
The Italian support for babel
Claudio Beccari — mail: claudio dot beccari at gmail dot com

v.1.4.04 — 2020/05/21

Contents

1 The Italian language 1

2 The commented code 4
2.1 Traditionally labelled

enumerate environment . 7

2.2 Support for etymological
hyphenation 8
2.2.1 Some history . . . 8
2.2.2 The current solu-

tion 9
2.3 Facilities required by the

ISO 31/XI regulations . . 11
2.4 Intelligent comma 13

1 The Italian language
Important notice: This language description file relies on functionalities pro-
vided by a modern TeX system distribution with pdfLaTeX working in extended
mode (eTeX commands available); it should perform correctly also with XeLaTeX
and LuaLaTeX; tests have been made also with the latter programs, but it was
really tested in depth with babel and pdfLaTeX.

The file italian.dtx1 defines all the required and some optional language-
specific macros for the Italian language.

The features of this language definition file are the following:

1. The Italian hyphenation is invoked, provided that the Italian hyphenation
pattern files were loaded when the specific format file was built. This is nor-
mally done with the initial installation of TEXLive, but other distributions
may not do so.

2. The language dependent infix words to be inserted by such commands as
\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

3. Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been

1The file described in this section has version number v.1.4.04 and was last revised on
2020/05/21. The original author is Maurizio Codogno. It was initially revised by Johannes
Braams and then completely rewritten by Claudio Beccari

1

" inserts a compound word mark where hyphenation is legal;
it allows etymological hyphenation which is recommended
for technical terms, chemical names and the like; it does
not work if the next character is represented with a control
sequence or is an accented character.

"| the same as the above without the limitation on characters
represented with control sequences or accented ones.

"" inserts open quotes “.
"< inserts open guillemets without trailing space.
"> inserts closed guillemets without leading space.
"/ allows hyphenation of both words connected with slash.
"- allows hyphenation of both words connected with a short

dash (trattino copulativo, in Italian)

Table 1: shorthands for the Italian language. These shorthands are available
only if command \setactivedoublequote is given after loading babel and before
\begin{document}.

set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically
the \clubpenalty, and the \widowpenalty are set to rather high values
and \finalhyphendemerits is set to such a high value that hyphenation is
strongly discouraged between the last two lines of a paragraph.

4. Some language specific shorthands have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point at any word boundary
that the typesetter chooses, provided it is not followed by an accented letter
(very unlikely in Italian, where compulsory accents fall only on the last and
ending vowel of a word, but it may take place with compound words that
include foreign roots), and "| when the desired break point falls before an
accented letter. As you can read in table 1, these shorthands are available
only if they get activated with \setactivedoublequote after loading babel
but before the \begin{docuemnt} statement. This is done in order to pre-
serve the user from package conflicts: if s/he wants to use these facilities
s/he must remember that conflicts may arise unless active characters are
deactivated; this can be done with the babel command \shorthadsoff{"}
(and reactivated with \shorthandson{"}) when its wise to do so; conflicts
have been reported with package xypic and with TikZ, but the latter has its
own library to deactivate all active characters, not just the double quotes,
the only Italian language possibly activated character.

5. Some Italian compound words have a connecting short dash (a hyphen sign)
between them without any space between the component words and the
short dash; in this situation standard LATEX allows a line break only just
after the short dash; this may lead to paragraphs with protruding lines or
with ugly looking wide inter word spaces. If a break point is desired in

2

the second word, one may use a " sign just after the short dash; but if
a line break is required in the first word, them the "- shorthand comes in
handy; pay attention though, that if you use an en-dash or an em-dash (both
should not be used in Italian as compound words connectors, but. . .) then
the "- shorthand might impeach the -- or --- ligatures, thus producing an
unacceptable appearance.

6. The shorthand "" introduces the raised (English) opening double quotes; this
shorthand proves its usefulness when one reminds that the Italian keyboard
misses the back tick key, and the back tick on a Windows based platform
may be obtained only by pressing the Alt key while keying the numerical
code 0096 in the numeric keypad; very, very annoying!

7. The shorthands "< and "> insert the guillemets sometimes used also in Italian
typography; with the T1 font encoding the ligatures << and >> should insert
such signs directly, but not all the virtual fonts that claim to follow the
T1 font encoding actually contain the guillemets; with the OT1 encoding
the guillemets are not available and must be faked in some way. By using
the "< and "> shorthands (even with the T1 encoding) the necessary tests
are performed and in case the guillemets are faked by means of the special
LaTeX math symbols. At the same time if OpenType fonts are being used
with XeLaTeX or LuaLaTeX, there are no problems with guillemets.

8. Three new specific commands \unit, \ped, and \ap are introduced so as
to enable the correct composition of technical mathematics according to the
ISO 31/XI recommendations. The definition of \unit takes place only at
“begin document” so that it is possible to verify if some other similar func-
tionalities have already been defined by other packages, such as units.sty
or siunitx.sty. Command \unit does not conflict with package SIunitx
and it may be redefined by means of its internals. Nevertheless command
\unit is deactivated by default; the user can activate it by entering the
command \setISOcompliance after loading the babel package and before
the \begin{document} statement. The above checks will enter into action
even if this ISO compliance is set, in order to avoid conflicts with the above
named packages. The \ap and \ped commands remain available because up
to now no specific conflicts have been reported.

9. Since in all languages different from English the decimal separator according
to the ISO regulations must be a comma2; since no language description file
nor the babel package itself provides for this functionality, a not so simple
intelligent comma definition is provided such that at least in mathematics
it behaves correctly. There are other packages that provide a similar func-
tionality, for example icomma and ncccomma; icomma, apparently is not in
conflict with dcolumn, but requires a space after the comma all the times it

2Actually the Bureau International des Pois et Mésures allows also the point as a decimal
separator without mentioning any language, but recommends to follow the national typographical
traditions.

