1 The Polish language

The file polish.dtx! defines all the language-specific macros for the Polish lan-
guage.

For this language the character " is made active. In table 1 an overview is
given of its purpose.

"a or \aob, for tailed-a (like a)

"A or \Aob, for tailed-A (like A)

"e or \eob, for tailed-e (like ¢)

"E or \Eob, for tailed-E (like E)

"c or \’c, for accented ¢ (like ¢), same with uppercase
letters and n,o,s

"1 or \1pb{}, for 1 with stroke (like 1)

"L or \Lpb{}, for L with stroke (like L)

"r or \zkb{}, for pointed z (like), cf. pronounciation

"R or \Zkb{}, for pointed Z (like Z)

"z or \’z, for accented z

"Z or \’Z, for accented Z

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "=, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"¢ for German left double quotes (looks like ,,).

"> for German right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 1: The extra definitions made by polish.sty

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
1 (xcode)
2 \LdfInit{polish}\captionspolish
When this file is read as an option, i.e. by the \usepackage command, polish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@polish to see whether we have to do something here.

3 \ifx\1@polish\@undefined
4 \@nopatterns{Polish}
5 \adddialect\1@polishO\fi

The next step consists of defining commands to switch to (and from) the Polish
language.

I The file described in this section has version number v1.21 and was last revised on 2005,/03/31.

\captionspolish

\datepolish

\extraspolish
\noextraspolish

The macro \captionspolish defines all strings used in the four standard docu-
mentclasses provided with TEX.

6 \addto\captionspolish{%

7 \def\prefacename{Przedmowal},

8 \def\refname{Literatural},

9 \def\abstractname{Streszczeniel},
10 \def\bibname{Bibliografial’

11 \def\chaptername{Rozdzia\l}},

12 \def\appendixname{Dodatek}%

13 \def\contentsname{Spis tre\’scil}¥
14 \def\listfigurename{Spis rysunk\’owl}%
15 \def\listtablename{Spis tablic}},
16 \def\indexname{Indeks}/,

17 \def\figurename{Rysunekl}/,

18 \def\tablename{Tablical}},

19 \def\partname{Cz\eob{}\’s\’cl}’

20 \def\enclname{Za\l\aob{}cznik}J

21 \def\ccname{Kopie:}J

22 \def\headtoname{Do}},

23 \def\pagename{Stronalj,

24 \def\seename{Por\’ownajl}/

25 \def\alsoname{Por\’ownaj tak\.ze}}
26 \def\proofname{Dow\’od}%

27 \def\glossaryname{Glossary}} <-- Needs translation
28 }

The macro \datepolish redefines the command \today to produce Polish dates.
29 \def\datepolish{%

30 \def\today{\number\day~\ifcase\month\or

31 stycznialor lutego\or marcalor kwietnialor majalor czerwcalor lipcalor
32 sierpnialor wrze\’snia\or pa\’zdziernika\or listopadalor grudnia\fi

33 \space\number\year}},

34 }

The macro \extraspolish will perform all the extra definitions needed for the
Polish language. The macro \noextraspolish is used to cancel the actions of
\extraspolish.

For Polish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the polish group of shorthands should
be used.

35 \initiate@active@char{"}

36 \addto\extraspolish{\languageshorthands{polish}}
37 \addto\extraspolish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.

38 \addto\noextraspolish{\bbl@deactivate{"}}

\sob

\aob
\Aob
\eob
\Eob

\spb

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 1.

If you have problems at the end of a word with a linebreak, use the other version
without hyphenation tricks. Some TeX wizard may produce a better solution with
forcasting another token to decide whether the character after the double quote is
the last in a word. Do it and let us know.

In Polish texts some letters get special diacritical marks. Leszek Holenderski
designed the following code to position the diacritics correctly for every font in
every size. These macros need a few extra dimension variables.

39 \newdimen\pl@left
40 \newdimen\pl@down
41 \newdimen\pl@right
42 \newdimen\pl@temp

The macro \sob is used to put the ‘ogonek’ in the right place.

43 \def\sob#1#2#3#4#5{/parameters: letter and fractions hl,ho,vl,vo

44 \setboxO\hbox{#1}\setbox1\hbox{$_\mathchar’454$}\setbox2\hbox{pl}’
45 \pl@right=#2\wd0 \advance\pl@right by-#3\wd1l

46 \pl@down=#5\htl \advance\pl@down by-#4\htO

47 \pl@left=\pl@right \advance\pl@left by\wdl

48 \pl@temp=-\pl@down \advance\pl@temp by\dp2 \dpl=\pl@temp

49 \leavevmode

50 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

The ogonek is placed with the letters ‘a’, ‘A’, ‘¢’, and ‘E’.

