
The lthooks package∗

Frank Mittelbach†

December 31, 2020

Contents
1 Introduction 2

2 Package writer interface 2
2.1 LATEX2ε interfaces . 2

2.1.1 Declaring hooks and using them in code 2
2.1.2 Updating code for hooks . 3
2.1.3 Hook names and default labels . 5
2.1.4 The top-level label . 7
2.1.5 Defining relations between hook code 7
2.1.6 Querying hooks . 8
2.1.7 Displaying hook code . 9
2.1.8 Debugging hook code . 11

2.2 L3 programming layer (expl3) interfaces 11
2.3 On the order of hook code execution . 13
2.4 The use of “reversed” hooks . 15
2.5 Difference between “normal” and “one-time” hooks 16
2.6 Private LATEX kernel hooks . 16
2.7 Legacy LATEX2ε interfaces . 17
2.8 LATEX2ε commands and environments augmented by hooks 18

2.8.1 Generic hooks for all environments 18
2.8.2 Hooks provided by \begin{document} 19
2.8.3 Hooks provided by \end{document} 19
2.8.4 Hooks provided \shipout operations 21
2.8.5 Hooks provided by file loading operations 21
2.8.6 Hooks provided in NFSS commands 21

Index 22
∗This package has version v1.0g dated 2020/12/18, © LATEX Project.
†Code improvements for speed and other goodies by Phelype Oleinik

1

1 Introduction
Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface
The hook management system is offered as a set of CamelCase commands for traditional
LATEX2ε packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of LATEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

2.1 LATEX2ε interfaces
2.1.1 Declaring hooks and using them in code

With two exceptions, hooks have to be declared before they can be used. The exceptions
are hooks in environments (i.e., executed at \begin and \end) and hooks run when
loading files, e.g. before and after a package is loaded, etc. Their hook names depend on
the environment or the file name and so declaring them beforehand is difficult.

\NewHook {〈hook〉}

Creates a new 〈hook〉. If this is a hook provided as part of a package it is suggested
that the 〈hook〉 name is always structured as follows: 〈package-name〉/〈hook-name〉. If
necessary you can further subdivide the name by adding more / parts. If a hook name
is already taken, an error is raised and the hook is not created.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewHook

\NewReversedHook {〈hook〉}

Like \NewHook declares a new 〈hook〉. the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewReversedHook

2

\NewMirroredHookPair {〈hook-1〉} {〈hook-2〉}

A shorthand for \NewHook{〈hook-1 〉}\NewReversedHook{〈hook-2 〉}.
The 〈hooks〉 can be specified using the dot-syntax to denote the current package

name. See section 2.1.3.

\NewMirroredHookPair

\UseHook {〈hook〉}

Execute the hook code inside a command or environment.
Before \begin{document} the fast execution code for a hook is not set up, so in

order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\UseHook

\UseOneTimeHook {〈hook〉}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \〈addto-cmd〉 command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \〈addto-cmd〉 to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

FMi: Maybe add an error version as well?

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\UseOneTimeHook

2.1.2 Updating code for hooks

\AddToHook {〈hook〉}[〈label〉]{〈code〉}

Adds 〈code〉 to the 〈hook〉 labeled by 〈label〉. When the optional argument 〈label〉 is
not provided, the 〈default label〉 is used (see section 2.1.3). If \AddToHook is used in a
package/class, the 〈default label〉 is the package/class name, otherwise it is top-level
(the top-level label is treated differently: see section 2.1.4).

If there already exists code under the 〈label〉 then the new 〈code〉 is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the 〈label〉, first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared, then obviously the added 〈code〉 will never be executed. This allows for hooks
to work regardless of package loading order and enables packages to add to hooks from
other packages without worrying whether they are actually used in the current document.
See section 2.1.6.

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\AddToHook

3

\RemoveFromHook {〈hook〉}[〈label〉]

Removes any code labeled by 〈label〉 from the 〈hook〉. When the optional argument 〈label〉
is not provided, the 〈default label〉 is used (see section 2.1.3).