3

plays the rôle of a punctuation mark; ncccomma checks if the next token is
a digit, but it repeats ten tests every time it meets a comma, irrespective
from what it is followed by. I believe that my solution is better than that
provided by both those packages; but I assume that if the user loads one of
those packages, it prefers to use their functionality; in case one of those pack-
ages is loaded, this module excludes its intelligent comma functionality. By
default this functionality is turned off, therefore the user should turn it on
by means of the \IntelligentComma command; it can turn it off by means
of \NoIntelligentComma. Please, read subsection 2.4 to see the various sit-
uations where a mathematical comma may be used and how to overcome
the few cases when the macros of this file don’t behave as expected. The
section describes also some limitations when some conflicting packages are
being loaded. Apparently there are conflicts with package unicode-math
because active characters are defined with different codes. Therefore this
functionality is not available when typesetting with XeLaTeX or LuaLaTeX.

10. In Italian legal documents it is common to tag list-items with the old fash-
ioned 21-letter Italian alphabet, that differs from the Latin one by the
omission of the letters ‘j’, ‘k’, ‘w’,‘x’, and ‘y’. This applies for both up-
per and lower case tags. This feature is obtained by using the commands
\XXIletters and \XXVIletters that allow to switch back and forth between
21- and 26-letter tagging.

For this language a few shorthands have been defined, table 1, some of which
are introduced to overcome certain limitations of the Italian keyboard; in sec-
tion 2.4 there are other comments and hints in order to overcome some other
keyboard limitations.

Acknowlegements
It is my pleasure to acknowledge the contributions of Giovanni Dore, Davide Liessi,
Grazia Messineo, Giuseppe Toscano, who spotted some bugs or conflicts with other
packages, mainly amsmath and icomma, and with digits hidden inside macros or
control sequences representing implicit characters. Testing by real users and their
feedback is essential with open software such as the uncountable contributions to
the TEX system. Thank you very much.

2 The commented code
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

1 \LdfInit{italian}{captionsitalian}%

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@italian to see whether we have to do something
here.

4

2 \ifx\l@italian\@undefined
3 \@nopatterns{Italian}%
4 \adddialect\l@italian0\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

\captionsitalian The macro \captionsitalian defines all strings used in the four standard docu-
ment classes provided with LATEX.

5 \addto\captionsitalian{%
6 \def\prefacename{Prefazione}%
7 \def\refname{Riferimenti bibliografici}%
8 \def\abstractname{Sommario}%
9 \def\bibname{Bibliografia}%

10 \def\chaptername{Capitolo}%
11 \def\appendixname{Appendice}%
12 \def\contentsname{Indice}%
13 \def\listfigurename{Elenco delle figure}%
14 \def\listtablename{Elenco delle tabelle}%
15 \def\indexname{Indice analitico}%
16 \def\figurename{Figura}%
17 \def\tablename{Tabella}%
18 \def\partname{Parte}%
19 \def\enclname{Allegati}%
20 \def\ccname{e~p.~c.}%
21 \def\headtoname{Per}%
22 \def\pagename{Pag.}%
23 \def\seename{vedi}%
24 \def\alsoname{vedi anche}%
25 \def\proofname{Dimostrazione}%
26 \def\glossaryname{Glossario}%
27 }%

\dateitalian The macro \dateitalian redefines the command \today to produce Italian
dates. Normally in Italian day numbers a set as cardinal numbers; some peo-
ple prefer to use the ordinal number for day 1, and use the cardinal number
with the superscript masculine ‘o’. By default this functionality is turned off
but the user can select it with command \OrdinalDayNumberOn and deselect it
with \OrdinalDayNumberOff. The national official regulation require the cardinal
numbers only with fully numerical dates; they allow, without prescribing, roman
numbers and ordinal numbers only when the month name is spelled out in letters.
28 \newif\ifOrdinalDayNumber \OrdinalDayNumberfalse
29 \def\OrdinalDayNumberOn{\OrdinalDayNumbertrue}
30 \def\OrdinalDayNumberOff{\OrdinalDayNumberfalse}
31 \def\dateitalian{%
32 \def\today{\ifnum\number\day=\@ne
33 \ifOrdinalDayNumber1\ap{o}\else1\fi
34 \else
35 \number\day

5

36 \fi~\ifcase\month\or
37 gennaio\or febbraio\or marzo\or aprile\or maggio\or giugno\or
38 luglio\or agosto\or settembre\or ottobre\or novembre\or
39 dicembre\fi\space \number\year}}%

\italianhyphenmins The italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.
40 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\extrasitalian
\noextrasitalian

Lower the chance that clubs or widows occur.
41 \addto\extrasitalian{%
42 \babel@savevariable\clubpenalty
43 \babel@savevariable\widowpenalty
44 \babel@savevariable\@clubpenalty
45 \clubpenalty3000\widowpenalty3000\@clubpenalty\clubpenalty}%

Never ever break a word between the last two lines of a paragraph in Italian
texts.
46 \addto\extrasitalian{%
47 \babel@savevariable\finalhyphendemerits
48 \finalhyphendemerits50000000}%

In order to enable the hyphenation of words such as “nell’altezza” we give
the ’ a non-zero lower case code. When we do that, TEX finds the following
hyphenation points nel-l’al-tez-za instead of none. If this italian.ldf is
used with babel when typesetting with xelatex or lualatex the apostrophe must
receive a unicode code point. Therefore we use a special test that was suggested
by Hironobu Yamashita3 if this babel language option is used while using either
pdflatex or a Unicode aware typesetting engine.
49
50 \addto\extrasitalian{%
51 \lccode\string‘’=‘’ \ifcsname Umathcode\endcsname
52 \lccode\string"2019=\string"2019\fi}
53 \addto\noextrasitalian{%
54 \lccode\string‘’=0 \ifcsname Umathcode\endcsname
55 \lccode\string"2019=0\fi}
56

Notice, though, that if you use babel when typesetting with lualatex or xelatex
using the fontspec usual commands and options may not lead to their proper
font alternative variants being used. Apparently the \babelfont command is
more performant in transmitting the proper information to fontspec. Of course
\babelfont must be used after the babel package has been invoked; while
there appears to be no loading precedence requirements when fontspec and
polyglossia are used.

