The IXTEX 2¢ Sources

Johannes Braams
David Carlisle
Alan Jeffrey
Leslie Lamport
Frank Mittelbach
Chris Rowley
Rainer Schopf

2020-10-01 Patch level -8

This file is maintained by the ETEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Contents

a ltdirchk.dtx
1 ETEX System Dependent Initialisations

2 Initialisation
2.1 INITEX e
2.2 Somebitsof 2e L

3 texsys.cfg
3.1 texsys.efg . .o
3.2 UNIX (Web2¢) . . v v v vt e e e
3.3 UNIX (other)
3.4 MSDOS (emtex) oo v i
3.5 MSDOS (other)
3.6 VMS (DECUS TgX, PD VMS 3.6)
37 VMS (777) oo
38 MACINTOSH (O2TeX 1.6) . o o v v
3.9 MACINTOSH (Other) . . . o o oo
3.10 FAKE EXAMPLE

4 Setting \@currdir

5 Setting \input@path

N

[cclNeiNe IR RN EENEEN B =2l ey

https://latex-project.org/bugs.html

Filename Parsing 11

TEX Versions 13
Itxcheck.tex 13
Itplain.dtx 14
Plain TEX 14
Itvers.dtx 34
Version Identification 34
Itluatex.dtx 38
Overview 38
Core TEX functionality 38
Plain TgX interface 39
Lua functionality 39
4.1 Allocatorsin Lua 39
4.2 Lua access to TEX register numbers 0oL 40
4.3 Module utilities 41
4.4 Callback management 41
Implementation 42
5.1 Minimum LuaTgEX version oL 42
5.2 Older BTEX/Plain TEX setup o oo 42
5.2.1 TFixes to etex.src/etex.sty o .o 43
5.2.2 luatex specific settings oL 43

5.3 Attributes 44
5.4 Category code tables L 44
5.5 Named Lua functions o 46
5.6 Custom whatsits 47
5.7 Lua bytecode registers 47
5.8 Lua chunk registers L oL o 47
5.9 Lualoader 47
5.10 Lua module preliminaries L oo 49
5.11 Lua module utilities oo oo 49
5.11.1 Module tracking L o 49
5.11.2 Module messages oL 50

5.12 Accessing register numbers from Lua 00000 51
5.13 Attribute allocation L oL o 52
5.14 Custom whatsit allocation 0oL 53
5.15 Bytecode register allocation oo L 53

ii

5.16 Lua chunk name allocation,
5.17 Lua function allocation oo
5.18 Lua callback management
5.18.1 Housekeeping L e
5.18.2 Handlers e
5.18.3 Public functions for callback management

Itexpl.dtx

expl3-dependent code
1.1 Loader e
1.2 Usingexpldcode e

ltdefns.dtx

Definitions

1.1 Initex initialisations Lo oo

1.2 Saved versions of TEX primitives

1.3 Command definitions

1.4 Robust commands and protect L.

1.5 Acting on robust commands
1.5.1 Copying robust commands
1.5.2 Showing robust commands,
1.5.3 Commands defined with \DeclareRobustCommand
1.5.4 Commands defined with \newcommand (with optional argument)

1.6 Internal defining commands

Discretionary Hyphenation

Ithooks.dtx

Introduction

Package writer interface
2.1 TEX 2 interfaces L
2.1.1 Declaring hooks and using them incode
2.1.2 Updating code for hooks
2.1.3 Hook names and default labels
2.1.4 Defining relations between hook code
2.1.5 Querying hooks L o
2.1.6 Displaying hook code
2.1.7 Debugging hook code L L.
2.2 L3 programming layer (expl3) interfaces
2.3 On the order of hook code execution
2.4 The use of “reversed” hooks
2.5 Difference between “normal” and “one-time” hooks
2.6 Private IEX kernel hooks o oo
2.7 Legacy INTEX 2¢ interfaces L oo

iii

65

65
65
67

69

69
69
69
70
79
85
87
88
89
91
92

96

3

[

2.8 ITEX 2z commands and environments augmented by hooks 112
2.8.1 Generic hooks for all environments 112
2.8.2 Hooks provided by \begin{document} 113
2.8.3 Hooks provided by \end{document} 114
2.8.4 Hooks provided \shipout operations 115
2.8.5 Hooks provided by file loading operations 115
2.8.6 Hooks provided in NFSS commands 115
The Implementation 116
3.1 Loading further extensions 116
3.2 Debugging 116
3.3 Borrowing from internals of other kernel modules 117
3.4 Declarations L 117
3.5 Providing new hooks Lo oo 118
3.6 Parsingalabel 120
3.7 Setting rules for hookscode oL oo 128
3.8 Specifying code for next invocation L. 141
3.9 Usingthehook L 141
3.10 Queryingahook L 143
311 Messagesl 144
3.12 HETEX 2¢ package interface commands Lo 145
3.13 Internal commands needed elsewhere 148
Italloc.dtx 150
Counters 150
ltcntrl.dtx 152
Program control structure 152
Iterror.dtx 156
Error handling and tracing 156
1.1 General commands 156
1.2 Specificerrors e 161
1.3 Tracing o . e e 165
Itpar.dtx 166
Paragraphs 166
1.1 Implementation 166

Itspace.dtx 168

iv

Spacing 168

1.1 User Commandsot v i vt i i 168
1.2 Chris’ comments 168
1.3 Some immediate actionso oL oL o 170
1.4 Thecode o . e 171
1.5 Vertical spacing L e 178
1.6 Horizontal space (and breaks) 183
Itlogos.dtx 187
Logos 187
Itfiles.dtx 188
File Handling 188
1.1 Safe Input Macros 200
1.2 Listing files. o o 206
Itoutenc.dtx 208
Font encodings 208
1.1 Removing encoding-specific commands 210
1.2 The order of declarationso . 211
1.3 Docstripmodules 211
1.4 Definitions for the kernel 212
1.4.1 Declaration commands 212
1.4.2 Hyphenation 220
1.4.3 Miscellania oL L 220
1.4.4 Default encodings 220
1.4.5 Math material oo 223