If the code for that 〈label〉 wasn’t yet added to the 〈hook〉, an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the optional argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about!

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\RemoveFromHook

In contrast to the voids relationship between two labels in a \DeclareHookRule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}
...
\RemoveFromHook{env/quote/before}
... now back to normal for further quotes

Note that you can’t cancel the setting with

\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means to font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

\AddToHookNext {〈hook〉}{〈code〉}

Adds 〈code〉 to the next invocation of the 〈hook〉. The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.

Using the declaration is a global operation, i.e., the code is not lost, even if the
declaration is used inside a group and the next invocation happens after the group. If
the declaration is used several times before the hook is executed then all code is executed
in the order in which it was declared.1

It is possible to nest declarations using the same hook (or different hooks), e.g.,

\AddToHookNext{〈hook〉}{〈code-1 〉\AddToHookNext{〈hook〉}{〈code-2 〉}}

will execute 〈code-1 〉 next time the 〈hook〉 is used and at that point puts 〈code-2 〉 into
the 〈hook〉 so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.6.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\AddToHookNext

4

2.1.3 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a 〈label〉
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the 〈label〉.

Using an explicit 〈label〉 is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same 〈label〉 throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook, \IfHookEmptyTF, and \IfHookExistsTF
(and their expl3 interfaces \hook_use:n, \hook_use_once:n, \hook_if_empty:nTF, and
\hook_if_exist:nTF), all 〈hook〉 and 〈label〉 arguments are processed in the same way:
first, spaces are trimmed around the argument, then it is fully expanded until only charac-
ter tokens remain. If the full expansion of the 〈hook〉 or 〈label〉 contains a non-expandable
non-character token, a low-level TEX error is raised (namely, the 〈hook〉 is expanded us-
ing TEX’s \csname. . . \endcsname, as such, Unicode characters are allowed in 〈hook〉 and
〈label〉 arguments). The arguments of \UseHook, \UseOneTimeHook, \IfHookEmptyTF,
and \IfHookExistsTF are processed much in the same way except that spaces are not
trimmed around the argument, for better performance.

It is not enforced, but highly recommended that the hooks defined by a package, and
the 〈labels〉 used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a 〈hook〉 and in a 〈label〉. If the 〈hook〉 name or the 〈label〉 consist just of a single
dot (.), or starts with a dot followed by a slash (./) then the dot denotes the 〈default
label〉 (usually the current package or class name—see \SetDefaultHookLabel). A “.”
or “./” anywhere else in a 〈hook〉 or in 〈label〉 is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}
\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./sub]{code}
\DeclareHookRule{begindocument}{.}{before}{babel}
\AddToHook {file/after/foo.tex}{code}

are equivalent to:

\NewHook {mypackage/hook}
\AddToHook {mypackage/hook}[mypackage]{code}
\AddToHook {mypackage/hook}[mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/after/foo.tex}{code} % unchanged

The 〈default label〉 is automatically set equal to the name of the current package
or class at the time the package is loaded. If the hook command is used outside of
a package, or the current file wasn’t loaded with \usepackage or \documentclass,

1There is no mechanism to reorder such code chunks (or delete them).

5

then the top-level is used as the 〈default label〉. This may have exceptions—see
\PushDefaultHookLabel.

This syntax is available in all 〈label〉 arguments and most 〈hook〉 arguments, both in
the LATEX2ε interface, and the LATEX3 interface described in section 2.2.

Note, however, that the replacement of . by the 〈default label〉 takes place when the
hook command is executed, so actions that are somehow executed after the package ends
will have the wrong 〈default label〉 if the dot-syntax is used. For that reason, this syntax is
not available in \UseHook (and \hook_use:n) because the hook is most of the time used
outside of the package file in which it was defined. This syntax is also not available in the
hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF) and \IfHookExistsTF
(and \hook_if_exist:nTF) because these conditionals are used in some performance-
critical parts of the hook management code, and because they are usually used to refer
to other package’s hooks, so the dot-syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as 〈label〉, then the 〈default label〉 can be set
using \SetDefaultHookLabel or \PushDefaultHookLabel..\PopDefaultHookLabel.