3Thanks to Hironobu Yamashita <h.y.acetaminophen@gmail.com>

6

2.1 Traditionally labelled enumerate environment
In some traditional texts, especially of legal nature, enumerations labelled with
lower or upper case letters use the reduced Latin alphabet that omits the so called
“non Italian letters”: j, k, w, x, and y.

\XXIletters
\XXVIletters

At the same time it is considered useful to have the possibility of switching back
and forth from the 21-letter tagging and the 26-letter one. This requires a counter
that keeps the switching status (0 for 21 letters and 1 for 26 letters) and commands
\XXIletters and \XXVIletters to set the switch. Default is 26 letter tagging.
57 \newcount\it@lettering \it@lettering=\@ne
58 \newcommand*\XXIletters{\it@lettering=\z@}
59 \newcommand*\XXVIletters{\it@lettering=\@ne}
60 \let\bbl@alph\@alph \let\bbl@Alph\@Alph
61 \addto\extrasitalian{\babel@savevariable\it@lettering
62 \let\@alph\it@alph \let\@Alph\it@Alph}
63 \addto\noextrasitalian{\let\@alph\bbl@alph\let\@Alph\bbl@Alph}

To make this feasible it’s necessary to redefine the way the LATEX \@alph and
\@Alph work. Let’s make the alternate definitions:
64 \def\it@alph#1{%
65 \ifcase\it@lettering
66 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or
67 l\or m\or n\or o\or p\or q\or r\or s\or t\or u\or v\or
68 z\else\@ctrerr\fi
69 \or
70 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or
71 j\or k\or l\or m\or n\or o\or p\or q\or r\or s\or t\or u\or v\or
72 w\or x\or y\or z\else\@ctrerr\fi
73 \fi}%
74 \def\it@Alph#1{%
75 \ifcase\it@lettering
76 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or
77 L\or M\or N\or O\or P\or Q\or R\or S\or T\or U\or V\or
78 Z\else\@ctrerr\fi
79 \or
80 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or
81 J\or K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or U\or V\or
82 W\or X\or Y\or Z\else\@ctrerr\fi
83 \fi}%

In order to have a complete description, the situation is as such:
1. If you want to always use the 21-letter item tagging, simply use the

\XXIletters declaration just after \begin{document} and this setting re-
mains global (provided, of course, that the declaration is defined, i.e. that
the Italian language is the default one); in this way the setting is global while
you use the Italian language.

2. The XXVIletter command, issued outside any environment sets the 26-letter
item tagging in a global way; this setting is the default one.

7

3. If you specify \XXIletters just before entering an environment that uses
alphabetic tagging, this environment will be tagged with the 21-letter alpha-
bet, but this is a local setting, because the letter tagging takes place only
from the second level of enumeration.

4. The declarations \XXIletters and \XXVIletters let you switch back and
forth between the two kinds of tagging, But this kind of tagging, the 21-
letter one, is meaningful only in Italian and when you change language,
letter tagging reverts to the 26-letter one.

2.2 Support for etymological hyphenation
In Italian etymological hyphenation is desirable with technical terms, chemical
names, and the like.

2.2.1 Some history

In his article on Italian hyphenation [1] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shorthand "|, that was extensively
used in German and in many other languages, in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write languages with many special national characters; by so
doing they avoid the use of the \accent primitive which would be required with
the standard OT1 encoded cm fonts; with such OT1 encoded fonts the primitive
command \accent is such that hyphenation becomes almost impossible, in any
case strongly impeached.

The T1 encoded fonts contain a special character, named “compound word
mark”, that occupies slot 23 (or ’27 or "17 in the font scheme and may be input
with the sequence ^^W. Up to now, apparently, this special character has never been
used in a practical way for typesetting languages rich of compound words; more-
over it has never been inserted in the hyphenation pattern files of any language.
Beccari modified his pattern file ithyph.tex v4.8b for Italian so as to contain

8

five new patterns that involve ^^W, and he tried to give the babel active character
" a new shorthand definition, so as to allow the insertion of the “compound word
mark” in the proper place within any word where two semantic fragments join
up. With such facility for marking the compound word boundaries, etymological
hyphenation becomes possible even if the patterns know nothing about etymology
(but the typesetter hopefully does!).

2.2.2 The current solution

Even this solution proved to be inconvenient on certain *NIX platforms, so Beccari
resorted to another approach that uses the babel active character " and relies on
the category code of the character that follows ".

Instead of a boolean switch we use a private counter so as to check at
\begin{document} if this facility has to be activated. The default value is zero;
anything different from zero means that the facility has to be activated; this is done
with command \setactivedoublequote to be issued before \begin{document}
84 \newcount\it@doublequoteactive \it@doublequoteactive=\z@
85 \def\setactivedoublequote{\it@doublequoteactive=\@ne}
86 {\catcode‘"=12 \global\let\it@doublequote"}
87 {\catcode‘"=13 \global\let\it@@dqactive"}
88 \AtBeginDocument{%
89 \unless\ifnum\it@doublequoteactive=\z@
90 \initiate@active@char{"}%
91 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}%

\it@cwm The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.
92 \declare@shorthand{italian}{"}{%
93 \ifmmode
94 \def\it@next{’’}%
95 \else
96 \def\it@next{\futurelet\it@temp\it@cwm}%
97 \fi
98 \it@next
99 }%

100 \fi

The following statement must be conditionally executed after the above modifica-
tion of the \extraasitalian list; in facts at the “begin document” execution the
main language has already been set without the above modifications; therefore
nothing takes place unless the Italian main language is selected again with the
explicit command \selectlanguage without this trick the active double quotes
would remain inactive; of course \languagename contains the string italian if
this language was the main one; by testing this string, the suitable command may

9

be issued again with the new settings and the double quotes become really active.
Thanks to Davide Liessi for reporting this bug.

