The arraycols package*

Antoine Missier
antoine.missier@ac-toulouse.fr
June 26, 2019

1 Introduction

This package provides new predefined column types to typeset tables in addition to the array package by Frank Mittelbach and David Carlisle [1] (loaded by arraycols) and also a command to draw wide horizontal rules. Here is a summary of the column types and macro, defined by arraycols, which we detail in the next section.

Column definitions	
L	Left adjusted column (LR mode in array environments or math mode in tabular environment)
C	Centered adjusted column (idem)
R	Right adjusted column (idem)
$\mathrm{t}\{\langle$ width $\rangle\}$	Text column (LR mode) of fixed \langle width \rangle like p, but hor- izontally and vertically centered
x	Centered column in math mode with adjusted height to avoid touching the horizontal rules
y	Left aligned column in math mode with adjusted height
$\mathrm{z}\{\langle$ width $\rangle\}$	Centered column in math mode with adjusted height, like x, and fixed \langle width \rangle
T	Centered text column with adjusted width for tabularx environments (calculated like X column)
Z	Centered column for tabularx, like T, but in math mode with adjusted height, like x and z
I	Thick vertical rule (1 pt)
$\mathrm{V}\{\langle$ thickness $\rangle\}$	Vertical rule with variable \langle thickness \rangle
Horizontal rules	
\whline	Wide horizontal rule (1 pt)

Note that if a column type has already been defined previously, it will be overwritten with a warning message.

[^0]Besides array, arraycols loads the cellspace package, necessary for the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and Z types of columns and tabularx [3], necessary for T and Z , as well as makecell [4] for various alignments of multilined table cells.

This package, with a very short code, does not claim to develop new macros. Its main action is to combine and set features coming from other packages.

2 Usage

L Referring to an example from the array package documentation, arraycols provides C the L, C, R type of columns which reverse the mathematical mode. Then we can an array or math-mode in a tabular environment. For instance, declaration \begin\{tabular\}\{|l|C|r|\} produces the second column in a centred mathemat- } ical mode and declaration \begin\{array\}\{|L|c|c|\} produces the first column in } text mode, left aligned ${ }^{1}$.
$\mathrm{t}\{\langle$ width $\rangle\} \quad$ We add the definition $\mathrm{t}\{\langle$ width $\rangle\}$ (text in LR-mode) producing a horizontal and a vertical centering in the column unlike the classics $\mathrm{p}\{\langle$ width $\rangle\}$ and $\mathrm{m}\{\langle$ width $\rangle\}$ which produce left aligned text.

To ensure a sufficient height for rows, for instance for formulas in displaymath y mode, we have defined the columntypes x (centred) and y (left aligned), based on the cellspace package by Josselin Noirel [2]. They allows an automatic adjustment of the rows heights to avoid touching the horizontal rules when content is too high. Although cellspace is defined a priori for tabular environments, the new x and y column types, defined by arraycols, produce a column in mathematical mode with the right adjustment, either with a tabular or with an array environment.

Look at the following examples produced with \backslash begin $\{\operatorname{array}\}\{|c|\}$ and with \begin\{array\}\{|x|\}. }

good
$\lim _{\substack{x \rightarrow 1 \\ x>1}} \ln \left(\frac{x^{2}}{x-1}\right)$
$\frac{a}{b}$
$\int_{1}^{X} \frac{1}{t} \mathrm{~d} t$

The cellspace package is loaded with the math option ${ }^{2}$ for a good management of rows heights in matrix tables.

[^1]Notice that another package, booktabs [6], also provides an excellent adjustment for rows heights, but unfortunately, it doesn't handle the height of vertical separators I. To get the same vertical adjustment as booktabs, thus we set the cellspace parameters:
\setlength\{\cellspacetoplimit\}\{3pt\},
\setlength\{\cellspacebottomlimit\}\{2pt\}.
We should also mention the tabls package by Donald Arneseau [7] making a good adjustment of rows heights as well, but it's incompatible with the array and numprint packages.

At last, it is also possible to make manual adjustments with the \vstrut command from the spacingtricks package [9], or \gape and \Gape from the makecell package [4], or \bigstrut from the bigstrut package [8].

The column definition $\mathbf{z}\{\langle$ width $\rangle\}$ enables, just as $\mathrm{t}\{\langle$ width $\rangle\}$, to set the column width, but also activates the math mode and adjusts the row height, as x .

The tabularx package by David Carlisle [3] provides the X column definition whose width is calculated according to the required width for the whole table, and with left alignment as for $\mathrm{p}\{\langle$ width $\rangle\}$. \begin\{tabularx\}\{8cm\}\{|c|X|X|\} } adjusts the width of the X columns for a total witdh of the table equals to 8 cm . As a complement, we propose the T declaration, doing the same thing but with horizontal centering and Z which furthermore activates the mathematical mode and adjusts the height of the line (as \mathbf{x} or \mathbf{z}). Here is an example with \begin\{tabularx\}\{\linewidth\}\{|T|y|x|Z|T|\}. }

A good job	$\lim _{\substack{x \rightarrow 1 \\ x>1}} \ln \left(\frac{x^{2}}{x-1}\right)$	$\frac{a}{b}$	$\frac{a}{b}+\int_{1}^{X} \frac{1}{t} \mathrm{~d} t$	a multiline piece of text

To keep the perfect aligment of fraction bars in mathematical formulas, cells are not vertically centred, however, to get a proper vertical positioning in the last cell, we have used the powerfull \makecell command of the makecell package by Olga Lapko [4]: \makecell\{a multiline
 piece of text\}.
\whline

The column definition I is suggested in The $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ Companion [10] and enables to draw a thick vertical line (1 pt thick) instead of the one obtained with standard declaration \mid. To choose thickness, we propose further column definition $\mathrm{V}\{\langle\text { thickness }\rangle\}^{3}$.

