EXAMPLE OF Lualatex With ASMECONF.CLS FOR ODE INTEGRATION

John H. Lienhard $\mathbf{V}^{\mathbf{1 , *}}$
${ }^{1}$ Massachusetts Institute of Technology, Cambridge, MA

Abstract

This paper is an example of using asmeconf with $\mathrm{Lua} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to solve an ODE initial value problem using a fourth-order RungeKutta method and to plot the result using PGFPLOTS. The use of a landscape figure is also illustrated. References are given for further reading. Keywords: asmeconf, LualATEX, ODE, pgfplots, landscape

\section*{NOMENCLATURE}

A Constant parameter [-] $t \quad$ Time [s] $y(t) \quad$ Position [m]

1. INTRODUCTION

LuaLATEX is built upon the Lua programming language [1]. By directly using Lua code in a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ file, we can accomplish a wide range of tasks, as illustrated in the open-access paper by Montijano et al. [2]. In the present example, we follow Montijano et al. in solving a nonlinear first-order ordinary differential equation and plotting the result-all within a single ${ }^{\mathrm{A} T E X}$ file!

2. SOLUTION TO AN INITIAL VALUE PROBLEM

We consider an initial value problem like that of Montijano et al.:

$$
\begin{equation*}
y^{\prime}(t)=A \cdot y(t) \cos (t+\sqrt{1+y(t)}) \text { with } y(0)=1 \tag{1}
\end{equation*}
$$

Here, A is a constant. We may adopt a fourth-order Runge-Kutta algorithm for the integration, which we shall perform to $t=30 \mathrm{~s}$ using a 400 point discretization. The details of the Runge-Kutta algorithm and a listing of the code are given in Montijano et al. (You can also read the code in the present . tex file.)

The algorithm is implemented directly in the preamble of this file, and the results are plotted in Fig. 1 for $A=$ $\{0.25,0.5,0.75,1.0\}$. Plotting is done using the PGFPLOTS package [3].

[^0]Landscape figures, such as Fig. 1, may be produced at fullpage size by putting guresright]\{rotating\}inyour.texfile'spreambleandusingthesidewaysfigure*environment[4].undefined

3. CONCLUSION

LualATEX enables numerical computations within a ${ }^{E A T} T_{E} X$ environment. By combining this capability with PGFPlots, the need for separate numerical and/or graphics packages can be reduced.

ACKNOWLEDGMENTS

The example shown in this paper is directly based on an example given by Montijano et al. [2]. Additional examples, such as the Lorenz attractor, are contained in that paper.

REFERENCES

[1] lerusalimschy, Roberto, de Figueiredo, Luiz Henrique and Celes, Waldemar. Lua 5.3 Reference Manual. Pontifical Catholic University, Rio de Janeiro, Brazil (2017). URL https://www.lua.org/manual/5.3/.
[2] Montijano, Juan I., Pérez, Mario, Rández, Luis and Varona, Juan Luis. "Numerical methods with LualATEX." TUGboat Vol. 35 No. 1 (2014): pp. 51-56. URL https://tug.org/ TUGboat/tb35-1/tb109montijano.pdf. Open access.
[3] Feuersänger, Christian. Manual for Package PGFPLOTS, Version 1.17. Comprehensive $\mathrm{TEX}_{\mathrm{E}}$ Archive Network (2020). Accessed January 4, 2021, URL https://ctan.org/ pkg/pgfplots.
[4] Fairbairns, Robin, Rahtz, Sebastian and Barroca, Leonor. "A Package for Rotated Objects in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$." Version 2.16d. Comprehensive $\mathrm{T}_{\mathrm{E}} X$ Archive Network (2016). Accessed October 2, 2019, URL https://www.ctan.org/pkg/rotating.

FIGURE 1: A trial of pgfplot with Luacode Runge-Kutta integration

[^0]: *Corresponding author: lienhard@mit.edu
 Version 1.0, January 15, 2021