101 \ifdefstring{\languagename}{italian}{\selectlanguage{italian}}{\relax}
102 }%

\it@cwm The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm
and if it is found to be a letter token (cathode=11), then it introduces a compound
word separator control sequence \it@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable zero space; otherwise the token is not
a letter; then it is therefore tested against |12: if so a compound word separator
is inserted and the | token is removed; otherwise two other tests are performed
to see if guillemets have to be inserted, and in case a suitable intelligent guillemet
macro is introduced that gobbles unwanted leading or trailing spaces; otherwise
a test is made to see if the next char is a slash character, and in case a special
discretionary break is inserted such as to maintain the slash while allowing the
hyphenation of both words before and after the slash; otherwise another test is
performed to see if another double quote sign follows: in this case a double open
quote mark is inserted; otherwise another test is made to see if a connecting hyphen
char follows, and in this case the hyphen char is substituted with a discretionary
break that allows hyphenation of both words before and after the hyphen char;
otherwise nothing is done.

The double quote shorthand for inserting a double open quote sign is useful for
people who are inputting Italian text by means of an Italian keyboard which unfor-
tunately misses the grave or backtick key. The shorthand "" becomes equivalent
to ‘‘ for inserting raised open high double quotes.

103 \def\it@@cwm{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}%
104 \def\it@@slash{\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}%
105 \def\it@@trattino{\bbl@allowhyphens\discretionary{-}{}{-}\bbl@allowhyphens}%
106 \def\it@@ocap#1{\it@ocap}\def\it@@ccap#1{\it@ccap}%
107 \DeclareRobustCommand*{\it@cwm}{\let\it@@next\it@doublequote
108 \ifcat\noexpand\it@temp a%
109 \def\it@@next{\it@@cwm}%
110 \else
111 \if\noexpand\it@temp \string|%
112 \def\it@@next{\it@@cwm\@gobble}%
113 \else
114 \if\noexpand\it@temp \string<%
115 \def\it@@next{\it@@ocap}%
116 \else
117 \if\noexpand\it@temp \string>%
118 \def\it@@next{\it@@ccap}%
119 \else
120 \if\noexpand\it@temp\string/%
121 \def\it@@next{\it@@slash\@gobble}%
122 \else

10

123 \ifcat\noexpand\it@temp\noexpand\it@@dqactive
124 \def\it@@next{‘‘\@gobble}%
125 \else
126 \if\noexpand\it@temp\string-%
127 \def\it@@next{\it@@trattino\@gobble}%
128 \fi
129 \fi
130 \fi
131 \fi
132 \fi
133 \fi
134 \fi
135 \it@@next}%

By this definition of " if one types macro"istruzione the possible break points
become ma-cro-istru-zio-ne, while without the " mark they would be ma-croi-stru-
zio-ne, according to the phonetic rules such that the macro prefix is not taken as a
unit. A chemical name such as des"clor"fenir"amina"cloridrato is breakable
as des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-. . .

In other language description files a shorthand is defined so as to allow a
break point without actually inserting any hyphen sign; examples are given such
as entrada/salida; actually if one wants to allow a breakpoint after the slash, it
is much clearer to type \slash instead of / and LATEX does everything by itself;
here the shorthand "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shorthand works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start
with an accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case
the special shorthand "| may be used that performs exactly as " normally does,
except that the | sign is removed from the token input list: kilo"|\"orsted gets
hyphenated as ki-lo-ör-sted; but also kilo"|örsted gets hyphenated correctly
as ki-lo-ör-sted The "| macro is necessary because, even with a suitable option
specified to the inputenc package, the letter ‘ö’ does not have category code
11, as the ASCII letters do, because of the LICR (LaTeX Internal Character
Representation), i.e. the set of intermediate macros that have to be expanded in
order to fetch the proper glyph in the output font.

2.3 Facilities required by the ISO 31/XI regulations
The ISO 31/XI regulations require that units of measure are typeset in upright
font in both math and text, and that in text mode they are separated from the
numerical indication of the measure with an unbreakable (thin) space. The com-

11

mand \unit that was defined for achieving this goal happened to conflict with the
homonymous command defined by the units.sty package; we therefore need to
test if that package has already been loaded so as to avoid conflicts; we assume
that if the user loads that package, s/he wants to use that package facilities and
command syntax.

Actually there are around several packages that help to typeset units of
measure in the proper way; besides units.sty there are also SIunits and
siunitx.sty; the latter nowadays offers the best performances in this domain.
Therefore we keep controlling the possibility that units.sty has been loaded
just for backwards compatibility, but we must do the same with SIunits and
siunitx.sty. In order to avoid the necessity o loading packages in a certain
order, we delay the test until \begin{document}.

The same ISO regulations require also that super and subscripts (apices and
pedices) are in upright font, not in math italics, when they represent “adjectives”
or appositions to mathematical or physical variables that do not represent count-
able or measurable entities: for example, Vmax or Vrms for a maximum voltage or
a root mean square voltage, compared to Vi or VT as the i-th voltage in a set,
or a voltage that depends on the thermodynamic temperature T . See [2] for a
complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical variables,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1a or the old fashioned obsolete abbreviation Flli for Fratelli
in company names (compare with “Bros.” for Brothers in American English); text
subscripts are mostly used in logos.