1.5 Definitions for the OT1 encoding 224
1.6 Definitions for the T1 encoding 226
1.7 Definitions for the OMS encoding 232
1.8 Definitions for the OML encoding 232
1.9 Definitions for the OT4 encoding 233
1.10 Definitions for the TS1 encoding 235
1.11 Definitions for the TU encoding 239
Package files 250
2.1 The fontenc package L 250
Itcounts.dtx 253
Counters and Lengths 253
1.1 Environment Counter Macros 253

Itlength.dtx

Lengths

Itfssbas.dtx
Preliminary macros
Macros for setting up the tables

Selecting a new font

3.1 Macros for theuser
3.2 Macros for loading fonts o oL oo

Assigning math fonts to versions

Itfssaxes.dtx

Changing the font series

1.1 The series lookup table

1.2 Mapping rules for series changes

1.3 Changing to a new Series o v v v v i vt

Changing the shape

2.1 Mapping rules for shape combinations

2.2 Changing toanew shape oo

Make sure we win ...

Itfsstrc.dtx
Introduction
A driver for this document
The Implementation

Handling Options

Macros common to fam.tex and tracefnt.sty
5.1 General font loading Lo o
5.2 Math fontssetup
5.2.1 Outline of algorithm for math font sizes

5.2.2 Code for math font size setting

5.2.3 Other code formath

Scaled font extraction

6.1 Sizefunctions e e e e

vi

261

261

263
263
264

271
271
275

282

289

289
289
290
298

301
302
303

304

307
307
307
308
308

310
310
315
315
316
317

319

u ltfsscmp.dtx

v ltfssdcl.dtx

1 Interface Commands

w ltfssini.dtx

1 NFSS Initialisation

1.1 Providing math versions

2 Custom series settings for main document families

3 Supporting nested emphasis

3.1 Legacy o e
3.2 Miscellaneous

x fontdef.dtx

1 Introduction

2 Customization

3 The docstrip modules

4 A driver for this document

5 The fonttext.ltx file

5.1 Encodings
5.2 Defaults e

6 The fontmath.1ltx file

6.1 The font encodings used L.
6.1.1 Symbolfont and Alphabet declarations
6.2 Math font sizes
6.3 The math symbol assignments
6.3.1 Theletters o
6.3.2 Thedigits.
6.3.3 Punctuation, brace, etc. keys
6.3.4 Delimitercodes for characters
6.4 Symbols accessed via control sequences
6.4.1 Greekletterso
6.4.2 Ordinary symbols
6.4.3 Large Operators
6.44 Binary symbols. o oo
6.4.5 Relations,
6.4.6 AITOWS e e e
6.4.7 Punctuation symbols 0L
6.4.8 Mathaccents L.

vii

330

335

335

362

362
362

363

377
380
381

386

386

386

387

387

393

...... 394

394

y

2
3

4

6.4.9 Radicals. e 402

6.4.10 Over and under something, etc 402
6.4.11 Delimiters 403

6.5 Math versions of text commands oL Lo 404
6.6 Other special functions and parameters 404
6.6.1 Bigggge L 404
6.6.2 The log-like functionso oL 405
6.6.3 Parameters L 405
Default cfg files 405
preload.dtx 407
Overview 407
Customization 407
Module switches for the DOCSTRIP program 407
A driver for this document 408
The code 408
Itfntcmd.dtx 410
Introduction 410
The implementation 412
Initialization 418
Ittextcomp.dtx 419
Sub-encodings 423
1.1 Sub-encoding 1 (drop symbols not working in Latin Modern) 425
1.2 Sub-encoding 2 (majority of new OTF fonts via autoinst) 425
1.3 Sub-encoding 3 e 427
1.4 Sub-encoding 4 427
1.5 Sub-encoding 5 (most older PS fonts) L. 427
1.6 Sub-encoding 6 428
1.7 Sub-encoding 7 428
1.8 Sub-encoding 8 L e 428
1.9 Sub-encoding 9 (most missing)o L 428
Unicode engine specials 428
Font family sub-encodings setup 429
Legacy symbol support for lists and footnote symbols 433

viii

5

B

1

C

1

D

1

G

The textcomp package

5.1 The old textcomp package code L.
5.1.1 Supporting oldstyle digits L.
5.1.2 Subset encoding defaults L.

Itpageno.dtx

Page Numbering

Itxref.dtx

Cross Referencing
1.1 Cross Referencing . . .

Itmiscen.dtx

Miscellaneous Environments

1.1 Environments

1.2 Center, Flushright, Flushleft

1.3 Verbatim

Itmath.dtx

Math setup

1.1 Math commands based on plain TEX
1.1.1 The log-like functions

1.1.2 Bigggge

1.1.3 The UNSORTED Rest

1.2 Math Environments . .

1.3 External options to the standard document classes
1.3.1 Left equation numbering
1.3.2 Flush left equations,

Itlists.dtx

List, and related environments

1.1 List and Trivlist
1.2 Vertical Spacing (skips)
1.3 Penalties

1.4 Horizontal Spacing (dimens) oL

1.5 Default Values
1.6 Itemize and Enumerate

Itboxes.dtx

ix

437
438
447
447

450

450

451

451
451

456

456
456
467
470

477

477
477
477
478
478
484
489
489
489

492

492
493
494
494
494
494
505

508

1

H

1

e

K

1

M

1

N

1

@)

ETEX Box commands
1.1 Some low-level constructs

Ittab.dtx

Tabbing, Tabular and Array Environments

1.1
1.2

tabbing
array and tabular environments

Itpictur.dtx

Picture Mode
1.1 Curves

Itthm.dtx

Theorem Environments

Itsect.dtx

Sectioning Commands
1.1 The Title
1.2 Sectioning

1.2.1 Initializations
1.3
Convention
Commands

1.3.1
1.3.2

Itfloat.dtx

Floats
1.1 Floating Environments
1.2 Footnotes

Itidxglo.dtx

Index and Glossary Generation

Itbibl.dtx

Bibliography Generation
1.1 Default definitions

Itpage.dtx

Table of Contents etc.

