAU. *TikZ/pgf*. Version 3.1.4b. Aug. 3, 2019. URL: http://mirror.ctan.org/graphics/pgf/. - [Tel19] Christian Tellechea. chemfig. Version 1.41. May 21, 2019. URL: http://mirror.ctan.org/macros/generic/chemfig/. ## C. Index | Symbols | chemformula2 | l3packages 2 | |---|---------------------------------|-----------------------------------| | -/> (arrow type)21 | \chemformula@bondlength 12 | l3packages (bundle) 2 | | -> (arrow type)21 | \chemsetup3,9 | label-offset24 | | <- (arrow type)21 | \chlewis 32 f., 35 | label-style24 | | <-> (arrow type)21 | \chname | lewis-default 32 | | - (arrow type)21</td <td>\chstoich5, 35</td> <td>lewis-distance 32</td> | \chstoich5, 35 | lewis-distance 32 | | <==> (arrow type) | circled9, 13, 35 | lewis-line-length32 | | <=> (arrow type) | circletype 9, 13, 35 | lewis-line-width32 | | <=> (arrow type) | Сонам, E. Richard 5, 10, 14 | lewis-offset32 | | <=0> (arrow type) | compound-sep24 | LPPL | | <=0> (arrow type) | CTAN | LFFL | | <pre><-o> (arrow type)21</pre> | CIAN | M | | <0> (arrow type) | D | math-scripts12 f., 37 | | | decimal-marker5,9 | math-space21 | | <=> (arrow type) | | \mch9 | | <=0> (arrow type) | \DeclareChemAdditionSymbol18 | mhchem (package)2 f., 21 | | == (arrow type)21 | \DeclareChemArrow25 | minus-output-symbol18, 36 | | >=< (arrow type) | \DeclareChemBond11 | minus-penalty | | >=<< (arrow type) 22, 35 | \DeclareChemBondAlias11 | | | >>=< (arrow type) 22, 35 | \DeclareChemCompoundProperty 16 | minus-space | | | \DeclareChemSymbol19 | MITTELBACH, Frank2 | | A | | N | | adduct-penalty 13, 36 | F | name-format | | adduct-space 13, 15 | FEUERSÄNGER, Christian31 | name-width28 | | amsmath (package)36 | font-family30 | \NewChemAdditionSymbol17 f., 36 | | amstext2 | font-series30 | | | amstext (package) 2, 36 | font-shape30 | \NewChemArrow | | arrow-min-length24 | font-spec30 | \NewChemBond | | arrow-offset | fontspec (package) 30 | \NewChemBondAlias11 f. | | arrow-penalty 24 | format29 | \NewChemCompoundProperty16 f., 36 | | arrow-ratio24 | \fplus9 | \NewChemSymbol 18, 36 | | arrow-style 24 ff., 35 | frac-math-cmd | nicefrac2 | | arrow-yshift24 | frac-style 5 f. | nicefrac (package) 2, 6 | | atom-format | Trac seyec | | | 27, 30 | Н | 0 | | В | HENSEL, Martin 2 | \ox 8, 20, 23 | | \bond 10 ff., 16 | • | P | | bond-length 12 f. | K | pgfmanual (manual) 25 | | bond-offset13 | Конм, Markus2 | pgfplots31 | | bond-penalty13 | KOMA-Script2 | pgfplots (package) | | bond-style13 | kroeger-vink33 | plus-output-symbol18, 36 | | 2011 23, 3011111111111111111111111111111111111 | kv-neutral-symbol34 | | | C | kv-positive-hshift34 | plus space | | \ce3 | kv-positive-offset34 | plus-space | | \ch3-24, 26-29, 31-35 | kv-positive-radius34 | \ProvideChemAdditionSymbol17 | | charge-hshift | kv-positive-style34 | \ProvideChemArrow25 | | charge-style13 | kv-positive-vshift34 | \ProvideChemBond | | charge-vshift | 10 posterve vsiirie | \ProvideChemCompoundProperty 16 | | \charrow27 | L | \ProvideChemSymbol19 | | \chcpd | l3kernel | Q | | chemfig25, 32 | l3kernel (bundle) 2 | "Quantities, Symbols and Units in | | | | | | chemfig (package)25, 32 | l3keys2e (package) 2 | Physical Chemistry", | ## INDEX | | IUPAC Green Book . 5, 10, 14 | \RenewChemCompoundProperty16
\RenewChemSymbol19 | subscript-vshift12, 15 | |---|--|--|------------------------| | radical-r
radical-s
radical-s
radical-v
Reicher | · | S SCHÖPF, Rainer | T TANTAU, Till | | | nemCompoundProperty.17
emAdditionSymbol17 | stoich-paren-parse5
stoich-print5,35 | X | | - | emArrow25 f.
emBond11 | stoich-space5 f.subscript-style13 | 4 0, |