\unit
\ap

\ped
\setISOcompliance

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped
as robust ones. This facility is deactivated by default according to the contents
of an internal counter and the setting of the activation command by the user;
commands for apices and pedices remain available in any case.

136 \newcount\it@ISOcompliance \it@ISOcompliance=\z@
137 \def\setISOcompliance{\it@ISOcompliance=\@ne}
138 \AtBeginDocument{\unless\ifnum\it@ISOcompliance=\z@%
139 \def\activate@it@unit{\DeclareRobustCommand*{\bbl@it@unit}[1]{%
140 \textormath{\,\textup{##1}}{\,\mathrm{##1}}}}
141 \@ifpackageloaded{units}{}{\@ifpackageloaded{siunitx}{}{%
142 \@ifpackageloaded{SIunits}{}{%
143 \activate@it@unit\addto\extrasitalian{%
144 \babel@save\unit\let\unit\bbl@it@unit}%
145 }}}\ifcsstring{bbl@main@language}{italian}{\selectlanguage{italian}}{}%
146 \fi}
147 \DeclareRobustCommand*{\bbl@it@ap}[1]{%
148 \textormath{#1}{^{\mathrm{#1}}}}%
149 \DeclareRobustCommand*{\bbl@it@ped}[1]{%
150 \textormath{$_{\mbox{\fontsize\sf@size\z@
151 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros

12

already have a different meaning before entering in Italian mode typesetting, we
first save their meaning so as to restore them on exit.

152 \addto\extrasitalian{%
153 \babel@save\ap\let\ap\bbl@it@ap
154 \babel@save\ped\let\ped\bbl@it@ped
155 }%

2.4 Intelligent comma
We need to perform some tests that require some smart control-sequence handling;
therefore we call the etoolbox package that allows us more testing functionality.
There are no problems with this package that can be invoked also by other ones
before or after babel is called; the \RequirePackage mechanism is sufficiently
smart to avoid reloading the same package more than once. But we have to delay
this call, because italian.ldf is being read while processing the options passed
to babel, and while options are being scanned and processed it is forbidden to
load packages; we delay it at the end of processing the babel package itself.

156 \AtEndOfPackage{\RequirePackage{etoolbox}}

\IntelligentComma
\NoIntellgentComma

This feature is optional, in the sense that it is necessary to issue a specific
command to activate it; actually this functionality is activated or, respec-
tively, deactivated with the self explanatory commands \IntelligentComma and
\NoIntelligentComma. They operate by setting or resetting the comma sign as
an active character in mathematics. We defer the definition of the commands that
turn on and off the intelligent comma feature at the end of the preamble, so as to
avoid possible conflicts with other packages. It has already been pointed out that
this procedure for setting up the active comma to behave intelligently in math
mode, conflicts with the dcolumn package; therefore we assume these commands
are defined when the final user typesets a document, but they will be possibly
defined only at the end of the preamble when it will be known if the dcolumn
package has been loaded. We do the same if packages icomma or ncccomma have
been loaded, since that assumes that the user wants to use their functionality, not
the functionality of this package.

We need a command to set the comma as an active charter only in math
mode; the special \mathcode that classifies an active character in math is the
hexadecimal value "8000. By default we set the punctuation type of comma,
but we let \IntelligentComma and \NoIntelligentComma to \relax so that
their use is forbidden when one of the named packages is loaded. In this way all
known conflicts are avoided; should the user find out other conflicts, s/he is kindly
required to notify it to the maintainer.

157 \AtEndOfPackage{\AtEndPreamble{%
158 \newcommand*\IntelligentComma{\mathcode‘\,=\string"8000}% Active comma
159 \newcommand*\NoIntelligentComma{\mathcode‘\,=\string"613B}% Punctuation comma
160 \@ifpackageloaded{icomma}{\let\IntelligentComma\relax
161 \let\NoIntelligentComma\relax}{%
162 \@ifpackageloaded{ncccomma}{\let\IntelligentComma\relax

13

163 \let\NoIntelligentComma\relax}{%
164 \@ifpackageloaded{dcolumn}{\let\IntelligentComma\relax
165 \let\NoIntelligentComma\relax}{%
166 \@ifpackageloaded{polyglossia}{%
167 \ifcsstring{xpg@main@language}{english}{\relax}{%
168 \mathcode‘\,=\string"613B}
169 }{%
170 \ifcsstring{languagename}{english}{\relax}{%
171 \mathcode‘\,=\string"613B}
172 }%
173 }}}%
174 }}

These commands are defined only in the babel support for the Italian language
(this file) and are not defined in the corresponding polyglossia support for the
language. In order to have this functionality work properly with pdfLaTeX, Xe-
LaTeX, and LuaLaTeX, it is necessary to discover which engine is being used, or
better, which language handling package is being used: babel or polyglossia?
Let us remember that testing the actual engine, as it would be possible with
package iftex, does not tell the whole truth, because LuaLaTeX and XeLaTeX
behave in a similar way for what concerns language handling since they can use
both babel and polyglossia (obviously not at the same time); so the use of
babel or polyglossia is the real discriminant factor, not the typesetting engine.

\virgola
\virgoladecimale

We need two kinds of comma, one that is a decimal separator, and a second one
that is a punctuation mark.

175 \DeclareMathSymbol{\virgola}{\mathpunct}{letters}{"3B}
176 \DeclareMathSymbol{\virgoladecimale}{\mathord}{letters}{"3B}

Math comma activation is done only after the preamble has been completed,
that is after the \begin{document} statement has been completely executed. Now
we must give a definition to the active comma: probably it is not necessary to
pass through an intermediate robust command, but certainly it is not wrong to
do it.

