
1 The Latin language

The file latin.dtx1 defines all the language-specific macros for the Latin lan-
guage including the classical spelling and hyphenation and the special ecclesiastic
spelling.

Without modifiers or attributes, this file describes the modern usage of Latin;
with this we mean the kind of Latin that is used as an official language in the
State of Vatican City, and in the teaching of Latin in modern schools. This file
description language accepts several modifiers, in order to be adapted to other
situations.

0. Modern spelling and hyphenation; this is the default setting.

1. Medieval spelling and hyphenation: in this spelling the lower and upper case
alphabets become the following:

a æ b c d e f g h i k l m n o œ p q r s t u x y z
A Æ B C D E F G H I K L M N O Œ P Q R S T V X Y Z

It must be noted that this file description language does not make any
spelling correction in order to use only ‘u’ in lower case and only ‘V’ in
upper case: if the input text is wrongly typed in, it remains as such; this
means it’s the typesetter’s responsibility to correctly input the source text
to be typeset; in spite of this, when the transformation from lower to upper
case is performed (such as, for example, while typesetting headers with some
classes) the correct capitalisation is performed and ‘u’ is capitalised to ‘V’;
the reverse takes place when transforming to lowercase.

2. Classical Latin and classical hyphenation; the spelling is similar to the me-
dieval one, except for the ligatures æ, Æ, œ and Œ that are missing; again it
is the typesetter’s responsibility to input the text to be typeset in a correct
way; while the hyphenation patterns for modern and medieval Latin form a
non contrasting set of patterns, this is impossible with classical Latin and a
different pattern set has been prepared as explained below.

3. Modern spelling with prosodic marks: this is to be used mainly in modern
grammars and dictionaries. Its settings can be turned on and off according
to the user needs.

4. Ecclesiastic Latin is a spelling variety of modern Latin; it is taken care by
the external module ecclesiastic.sty, that is being loaded by this lan-
guage description file at the right moment, that is when babel has been
completely read together with all the options and modifiers. This special
spelling of modern Latin is used in theological and devotional books of the
Roman Catholic clergy where ligatures æ and œ are widely used and where
acute accents are used in order to mark the tonic vowel of many words so as
to allows clergy with different backgrounds and mother languages to recite

1The file described in this section has version number v.3.5 and was last revised on 2015/08/20.
The original author is Claudio Beccari.

1

their community prayers with the same rhythmic scheme. This ecclesiastic
Latin spelling contains also other differences, including a certain degree of
“frenchisation” of spaces around some punctuation marks and guillemots,
and the typesetting style of footnotes. When this spelling is chosen, its fea-
tures are irrevocable, especially those that concern spacing. And this is the
main reason why we decided not to include the ecclesiastic style modifica-
tions into the language description file, thus avoiding to mess up any setting
for the other Latin typesetting styles.

Package babel is not directly concerned with hyphenation; nevertheless in this
case it is necessary to switch the hyphenation rules to those of another language,
classiclatin, that must be available while creating the format files so that this
language description file can chose between the modern and medieval hyphenation
rules or the classical ones.

In summary modern and medieval Latin hyphenation rules are similar to those
of current Italian, except that the patterns must include also some consonant
groups that do not exist in Italian; furthermore with medieval spelling there are
many more vocalic groups than in Italian, because of the widespread use of the
letter ‘u’ that often actually plays the rôle of a consonant.

The rules for classical Latin are taken from Raffaello Farina and Nino Mari-
none’s guide Metodologia published by Società Editrice Internazionale, Torino,
1979. In spite of the publication date of this guide the hyphenation rules did
not change in the meanwhile, since the Classical Latin Language is sort of frozen
during the past, say, twenty centuries. Yes, it is true that the original writings
in Classical Latin were not hyphenated, and the hyphenation rules were estab-
lished at the beginning of the Renaissance, when mechanical typography required
suitable justification. Therefore such rules are sort of a compromise between the
procedures used by the various proto-typographers and the scholars’ of these dis-
ciplines. Nevertheless the rules given by Farina and Marinone are generally shared
among modern scholars and are sort of official at both universities of Torino and
Vercelli; in the latter University they are adopted by the working group that
founded the DigilibLT laboratory; I acknowledge their contribution in letting me
become aware of the problem, and therefore to create this update by adding the
classical Latin support for the babel package, with its special hyphenation rules.