523

523
523
532

548

548
575

580

580

584

584
584
585
592
592
592
592

597

597
097
611

618
618
621
621

624

625

1

Page styles and related commands
1.1 Page Style Commands
1.2 How a page style makes running heads and feet
1.3 marking conventions Lo L Lo
ltclass.dtx
Introduction
User interface
2.1 Option processingo
Class and Package interface
3.1 Class name and Version vt
3.2 Package name and version L Lo
3.3 Requiring other packages Lo oL
3.4 Declaring new options Lo
3.5 Safe Input Macros
Implementation
4.1 Hooks e
4.2 Providing shipment oL

Package/class rollback mechanism

After Preamble

Itfilehook.dtx

Introduction
1.1 Provided hooks
1.2 General hooks for file reading L.
1.3 Hooks for package and class files
1.4 Hooks for \include files
1.5 High-level interfaces for IXTRX o L
1.6 Internal interfaces for BTEX
1.7 A sample package for structuring the log output

The Implementation
2.1 Document and package-level commands
2.2 expl3helpers
2.3 Declaring the file-related hooks
2.4 Patching BTEX’s \InputIfFileExists command
2.5 Declaring a file substitution 0000000
2.6 Selecting a file (\set@curr@file)
2.7 Replacing a file and detecting loops

2.7.1 The Tortoise and Hare algorithm

2.8 Preventing a package from loading 0oL
2.9 High-level interfaces for BTEX

xi

625
625
625
625

629
629

629
630

631
631
631
631
632
633

633
652
655

662

671

R

1

U

2.10

Internal commands needed elsewhere . . .

A sample package for structuring the log output

Package emulations

4.1 Package atveryend emulation
4.2 Package filehook emulation
4.3 Package scrlfile emulation
Itshipout.dtx
Introduction
1.1 Overloading the \shipout primitive
1.2 Provided hooks
1.3 Special commands for use inside the hooks
1.4 Information counters
1.5 Debugging shipout code

Emulating commands from other packages

2.1
2.2
2.3
2.4

Emulating atbegshi
Emulating everyshi
Emulating atenddvi
Emulating everypage

The Implementation

3.1
3.2

Debugging
Handling the end of job hook

Legacy BTEX 2¢ interfaces

Internal commands needed elsewhere

Package emulation for compatibility

6.1 Package atenddvi emulation
6.2 Package atbegshi emulation.
6.3 Package everyshi emulation
Itoutput.dtx
Output Routine
1.1 Floats,
1.1.1 Kludgeins
1.1.2 Float control
1.1.3 Float placement parameters
Ithyphen.dtx
Itfinal.dtx

xii

689

690
690
691
692

694

694
694
695
696
697
697

697
698
698
699
699

699
699
708

711
711

713
713
713
715

716
716
716
772

773
786

789

791

1 Final settings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Debugging
Typesetting parameters
Lccodes for hyphenation
Hyphenation
Font loading
Input encoding
Lccodes and uccodes L
Applying Patch files
Freeing Memory
Initialise file list

Do some temporary work for pre-release

Some last minute initializations
Dumping the format

Change History

Index

xiii

791
791
791
793
796
797
797
801
803
804
805
805
805
805

806

868

File a
Itdirchk.dtx

1 KETgX System Dependent Initialisations

This file implements the semi-automatic determination of various system dependent parts
of the initialisation. The actual definitions may be placed in a file texsys.cfg. Thus for
operating systems for which the tests here do not result in acceptable settings, a ‘hand
written’ texsys.cfg may be produced.

The macros that must be defined are:

\Qcurrdir \@currdir(filename)(space) should expand to a form of the filename that uniquely
refers to the ‘current directory’ if this is possible. (The expansion should also end with
a space.) on UNIX, this is \def\@currdir{./}. For more exotic operating systems you
may want to make \@currdir a macro with arguments delimited by . and/or (space). If
the operating system has no concept of directory structure, this macro should be defined
to be empty.

\input@path If the primitive \openin searches the same directories as the primitive \input, then
it is possible to tell (using \ifeof) whether a file exists before trying to input it. For
systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be a list
of directories to search for input files. The format for each directory is as for \@currdir,
normally just a prefix is required, but it may be a macro with space-delimited argument.
That is, if (dir) is an entry in the input path, TEX will try to load the expansion of
(dir){filename)(space)

So either (dir) should be defined as a macro with argument delimited by space, or it
should just expand to a directory name, including the final directory separator, so that
it may be concatenated with the (filename). This means that for UNIX-like syntax, each
(dir) should end with a slash, /.

\input@path should expand to a list of such directories, each in a {} group.