177 \DeclareRobustCommand*\it@comma@def{\futurelet\let@token\@@math@comma}%
178 {\catcode ‘,=\active \gdef,{\it@comma@def}}%

The real work shall be performed by \it@comma@def. In facts the above macro
stores the token that immediately follows \@@math@comma into a temporary control
sequence that behaves as an implicit character if that token is a single character,
even a space, or behaves as an alias of a control sequence otherwise. Actually
at the end of the preamble this macro shall be \let to be an alias for the real
\@math@comma.

Is is important to remark that \@math@comma must be a command that does
not require arguments; this makes it robust when it is followed by other characters
that may play special rôles within the arguments of other macros or environments.
Matter of fact the first version of this file in version 1.3 did accept an argument;
and the result was that the active comma would “eat up” the & in vertical math
alignments and very nasty errors took place, especially within the amsmath defined

14

ones. This macro \@@math@comma without arguments does not do any harm to
the AMS environments and the actual intelligent comma work shall be executed
by other macros.

At this point the situation may become complicated: the comma character
in the input file may be followed by a real digit, by an analphabetic character of
category 12 (other character), by an implicit digit, by a macro defined to be a digit,
by a macro that is not defined to be a digit, by a special character (for example
a closed brace, an alignment command, et cetera); therefore it is necessary to
distinguish all these situations; remember that an implicit digit cannot be used as
a real digit, and a macro gets expanded when used with any \if clause, unless it
is a \ifx one, or is prefixed with noexpand. The tests that are going to be made
are therefore of different kinds, according to this scheme:

• the \let@token is tested against an asterisk to see it it is of category 12;
this is true if the token is a real digit, or an implicit digit, or an analphabetic
character;

– an implicit digit is represented by a control sequence; so we first check
this feature;

– if it is a control sequence, we have to test its nature of a digit by testing
if it represented one of the ten digits;

– otherwise it is an analphabetic character.

• otherwise the \let@token is a special character or a macro/command;

• a test is made to see if it is a macro; in this case we check if has been defined
to be a digit,

• it is not a macro, it must be some other kind of token for example a space
or another special character.

Notice that if the token is a macro, we do not test if it is defined to be a
single digit or a string made up of more digits and/or other charters. If the macro
represents one digit the test is correct, otherwise funny results may take place.
For this reason it is always better to prefix any macro with a space, whatever
its definition might be; if the macro represents a parameter defined to have a
variable value in the range 0–9, then it may represent the fractional part of a
(short) decimal value, and it is correct to avoid prefixing it with a space; but the
user is warned not to make use of numeric strings in the definition of parameters,
unless he knows what he is doing. The user may rather use a balanced brace
comma group {,} in the input file so that the macro will not be considered by the
expansion of the active comma. For example if \x is defined to be the numerical
string 89, the source input $2{,}\x$ will be correctly typeset as 2,89; the input
$2,␣\x$ will be typeset as 2, 89 (with an unbreakable thin space after the comma)
while $2,\x$ will be typeset as 29,89, obviously wrong.

So first we test if the comma must act intelligently; if the counter \Virgola
contains zero, we assume that the comma must always perform as a punctuation

15

mark; but if we want to distinguish if it must behave as a decimal separator,
we have to perform more delicate tests; this latter task is demanded to other
macros with arguments \@math@@comma and \@@math@@comma. In order to make
the various tests robust we have to resort to the usual trick of the auxiliary macros
\@firstoftwo and \@secondoftwo and various \expandafter commands so as to
be sure that every \if clause is correctly exited without leaving any trace behind.

179 \DeclareRobustCommand*\@math@comma{%
180 \ifcat\noexpand\let@token*%
181 \expandafter\@firstoftwo
182 \else
183 \expandafter\@secondoftwo
184 \fi{% \let@token is of category 12
185 \@math@@comma
186 }{% test if \let@token is a macro
187 \ifcat\noexpand\let@token\noexpand\relax
188 \expandafter\@firstoftwo
189 \else
190 \expandafter\@secondoftwo
191 \fi{% it is a macro
192 \@@math@@comma
193 }{% it is something else.
194 \virgola
195 }
196 }
197 }

In particular this macro must test if the argument has category code 12, that
is “other character”, not a letter, nor other special signs, as & for example. In case
the category code is not 12, the comma must act as a punctuation mark; but if it
is, it might be a digit, or another character, an asterisk, for example; so we have to
test its digit nature; the simplest that was found to test if a token is a digit, is to
test its ASCII code against the ASCII codes of ‘0’ (zero) and ‘9’. The typesetting
engines give the backtick, ‘, the property that when a number is required, it yields
the ASCII code if the following token in an explicit character or a macro argument;
this is why we can’t use the temporary implicit token we just tested, but we must
examine the first non blank token that follows the \@math@@comma macro. Only if
the token is a digit, we use the decimal comma, otherwise the punctuation mark.
This is therefore the definition of the \@math@@comma macro which is not that
simple, although the testing macros have clear meanings:

198 \DeclareRobustCommand*\@math@@comma[1]{% argument is certainly of category 12
199 \ifcsundef{\expandafter\@gobble\string #1}{% test if it is a real digit
200 \ifnumless{‘#1}{‘0}{\virgola}%
201 {\ifnumgreater{‘#1}{‘9}{\virgola}%
202 {\virgoladecimale}}%
203 }{% it’s an implicit character of category 12
204 \let\@tempVirgola\virgola
205 \@tfor\@tempCifra:=0123456789\do{%
206 \expandafter\if\@tempCifra#1\let\@tempVirgola\virgoladecimale