In order to implement the above described styles of typesetting, four modi-
fiers/attributes have to be defined: medieval, withprosodicmarks, classic, and
ecclesiastic. They can be used in any order so that several combinations are
possible, although, generally speaking, just the isolated four described ones have
a real meaning.

Among these modifiers only withprosodicmarks can be turned on and off; the
others are sort of global; for example, once classic is specified, there is no easy
way to revert to modern spelling and hypehenation; the same holds true for the
other modifiers, except withprosodicmarks.

The typesetting style withprosodicmarks is defined in order to use special
shorthands for inserting breves and macrons while typesetting grammars, dictio-
naries, teaching texts, and the like, where prosodic marks are important for the

2

complete information on the words or the verses. The shorthands, listed in table 1
and described in subsection 2.1, may interfere with other packages; therefore by
default this style is turned off and no interference is introduced. If this style is
used and interference is experienced, there are special commands for turning on
and off its specific shorthand commands.

For what concerns babel and typesetting with LATEX, the differences between
the spelling styles reveal themselves in the strings used to name, for example, the
“Preface” that becomes “Praefatio” or “Præfatio” respectively. Hyphenation rules
are also different, but the hyphenation pattern file hyph-la.tex takes care of the
modern and medieval versions of the language, while hyph-la-x-classic.tex

takes care of the classical hyphenation. The user should not attempt to modify
these files, because they are not dealt with by babel they are used only during the
creation of format files. If some errors or modifications are required or suggested,
it is necessary to ask their maintainer.

The name strings for chapters, figures, tables, et cetera, have been suggested
by prof. Raffaella Tabacco, a latinist of the University of Vercelli, Italy, to whom
we address our warmest thanks. The names suggested by Krzysztof Konrad
Żelechowski, when different, are used as the names for the medieval variety, since
he made a word and spelling choice more suited for this variety.

For this language some shorthands are defined according to table 1; all of them
are supposed to work with all spelling styles, except where the opposite is explicitly
stated.

^i inserts the breve accent as ı̆; valid also for the other
lowercase vowels, but it does not operate on the me-
dieval ligatures æ and œ because they are naturally
long.

=a inserts the macron accent as ā; valid also for the
other lowercase vowels, but it does not operate on
the medieval ligatures æ and œ because they are nat-
urally long.

" inserts a compound word mark where hyphenation
is legal; the next character must not be either a non-
letter token or an accented letter (for foreign names).
With the ecclesiastic spelling it eases the insertion of
the ligatures æ and œ by simply typing "ae and "oe

without the need of curly brackets or spaces after the
character macros \ae and \oe.

"| inserts a compound word mark, but operates also
when the next token is not a letter or it is an accented
character.

Table 1: Shorthands defined for the Latin language. The characters ^ and = are
active only when the language attribute withprosodicmarks has been declared,
otherwise they are disabled; see subsection 2.1 at page 8 for more details.

3

The user should attentively remember that this file describes an option for the
babel package; it works as expected when a document containing a text in part or
completely in Latin is being processed with pdfLaTeX and 8-bit encoded fonts that
contain at most 256 glyphs. babel can be used also with XeLaTeX and possibly by
LuaLaTeX, may be with reduced functionalities; expect anomalous results if you
typeset your document with this language option and XeLaTeX. If you need the
functionalities provided by XeLaTeX or LuaLaTeX, then use polyglossia in place of
babel and set the Latin desired functionalities with suitable values to the variant

keyword to the Latin language specifications; The valid values have the same
names as this babel module modifiers, i.e. medieval, classic, ecclesiastic;
with XeLaTeX and LuaLaTeX that use OpenType fonts, the withprosodicmaks

functionality is not required as the required glyphs can be directly input with a
UNICODE input encoding. Actually with such an encoding this modifier is not
necessary even with pdfLaTeX, but it eases input when one is using a vintage
computer or operating system; backwards compatibility is therefore maintained.

2 The code

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

1 \LdfInit{latin}{captionslatin}

Never load this file as if it was a .sty file by means of the \usepackage

command; this practice is deprecated. We check for the existence of \l@latin to
see whether we have to do something here.

2 \ifx\undefined\l@latin

3 \@nopatterns{Latin}

4 \adddialect\l@latin0\fi

Now we declare the medieval language attribute.

