
The ifthen package∗

David Carlisle

2020/11/24

This file is maintained by the LATEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Abstract

This file implements an \ifthenelse command for LATEX2ε. The al-
gorithm used is compatible with that used in the LATEX 2.09 ifthen style
option. It has been recoded, making the resulting definitions somewhat more
compact and efficient.

1 Introduction

\ifthenelse{⟨test⟩}{⟨then clause⟩}{⟨else clause⟩}\ifthenelse

Evaluates ⟨test⟩ as a boolean function, and then executes either ⟨then clause⟩
or ⟨else clause⟩.

⟨test⟩ is a boolean expression using the infix connectives, \and, \or, the unary
\not and parentheses \(\).

As an alternative notation \AND, \OR and \NOT can be used. This is safer since
it can’t be misinterpreted when appearing inside a TEX-conditional in which \or

has a different meaning.
The atomic propositions are:

⟨number⟩ < ⟨number⟩
⟨number⟩ = ⟨number⟩
⟨number⟩ > ⟨number⟩
\isodd{ ⟨number⟩ }
\isundefined{ ⟨command name⟩ }
\equal{⟨string⟩}{⟨string⟩}
\lengthtest{⟨dimen⟩<⟨dimen⟩}
\lengthtest{⟨dimen⟩=⟨dimen⟩}
\lengthtest{⟨dimen⟩>⟨dimen⟩}
\boolean{⟨name⟩}

The ⟨string⟩s tested by \equal may be any sequence of commands that expand
to a list of tokens. If these expansions are equal, then the proposition is true.

\isodd is true if the ⟨number⟩ is odd, and false otherwise (even if the argument
is not a number).

∗This file has version number v1.1c, last revised 2020/11/24.

1

https://latex-project.org/bugs.html

\isundefined{\cmd} is true if \cmd is not defined.
\boolean{xyz} returns the truth value contained in the primitive TEX \if,

\ifxyz. This is usually used with boolean flags created with \newboolean and
\provideboolean described below. It can also be used with the names of \newif
created tokens, and primitive TEX \if constructs, for example \boolean{true}

(\iftrue), \boolean{mmode} (\ifmmode) etc.
The commands:

\newboolean{⟨name⟩} and \provideboolean{⟨name⟩} are provided so the user\newboolean

\provideboolean can easily create new boolean flags. As for \newcommand, \newboolean generates
an error if the command name is not new. \provideboolean silently does nothing
in that case.

The boolean flags may be set with:
\setboolean{⟨name⟩}{⟨value⟩}\setboolean

⟨value⟩ may be either true or false (any CaSe).
Note that there is no precedence between \and and \or. The proposition is

evaluated in a left right manner. \not only applies to the immediately following
proposition. (This is consistent with Lamport’s ifthen.sty.) In this style, though
the test is ‘lazily’ evaluated, so for instance if the first proposition in an \or is
true, the second one is skipped. (On the second pass—the first pass in an \edef

expands clauses in all propositions.)
Apart from the addition of the extra atomic propositions \isodd, \boolean,

\lengthtest and \isundefined, the only known incompatibility is that in this
package the expression\not\not⟨P⟩ is equivalent to ⟨P⟩. However in the original
style it was equivalent to \not⟨P⟩. This is intentional (bug fix:-).

The command \whiledo is also defined (copied directly from the LATEX2.09\whiledo

definition).
\whiledo{⟨test⟩}{⟨while clause⟩}
With ⟨test⟩ as above, repeatedly executes ⟨while clause⟩ while the test remains

true.

2 The Implementation

1 ⟨*package⟩

\TE@throw In order to support the syntax of ifthen.sty, which allows access to the primitive
TEX syntax for a numeric test, rather than a {} delimited argument form, it is
most convenient to work ‘within’ an \ifnum. \ift@throw ‘throws’ you out of the
current \ifnum so that you can (eg) start an \ifdim for the length tests.

2 \def\TE@throw{\@ne=\@ne\noexpand\fi}

\boolean A non-standard extension to ifthen, supporting boolean was previously available,
this is a simpler implementation.

3 \def\boolean#1#2{%

4 \TE@throw\expandafter\noexpand\csname if#1\endcsname#2}

\TE@length Testing lengths. #1 is the test. The extra argument gobbles spaces.

5 \def\TE@length#1#2{\TE@throw\noexpand\ifdim#1#2}

\TE@odd

\TE@@odd

Testing odd/even. This is true if #1 is an odd number, and false otherwise (even
if #1 is not a number at all).