Likewise, the \whline command, proposed in The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ Companion, enables to draw a thick horizontal line (1 pt thick) instead of the one obtained with \hline and the makecell package provides further command \Xhline\{〈thickness \rangle \} enabling to choose the thickness of the horizontal rule.

The introduction table has been typeset with a column declaration I as separator between the two columns of text, and with \whline for the horizontal rules at

[^2]the begin and at the end of the table, and $\backslash \mathrm{Xhline}\{0.8 \mathrm{pt}$ \} for the one following the legend rows. Formatting header lines has been done with \thead command from the makecell package. For this command arraycols sets by default:
}
(originally \footnotesize only, without \sffamily). At last, according to a recommendation of the array package [1], 1 pt has been added to the normal height of every row of the table, with the command \backslash setlength $\{\backslash$ extrarowheight $\}\{1 \mathrm{pt}\}^{4}$.

3 Implementation

```
1 \RequirePackage{array}
2 \RequirePackage[math] {cellspace}
3 \RequirePackage{tabularx} % must be loaded after cellspace
4 \RequirePackage{makecell}
5
6 \newcolumntype{C}{>{$}c<{$}}
7 \newcolumntype{L}{>{$}l<{$}}
8 \newcolumntype{R}{>{$}r<{$}}
9 \newcolumntype{t} [1]{>{\centering\arraybackslash}m{#1}}
```

The cellspace package provides the S modifier enabling, when placed before a column declaration, to adjust the height of the content of the cells to avoid to touch horizontal rules. Spacing between the content and the rules is controlled by the parameters \cellspacetoplimit and \cellspacebottomlimit.
10 \newcolumntype $\{x\}\{>\{\$\}$ Sc $<\{\$\}\}$
11 \newcolumntype\{y\}\{>\{\$\}Sl<\{\$\}\}
12 \setlength\{\cellspacetoplimit\}\{3pt\}
13 \setlength\{\cellspacebottomlimit\}\{2pt\}
14 \newcolumntype\{z\}[1]\{>\{\$\}S\{>\{\arraybackslash\}p\{\#1\}\}<\{\$\}\}
For the z defintion of column, we use p and not m (which automatically centers) in order to keep a correct alignment for mathematical expressions in the cells of a same row.

```
15\newcolumntype{T}{>{\centering\arraybackslash}X}
16 \newcolumntype{Z}{>{$}ST<{$}}
```

The T columns are not automatically centred. It would be possible to do it with the command [1]\{m\{\#1\}\} (with m instead of default value p), but unfortunately this has a global effect for all the declarations of columns based on X, so T but also Z, and this would lead to disturb alignment of mathematical expressions in the cells of a same row.
17 \newcolumntype\{I\}\{!\{\vrule width 1pt\}\}
18 \newcolumntype\{V\}[1]\{!\{\vrule width \#1\}\}
19 \newlength \backslash savedwidth
20 \newcommand\{\whline\}\{\%
21 \noalign\{\global\savedwidth\arrayrulewidth\global\arrayrulewidth 1 pt$\}$
${ }^{4}$ As mentioned in the array package documentation: "This is important for tables with horizontal lines because those lines normally touch the capital letters".

```
22 \hline
23 \noalign{\global\arrayrulewidth\savedwidth}
24}
25\renewcommand\theadfont{\footnotesize\sffamily}
```


References

[1] A new implementation of LATEX's tabular and array environment, Frank Mittelbach, David Carlisle, CTAN, v2.4k revised 2018/12/30.
[2] The cellspace package, Josselin Noirel, CTAN, v1.8.1 2019/03/11.
[3] The tabularx package, David Carlisle, CTAN, v2.11.b 2016/02/03.
[4] The makecell package, Olga Lapko, CTAN, v0.1e 2009/08/03.
[5] The tabulary package, David Carlisle, CTAN, v1.10 2014/06/11.
[6] Publication quality tables in $L^{A} T_{E} X$, package booktabs by Simon Fear, CTAN, v1.618033 2016/04/29.
[7] The tabls package, Donald Arseneau, CTAN, v3.5 2010/02/26.
[8] The multirow, bigstrut and bigdelim packages, Piet van Oostrum, Øystein Bache, Jerry Leichter, CTAN, v2.4 2019/01/01.
[9] The spacingtricks package, Antoine Missier, CTAN, v1.0 2019/06/26.
[10] The LATEX Companion. Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley, 2nd edition, Pearson Education, 2004.

[^0]: *This document corresponds to arraycols v1.0, initial version dated 2019/06/26. Thanks to François Bastouil for English translation.

[^1]: ${ }^{1}$ The declarations L, C, R do not work in a tabularx environment. Note that the tabulary package by David Carlisle [5] already defines the L, C, R, J column types for particular alignments in tables of same type as tabularx, but there is no incompatibility because these column definitions only apply in tabulary environments.
 ${ }^{2}$ The math option loads the amsmath package. As mentionned in the cellspace package documentation: "the amsmath package can be loaded beforehand with other packages (such as empheq or mathtools), were an incompatibility to arise from one's loading it later".

[^2]: ${ }^{3}$ The definition of V would have been simplified by using an optional argument for I but this way out is not working.