5 \bbl@declare@ttribute{latin}{medieval}{%

6 \addto\captionslatin{\def\prefacename{Pr{\ae}fatio}}%

7 \expandafter\addto\expandafter\extraslatin

8 \expandafter{\extrasmedievallatin}%

9 }

The typesetting style withprosodicmarks is defined here:

10 \bbl@declare@ttribute{latin}{withprosodicmarks}{%

11 \expandafter\addto\expandafter\extraslatin

12 \expandafter{\extraswithprosodicmarks}%

13 }

The ‘classic’ typesetting style is described here: notice that the general type-
setting rules are identical with those of modern Latin, the default one, but the
hyphenation rules are different; therefore we just change the meaning of counter
\l@latin so that it points to the language counter of classical Latin. In order
to avoid a fatal error we test if language classiclatin has its patterns already

4

loaded, otherwise we issue a warning and keep going with the default modern
hyphenation

14 \bbl@declare@ttribute{latin}{classic}{%

15 \expandafter\addto\expandafter\extraslatin

16 \expandafter{\extrasclassic}%

17 }

18 \ifx\l@classiclatin\undefined

19 \let\l@classiclatin\l@latin

20 \PackageWarningNoLine{babel}{%

21 Attention: hyphenation patterns for language\MessageBreak

22 classiclatin have not been loaded.\MessageBreak

23 I go on using the modern Latin hyphenation patterns.\MessageBreak

24 Please, load the suitable patterns or upgrade your TeX distribution}

25 \fi

26 \addto\extrasclassic{\let\l@latin\l@classiclatin}

It must be remembered that the medieval and the withprosodicmarks styles
might be used together. They are also compatible with the classic attribute,
but it would be unusual to typeset classical Latin with some medieval features
and/or with the prosodic marks that were unknown twenty centuries ago.

The next step consists in defining commands to switch to (and from) the Latin
language2.

\captionslatin The macro \captionslatin defines all strings used in the four standard document
classes provided with LATEX.

27 \@namedef{captionslatin}{%

28 \def\prefacename{Praefatio}%

29 \def\refname{Conspectus librorum}%

30 \def\abstractname{Summarium}%

31 \def\bibname{Conspectus librorum}%

32 \def\chaptername{Caput}%

33 \def\appendixname{Additamentum}%

34 \def\contentsname{Index}%

35 \def\listfigurename{Conspectus descriptionum}%

36 \def\listtablename{Conspectus tabularum}%

37 \def\indexname{Index rerum notabilium}%

38 \def\figurename{Descriptio}%

39 \def\tablename{Tabula}%

40 \def\partname{Pars}%

41 \def\enclname{Adduntur}% Or " Additur" ? Or simply Add.?

42 \def\ccname{Exemplar}% Use the recipient’s dative

43 \def\headtoname{\ignorespaces}% Use the recipient’s dative

44 \def\pagename{Charta}%

45 \def\seename{cfr.}%

46 \def\alsoname{cfr.}% Tabacco never saw "cfr" + ‘atque’ or similar forms

47 \def\proofname{Demonstratio}%

48 \def\glossaryname{Glossarium}%

49 }

2Most of these names were kindly suggested by Raffaella Tabacco.

5

In the above definitions there are some points that might change in the future or
that require a minimum of attention from the typesetter.

1. the \enclname is translated by a passive verb, that literally means “(they)
are being added”; if just one enclosure is joined to the document, the plural
passive is not suited any more; nevertheless a generic plural passive might
be incorrect but suited for most circumstances. On the opposite “Additur”,
the corresponding singular passive, might be more correct with one enclosure
and less suited in general: what about the abbreviation “Add.” that works
in both cases, but certainly is less elegant?

2. The \headtoname is empty and gobbles the possible following space; in prac-
tice the typesetter should use the dative of the recipient’s name; since nowa-
days not all such names can be translated into Latin, they might result
indeclinable. The clever use of a dative appellative by the typesetter such
as “Domino” or “Dominae” might solve the problem, but the header might
get too impressive. The typesetter must make a decision on his own.