\PushDefaultHookLabel {〈default label〉}
〈code〉

\PopDefaultHookLabel

\PushDefaultHookLabel sets the current 〈default label〉 to be used in 〈label〉 arguments,
or when replacing a leading “.” (see above). \PopDefaultHookLabel reverts the 〈default
label〉 to its previous value.

Inside a package or class, the 〈default label〉 is equal to the package or class name,
unless explicitly changed. Everywhere else, the 〈default label〉 is top-level (see sec-
tion 2.1.4) unless explicitly changed.

The effect of \PushDefaultHookLabel holds until the next \PopDefaultHookLabel.
\usepackage (and \RequirePackage and \documentclass) internally use

\PushDefaultHookLabel{〈package name〉}
〈package code〉

\PopDefaultHookLabel

to set the 〈default label〉 for the package or class file. Inside the 〈package code〉 the
〈default label〉 can also be changed with \SetDefaultHookLabel. \input and other file
input-related commands from the LATEX kernel do not use \PushDefaultHookLabel, so
code within files loaded by these commands does not get a dedicated 〈label〉! (that is,
the 〈default label〉 is the current active one when the file was loaded.)

Packages that provide their own package-like interfaces (TikZ’s \usetikzlibrary,
for example) can use \PushDefaultHookLabel and \PopDefaultHookLabel to set dedi-
cated labels and emulate \usepackage-like hook behaviour within those contexts.

The top-level label is treated differently, and is reserved to the user document, so
it is not allowed to change the 〈default label〉 to top-level.

\PushDefaultHookLabel
\PopDefaultHookLabel

6

\SetDefaultHookLabel {〈default label〉}

Similarly to \PushDefaultHookLabel, sets the current 〈default label〉 to be used in
〈label〉 arguments, or when replacing a leading “.”. The effect holds until the label
is changed again or until the next \PopDefaultHookLabel. The difference between
\PushDefaultHookLabel and \SetDefaultHookLabel is that the latter does not save
the current 〈default label〉.

This command is useful when a large package is composed of several smaller pack-
ages, but all should have the same 〈label〉, so \SetDefaultHookLabel can be used at the
beginning of each package file to set the correct label.

\SetDefaultHookLabel is not allowed in the main document, where the 〈default
label〉 is top-level and there is no \PopDefaultHookLabel to end its effect. It is also
not allowed to change the 〈default label〉 to top-level.

\SetDefaultHookLabel

2.1.4 The top-level label

The top-level label, assigned to code added from the main document, is different from
other labels. Code added to hooks (usually \AtBeginDocument) in the preamble is almost
always to change something defined by a package, so it should go at the very end of the
hook.

Therefore, code added in the top-level is always executed at the end of the hook,
regardless of where it was declared. If the hook is reversed (see \NewReversedHook), the
top-level chunk is executed at the very beginning instead.

Rules regarding top-level have no effect: if a user wants to have a specific set of
rules for a code chunk, they should use a different label to said code chunk, and provide
a rule for that label instead.

The top-level label is exclusive for the user, so trying to add code with that label
from a package results in an error.

2.1.5 Defining relations between hook code

The default assumption is that code added to hooks by different packages are independent
and the order in which they are executed is irrelevant. While this is true in many cases
it is obviously false in others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

7

\DeclareHookRule {〈hook〉}{〈label1〉}{〈relation〉}{〈label2〉}

Defines a relation between 〈label1 〉 and 〈label2 〉 for a given 〈hook〉. If 〈hook〉 is ?? this
defines a default relation for all hooks that use the two labels, i.e., that have chunks of
code labeled with 〈label1 〉 and 〈label2 〉. Rules specific to a given hook take precedence
over default rules that use ?? as the 〈hook〉.