\filename@parse After a call of the form: \filename@parse{(filename)}, the three macros \filename@area,\filenan
should be defined to be the ‘area’ (or directory), basename and extension respectively. If
there was no extension specified in (filename), \filename@ext should be \let to \relax
(so this case may be tested with \@ifundefined{filename®@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the automatic
tests can supply parsers that work with UNIX and VMS and Macintosh syntax, as well
as a basic parser that will cover many other cases. However some operating systems may
need a ‘hand produced’ parser in which case it should be defined in this file.

The UNIX parser also works for most MSDOS TgX versions. Currently if the UNIX,
VMS or Macintosh parser is not used, \filename@parse is defined to always return an
empty area, and to split the argument into basename and extension at the first ‘.’ that
occurs in the name. Parsers for other formats may be defined in texsys.cfg, in which
case they will be used in preference to the default definitions.

\@TeXversion \@TeXversion is now set automatically by the initialisation tests in this file. You
should not need to set it in texsys.cfg, however the following documentation is left for
information. IMTEX does not set this variable exactly, the automatic tests set it to:

2 for any version, v, v < 3.0
3 for any version, v, 3.0 < v < 3.14

File a: 1tdirchk.dtx 1

(undefined) otherwise.
However these values are accurate enough for ITEX to take appropriate action for these
old TEXs.

If your TEX is older than version 3.141, then you should define \@TeXversion (using
\def) to be the version number. If you do not do this' , WTEX will not work around a
bug in old TEX versions, and so error messages will appear in a very strange format, with
~~J appearing instead of line breaks:

LaTeX Error: \rubbish undefined.”~J " JSee the LaTeX manual or LaTeX=
Companion
for explanation.”"JType H <return> for immediate help.

.3 \renewcommand{\rubbish}

{3

However if you put \def\@TeXversion{3.14} in texsys.cfg the following format will
be used:

LaTeX Error: \rubbish undefined.

ee the LaTeX manual or LaTeX Companion for explanation.
ype H <return> for immediate help.

.3 \renewcommand{\rubbish}

{3

Note that this has an extra line ! . which does not appear in error messages that use the
default settings with a current version of TEX, but this should not cause any confusion
we hope.

2 Initialisation

As this file is read at a very early stage, some definitions that are normally considered to
be part of the format must be made here.

2.1 INITEX

1 (*dircheck)

*initex)

initex) \ifnum\catcode ‘\{=1

initex) \errmessage

initex) {LaTeX must be made using an initex with no format preloaded}
s (initex) \f1

7 \catcode ‘\{=1

2

3

o~~~ o~

5

L Actually if your TEX is really old, version 2, IATEX can detect this, and sets \@TeXversion to 2 if it
is not set in the cfg file.

File a: 1tdirchk.dtx 2

s \catcode ‘\}=2

If LuaTEX is in use the extensions and other new primitives have to be activated: this is
done as early as possible. Older versions of LuaTEX do not hide the primitives: a version
check is not needed as the version itself will be missing in the case where action is needed!

o \ifx\directlua\undefined

0 \else

11 \ifx\luatexversion\undefined

Enable e-TeX/pdfTeX/Umath primitives with their natural names
12 \directlua{tex.enableprimitives("",}
13 tex.extraprimitives(’etex’, ’pdftex’, ’umath’))}

In current formats enable primitives with unprefixed names. the latexrelease guards
allow the primitives to be defined with a \luatex prefix if older formats are specified.
14 (/initex)

(/dircheck)
(¥initex, latexrelease)
17 (latexrelease) \ifx\directlua\undefined\else

(latexrelease) \IncludeInRelease{2015/10/01}{\luatexluafunction}

(latexrelease) {LuaTeX (prefixed names)})
20 \directlua{tex.enableprimitives("",%
21 tex.extraprimitives("omega", "aleph", "luatex"))}
latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{0000/00/00}{\luatexluafunction}
latexrelease {LuaTeX (prefixed names)}7,
latexrelease) \directlua{
latexrelease) tex.enableprimitives(
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

"luatex",
tex.extraprimitives("core", "omega", "aleph", "luatex")

N

8

9)

local i

local t = { }

for _,i in pairs(tex.extraprimitives("luatex")) do
if not string.match(i,"”U") then

latexrelease if not string.match(i, "“luatex") then

latexrelease table.insert (t,i)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
latexrelease) end
)
)
)
)
)
)
)
)
)
)
)
)
)
)

30

@

1

>

34

5

@

6
latexrelease else

(
(
(
(
(
(
(
(
(
(
(
(
(
(
2
s (latexrelease if string.match(i, " Uchar$") then
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

@
N

30 {latexrelease table.insert(t,i)

20 (latexrelease end

41 (latexrelease end

12 (latexrelease) end

s (latexrelease) for _,i in pairs(t) do

4 (latexrelease tex.print(

4 (latexrelease "\noexpand\\let\noexpand\\" .. i
s (latexrelease "\noexpand\\undefined"

47 (latexrelease)

s (latexrelease) end

latexrelease) }

latexrelease) \EndIncludeInRelease
latexrelease) \fi

/initex, latexrelease)

*dircheck)

*initex)

File a: 1tdirchk.dtx 3

55 \fl
56 \fi
A test can now be made for eTEX.
(initex) \ifx\eTeXversion\undefined
(initex) \errmessage

s0 (initex) {LaTeX requires e-TeX}
(initex) \expandafter\endinput
(initex) \fi

That distraction over, back to the basics of a format.
& \catcode ‘\#=6
63 \catcode ‘\"=7
¢+ \chardef\active=13
s \catcode ‘\@=11
6 \countdef\count@=255
o7 \let\bgroup={ \let\egroup=}
6 \ifx\@@input\@undefined\let\@@input\input\fi
60 \ifx\@@end\Qundefined\let\@@end\end\fi
70 \chardef\@inputcheck0
71 \chardef\sixt@0n=16
7> \newlinechar‘\~"J
72 \def\typeout{\immediate\writel7}
72 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&’,
7 \do\#\do\~\do_\do\/\do\~}
7 \def\@makeother#1{\catcode ‘#1=12\relax}
77 \def\space{ }
7s \def\@tempswafalse{\let\if@tempswa\iffalse}
70 \def\@tempswatrue{\let\if@tempswa\iftrue}
s0 \let\if@tempswa\iffalse
s1 \def\loop#1\repeat{\def\iterate{#1\relax\expandafter\iterate\fi},
s> \iterate \let\iterate\relax}
s \let\repeat\fi
e (/initex)