3. The same holds true for the copy recipient’s name in the “Cc” field of
\ccname.

\datelatin The macro \datelatin redefines the command \today to produce Latin dates;
the choice of small caps Latin numerals for the day number is arbitrary and may be
changed in the future. For medieval and classic Latin the spelling of ‘Novembris’
should be Nouembris. This is taken care of by using a control sequence which can
be redefined when the attribute ‘medieval’ and/or ‘classic’ is selected.

50 \addto\extraslatin{\def\november{Novembris}}

51 \addto\extrasmedievallatin{\def\november{Nouembris}}

52 \addto\extrasclassiclatin{\def\november{Nouembris}}

53 %

54 \def\datelatin{%

55 \def\today{%

56 {\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont

57 \uppercase\expandafter{\romannumeral\day}}~\ifcase\month\or

58 Ianuarii\or Februarii\or Martii\or Aprilis\or Maii\or Iunii\or

59 Iulii\or Augusti\or Septembris\or Octobris\or \november\or

60 Decembris\fi

61 \space{\uppercase\expandafter{\romannumeral\year}}}}

\latinhyphenmins The Latin hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

62 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\extraslatin

\noextraslatin

For Latin the \clubpenalty, \widowpenalty are set to rather high values and
\finalhyphendemerits is set to such a high value that hyphenation is almost
prohibited between the last two lines of a paragraph.

63 \addto\extraslatin{%

64 \babel@savevariable\clubpenalty

6

65 \babel@savevariable\@clubpenalty

66 \babel@savevariable\widowpenalty

67 \clubpenalty3000\@clubpenalty3000\widowpenalty3000}

Hopefully never ever break a word between the last two lines of a paragraph in
Latin texts.

68 \addto\extraslatin{%

69 \babel@savevariable\finalhyphendemerits

70 \finalhyphendemerits50000000}

With medieval and classic Latin we need the suitable correspondence between
upper case V and lower case u, since in that spelling there is only one sign, and
the u shape is the (uncial) version of the capital V. Everything else is identical
with Latin.

71 \addto\extrasmedievallatin{%

72 \babel@savevariable{\lccode‘\V}%

73 \babel@savevariable{\uccode‘\u}%

74 \lccode‘\V=‘\u \uccode‘\u=‘\V}

75 \addto\extrasclassiclatin{%

76 \babel@savevariable{\lccode‘\V}%

77 \babel@savevariable{\uccode‘\u}%

78 \lccode‘\V=‘\u \uccode‘\u=‘\V}

\SetLatinLigatures We need also the lccodes for æ and œ; since they occupy different positions in
the OT1 TEX-fontencoding compared to the T1 one, we must save the lc- and the
uccodes for both encodings, but we specify the new lc- and uccodes separately as it
appears natural not to change encoding while typesetting the same language. The
encoding is assumed to be set before starting to use the Latin language, so that if
Latin is the default language, the font encoding must be chosen before requiring
the babel package with the latin option, in any case before any \selectlanguage

or \foreignlanguage command.
All this fuss is made in order to allow the use of the medieval ligatures æ and œ

while typesetting with the medieval spelling; I have my doubts that the medieval
spelling should be used at all in modern books, reports, and the like; the uncial ‘u’
shape of the lower case ‘v’ and the above ligatures were fancy styles of the copyists
who were able to write faster with those rounded glyphs; with typesetting there
is no question of handling a quill penn. . . Moreover in medieval times it was very
frequent to close such ligatures to the corresponding sound, therefore instead of
writing æ or œ they would often simply write ‘e’. Since my (CB) opinion may be
wrong, I managed to set up the instruments and it is up to the typesetter to use
them or not.