16

207 \@break@tfor\fi}\@tempVirgola
208 }#1}
209
210 \DeclareRobustCommand*\@@math@@comma[1]{% argument is a macro
211 \let\@tempVirgola\virgola
212 \@tfor\@tempCifra:=0123456789\do{%
213 \if\@tempCifra#1\let\@tempVirgola\virgoladecimale
214 \@break@tfor\fi}\@tempVirgola#1
215 }

The service macros \ifcsundef, \ifnumless, and \ifnumgreater are provided by
the etoolbox package, that shall be read at most at the end of the babel package
processing; therefore we must delay the code at “end preamble” time, since only
at that time it will be known if the main language is English, or any other one.
This is why we have to perform such a baroque definition as the following one:

216 \AtEndOfPackage{\AtEndPreamble{\let\@@math@comma\@math@comma}}

This intelligent comma definition is pretty intelligent, but it requires some kind
of information from the context; this context does not give enough bits of in-
formation to this ‘intelligence’ in just one case: when the comma plays the
rôle of a serial separator in expressions such as i = 1, 2, 3, . . . , ∞, entered as
$i=1,␣2,␣3,\dots,\infty$. Only in this case the comma must be followed by
an explicit space; should this space be absent the macro takes the following non
blank token as a digit, and since it actually is a digit, it would use the decimal
comma, which would be wrong. The control sequences \dots and \infty are
tested to see if they are undefined, and since they are defined and do not represent
digits, the macro inserts a punctuation mark, instead of a decimal separator.

Notice that this macro may appear to be inconsistent with the contents of
a language description file. I don’t agree: matter of facts even math is part of
typesetting a text in a certain language. Does this set of macros influence other
language description files? May be, but I think that the clever use of macros
\IntelligentComma and \NoIntellingentCommamay solve any interference; they
allow to use the proper mark even if the Italian language is not the main language,
the important point is to turn the switch on and/or off. By default it is off, so
there should not be any interference even with legacy documents typeset in Italian.

Notice that there are other packages that contain facilities for using the decimal
comma as the correct decimal separator; for example SIunitx defines a command
\num that not only correctly spaces the decimal separator, but also can change
the input glyph with another one, so that it is possible to copy and paste numbers
from texts in English (with the decimal point) and paste them into the argument
of the \num macro in an Italian document where the decimal point is changed au-
tomatically into a decimal comma. Of course SIunitx does much more than that;
if it’s being loaded, then the default \NoIntelligentComma declaration disables
the functionality defined in this language description file and the user can do what
he desires with the many functionalities of that package.

Apparently a conflict with the active comma arises with the D column defined
by the dcolomn package. Disabling the “Italian” active comma allows the D
column operate correctly. Thanks to Giuseppe Toscano for telling me about this

17

conflict.

Accents
Most of the other language description files introduce a number of shorthands for
inserting accents and other language specific diacritical marks in a more comfort-
able way compared with the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that to my best knowledge no convenient shorthands have been developed; the
reason lies in the fact that the Italian keyboard lacks the grave accent (also known
as “backtick”), which is compulsory on all accented vowels, but, on the opposite,
it carries the keys with all the accented lowercase vowels à, è, é, ì, ò, ù, bot no
uppercase accented vowels are directly avalaible from the keyboard; the keyboard
lacks also the tie ~ (tilde) key, while the curly braces require pressing three keys
simultaneously.

The best solution Italians have found so far is to use a smart editor that accepts
shorthand definitions such that, for example, by striking "(one gets directly { on
the screen and the same sign is saved into the .tex file; the same smart editor
should be capable of translating the accented characters into the standard TEX
sequences when writing a file to disk (for the sake of file portability), and to
transform the standard TEX sequences into the corresponding signs when loading a
.tex file from disk to memory. Such smart editors do exist and can be downloaded
from the ctan archives.

For what concerns the missing backtick key, which is used also for inputting
the open quotes, it must be noticed that the shorthand "" described above com-
pletely solves the problem for double raised open quotes; besides this, a single
open raised quote may be input whit the little known LATEX kernel command \lq;
according to the traditions of particular publishing houses, since there are no com-
pulsory regulations on the matter, the guillemets may be used; in this case the
T1 font encoding solves the problem by means of its built in ligatures << and >>;
such ligatures are also available when using OpenType fonts with XeLaTeX and
LuaLaTeX, provided they are loaded with the option Ligatures = TeX. But. . .

Caporali or French double quotes
Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because the
author/typesetter wants to use the OT1 encoding, or because s/he uses a font set
that does not comply completely with the T1 font encoding; some virtual fonts, for
example, are supposed to implement the double Cork font encoding but actually
miss some glyphs; one such virtual font set is given by the ae virtual fonts, because
they are supposed to implement such double font encoding by using virtual fonts
that map the CM fonts to a T1 font scheme; the type 1 PostScript version of the
CM fonts do exist, therefore one believes to be able of using them with pdfLaTeX;
but since the CM fonts do not contain the guillemets, neither the AM ones do. Since

18

guillemets (in Italian caporali) do not exist in any OT1 encoded cm Latin font,
their glyphs must be substituted with something else that fakes them.

In the previous versions of this language description file the absent guillemets
were faked with other fonts, by taking example from the solution the French had
found for their language description file; they would get suitable guillemets from
the cyrillic fonts; this solution was good in most cases, except when the “slides
fonts” were used, because there is no Cyryllic slide font around.

This might seem a negligible “feature” because the modern classes or exten-
sion modules to produce slides mostly avoid the “old” fonts for slides created by
Leslie Lamport when he made available the macro package LaTeX to the TeX
community.

Since I designed renewed slide fonts extending those created by Leslie Lamport
to the T1 encoding, the Text Companion fonts, and the most frequent “regular”
and AMS math fonts with the same graphic style and excellent legibility (LX-
fonts), I thought that this feature is not so negligible. It’s true that nowadays
nobody should use the old OT1 encoding when typesetting in any language, En-
glish included, because independently form the document main language, it is
very frequent to quote passages in other languages, or to type foreign proper
names of persons or places; nevertheless having in mind a minimum of backwards
compatibility and hoping that the deliberate use of OT1 encoding (still necessary
to typeset mathematics) is being abandoned, I decided to simplify the previous
handling of guillemets.