2

It is hard to make this completely reliable. Here I have erred on the side
of safety. This should not generate a TEX error if given any robust commands
as its argument. However it returns true on any argument that starts with an
odd number 11xx which is bad, and it can not deal with TEX’s count registers,
although LATEX counters work (via \value).

6 \def\TE@odd#1#2{%

7 \TE@throw\noexpand\TE@@odd#1\noexpand\@nil\noexpand\ifodd\count@#2}

\TE@@odd is not expanded on the first pass.

8 \def\TE@@odd#1#2\@nil{%

9 \@defaultunits

10 \count@\if-#1-0\else0\expandafter#1\fi#2\relax\@nnil}

\TE@repl \TE@repl replaces the single token #1 by #2. (Not within {} groups.) It is used
to replace \or by \TE@or without the need to redefine \or. Earlier versions just
\let\or\TE@or but this has a bad effect on the expansion of commands which
use the primitive \or internally, eg \alph, and so caused surprising results if these
commands were used inside \equal.

11 \def\TE@repl#1#2{%

12 \long\def\@tempc##1#1##2{%

13 \def\@tempa{##2}\def\@tempb{\@tempc}%

14 \ifx\@tempa\@tempb

15 \toks@\expandafter{\the\toks@##1}%

16 \expandafter\@gobble

17 \else

18 \toks@\expandafter{\the\toks@##1#2}%

19 \expandafter\@tempc

20 \fi

21 ##2}%

22 \expandafter\toks@\expandafter{\expandafter}%

23 \expandafter\@tempc\the\toks@#1\@tempc}

\ifthenelse The remaining macros in this file are derived from the ones in ifthen.sty but
recoded and simplified. The main simplification is that the original style (and the
\boolean extensions) expressed logical values always in terms of \ifnum. As \fi
is ‘untyped’ this is not necessary, so for example the length tests can return values
via \ifdim, the trailing \fi will not complain, even though it was ‘expecting’ an
\ifnum. Also the system of passing information via macros expanding to T or F has
been completely replaced by a simpler system using \iftrue, which furthermore
allows lazy evaluation on the second pass.

24 \long\def\ifthenelse#1{%

25 \toks@{#1}%

26 \TE@repl\or\TE@or

27 \TE@repl\and\TE@and

28 \TE@repl\not\TE@neg

Support alternate names for the boolean operators (strictly speaking only \OR

would be necessary).

29 \TE@repl\OR\TE@or

30 \TE@repl\AND\TE@and

31 \TE@repl\NOT\TE@neg

3

The original ifthen.sty processed everything inside a box assignment, to catch
any extra spaces before they appeared in the output. Instead I have added extra
arguments to the commands so they each remove any following space.

Set up the user level names \not etc.

32 \begingroup

33 \let\protect\@unexpandable@protect

34 \def\@setref##1##2##3{%

35 \ifx##1\relax\z@\else\expandafter##2##1\fi}%

36 \def\value##1{\the\csname c@##1\endcsname}%

37 \let\equal\TE@equal \let\(\TE@lparen \let\)\TE@rparen

38 \let\isodd\TE@odd \let\lengthtest\TE@length

39 \let\isundefined\TE@undef

For the first pass, in a group, make various tokens non-expandable.
It is unfortunate that in order to remain compatible with ifthen syntax, it is

necessary to have a two pass system. The first pass inside an \edef ‘exposes’ the
\if. . . \fi tokens, so the correct clauses may be skipped on the second pass. This
means that the whole \ifthenelse command does not work by expansion, and
so possibly has only limited usefulness for macro code writers. The main problem
with the ifthen: syntax is that (unique for LATEX) it does not uses a brace
delimited argument form, and exposes the primitive TEX syntax for ⟨number⟩.
Pretty much the only way of parsing 1 > 2 \or 2 < 1 is to actually evaluate the
primitive \ifnums. A syntax such as:
\or{\numtest{1<2}}{\lengthtest{1pt<1in}}

could easily be evaluated in a one pass way, operating directly via expansion, and
leaving no extra tokens in the token stream.

Still, on with the code. . . make \@tempa and \@tempb tokens non-expandable
on the first pass.

40 \begingroup

41 \let\@tempa\relax\let\@tempb\relax

42 \xdef\@gtempa{\expandafter\TE@eval\the\toks@\TE@endeval}%

43 \endgroup

Now outside the group, execute \@gtempa which causes all the \ifs etc., to be
evaluated, the final truth value is contained in the \newif token \ifTE@val. Fi-
nally this is tested and either the first or second following argument is chosen
accordingly.

44 \@gtempa

45 \expandafter\endgroup\ifTE@val

46 \expandafter\@firstoftwo

47 \else

48 \expandafter\@secondoftwo

49 \fi}

\TE@eval Initialise a term. (Expanded on the first pass).

