
The amstext package

Frank Mittelbach Rainer Schöpf

Version v2.01, 2000/06/29

This file is maintained by the LATEX Project team.
Bug reports can be opened (category amslatex) at
https://latex-project.org/bugs/.

1 Introduction
This style file implements the AMS-TEX macro \text for use with the new font
selection scheme. The \text macro is a sophisticated command which allows
the user to insert “normal text” into math formulas without worrying about
correct sizes in sub- or superscripts. It can also be used in ordinary text; there
it produces an unbreakable unit similar to \mbox.

Here is an example demonstrating some of its features:

x2× size of y ≤ ziupper bound of the array

This was produced by

\[

x^{2\,\times\,\text{size of y}}

\leq

z_{i_{\text{upper bound of the array}}}

\]

Additionally this style file redefines an internal plain.tex macro called
\mathhexbox so that commands like \dag or \P will change sizes if used in
math subscripts.

Package information.

\NeedsTeXFormat{LaTeX2e}% LaTeX 2.09 can’t be used (nor non-LaTeX)

[1994/12/01]% LaTeX date must be December 1994 or later

\ProvidesPackage{amstext}[2000/06/29 v2.01 AMS text]

2 The implementation
We need a few tools from amsgen.sty.

\RequirePackage{amsgen}

1

2 THE AMSTEXT PACKAGE

\text Now we come to the \text macro which is used to place ordinary text inside of
math formulas. If it is used outside math it will produce an unbreakable unit
of text.

\DeclareRobustCommand{\text}{%

\ifmmode\expandafter\text@\else\expandafter\mbox\fi}

At the present time (late 1994) the LATEX internal function \nfss@text is used
in \ref, in font commands like \textbf, and in a few text symbol definitions
like \$ and \pounds. By equating \nfss@text to \text we give it the ability
of \text to change sizes properly if used in a subscript.

\let\nfss@text\text

\text@ If \text is encountered inside math mode the macro \text@ is called. It has
one mandatory argument, the text which should be produced. Since we do not
know in which math style we are currently in we call \mathchoice to tyeset our
text in all four possible styles.

\def\text@#1{{\mathchoice

To save token space we call a macro \textdef@ which takes three arguments:
the current math style, the corresponding size macro and the text to typeset
possibly with some additional information for typesetting.

{\textdef@\displaystyle\f@size{#1}}%

The other three cases are similar except for the \iffirstchoice switch which
we set to false. This is done to prevent LATEX macros like \ref or \index from
writing their arguments more than once.

{\textdef@\textstyle\f@size{\firstchoice@false #1}}%

{\textdef@\textstyle\sf@size{\firstchoice@false #1}}%

{\textdef@\textstyle \ssf@size{\firstchoice@false #1}}%

Here we need to check whether a math size-change occurred inside the argument
of \text. If so, restore

\check@mathfonts

}%

}

The macros \f@size, \sf@size and \ssf@size hold the sizes which should
be used when we are loading a new font for use in \textfont, \scriptfont
and \scriptscriptfont. There is some question whether we should use use
\tf@size or \f@size for the main size, but since the primary purpose of the
\text macro is to switch back to text within a display, it seems that \f@size is
the better choice. (Indeed it could be said that the \text actually provides two
different functions: one for escaping out of math mode in a display to print some
words, and the other for handling math objects that are named by a fragment
of text, when \operatorname isn’t the right choice. For the latter \tf@size

might be more correct but for the former \f@size is clearly better.)

\textdef@ To typeset the argument of \text correctly we have to make several actions. We
start by placing everything inside an \hbox. But this is not enough: we need one
extra level of grouping. These extra braces are necessary because of the new font

2. THE IMPLEMENTATION 3

selection scheme which might produce an \aftergroup to globally restore some
font values after the current group. To prevent any damage by this mechanism
we add the braces thereby bringing the token inserted by \aftergroup inside
the \hbox.1

\def\textdef@#1#2#3{\hbox{{%

Since text typeset inside an \hbox always stays in the size of the text surrounding
the formula we have to adjust this for script and scriptscript sizes. For any math
formula inside this argument this will be achieved by setting \everymath to the
first argument of \textdef@ since this argument contains the math size in the
current typeset case of \mathchoice. Since LATEX also knows about \parboxes
and the minipage environment it might be neccessary to adjust \everydisplay
too but this has to be tested further.