Currently, the supported relations are the following:

before or < Code for 〈label1 〉 comes before code for 〈label2 〉.

after or > Code for 〈label1 〉 comes after code for 〈label2 〉.

incompatible-warning Only code for either 〈label1 〉 or 〈label2 〉 can appear for that hook (a way to say
that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a LATEX error is raised, and
the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for 〈label1 〉 overwrites code for 〈label2 〉. More precisely, code for 〈label2 〉 is
dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for 〈label1 〉 and 〈label2 〉 is irrelevant. This rule is there to undo
an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookrule overwrites any previous delcaration.

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\DeclareHookRule

\ClearHookRule{〈hook〉}{〈label1〉}{〈label2〉}

Syntactic sugar for saying that 〈label1 〉 and 〈label2 〉 are unrelated for the given 〈hook〉.
\ClearHookRule

\DeclareDefaultHookRule{〈label1〉}{〈relation〉}{〈label2〉}

This sets up a relation between 〈label1 〉 and 〈label2 〉 for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

Declaring default rules is only supported in the document preamble.2
The 〈label〉 can be specified using the dot-syntax to denote the current package name.

See section 2.1.3.

\DeclareDefaultHookRule

2.1.6 Querying hooks

Simpler data types, like token lists, have three possible states; they can:

• exist and be empty;
2Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though

not explicitly caught for performance reasons).

8

• exist and be non-empty; and

• not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: they have four possible states. A hook may exist or
not, and either way it may or may not be empty. This means that even a hook that
doesn’t exist may be non-empty.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool. A hook is said to exist when it was declared with \NewHook or
some variant thereof. Generic file and env hooks are automatically declared when code
is added to them.

\IfHookEmptyTF {〈hook〉} {〈true code〉} {〈false code〉}

Tests if the 〈hook〉 is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either 〈true code〉 or 〈false code〉 depending on the
result.

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookEmptyTF ?

\IfHookExistsTF {〈hook〉} {〈true code〉} {〈false code〉}

Tests if the 〈hook〉 exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either 〈true code〉 or 〈false code〉 depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookExistsTF ?

FMi: Would be helpful if we provide some use cases

2.1.7 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

9

\ShowHook {〈hook〉}

Displays information about the 〈hook〉 such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\ShowHook
\LogHook

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal/command window and starts TEX’s prompt (only in \errorstopmode) to wait
for user action.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

Suppose a hook example-hook whose output of \ShowHook{example-hook} is:

1 -> The hook ’example-hook’:
2 > Code chunks:
3 > foo -> [code from package ’foo’]
4 > bar -> [from package ’bar’]
5 > baz -> [package ’baz’ is here]
6 > Document-level (top-level) code (executed last):
7 > -> [code from ’top-level’]
8 > Extra code for next invocation:
9 > -> [one-time code]

10 > Rules:
11 > foo|baz with relation >
12 > baz|bar with default relation <
13 > Execution order (after applying rules):
14 > baz, foo, bar.

In the listing above, lines 3 to 5 show the three code chunks added to the hook and
their respective labels in the format

〈label〉 -> 〈code〉

Line 7 shows the code chunk added by the user in the main document (labeled
top-level) in the format

Document-level (top-level) code (executed 〈first|last〉):
-> 〈top-level code〉

This code will be either the first or last code executed by the hook (last if the hook is
normal, first if it is reversed). This chunk is not affected by rules and does not take
part in sorting.

Line 9 shows the code chunk for the next execution of the hook in the format

-> 〈next-code〉

10

This code will be used and disappear at the next \UseHook{example-hook}, in contrast
to the chunks mentioned earlier, which can only be removed from that hook by doing
\RemoveFromHook{〈label〉}[example-hook].

Lines 11 and 12 show the rules declared that affect this hook in the format

〈label-1 〉|〈label-2 〉 with 〈default?〉 relation 〈relation〉

which means that the 〈relation〉 applies to 〈label-1 〉 and 〈label-2 〉, in that order, as detailed
in \DeclareHookRule. If the relation is default it means that that rule applies to
〈label-1 〉 and 〈label-2 〉 in all hooks, (unless overrided by a non-default relation).

Finally, line 14 lists the labels in the hook after sorting; that is, in the order they
will be executed when the hook is used.