79 \addto\extrasmedievallatin{%

80 \babel@savevariable{\lccode‘\^^e6}% T1 \ae

81 \babel@savevariable{\uccode‘\^^e6}% T1 \ae

82 \babel@savevariable{\lccode‘\^^c6}% T1 \AE

83 \babel@savevariable{\lccode‘\^^f7}% T1 \oe

84 \babel@savevariable{\uccode‘\^^f7}% T1 \OE

85 \babel@savevariable{\lccode‘\^^d7}% T1 \OE

7

86 \babel@savevariable{\lccode‘\^^1a}% OT1 \ae

87 \babel@savevariable{\uccode‘\^^1a}% OT1 \ae

88 \babel@savevariable{\lccode‘\^^1d}% OT1 \AE

89 \babel@savevariable{\lccode‘\^^1b}% OT1 \oe

90 \babel@savevariable{\uccode‘\^^1b}% OT1 \OE

91 \babel@savevariable{\lccode‘\^^1e}% OT1 \OE

92 \SetLatinLigatures}

93

94 \providecommand\SetLatinLigatures{%

95 \def\@tempA{T1}\ifx\@tempA\f@encoding

96 \catcode‘\^^e6=11 \lccode‘\^^e6=‘\^^e6 \uccode‘\^^e6=‘\^^c6 % \ae

97 \catcode‘\^^c6=11 \lccode‘\^^c6=‘\^^e6 % \AE

98 \catcode‘\^^f7=11 \lccode‘\^^f7=‘\^^f7 \uccode‘\^^f7=‘\^^d7 % \oe

99 \catcode‘\^^d7=11 \lccode‘\^^d7=‘\^^f7 % \OE

100 \else

101 \catcode‘\^^1a=11 \lccode‘\^^1a=‘\^^1a \uccode‘\^^1a=‘\^^1d % \ae

102 \catcode‘\^^1d=11 \lccode‘\^^1d=‘\^^1a % \AE

103 \catcode‘\^^1b=11 \lccode‘\^^1b=‘\^^1b \uccode‘\^^1b=‘\^^1e % \oe

104 \catcode‘\^^1e=11 \lccode‘\^^1e=‘\^^1b % \OE

105 \fi

106 \let\@tempA\@undefined

107 }

With the above definitions we are sure that \MakeUppercase works properly
and \MakeUppercase{C{\ae}sar} correctly yields “CÆSAR”; correspondingly
\MakeUppercase{Heluetia} correctly yields “HELVETIA”.

2.1 Latin shorthands

For writing dictionaries or school texts (in modern spelling only) we defined a lan-
guage attribute or typesetting style, such that a couple of other active characters
are defined: ^ for marking a vowel with the breve sign, and = for marking a vowel
with the macron sign. Please take notice that neither the OT1 font encoding, nor
the T1 one for most vowels, contain directly the marked vowels, therefore hyphen-
ation of words containing these “accents” may become problematic; for this reason
the above active characters not only introduce the required accent, but also an
unbreakable zero skip that in practice does not introduce a discretionary break,
but allows breaks in the rest of the word.

It must be remarked that the active characters ^ and = may have other mean-
ings in other contexts. For example, besides math, the equals sign is used by the
graphic extensions for specifying keyword options for handling the graphic ele-
ments to be included in the document. At the same time, as mentioned in the
previous paragraph, diacritical marking in Latin is used only for typesetting cer-
tain kinds of document, such as grammars and dictionaries. It is reasonable that
the breve and macron active characters are turned on and off at will; by default
they are off if the attribute withprosodicmarks has not been set.

\ProsodicMarksOn

\ProsodicMarksOff

We begin by adding to the normal typesetting style the definitions of the new

8

commands \ProsodicMarksOn and \ProsodicMarksOff that should produce error
messages when this style is not declared:

108 \addto\extraslatin{\def\ProsodicMarksOn{%

109 \GenericError{(latin)\@spaces\@spaces\@spaces\@spaces}%

110 {Latin language error: \string\ProsodicMarksOn\space

111 is defined by setting the\MessageBreak

112 language attribute to ‘withprosodicmarks’\MessageBreak

113 If you continue you are likely to encounter\MessageBreak

114 fatal errors that I can’t recover}%

115 {See the Latin language description in the babel

116 documentation for explanation}{\@ehd}}}

117 \addto\extraslatin{\let\ProsodicMarksOff\relax}

Next we temporarily set the caret and the equals sign to active characters so
that they can receive their definitions:

118 \catcode‘\= \active

119 \catcode‘\^ \active

and we add the necessary declarations to the macros that are being activated when
the Latin language and its typesetting styles are declared:

120 \addto\extraslatin{\languageshorthands{latin}}%

121 \addto\extraswithprosodicmarks{\bbl@activate{^}}%

122 \addto\extraswithprosodicmarks{\bbl@activate{=}}%

123 \addto\noextraswithprosodicmarks{\bbl@deactivate{^}}%

124 \addto\noextraswithprosodicmarks{\bbl@deactivate{=}}%

125 \addto\extraswithprosodicmarks{\ProsodicMarks}

\ProsodicMarks Next we define the macros for the active characters

126 \def\ProsodicMarks{%

127 \def\ProsodicMarksOn{\catcode‘\^ 13\catcode‘\= 13\relax}%

128 \def\ProsodicMarksOff{\catcode‘\^ 7\catcode‘\= 12\relax}%

129 }

Notice that with the above redefinitions of the commands \ProsodicMarksOn

and \ProsodicMarksOff, the operation of the newly defined shorthands may be
switched on and off at will, so that even if a picture has to be inserted in the
document by means of the commands and keyword options of the graphicx pack-
age, it suffices to switch them off before invoking the picture including command,
and switched on again afterwards; or, even better, since the picture very likely is
being inserted within a figure environment, it suffices to switch them off within
the environment, being conscious that their deactivation remains local to the en-
vironment.

130 \initiate@active@char{^}%

131 \initiate@active@char{=}%

132 \declare@shorthand{latin}{^a}{%

133 \textormath{\u{a}\bbl@allowhyphens}{\hat{a}}}%

134 \declare@shorthand{latin}{^e}{%

135 \textormath{\u{e}\bbl@allowhyphens}{\hat{e}}}%

136 \declare@shorthand{latin}{^i}{%

137 \textormath{\u{\i}\bbl@allowhyphens}{\hat{\imath}}}%

9

138 \declare@shorthand{latin}{^o}{%

139 \textormath{\u{o}\bbl@allowhyphens}{\hat{o}}}%

140 \declare@shorthand{latin}{^u}{%

141 \textormath{\u{u}\bbl@allowhyphens}{\hat{u}}}%

142 %

143 \declare@shorthand{latin}{=a}{%

144 \textormath{\={a}\bbl@allowhyphens}{\bar{a}}}%

145 \declare@shorthand{latin}{=e}{%

146 \textormath{\={e}\bbl@allowhyphens}{\bar{e}}}%

147 \declare@shorthand{latin}{=i}{%

148 \textormath{\={\i}\bbl@allowhyphens}{\bar{\imath}}}%

149 \declare@shorthand{latin}{=o}{%

150 \textormath{\={o}\bbl@allowhyphens}{\bar{o}}}%

151 \declare@shorthand{latin}{=u}{%

152 \textormath{\={u}\bbl@allowhyphens}{\bar{u}}}%

Notice that the short hand definitions are given only for lower case letters; it
would not be difficult to extend the set of definitions to upper case letters, but it
appears of very little use in view of the kinds of document where prosodic marks
are supposed to be used. Nevertheless in those rare cases when it’s required to set
some uppercase letters with their prosodic marks, it is always possible to use the
standard LATEX commands such as \u{I} for typesetting Ĭ, or \={A} (or \=A) for
typesetting Ā.

Finally we restore the caret and equals sign initial default category codes

153 \catcode‘\= 12\relax

154 \catcode‘\^ 7\relax

so as to avoid conflicts with other packages or other babel options.

\LatinMarksOn

\LatinMarksOff

The following commands remain defined for backwards compatibility, but they are
obsolete and should not be used.

155 \addto\extraslatin{\def\LatinMarksOn{\shorthandon{^}\shorthandon{=}}}

156 \addto\extraslatin{\def\LatinMarksOff{\shorthandoff{^}\shorthandoff{=}}}

It must be understood that by using the above prosodic marks, line breaking
is somewhat impeached; since such prosodic marks are used almost exclusively in
dictionaries, grammars, and poems (only in school textbooks), this shouldn’t be
of any importance for what concerns the quality of typesetting.

2.2 Ecclesiastic Latin style

We declare the ecclesiastic attribute; its purpose is to load the ecclesiastic.sty
package, deferring this action to the moment when babel finishes executing; actu-
ally it sends babel the information to act; then babel defers the package load-
ing to the \begin{document} execution. This implies the availability of the
\AtEndOfPackage and \AtBeginDocument macros which are contained in the
LATEX kernel. Since this file is read by babel the current package at the end
of which the code is deferred is babel itself, not simply this language description
file.

10

Differently from other attribute settings we do not declare anything in a possi-
ble \extrasecclesiasticlatin macro, because once the package has been read,
it is impossible to pretend to delete all what the package defined. Actually this
ecclesiastic attribute simply mimics the actual loading of a package by means
of a \usepackage or \RequirePackage command; if loading was done with one
of these commands, it would be impossible to unload the loaded package.