2.2 Some bits of 2e

e (*2ekernel)

s6 \def\two@digits#1{\ifnum#1<10 O\fi\number#1}
s7 \long\def\@firstoftwo#1#2{#1}

ss \long\def\@secondoftwo#1#2{#2}

o

This is a special version of \ProvidesFile for initex use.
59 \def\ProvidesFile#1{},

o \begingroup

o1 \catcode‘\ 10 7%

02 \ifnum \endlinechar<256 },

93 \ifnum \endlinechar>\m@ne
94 \catcode\endlinechar 10 7},
95 \fi

96 \fi

o7 \@makeother\/,

o8 \@ifnextchar[{\@providesfile{#1}}{\@providesfile{#1}[]}}
o0 \def\@providesfile#1[#2]{},

100 \wlog{File: #1 #2}},
101 \@addtofilelist{ #2}),
102 \endgroup}

File a: 1tdirchk.dtx

103 \long\def\@addtofilelist#1{}

104 \def\@empty{}

s \catcode ‘\}=12

105 \def\@percentchar{}}

107 \catcode ‘\%=14

s \let\@currdir\@undefined

100 \let\input@path\Qundefined

110 \let\filename@parse\@undefined

\strip@prefix
11 \def\strip@prefix#1>{}
(/2ekernel)

112

(End definition for \strip@prefix. This function is documented on page 77.)

3 texsys.cfg

As mentioned above, any site specific definitions required to describe the filename han-
dling must be entered into a file texsys.cfg. If texsys.cfg can not be located by
\openin, we write a default version out. The default version only contains comments, so
we do not actually input the file in that case. The automatic tests later will, hopefully,
correctly define the required macros.

The tricky code below checks to see if texsys.cfg exists. If it does not, all the text
in this file between START and END is copied verbatim to a new file texsys,cfg. If
texsys.cfg is found, then it is simply input. This is only done when this file is being
used unstripped.

113 (*docstrip}

114 \openinlb=texsys.cfg

115 \ifeof15

116 \typeout{** Writing a default texsys.cfg}
117 \immediate\openout15=texsys.cfg

15 \begingroup

119 \catcode ‘\~"M\activey;

120 \letAﬂM\paI‘%

121 \def\reserved@a#1~"M{},

122 \def\reserved@b{#1}}

123 \ifx\reserved@b\reserved@c\endgroup\elsey),
124 \immediate\write15{#1}}

125 \expandafter\reserved@a\fi}}

126 \def\reserved@d#1START""M{\let\do\@makeother\dospecials\reserved@a}y,
127 \catcode ‘\}=12

12 \def\reserved@c{/,END}

120 \reserved@d

START

3.1 texsys.cfg

This file contains the site specific definitions of the four macros
\Qcurrdir, \input@path, \filename@parse and \@TeXversion.

As distributed it only contains comments, however this ‘empty’ file will work on
many systems because of the automatic tests built into 1tdirchk.dtx. You are allowed
to edit this file to add definitions of these macros appropriate to your system.

File a: 1tdirchk.dtx 5

The macros that must be defined are:

\@currdir \@currdir(filename){space) should expand to a form of the filename that uniquely
refers to the ‘current directory’ if this is possible. (The expansion should also end with
a space.) on UNIX, this is \def\@currdir{./}. For more exotic operating systems you
may want to make \@currdir a macro with arguments delimited by . and/or (space). If
the operating system has no concept of directory structure, this macro should be defined
to be empty.

\input@path If the primitive \openin searches the same directories as the primitive \input, then
it is possible to tell (using \ifeof) whether a file exists before trying to input it. For
systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be a list
of directories to search for input files. The format for each directory is as for \@currdir,
normally just a prefix is required, but it may be a macro with space-delimited argument.
That is, if (dir) is an entry in the input path, TEXwill try to load the expansion of

(dir)(filename) (space)

So either (dir) should be defined as a macro with argument delimited by space, or it
should just expand to a directory name, including the final directory separator, so that
it may be concatenated with the (filename). This means that for UNIX-like syntax, each
(dir) should end with a slash, /. One exception to this rule is that the input path should
always contain the empty directory {} as this will allow ‘full pathnames’ to be used, and
the ‘current directory’ to be searched.

\input@path should expand to a list of such directories, each in a {} group.

\filename@parse After a call of the form: \filename®@parse{(filename)}, the three macros \filename@area,\filenan
should be defined to be the ‘area’ (or directory), basename and extension respectively. If
there was no extension specified in (filename), \filename@ext should be \let to \relax
(so this case may be tested with \@ifundefined{filename@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the automatic
tests can supply parsers that work with UNIX and VMS syntax, as well as a basic parser
that willcover many other cases. However some operating systems may need a ‘hand
produced’ parser in which case it should be defined in this file.

The UNIX parser also works for most MSDOS TgX versions. Currently if the UNIX
or VMS parser is not used, \filename@parse is defined to always return an empty area,
and to split the argument into basename and extension at the first .’ that occurs in the
name. Parsers for other formats may be defined in texsys.cfg, in which case they will
be used in preference to the default definitions.