51 \DeclareTextCommand{\aob}{0T1}{\sob a{.66}{.20}{0}{.90}}
52 \DeclareTextCommand{\Aob}{0T1}{\sob A{.80}{.50}{0}{.90}}
53 \DeclareTextCommand{\eob}{0T1}{\sob e{.50}{.35}{0}{.93}}
54 \DeclareTextCommand{\Eob}{0T1}{\sob E{.60}{.35}{0}{.90}}

For the 'new’ T1 encoding we can provide simpler definitions.

55 \DeclareTextCommand{\aob}{T1}{\k a}
56 \DeclareTextCommand{\Aob}{T1}{\k A}
57 \DeclareTextCommand{\eob}{T1}{\k e}
58 \DeclareTextCommand{\Eob}{T1}{\k E}

Construct the characters by default from the OT1 encoding.

59 \ProvideTextCommandDefault{\aob}{\UseTextSymbol{0T1}{\aob}}
60 \ProvideTextCommandDefault{\Aob}{\UseTextSymbol{0T1}{\Aob}}
61 \ProvideTextCommandDefault{\eob}{\UseTextSymbol{0T1}{\eobl}}
62 \ProvideTextCommandDefault{\Eob}{\UseTextSymbol{0T1}{\Eob}}

The macro \spb is used to put the ‘poprzeczka’ in the right place.

63 \def \spb#1#2#3#4#5{%

64 \setboxO\hbox{#1}\setboxl\hbox{\char’023}/
65 \pl@right=#2\wd0 \advance\pl@right by-#3\wdl
66 \pl@down=#5\htl \advance\pl@down by-#4\htO
67 \pl@left=\pl@right \advance\pl@left by\wdl
68 \htl=\pl@down \dpl=-\pl@down

69 \leavevmode
70 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

\skb The macro \skb is used to put the ‘kropka’ in the right place.

71 \def \skb#1#2#3#4#5{J,

72 \setboxO\hbox{#1}\setbox1\hbox{\char’056}/

73 \pl@right=#2\wd0 \advance\pl@right by-#3\wdl

74 \pl@down=#5\htl \advance\pl@down by-#4\htO

75 \pl@left=\pl@right \advance\pl@left by\wdl

76 \leavevmode

77 \kern\pl@right\lower\pl@down\box1l\kern-\pl@left #1}

\textpl For the ‘poprzeczka’ and the ‘kropka’ in text fonts we don’t need any special
coding, but we can (almost) use what is already available.

78 \def\textpl{Y

79 \def\1pb{\plll}%
80 \def\Lpb{\pLLL}/
81 \def\zkb{\.z}/
82 \def\Zkb{\.Z}}

Initially we assume that typesetting is done with text fonts.
83 \textpl

84 \1et\111=\1 \let\LLL=\L
85 \def\pl11{\111}
86 \def \pLLL{\LLL}

\telepl But for the ‘teletype’ font in ‘OT1’ encoding we have to take some special actions,
involving the macros defined above.

87 \def\telepl{%

88 \def\lpb{\spb 1{.45}{.5}{.4}{.8}}%
89 \def\Lpb{\spb L{.23}{.5}{.4}{.8}}%
90 \def\zkb{\skb z{.5}{.5}{1.2}{0}}/
91 \def\Zkb{\skb Z{.5}{.5}{1.1}{0}}}

To activate these codes the font changing commands as they are defined in
KTEX are modified. The same is done for plain TEX’s font changing commands.

When \selectfont is undefined the current format is spposed to be either
plain (based) or IATEX 2.09.

92 \ifx\selectfont\@undefined

93 \ifx\prm\@undefined \addto\rm{\textpll}\else \addto\prm{\textpl}\fi
94 \ifx\pit\@undefined \addto\it{\textpl}\else \addto\pit{\textpl}\fi
95 \ifx\pbf\@undefined \addto\bf{\textpl}\else \addto\pbf{\textpl}\fi
96 \ifx\psl\@undefined \addto\sl{\textpll}\else \addto\psl{\textpl}\fi

97 \ifx\psf\@undefined \else \addto\psf{\textpl}\fi
98 \ifx\psc\@undefined \else \addto\psc{\textpl}\fi
99 \ifx\ptt\Qundefined \addto\tt{\telepll}\else \addto\ptt{\telepl}\fi
100 \else

\dq

\polishrz
\polishzx

When \selectfont exists we assume IATEX 2¢.