157 \bbl@declare@ttribute{latin}{ecclesiastic}{%

158 \AtEndOfPackage{%

159 \AtBeginDocument{\RequirePackage{ecclesiastic}[2015/08/20]}%

160 }%

161 }

2.3 Etymological hyphenation

In order to deal in a clean way with prefixes and compound words to be divided
etymologically, the active character " is given a special definition so as to behave
as a discretionary break with hyphenation allowed after it. You may consider this
sign as a substitute for a “compound word mark”.

This is particularly useful with classical Latin because this language requires
etymological hyphenation; patterns were created with etymological hyphenation
in mind, but even if for certain prefixes or suffixes it works pretty well, it does
not for certain other ones. For example the word ‘redire’ should be hyphenated
as ‘red-i-re’; but there are plenty of other words starting with the string ‘red’
that does not play the role of a prefix; therefore it should be necessary to extract
all the Latin words where ‘red’ is a prefix, and enter the suitable patterns to
hyphenate correctly only those words; in the simple case of the verb ‘redire’ it
would be necessary to enter all the words that belong to the conjugation of this
verb and the declination of the present, future and past participles and gerundive
in masculine, feminine and neutral forms; the same problem takes place with prefix
‘trans’ where sometimes it is a real prefix, such as in ‘transire’ (hyphenation trans-
i-re), and sometimes is modified with the absorption of an initial ‘s’ of the suffix,
such as in ‘transubstantialis’ (classical hyphenation: tran-subs-tan-tia-lis).

Obviously this task would render the pattern file enormous, and mostly useless.
The active character " solves the problem for isolated instances, while the hyphen-
ations exception lists of the only forms actually used in a specific document, would
do the rest.

Most of the code for dealing with the active " is already contained in the core
of babel, but we are going to use it as a single character shorthand for Latin.

162 \initiate@active@char{"}%

163 \addto\extraslatin{\bbl@activate{"}%

164 }

A temporary macro is defined so as to take different actions in math mode and
text mode: specifically in the former case the macro inserts a double quote as it
should in math mode, otherwise another delayed macro comes into action.

165 \declare@shorthand{latin}{"}{%

166 \textormath{\def\lt@@next{\futurelet\lt@temp\lt@cwm}}%

11

167 {\def\lt@@next{’’}}%

168 \lt@@next

169 }%

In text mode the \lt@@next control sequence is such that upon its execution a
temporary variable \lt@temp is made equivalent to the next token in the input list
without actually removing it. Such temporary token is then tested by the macro
\lt@cwm and if it is found to be a letter token, then it introduces a compound
word separator control sequence \lt@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable space; in case the token is not a letter,
it is tested against the definitions of \ae and \oe, and if the test is true than
such definitions are treated as letters (as they actually are), otherwise the token
is tested again to find if it is the character |, in which case it is gobbled and a
discretionary break is introduced.

170 \def\lt@allowhyphens{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}

171

172 \newcommand*{\lt@cwm}{\let\lt@n@xt\relax

173 \ifcat\noexpand\lt@temp a%

174 \let\lt@n@xt\lt@allowhyphens

175 \else

176 \ifx\lt@temp\ae

177 \let\lt@n@xt\lt@allowhyphens

178 \else

179 \ifx\lt@temp\oe

180 \let\lt@n@xt\lt@allowhyphens

181 \else

182 \if\noexpand\lt@temp\string|%

183 \def\lt@n@xt{\lt@allowhyphens\@gobble}%

184 \fi

185 \fi

186 \fi

187 \fi

188 \lt@n@xt}%

Attention: the ligature commands \ae and \oe are detected correctly if they
are not included within a group. In facts an input such as super"{\ae}quitas3

gets wrongly hyphenated as su-pe-ræ-qui-tas while super"\ae{}quitas, that
uses an empty group to terminate the \ae control sequence, gets correctly hy-
phenated as su-per-æ-qui-tas. If one prefers to close the \ae or \oe liga-
ture commands within a group, then it is necessary to use the alternate ety-
mological hyphenation command "| as in super"|{\ae}quitas in order to get
su-per-æ-qui-tas. .

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

189 \ldf@finish{latin}

3This word does not exist in “regular” Latin, and it is used just as an example.

12