\everymath{#1}%

The next line of code changes locally (i.e. inside the current \hbox) the value of
\f@size. This macro holds the size for typesetting ordinary text (e.g. loading
or selecting a new font via \selectfont). By changing it to a smaller value a
following \selectfont will switch to the wanted size.

\let\f@size#2\selectfont

Now we simply call the third argument and close all open groups.

#3}}}

\iffirstchoice@ Here is the switch that we use to decide if \ref etc. should print its warnings.
The default is true since normally these warnings shouldn’t be suppressed.

\newif\iffirstchoice@

\firstchoice@true

2.1 Re-definition of LATEX macros to work with \text

If a counter-changing command occurs inside the argument of \text, we
don’t want the counter to be changed four times because \stepcounter and
\addtocounter have global effect. So we add the \iffirstchoice@ test to
make the counter operations execute only once.

\stepcounter Use \def rather than \renewcommand* because the star-form (for non-\long
definitions) doesn’t work with the June 1994 release of LATEX.

\def\stepcounter#1{%

\iffirstchoice@

\addtocounter{#1}\@ne

\begingroup \let\@elt\@stpelt \csname cl@#1\endcsname \endgroup

\fi

}

\addtocounter

\def\addtocounter#1#2{%

1The mechanism will not produce a second \aftergroup. For more details see the technical
documentation for NFSS2.

4 THE AMSTEXT PACKAGE

\iffirstchoice@

\@ifundefined {c@#1}{\@nocounterr {#1}}%

{\global \advance \csname c@#1\endcsname #2\relax}%

\fi}

For \ref, \pageref, and indeed anything else that issues a warning or error,
\text will produce four copies of the warning/error message. To suppress the
last three copies, we change \GenericInfo, \GenericWarning, \GenericError.

\let\m@gobble\@empty

\@xp\let\csname m@gobble4\endcsname\@gobblefour

\long\@xp\def\csname m@gobble6\endcsname#1#2#3#4#5#6{}

\toks@{%

\csname m@gobble\iffirstchoice@\else 4\fi\endcsname

\protect}

\edef\GenericInfo{\the\toks@

\@xp\@nx\csname GenericInfo \endcsname}

%

\edef\GenericWarning{\the\toks@

\@xp\@nx\csname GenericWarning \endcsname}

%

\toks@{%

\csname m@gobble\iffirstchoice@\else 6\fi\endcsname

\protect}

\edef\GenericError{\the\toks@

\@xp\@nx\csname GenericError \endcsname}

At one time \label, \@wrindex and \@wrglossary were changed here too
to use the \iffirstchoice@ test but it seems that was a mistake because those
are non-immediate writes. Something like

\text{something \index{foo}}

within a math formula would therefore lose the index term if the surround-
ing context was not displaystyle. (Unlikely in practice, but not impossible.)
[mjd,1994/12/09]

2.2 Applications of \text

\mathhexbox We start with an re-definition of the plain.tex macro \mathhexbox. (Although
M. Spivak in AMS-TEX uses the name \mathhexbox@ for this purpose, I [FMi]
don’t see any reason to use a new name since the new definition is superior, has
the same syntax and is used for the same purpose.)

\begingroup \catcode‘\"=12

\gdef\mathhexbox#1#2#3{\text{$\m@th\mathchar"#1#2#3$}}

\endgroup

This redefinition means that now symbols like §, ¶, †, . . . , which are defined via
\mathhexbox in plain.tex or elsewhere now correctly change sizes if they are
used in math mode.

2. THE IMPLEMENTATION 5

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

