
T
he

 a
cr

os
or

t 
P

ac
ka

ge

AcroTEX.Net

The acrosort Package

D. P. Story

© 2006-2020 dpstory@acrotex.net www.acrotex.net
Distribution Dated: 2020/06/02 Version 1.6

mailto:dpstory@acrotex.net
www.acrotex.net


T
he

 a
cr

os
or

t 
P

ac
ka

ge

Table of Contents

1 Introduction 3

2 The Method 3

3 Controlling the bubble sort 4

4 Creation of tiles 5

5 Applications 6



T
he

 a
cr

os
or

t 
P

ac
ka

ge

3

1. Introduction

acrosort is a novelty LATEX package for importing a se-
ries of tiled images of a picture. The tiled images are
randomly arranged, then resorted before the user’s
eyes using a bubble sort. We shall refer to the figure
to the left as a tiled bubble sort.tiled bubble sort

This new version of acrosort, dated 2020/06/02
or later, supports all common workflows: pdflatex,
lualatex, xelatex, and dvips -> distiller.

The graphicx, eforms, and icon-appr packages are
automatically input by acrosort. When the workflow
dvips -> distiller is used, the package aeb_pro is re-

quired. For the first time, multiple tiled bubble sorts can appear in the same document,
multiple tiled bubble

sorts supported
though only one can be sorted at a time.

Demo files. There are two sample files for this distribution: as1.tex (only one tile
bubble sort), and as2.tex (two tiled bubble sorts). These are found in the examples
folder.

2. The Method

The creation of the tiled bubble sort has two easy steps. :-{)

1. Embed your graphics using the embedding environment of icon-appr and the spe-
cial command \asEmbedTiles.

\begin{embedding}
\isPackage
\asEmbedTiles[〈ext〉]{〈name〉}{〈num-tiles〉}{〈path〉}
\end{embedding}

The \asEmbedTiles is defined by acrosort. The parameters are: 〈name〉 is a
unique name used by \insertTiles to refer this tile embedding; 〈num-tiles〉
is the number of tiles; 〈path〉 is the path to the graphics file,1 the graphics file is
referenced by its base name. Usually, PDF files are used for graphics.

\isPackage is optional and must appear prior to the \asEmbedTiles command
to which it refers. \isPackage means the tiled graphic files are “packaged” in a
single PDF, named 〈base name〉_package.pdf.

The optional argument 〈ext〉 is ignored when \isPackage is present; otherwise,
an extension of 〈ext〉 is affixed to the graphics file. If 〈ext〉 is not specified, then
an extension of pdf (.pdf) is assumed.

Base name: Suppose the base name is myPicure, then 〈path〉might be graphics/
myPicture. If \isPackage is expanded prior to \asEmbedTiles, acrosort looks

1a relative or absolute path, relative preferred



T
he

 a
cr

os
or

t 
P

ac
ka

ge

4

for myPicture_package.pdf in the graphics folder. If \isPackage does not ap-
pear, then acrosort looks for the sequence of the tiled graphic files myPicture_01,
myPicture_02, …myPicture_〈num-tiles〉, numbers less than 10 are prefixed
with a zero (0). In this case, the graphic file extension is taken to be the one
specified by 〈ext〉, or as .pdf, otherwise.

\asEmbedTiles puts the base graphic file in a box and measures its dimensions;
the format for the base graphic must be in a format that \includegraphics sup-
ports, for whatever PDF creator you are using. In particular, when using straight
LATEX, the base document show have an EPS version. Note that in each of the graph-
ics folders (choo and emoji) both PDF and EPS versions of the base graphic are
provided.

2. In the body of the document, place the \insertTiles command:

\insertTiles{〈name〉}{〈width〉}{〈n-rows〉}{〈n-cols〉}

where 〈name〉 is the name of an embedding (\asEmbedTiles); 〈width〉 is the total
width of the picture; 〈n-row〉 is the number of rows; 〈n-cols〉 is the number of
columns.

For the tiled bubble sort figure of this document, the following was used.

...
\begin{embedding}
\isPackage
\asEmbedTiles{choo}{20}{../examples/choo/choo}
\end{embedding}
...
\begin{document}
...
\insertTiles{choo}{2in}{4}{5}
...
\end{document}

It’s just that simple !