101 \expandafter\addto\csname selectfont \endcsname{%

102 \csname\f@encoding @pl\endcsname}

103 \fi

Currently we support the OT1 and T1 encodings. For T1 we don’t have to make a
difference between typewriter fonts and other fonts, they all have the same glyphs.
104 \expandafter\let\csname T1@pl\endcsname\textpl

For OT1 we need to check the current font family, stored in \f@family. Un-
fortunately we need a hack as \ttdefault is defined as a \long macro, while
\f@family is not.

105 \expandafter\def\csname 0T1@pl\endcsname{’,

106 \long\edef\curr@family{\f@familyl}%
107 \ifx\curr@family\ttdefault

108 \telepl
109 \else
110 \textpl
111 \fi}

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

112 \begingroup \catcode‘\"12
113 \def\x{\endgroup

114 \def\dq{"}}

115 \x

Now we can define the doublequote macros for diacritics,

116 \declare@shorthand{polish}{"a}{\textormath{\aob}{\ddot a}}
117 \declare@shorthand{polish}{"A}{\textormath{\Aob}{\ddot A}}
118 \declare@shorthand{polish}{"c}{\textormath{\’c}{\acute c}}
119 \declare@shorthand{polish}{"C}{\textormath{\’C}{\acute C}}
120 \declare@shorthand{polish}{"e}{\textormath{\eob}{\ddot e}}
121 \declare@shorthand{polish}{"E}{\textormath{\Eob}{\ddot E}}
122 \declare@shorthand{polish}{"1}{\textormath{\1pb}{\ddot 1}}
123 \declare@shorthand{polish}{"L}{\textormath{\Lpb}{\ddot L}}
124 \declare@shorthand{polish}{"n}{\textormath{\’n}{\acute n}}
125 \declare@shorthand{polish}{"N}{\textormath{\’N}{\acute N}}
126 \declare@shorthand{polish}{"o}{\textormath{\’o}{\acute o}}
127 \declare@shorthand{polish}{"0}{\textormath{\’0}{\acute 0}}
128 \declare@shorthand{polish}{"s}{\textormath{\’s}{\acute s}}
129 \declare@shorthand{polish}{"S}{\textormath{\’S}{\acute S}}

The command \polishrz defines the shorthands "r, "z and "x to produce pointed
z, accented z and "x. This is the default as these shorthands were defined by this
language definition file for quite some time.

130 \newcommand*{\polishrz}{/

131 \declare@shorthand{polish}{"r}{\textormath{\zkb}{\ddot r}}%

132 \declare@shorthand{polish}{ "R} \textormath{\Zkb}{\ddot R}}/

\mdgon
\mdqoff

133 \declare@shorthand{polish}{"z}{\textormath{\’z}{\acute z}}%
134 \declare@shorthand{polish}{"Z}{\textormath{\’Z}{\acute Z}}%
135 \declare@shorthand{polish}{"x}{\dq x}/

136 \declare@shorthand{polish}{"X}{\dq X}’

137}

138 \polishrz

The command \polishzx switches to a different set of shorthands, "z, "x and "r
to produce pointed z, accented z and "r; a different shorthand notation also in
use.

139 \newcommand*{\polishzx}{/

140 \declare@shorthand{polish}{"z}{\textormath{\zkb}{\ddot z}}%
141 \declare@shorthand{polish}{"Z}{\textormath{\Zkb}{\ddot Z}}%
142 \declare@shorthand{polish}{"x}{\textormath{\’z}{\acute x}}%
143 \declare@shorthand{polish}{"X}{\textormath{\’Z}{\acute X}}%
144 \declare@shorthand{polish}{"r}{\dq r}%

145 \declare@shorthand{polish}{"R}{\dq R}/

146}

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.
147 \declare@shorthand{polish}{" ‘ }{%
148 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
149 \declare@shorthand{polish}{"’}{%
150 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
151 \declare@shorthand{polish}{"<}{/
152 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
153 \declare@shorthand{polish}{">}{%
154 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behavew a little different from \-.

155 \declare@shorthand{polish}{"-}{\nobreak-\bbl@allowhyphens}

156 \declare@shorthand{polish}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.

157 \declare@shorthand{polish}{" | }{/
158 \textormath{\discretionary{-}{}{\kern.03em}}{}}

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with polish.tex.

159 \def\mdqon{\shorthandon{"}}

160 \def\mdqoff{\shorthandoff{"}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

161 \1dfe@finish{polish}
162 (/code)