2.1.8 Debugging hook code

\DebugHooksOn

Turn the debugging of hook code on or off. This displays changes made to the hook data
structures. The output is rather coarse and not really intended for normal use.

\DebugHooksOn
\DebugHooksOff

2.2 L3 programming layer (expl3) interfaces
This is a quick summary of the LATEX3 programming interfaces for use with packages
written in expl3. In contrast to the LATEX2ε interfaces they always use mandatory
arguments only, e.g., you always have to specify the 〈label〉 for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

\hook_new:n {〈hook〉}
\hook_new_reversed:n {〈hook〉}
\hook_new_pair:nn {〈hook-1〉} {〈hook-2〉}

Creates a new 〈hook〉 with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {〈hook-2 〉} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_use:n {〈hook〉}

Executes the {〈hook〉} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use:n

\hook_use_once:n {〈hook〉}

Changes the {〈hook〉} status so that from now on any addition to the hook code is
executed immediately. Then execute any {〈hook〉} code already set up.

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:n

11

\hook_gput_code:nnn {〈hook〉} {〈label〉} {〈code〉}

Adds a chunk of 〈code〉 to the 〈hook〉 labeled 〈label〉. If the label already exists the 〈code〉
is appended to the already existing code.

If code is added to an external 〈hook〉 (of the kernel or another package) then the
convention is to use the package name as the 〈label〉 not some internal module name or
some other arbitrary string.

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gput_code:nnn

\hook_gput_next_code:nn {〈hook〉} {〈code〉}

Adds a chunk of 〈code〉 for use only in the next invocation of the 〈hook〉. Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
〈code〉.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_gput_next_code:nn

\hook_gremove_code:nn {〈hook〉} {〈label〉}

Removes any code for 〈hook〉 labeled 〈label〉.
If the code for that 〈label〉 wasn’t yet added to the 〈hook〉, an order is set so that

when some code attempts to add that label, the removal order takes action and the code
is not added.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gremove_code:nn

\hook_gset_rule:nnnn {〈hook〉} {〈label1〉} {〈relation〉} {〈label2〉}

Relate 〈label1 〉 with 〈label2 〉 when used in 〈hook〉. See \DeclareHookRule for the allowed
〈relation〉s. If 〈hook〉 is ?? a default rule is specified.

The 〈hook〉 and 〈label〉 can be specified using the dot-syntax to denote the current
package name. See section 2.1.3. The dot-syntax is parsed in both 〈label〉 arguments,
but it usually makes sense to be used in only one of them.

\hook_gset_rule:nnnn

\hook_if_empty:nTF {〈hook〉} {〈true code〉} {〈false code〉}

Tests if the 〈hook〉 is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either 〈true code〉 or 〈false code〉 depending on the
result.

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_empty_p:n ?
\hook_if_empty:nTF ?

12

\hook_if_exist:nTF {〈hook〉} {〈true code〉} {〈false code〉}

Tests if the 〈hook〉 exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either 〈true code〉 or 〈false code〉 depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The 〈hook〉 cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_exist_p:n ?
\hook_if_exist:nTF ?

\hook_show:n {〈hook〉}

Displays information about the 〈hook〉 such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal/command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The 〈hook〉 can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_show:n
\hook_log:n

\hook_debug_on:

Turns the debugging of hook code on or off. This displays changes to the hook data.
\hook_debug_on:
\hook_debug_off:

2.3 On the order of hook code execution
Chunks of code for a 〈hook〉 under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}
\AddToHook{myhook}[packageA]{\typeout{A}}
\AddToHook{myhook}[packageB]{\typeout{B}}
\AddToHook{myhook}[packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

-> The hook ’myhook’:
> Code chunks:

13

> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order:
> packageA, packageB, packageC.

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, or example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook}[packageA]
\AddToHook{myhook}[packageA]{\typeout{A alt}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}

instead of the previous lines we get

-> The hook ’myhook’:
> Code chunks:
> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> packageB|packageA with relation >
> Execution order (after applying rules):
> packageA, packageC, packageB.