\@TeXversion You should not need to set this macro in texsys.cfg. KITEX tests to set this
automatically. See the comments in the opening section of 1tdirchk.dtx.

The following sections give examples of definitions which might work on various
systems. These are currently mainly untested as I only have access to a few systems, all
of which do not need this file as the automatic tests work. All the code is commented
out.

3.2 UNIX (web2c)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

130 4\def\@currdir{./}
31 s\let\input@path\@undefined

File a: 1tdirchk.dtx 6

3.3 UNIX (other)

Apparently some commercial UNIX implementations have different paths for \openin
and \input. For these one could use definitions like the following (with whatever direc-
tories are used at your site): note that the directory names should end with /.

132 % \def\@currdir{./}

133 % \def\input@path{y

132 4 {/usr/local/lib/tex/inputs/distrib/}}
% {/usr/local/lib/tex/inputs/contrib/}},
136 /4 {/usr/local/lib/tex/inputs/local/}};
%}

135

137

3.4 MSDOS (emtex)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

135 7 \def\@currdir{./}
139 %4 \let\input@path\Qundefined

3.5 MSDOS (other)

Some PC implementations have different paths for \openin and \input. For these one
could use definitions like the following (with whatever directories are used at your site):
note that the directory names should end with /. This assumes the implementation uses
UNIX style / as the directory separator.

10 7% \def\@currdir{./}

11 %, \def\input@path{7,

12) {c:/tex/inputs/distrib/}}

1w % {c:/tex/inputs/contrib/}}

s) {c:/tex/inputs/local/}},

15 % F

3.6 VMS (DECUS TgX, PD VMS 3.6)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

16 % \def\@currdir{[]}
147 % \let\input@path\@undefined

3.7 VMS (?7?)

Some VMS implementations have different paths for \openin and \input. For these one
could use definitions like the following:

s % \def\@currdir{[]}

19 % \def\input@path{};

50 % {tex_inputs:}}

151 % {SOMEDISK: [SOME.TEX.DIRECTORY]},
152 % }

File a: 1tdirchk.dtx 7

3.8 MACINTOSH (OzTeX 1.6)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

153 1, \def\@currdir{:}

15 % \let\input@path\@undefined

3.9 MACINTOSH (other)

Some Macintosh implementations have different paths for \openin and \input. For
these one could use definitions like the following (with whatever folders are used on your
machine): note that the directory names should end with :, and they should contain no
spaces.

155) \def\@currdir{:}

156/ \def\input@path{y,

157y {Hard-Disk:Applications:TeX:TeX-inputs:}/

% {Hard-Disk:Applications:TeX:My-inputs:})
%}

3.10 FAKE EXAMPLE

This example is for an operating system that has filenames of the form <area>name For
maximum compatibility with macro sets, you want name . ext to be mapped to <ext>name.
and <area>name.ext to be mapped to <area.ext>name. \input does this mapping
automatically, but \openin does not, and does not look in the same places as \input.
<>name is the desired ‘current directory’ syntax.

the following code would possibly work:

w0 # \def\edir#1#2 {}

161 % \eder{#1}#2..\@nil}

162 % \def\@dOr#1#2.#3.#4\0nil{),

163 % <\ifx\@dir#i\e@dir\else#1\ifx\@dir#3\@dir\else.\fi\fi#3>#2 }
164 %

165 % \def\@currdir{\@dir{}}

166 7% \def\input@path{};

w7 % {\@edir{area.onel}})

ws % {\@edir{area.twol}})

w0 4}

END
170 \immediate\closeoutl15
If texsys.cfg did exist, then input it.

71 \else

172 \typeout{** Using the existing texsys.cfg}
173 \closein15

172 \input texsys.cfg

175 \fi

176 (/docstrip)

If the stripped version of this file is being used (in latex2e.ltx) then texsys.cfg should
be there, so just input it.
177 (dircheck) \input texsys.cfg

File a: 1tdirchk.dtx 8

\@currdir
\IfFileExists

\today

4 Setting \@currdir

This is a local definition of \IfFileExists. It tries to relocate texsxys.aux. If it
succeeds, then the \@currdir syntax has been determined. If all the tests fail then
\@currdir will be set to \@empty, and ltxcheck will warn of this when it checks the
format.

7z \begingroup

170 \count@\time

150 \divide\count@ 60

151 \count2=-\count®@

122 \multiply\count2 60

153 \advance\count2 \time

The current date and time stamp.

18« \edef\today{%

155 \the\year/\two@digits{\the\month}/\two@digits{\the\day}:7%
186 \two@digits{\the\count@}:\two@digits{\the\count2}}

Create a file texsys.aux (hopefully in the current directory), then try to locate it
again.
157 \immediate\openout1b=texsys.aux
15 \immediate\write15{\today~"J}
150 \immediate\closeoutl1b %

#1 is the file to try, #2 is what to do on success, #3 on failure. Note that this
definition is overwritten later on again!

100 \def\IfFileExists#1#2#3{/
101 \openin\@inputcheck#1

12 \ifeof\@inputcheck

103 #3\relax

s \else

105 \read\@inputcheck to \reserved®@a
196 \ifx\reserved@a\today

197 \typeout{#1 found}#2\relax

198 \else

199 \typeout{BAD: old file \reserved@a (should be \today)}/
200 #3\relax

201 \fi

202 \fi

203 \closein\@inputcheck}
20+ \endlinechar=-1

If \@currdir has not been pre-defined in texsys.cfg then test for UNIX, VMS and
Oz-TEX-Mac. syntax.
205 \ifx\@currdir\Q@undefined
206 \IfFileExists{./texsys.aux}{\gdef\@currdir{./}}/
207 {\IfFileExists{[]texsys.aux}{\gdef\@currdir{[]}}%
208 {\IfFileExists{:texsys.aux}{\gdef\@currdir{:}}{}}}
If it is still undefined at this point, all the above tests failed. Earlier versions interac-
tively prompted for a definition at this point, but it seems impossible to reliably obtain
information from users at this point in the installation. This version of the file produces

File a: 1tdirchk.dtx 9

\input@path

a format with no user-interaction. Later if the format is not suitable for the system,
texsys.cfg may be edited and the format re-made.