3. Controlling the bubble sort

Below are three basic commands for controlling a tile bubble sort by the name of 〈name〉.

\StartSort[〈KV-pairs〉]{〈name〉}{〈wd〉}{〈ht〉}
\StopSort[〈KV-pairs〉]{〈wd〉}{〈ht〉}
\ClearSort[〈KV-pairs〉]{〈name〉}{〈wd〉}{〈ht〉}

Use 〈KV-pairs〉 to change the appearance of the fields, where 〈KV-pairs〉 are eforms
field key-value pairs. The 〈name〉 argument (\StartSort and \ClearSort) is the name
of the graphics to be controlled. (〈name〉 must match up with the 〈name〉 argument of



T
he

 a
cr

os
or

t 
P

ac
ka

ge

Creation of tiles 5

\asEmbedTiles and \insertTiles.) The 〈wd〉 and 〈ht〉 are the width and height of the
push button fields. If a caption is provided, set 〈wd〉 to {} and eforms will automatically
calculate the width based on the value of the \CA key.

There are several other commands of interest, these are,

\customStartJS{〈script〉} (Field level) Inserts 〈script〉 just prior to the start of the
sort (\StartSort). The default is \customStartJS{}.

\customFinishJS{〈script〉} (Document level) Inserts 〈script〉 just after the finish
of the sort. The default is \customFinishJS{}.

\appendStartSortJS{〈script〉} (Field level) Inserts 〈script〉 following the underly-
ing package JavaScript of \StartSort. The default is \appendStartSortJS{}.

\appendStopSortJS{〈script〉} (Field level) Inserts 〈script〉 following the JavaScript
of \StopSort. The default is \appendStopSortJS{}.

\appendClearSortJS{〈script〉} (Field level) Inserts 〈script〉 following the underly-
ing package JavaScript of \ClearSort. The default is \appendClearSortJS{}.

Some simple examples; assume there is a text field by the name of "message":

\renewcommand{\customStartJS}{%
var f=this.getField("message");
f.value="Begin sorting choo";

}
\renewcommand{\customFinishJS}{%

var f=this.getField("message");
f.value="Finished sorting choo";

}

Placement. It should be noted that the above commands marked as “Field level” may be
placed in the body of the document, prior to the commands they effect. The other com-
mand (\customFinishJS), which is marked as “Document level,” needs to be placed in
the preamble to have any effect.

The sample file as2.tex provides examples of these various commands.

4. Creation of tiles

Use the package tile-graphic to tile a graphics file. In the examples folder there are twotile-graphic pkg

demo files, as1.tex and as2.tex, that use the graphics in the emoji and choo folders.
In each of the two folders is a file named create-tg.tex. The one in the emoji folder
is reproduced below.

pdfcreator=
pdflatex|
lualatex|
xelatex|
distiller

\documentclass{article}
\usepackage[!wrttofiles,packagefiles,pdfcreator=pdflatex]{tile-graphic}
\setTileParams{4}{4}{emoji}
\begin{document}
\tileTheGraphic
\end{document}



T
he

 a
cr

os
or

t 
P

ac
ka

ge

6

Refer to the documentation of tile-graphic for more information. Currently, the op-
tions are !wrttofiles and packagefiles, these produce emoji_package.pdf. If
you are using xelatex, you’ll need the “non-packaged” files. Produce them by changingfor xelatex users
the options to wrttofiles and !packagefiles and compile, the files emoji_01.pdf,
emoji_02.pdf, …, emoji_12.pdf should be created. It’s just that simple!

5. Applications

I’ve used this package to create birthday, wedding, and anniversary cards for friends.
You can use it for whatever novel idea your mind can conjure up! Enjoy!

Now, I simply must get
back to my retirement,
DPS


	Table of Contents
	1 Introduction
	2 The Method
	3 Controlling the bubble sort
	4 Creation of tiles
	5 Applications

	btnchoopic: 
	01: 
	02: 
	03: 
	04: 
	05: 
	06: 
	07: 
	08: 
	09: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 

	btStartSort: 
	btnClearSort: 
	btnemojipic: 
	01: 
	02: 
	03: 
	04: 
	05: 
	06: 
	07: 
	08: 
	09: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 