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{packageC}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules

that partially or fully define the order (in which you can rely on them being fulfilled).

14

2.4 The use of “reversed” hooks
You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example3, suppose there is a package
adding the following:

\AddToHook{env/quote/before}[package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshape}}

As a result, all quotes will be in italics. Now suppose further that another package-too
makes the quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before}[package-too]{\begin{color}{blue}}
\AddToHook{env/quote/after} [package-too]{\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, package-too

(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshape}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

-> The hook ’env/quote/after’:
> Code chunks:
> package-1 -> \end {itshape}
> package-too -> \end {color}
> Document-level (top-level) code (executed first):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order (after reversal):
> package-too, package-1.

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

3there are simpler ways to achieve the same effect.

15

2.5 Difference between “normal” and “one-time” hooks
When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the 〈code〉 immediately.

This has some consequences one needs to be aware of:

• If 〈code〉 is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new 〈code〉 will never be
executed.

• In contrast if that happens with a one-time hook the 〈code〉 is executed immediately.

In particular this means that construct such as

\AddToHook{myhook}
{ 〈code-1 〉 \AddToHook{myhook}{〈code-2 〉} 〈code-3 〉 }

works for one-time hooks4 (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook} is executed it would

• execute 〈code-1 〉,

• then execute \AddToHook{myhook}{code-2} which adds the code chunk 〈code-2 〉
to the hook for use on the next invocation,

• and finally execute 〈code-3 〉.

The second time \UseHook is called it would execute the above and in addition 〈code-2 〉
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of 〈code-2 〉 is added and so that code chunk is executed
〈# of invocations〉 − 1 times.

2.6 Private LATEX kernel hooks
There are a few places where it is absolutely essential for LATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document un-
necessary slow, because there has to be sorting even through the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break LATEX).

For that reason such code is not using the hook management, but instead private
kernel commands directly before or after a public hook with the following naming con-
vention: \@kernel@before@〈hookname〉 or \@kernel@after@〈hookname〉. For example,
in \enddocument you find

4This is sometimes used with \AtBeginDocument which is why it is supported.

16

\UseHook{enddocument}%
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.5

2.7 Legacy LATEX2ε interfaces
LATEX2ε offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management several additional hooks have been added to LATEX
and more will follow. See the next section for what is already available.

\AtBeginDocument [〈label〉] {〈code〉}

If used without the optional argument 〈label〉, it works essentially like before, i.e., it is
adding 〈code〉 to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level (see section 2.1.4)
if done outside of a package or class or with the package/class name if called inside such
a file (see section 2.1.3).

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after another package’s code. When using the optional argument the call
is equivalent to running \AddToHook {begindocument} [〈label〉] {〈code〉}.

\AtBeginDocument is a wrapper around the begindocument hook (see section 2.8.2),
which is a one-time hook. As such, after the begindocument hook is executed at
\begin{document} any attempt to add 〈code〉 to this hook with \AtBeginDocument or
with \AddToHook will cause that 〈code〉 to execute immediately instead. See section 2.5
for more on one-time hooks.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtBeginDocument

\AtEndDocument [〈label〉] {〈code〉}

Like \AtBeginDocument but for the enddocument hook.
\AtEndDocument

\AtBeginDvi [〈label〉] {〈code〉}

This hook is discussed in conjunction with the shipout hooks.
\AtBeginDvi

The few hooks that existed previously in LATEX2ε used internally commands such as
\@begindocumenthook and packages sometimes augemented them directly rather than
working through \AtBeginDocument. For that reason there is currently support for this,
that is, if the system detects that such an internal legacy hook command contains code
it adds it to the new hook system under the label legacy so that it doesn’t get lost.

5As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

17

However, over time the remaining cases of direct usage need updating because in one
of the future release of LATEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

2.8 LATEX2ε commands and environments augmented by hooks
intro to be written

2.8.1 Generic hooks for all environments

Every environment 〈env〉 has now four associated hooks coming with it:

env/〈env〉/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/〈env〉/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/〈env〉/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the third argument of \newenvironment).

env/〈env〉/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.
The hook is implemented as a reversed hook so if two packages add code to
env/〈env〉/before and to env/〈env〉/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Generic environment hooks are never one-time hooks even with environments that are
supposed to appear only once in a document.6 In contrast to other hooks there is also
no need to declare them using \NewHook.