200 \ifx\@currdir\@undefined

210 \global\let\@currdir\Q@empty

o1 \typeout{~"~J""J%

212 !l No syntax for the current directory could be found™"J%

213 Yh

214 \fi

Otherwise \@currdir was defined in texsys.cfg. In this case check that the syntax
specified works on this system. (In case a complete INTEX system has been copied from
one system to another.) If the test fails, give up. The installer should remove or correct
the offending texsys.cfg and try again.

215 \else

216 \IfFileExists{\Qcurrdir texsys.aux}{}{/

217 \edef\reserved@a{\errhelp{’

218 texsys.cfg specifies the current directory syntax to be~"J}
219 \meaning\@currdir~"J%

220 but this does not work on this system.”"J}

221 Remove texsys.cfg and restart.}}\reserved@a

222 \errmessage{Bad texsys.cfg file: \noexpand\@currdir}\@@end}

The version of \@currdir in texsys.cfg looks OK.
23 \fi

222 \immediate\closeout15 7%

225 \endgroup

226 \typeout{~~J""J}

207 \noexpand\@currdir set to:

228 \expandafter\strip@prefix\meaning\@currdir. ~J%

229 }
(End definition for \@currdir, \IfFileExists, and \today. These functions are documented on page
7))
Stop here if the file is being used unstripped.
230 (*docstrip)

231 \relax\endinput
232 (/docstrip)

5 Setting \input@path

Earlier versions of this file attempted to automatically test whether \input@path was re-
quired, and interactively prompt for a path if necessary. This was not found to be very re-
liable The first-time installer of XTEX 2¢ can not be expected to have enough information
to supply the correct information to the prompts. Now the interaction is omitted. After
the format is made the installer can attempt to run the test document ltxcheck.tex
through BXTEX 2¢. This will check, amongst other things, whether texsys.cfg will need
to be edited and the format remade.

Now set up the \input@path.
\input@path should either be undefined, or a list of directories as described in the
introduction.

File a: 1tdirchk.dtx 10

\filename@parse

233

234

235

\typeout{~"J%

Assuming \noexpand\openin and \noexpand\input~~J%
\ifx\input@path\@undefined

\input@path has not been pre-defined.

236

237

have the same search path.”"~J}
\else

\input@path has been defined in texsys.cfg.

238

239

(End definition for \input@path. This function is documented on page ?7.)

6

have different search paths.”"J}

LaTeX will use the path specified by \noexpand\input@path:~~J%

\fi
}

Filename Parsing

Split a filename into its components.

222 \ifx\filename@parse\@undefined

243

\def\reserved@a{./}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \@currdir looks like UNIX. ..

244

256

\filename@parse was not specified in texsys.cfg, but \@currdir looks like VMS. ..

257

258

259

\typeout{~~JDefining UNIX/DOS style filename parser.”~J}

\def\filename@parse#1{%
\let\filename®@area\Qempty
\expandafter\filename@path#1/\\}

Search for the last /.

\def\filename@path#1/#2\\{%

\ifx\\#2\\7,
\def\reserved@a{\filename@simple#1.\\}/,

\else
\edef\filename@area{\filename®@area#1/}
\def\reserved@a{\filename@path#2\\1}%

\fi

\reserved@a}

\else\def\reserved@a{[]}\ifx\@currdir\reserved@a

\typeout{"~JDefining VMS style filename parser.”~J}
\def\filename@parse#1{/,
\let\filename@area\@empty
\expandafter\filename@path#1]\\}

Search for the last .

\def\filename@path#1]#2\\{%

\ifx\\#2\\7,
\def\reserved@a{\filename@simple#1.\\}/,

\else
\edef\filename@area{\filename@area#1] 1}/
\def\reserved@a{\filename@path#2\\1}%

\fi

\reserved@a}

File a: 1tdirchk.dtx

11

20 \else\def\reserved@aq{:}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \@currdir looks like Macin-
tosh. ..

270 \typeout{~"JDefining Mac style filename parser.”~J}
271 \def\filename@parse#1{/,

272 \let\filename®@area\@empty

273 \expandafter\filename@path#1:\\}

Search for the last :.
274 \def\filename@path#1:#2\\{%

275 \ifx\\#2\\7

276 \def\reserved@a{\filename@simple#1.\\1}/,
277 \else

278 \edef\filename@area{\filename®@area#1:1}/,
279 \def\reserved@a{\filename@path#2\\}%

280 \fi

281 \reserved@a}

282 \else

\filename@parse was not specified in texsys.cfg. So just make a simple parser that
always sets \filename@area to empty.