Therefore here I will test at “begin document” only if the OT1 encoding is
the default one, while if the T1 encoding is the default one, that the font collec-
tion AE is not being used; should it be the case, I will substitute the guillemets
with the LaTeX special symbols reduced to script size, and I will not try to fake
the guillemets with better solutions; evidently if OpenType fonts are being used,
nothing is done; so the tests that follow concern only typesetting old documents
or the lack of a wiser choice of fonts and their encodings; an info message is issued
and output to the .log file.

\LtxSymbCaporali
\it@ocap
\it@ccap

First the macro \LtxSymvCaporali is defined so as to assign a default definition
of the faked guillemets: each one of these macro sets actually redefines the control
sequences \it@ocap and \it@ccap that are the ones effectively activated by the
shorthands "< and ">. By default the caporali glyphs are taken from T1-encoded
fonts; at the end of the preamble some tests are performed to control if the default
fonts contain such glyphs, and in case a different font is chosen.

217 \def\LtxSymbCaporali{%
218 \DeclareRobustCommand*{\it@ocap}{\mbox{%
219 \fontencoding{U}\fontfamily{lasy}\selectfont(\kern-0.20em(}%
220 \ignorespaces}%
221 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi
222 \mbox{%
223 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}}%
224 }%
225 \def\T@unoCaporali{\DeclareRobustCommand*{\it@ocap}{<<\ignorespaces}%
226 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi>>}}%

19

227 \T@unoCaporali

Nevertheless a macro for choosing where to get glyphs for real guillemets is offered;
the syntax is the following:

\CaporaliFrom{〈encoding〉}{〈family〉}{〈open guill. slot〉} {〈close guill. slot〉}

where 〈encoding〉 and 〈family〉 identify the font family name of that particular
encoding from which to get the missing guillemets; 〈open guill. slot〉 and 〈close
guill. slot〉 are the (preferably) decimal slot addresses of the opening and closing
guillemets the user wants to use. For example if the T1-encoded Latin Modern
fonts are desired, the specific command should be

\CaporaliFrom{T1}{lmr}{19}{20}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly with pdfLaTeX, for example.

228 \def\CaporaliFrom#1#2#3#4{%
229 \DeclareFontEncoding{#1}{}{}%
230 \DeclareTextCommand{\it@ocap}{T1}{%
231 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%
232 \DeclareTextCommand{\it@ccap}{T1}{\ifdim\lastskip>\z@\unskip\fi%
233 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}%
234 \DeclareTextCommand{\it@ocap}{OT1}{%
235 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%
236 \DeclareTextCommand{\it@ccap}{OT1}{\ifdim\lastskip>\z@\unskip\fi%
237 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

Notice that the above macro is strictly tied to the T1 encoding; it won’t do any-
thing if the default encoding is not the T1 one. Therefore if the AE font collection
is being used it would be good idea to issue the command shown above as an
example in order to get the proper guillemets4.

Then we set a boolean variable and test the default family; if such family has
a name that starts with the letters “ae” then we have no built in guillemets; of
course if the AE font family is chosen after the babel package is loaded, the test
does not perform as required.

238 \def\get@ae#1#2#3!{\def\bbl@ae{#1#2}}%
239 \def\@ifT@one@noCap{\expandafter\get@ae\f@family!%
240 \def\bbl@temp{ae}\ifx\bbl@ae\bbl@temp\expandafter\@firstoftwo\else
241 \expandafter\@secondoftwo\fi}%

Now we can set some real settings; first we start by testing the encoding; if the
encoding is OT1 we set the faked caporali with LaTeX symbols and issue a warning;
then we test if the font family is the AE one we set again the faked caporali and

4Actually the AE fonts should not be used at all; the same results, more or less are obtained by
using the Latin Modern ones, that are not virtual fonts and contain the whole T1 font scheme.
Nevertheless the faked glyphs are not so bad, so the solution I restored from old versions of the
language description file is acceptable

20

issue another warning5; otherwise we set the commands valid for the T1 encoding,
that work well also with the TeX Ligatures of the OpenType fonts.

242 \AtBeginDocument{\normalfont\def\bbl@temp{OT1}%
243 \ifx\cf@encoding\bbl@temp
244 \LtxSymbCaporali
245 \GenericWarning{italian.ldf\space}{%
246 File italian.ldf warning: \MessageBreak\space\space\space
247 With OT1 encoding guillemets are poorly faked\MessageBreak
248 \space\space\space
249 Use T1 encoding\MessageBreak\space\space\space
250 or specify a font with command \string\CaporaliFrom\MessageBreak
251 \space\space\space
252 See the documentation concerning the babel-italian typesetting
253 \MessageBreak\space\space}%
254 \else
255 \ifx\cf@encoding\bbl@t@one
256 \@ifT@one@noCap{%
257 \LtxSymbCaporali
258 \GenericWarning{italian.ldf\space}{%
259 File italian.ldf warning: \MessageBreak\space\space\space
260 The AE font collection does not contain the guillemets
261 \MessageBreak\space\space\space
262 Use the Latin Modern font collection instead
263 \MessageBreak\space}
264 }%
265 {\T@unoCaporali}\fi
266 \fi
267 }

Finishing commands
The macro \ldf@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

268 \ldf@finish{italian}%

References
[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,

TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

5Notice the it is impossible to check if the slots 19 and 20 of the AE fonts are defined by
means of the eTeX macro \iffontchar, because they are actually defined as black squares!

21