The hooks are only executed if \begin{〈env〉} and \end{〈env〉} is used. If the
environment code is executed via low-level calls to \〈env〉 and \end〈env〉 (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote
...

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

\BeforeBeginEnvironment [〈label〉] {〈code〉}

This declaration adds to the env/〈env〉/before hook using the 〈label〉. If 〈label〉 is not
given, the 〈default label〉 is used (see section 2.1.3).

\BeforeBeginEnvironment

\AtBeginEnvironment [〈label〉] {〈code〉}

Like \BeforeBeginEnvironment but adds to the env/〈env〉/begin hook.
\AtBeginEnvironment

6Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

18

\AtEndEnvironment [〈label〉] {〈code〉}

Like \BeforeBeginEnvironment but adds to the env/〈env〉/end hook.
\AtEndEnvironment

\AfterEndEnvironment [〈label〉] {〈code〉}

Like \BeforeBeginEnvironment but adds to the env/〈env〉/after hook.
\AfterEndEnvironment

2.8.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument This hook is added to when using \AtBeginDocument and it is executed
after the .aux file as be read in and most initialization are done, so they can be
altered and inspected by the hook code. It is followed by a small number of further
initializations that shouldn’t be altered and are therefore coming later.
The hook should not be used to add material for typesetting as we are still in
LATEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

2.8.3 Hooks provided by \end{document}

LATEX2ε always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in LATEX2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

19

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.
When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data). It is also the correct place to set up any
testing code to be run when the .aux file is re-read in the next step.
After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.
This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.
This is a one-time hook, so after it is executed, all further attempts to add code
to it will execute such code immediately (see section 2.5).is it even possible to add
code after this one?

20

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
LATEX needs to be run several times, so initially it might get executed on the wrong page.
See section 2.8.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is execuded
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time LATEX has finished the document processing.

2.8.4 Hooks provided \shipout operations

There are several hooks and mechanisms added to LATEX’s process of generating pages.
These are documented in ltshipout-doc.pdf or with code in ltshipout-code.pdf.

2.8.5 Hooks provided by file loading operations

There are several hooks added to LATEX’s process of loading file via its high-level
interfaces such as \input, \include, \usepackage, etc. These are documented in
ltfilehook-doc.pdf or with code in ltfilehook-code.pdf.

2.8.6 Hooks provided in NFSS commands

In languages that need to support for more than one script in parallel (and thus several
sets of fonts), e.g., Latin and Japanese fonts, NFSS font commands, such as \sffamily,
need to switch both the Latin family to “Sans Serif” and in addition alter a second set
of fonts.

To support this several NFSS have hooks in which such support can be added.

rmfamily After \rmfamily has done its initial checks and prepared a any font series
update this hook is executed and only afterwards \selectfont.

sffamily Like the rmfamily hook but for the \sffamily command.

ttfamily Like the rmfamily hook but for the \ttfamily command.

normalfont The \normalfont command resets font encoding family series and shape to
their document defaults. It then executes this hook and finally calls \selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the meta families (rm/sf/tt) and the meta series
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user its
new value is used to set the bf series defaults for the meta families (rm/sf/tt) when
\bfseries is called. In the bfseries/defaults hook further adjustments can be
made in this case. This hook is only executed if such a change is detected. In
contrast the bfseries hook is always executed just before \selectfont is called
to change to the new series.