50 \def\TE@eval{\noexpand\TE@negatefalse\noexpand\iftrue\noexpand\ifnum}

\ifTE@val

\ifTE@negate

Two \newifs the first holds the current truth value of the expression. The second
is a temporary flag which is true if we need to negate the current proposition.

51 \newif\ifTE@val

52 \newif\ifTE@negate

4

\TE@endeval Finalize a term. (Expanded on the first pass).

53 \def\TE@endeval{\relax

54 \noexpand\TE@setvaltrue\noexpand

55 \else

56 \noexpand\TE@setvalfalse\noexpand

57 \fi

58 \noexpand\TE@negatefalse\noexpand

59 \fi}

\TE@setvaltrue

\TE@setvalfalse

Set the \ifTE@val to true or false depending on the value of the current proposi-
tion, and the negate flag. (Not expanded on the first pass.)

60 \def\TE@setvaltrue{%

61 \ifTE@negate\TE@valfalse\else\TE@valtrue\fi}

62 \def\TE@setvalfalse{\let\ifTE@val\ifTE@negate}

\TE@or The internal version of \or. Ends the current term. If true skip the remaining
terms.

63 \def\TE@or{\TE@endeval\noexpand\ifTE@val\noexpand\else\noexpand\ifnum}

\TE@and The internal version of \and. If false skip the remaining terms.

64 \def\TE@and{\TE@endeval\noexpand\ifTE@val\noexpand\ifnum}

\TE@neg

\TE@negswitch

\not. Throw the current context, set a negate flag, then restart the \ifnum.
\TE@negswitch is not expanded on the first pass.

65 \def\TE@neg{\TE@throw\noexpand\TE@negswitch\noexpand\ifnum}

66 \def\TE@negswitch{\ifTE@negate\TE@negatefalse\else\TE@negatetrue\fi}

\TE@lparen \(. Throw the current context, then restart a term inside a group.

67 \def\TE@lparen#1{\TE@throw\begingroup\TE@eval#1}

\TE@rparen \) end the current term, and the local group started by \(, but pass on the boolean
value in \if\@val T. The \noexpand stops the \expandafter from expanding on
the first pass.

68 \def\TE@rparen#1{%

69 \TE@endeval

70 \noexpand\expandafter\endgroup\noexpand\ifTE@val#1}

\TE@equal \equal greatly simplified from the original. \def may be used rather than \edef

as the whole thing is expanded anyway in the first pass. The boolean can be
directly encoded with the \ifx, there is no need to start an equivalent \ifnum.

71 \long\def\TE@equal#1#2#3{\TE@throw

72 \def\@tempa{#1}\def\@tempb{#2}%

73 \noexpand\ifx\@tempa\@tempb#3}

\setboolean \setboolean takes true or false, as #2, and sets #1 accordingly.

74 \def\setboolean#1#2{%

75 \lowercase{\def\@tempa{#2}}%

76 \@ifundefined{@tempswa\@tempa}%

77 {\PackageError{ifthen}%

78 {You can only set a boolean to ‘true’ or ‘false’}\@ehc}%

79 {\@ifundefined{#1\@tempa}%

80 {\PackageError{ifthen}{Boolean #1 undefined}\@ehc}%

81 {\csname#1\@tempa\endcsname}}}

5

\newboolean Define a new ‘boolean’.

82 \def\newboolean#1{%

83 \expandafter\@ifdefinable\csname if#1\endcsname{%

84 \expandafter\newif\csname if#1\endcsname}}

\provideboolean Define a new ‘boolean’ if it is not already defined.

85 \def\provideboolean#1{%

86 \@ifundefined{if#1}{%

87 \expandafter\newif\csname if#1\endcsname}\relax}

\whiledo \whiledo copied directly from the original.
\whiledo{⟨test⟩}{⟨body⟩}
repeatedly evaluates ⟨body⟩ until ⟨test⟩ is true.
88 \long\def\whiledo#1#2{%

89 \ifthenelse{#1}%

90 {\@whiledotrue

91 \@whilesw\if@whiledo\fi

92 {#2%

93 \ifthenelse{#1}\@whiledotrue\@whiledofalse}}%

94 {}%

95 }

\TE@undef test if csname is defined. \ifx test.

96 \def\TE@undef#1#2{%

97 \TE@throw\noexpand\ifx\noexpand\@undefined\noexpand#1#2}

\if@whiledo Internal switch for \whiledo.

98 \newif\if@whiledo

99 ⟨/package⟩

6

	1 Introduction
	2 The Implementation