21

mdseries/defaults, mdseries These two hooks are like the previous ones but used in
\mdseries command.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\〈addto-cmd〉 . 2
\〈env〉 . 18

A
\AddToHook . . . 1, 2, 3, 4, 8, 12, 15, 16, 17
\AddToHookNext 4, 4, 8, 12
\AfterEndEnvironment 18
\AtBeginDocument . 2, 6, 16, 17, 17, 17, 19
\AtBeginDvi . 17
\AtBeginEnvironment 18
\AtEndDocument 17, 19, 20
\AtEndEnvironment 18
\AtEndPreamble 19

B
\BeforeBeginEnvironment . . 18, 18, 18, 18
\begin . 1, 18, 19
\bfdefault . 21
\bfseries . 21

C
\ClearHookRule 8
\clearpage . 20
\csname . 4

D
\DebugHooksOff 10
\DebugHooksOn 10
\DeclareDefaultHookRule 8
\DeclareHookRule 1, 3, 7, 8, 10, 12
\DeclareHookrule 7
\document . 19
\documentclass 5, 6

E
\end . 1, 18, 19, 21
\end〈env〉 . 18
\endcsname . 4
\enddocument 16, 19, 20
\errorstopmode 9, 13

H
hook commands:

\hook_debug_off: 13
\hook_debug_on: 13
\hook_gput_code:nnn 11, 11
\hook_gput_next_code:nn 11
\hook_gremove_code:nn 12
\hook_gset_rule:nnnn 12
\hook_if_empty:nTF 4, 5, 12
\hook_if_empty_p:n 12
\hook_if_exist:n 9, 12
\hook_if_exist:nTF 4, 5, 12
\hook_if_exist_p:n 12
\hook_log:n 13
\hook_new:n 11
\hook_new_pair:nn 11
\hook_new_reversed:n 11
\hook_show:n 13
\hook_use:n 4, 5, 11, 15
\hook_use_once:n 4, 11, 15

I
\IfHookEmptyTF 4, 5, 8
\IfHookExistsTF 4, 5, 9
\ignorespaces 19
\include . 21
\input . 6, 21

L
\listfiles . 20
\LogHook . 9

M
\mdseries . 21

N
\newenvironment 18
\NewHook 2, 2, 2, 8, 9, 12, 14, 18
\NewMirroredHookPair 2, 9, 12
\NewReversedHook 2, 2, 6, 9, 12, 14
\normalfont . 21
\normalsize . 3

22

P
\PopDefaultHookLabel 5, 6, 6
\PushDefaultHookLabel 5, 6, 6

R
\RemoveFromHook 3, 3
\RequirePackage 6
\rmfamily . 21

S
\selectfont . 21
\SetDefaultHookLabel 5, 6, 6
\sffamily . 21
\shipout . 20, 21
\ShowHook 9, 13, 15
\small . 3
\special . 20

T
TEX and LATEX 2ε commands:

\@begindocumenthook 17
\@firstofone 2
\@kernel@after@〈hookname〉 16
\@kernel@before@〈hookname〉 16
\@@end . 20
\expand@font@defaults 21

\ttfamily . 21

U
\UseHook 2, 4, 5, 13, 15, 16
\UseOneTimeHook 2, 4, 15
\usepackage 5, 6, 21
\usetikzlibrary 6

23

	Contents
	1 Introduction
	2 Package writer interface
	2.1 LaTeX2e interfaces
	2.1.1 Declaring hooks and using them in code
	2.1.2 Updating code for hooks
	2.1.3 Hook names and default labels
	2.1.4 The top-level label
	2.1.5 Defining relations between hook code
	2.1.6 Querying hooks
	2.1.7 Displaying hook code
	2.1.8 Debugging hook code

	2.2 L3 programming layer (expl3) interfaces
	2.3 On the order of hook code execution
	2.4 The use of "reversed" hooks
	2.5 Difference between "normal" and "one-time" hooks
	2.6 Private LaTeX kernel hooks
	2.7 Legacy LaTeX2e interfaces
	2.8 LaTeX2e commands and environments augmented by hooks
	2.8.1 Generic hooks for all environments
	2.8.2 Hooks provided by \begin{document}
	2.8.3 Hooks provided by \end{document}
	2.8.4 Hooks provided \shipout operations
	2.8.5 Hooks provided by file loading operations
	2.8.6 Hooks provided in NFSS commands

	Index
	Symbols
	A
	B
	C
	D
	E
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U