283 \typeout{~~JDefining generic filename parser.” ~J}
284 \def\filename@parse#1{/,

285 \let\filename®@area\@empty

286 \expandafter\filename@simple#1.\\}

287 \fi\fi\fi
\filename®@simple is used by all three versions. Finally we can split off the exten-
sion.
288 (/dircheck)
250 (*dircheck, latexrelease)
200 (latexrelease) \IncludeInRelease{2019/10/01}{\filename@simple}
201 (latexrelease) {Final dot for extension}),
202 \def\filename@simple#1.#2\\{%
205 \ifx\\#2\\%

204 \let\filename@ext\relax

205 \edef\filename@base{#11}}
296 \else

207 \filename@dots{#1}#2\\/

298 \fi}

200 \def\filename@dots#1#2.#3\\{Y%
300 \ifx\\#3\\%

301 \def\filename@ext{#2}/

302 \edef\filename@base{#11}V,
303 \else

304 \filename@dots{#1.#2}#3\\}

305 \fi}

s (latexrelease) \EndIncludeInRelease

s07 (latexrelease) \IncludeInRelease{0000/00/00}{\filename@simple}

s (latexrelease) {Final dot for extension}/
s00 (latexrelease) \def\filename@simple#1.#2\\{

20 (latexrelease) \ifx\\#2\\%

s (latexrelease) \let\filename@ext\relax

File a: 1tdirchk.dtx 12

\@TeXversion

\else
\edef\filename@ext{\filename@dot#2\\}/,

(latexrelease)

(latexrelease)

(latexrelease) \fi

315 (latexrelease) \edef\filename@base{#1}}
(
(
(

3.

2

313

3.

4

latexrelease) \EndIncludeInRelease
7 (/dircheck, latexrelease)
*dircheck)

316

318
Remove a final dot, added earlier.
5.0 \def\filename@dot#1.\\{#1}

120 \else

Otherwise, \filename®@parse was specified in texsys.cfg.
21 \typeout{"~J""J%

322 \noexpand\filename@parse was defined in texsys.cfg:~"J%
323 \expandafter\strip@prefix\meaning\filename®@parse. " J}
324 ¥

35 \fi

(End definition for \filename@parse. This function is documented on page 77.)

7 'TEX Versions

TEX versions older than 3.141 require \@TeXversion to be set. This can be determined
automatically due to a trick suggested by Bernd Raichle. (Actually this will not always
get the correct version number, eg TEX3.14 would be detected as TEX3, but BTEX only
needs to take account of TEX’s older than 3, or between 3 and 3.14.

226 \1fx\@TeXversion\Qundefined

37 \ifx\@undefined\inputlineno

328 \def\@TeXversion{2}

329 \else

330 {\catcode‘\""J=\active

331 \def\reserved@a#1#2\00{\if#1\string~3\fi}

332 \edef\reserved@a{\expandafter\reserved@a\string~~J\Q@}
3 \ifx\reserved@a\Qempty\else\gdef\@TeXversion{3}\fi}

]

334 \fi
335 \fi

(End definition for \@TeXversion. This function is documented on page 77.)

336 (/dircheck)

8 ltxcheck.tex

After the format has been made, and article.cls moved with the other files to the ‘standard
input directory’ as specified in install.txt, the format may be checked by running the
file 1txcheck.tex.

File a: 1tdirchk.dtx 13

File b
Itplain.dtx

1 Plain TEX

ETEX includes almost all of the functionality of Knuth’s original ‘Basic Macros’ That
is, the plain TEX format described in Appendix B of the TpXBook. However, some of
the user commands are not much use so, in order to save memory, we may remove them
from the kernel into a package. Here is a list of the commands that may be removed
(PROBABLY NOT COMPLETE).

\magstep \magstephalf

\mathhexbox
\vglue \vgl@
\hglue \hgl@

This file is by now very small as most of it has been moved to more appropriate
kernel files: it may disappear completely one day.

TEX font definitions are done using NFSS2 so none of PLAIN’s font definitions are
in BTEX.

KTEX has its own tabbing environment, so PLAIN’s is disabled.

IXTEX uses its own output routine, so most of the plain one was removed.

1 (*2ekernel)

\catcode‘\{=1 7 left brace is begin-group character

s \catcode‘\}=2 ¥ right brace is end-group character
\catcode‘\$=3 ¥, dollar sign is math shift

5 \catcode‘\&=4 7, ampersand is alignment tab

\catcode‘\#=6 7, hash mark is macro parameter character

7 \catcode‘\"=7 J circumflex and uparrow are for superscripts
\catcode‘_=8 7, underline and downarrow are for subscripts
\catcode‘\""I=10 % ascii tab is a blank space
\chardef\active=13 \catcode‘\~=\active % tilde is active
\catcode‘\""L=\active \def~"L{\parl}) ascii form-feed is \par

3

1C

12 \message{catcodes,}

We had to define the \catcodes right away, before the message line, since \message

uses the { and } characters. When INITEX (the TgX initializer) starts up, it has defined
the following \catcode values:
\catcode‘\""@=9 ¥, ascii null is ignored
\catcode‘\""M=5 ¥ ascii return is end-line
\catcode‘\\=0 % backslash is TeX escape character
\catcode‘\%=14 % percent sign is comment character
\catcode‘\ =10 % ascii space is blank space
\catcode‘\""7=15 %, ascii delete is invalid
\catcode‘\A=11 ... \catcode‘\Z=11 % uppercase letters
\catcode‘\a=11 ... \catcode‘\z=11 % lowercase letters
all others are type 12 (other)

Here is a list of the characters that have been specially catcoded:

13 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&
11 \do\#\do\"\do_\do\%\do\~}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 14

\@ne
\twe@
\three
\sixt@@n
\@cclv

\@cclvi
\@m

\@M
\@MM

(not counting ascii null, tab, linefeed, formfeed, return, delete) Each symbol in the list is
preceded by , which can be defined if you want to do something to every item in the list.
We make @ signs act like letters, temporarily, to avoid conflict between user names
and internal control sequences of plain format.
15 \catcode‘@=11

To make the plain macros more efficient in time and space, several constant values
are declared here as control sequences. If they were changed, anything could happen; so
they are private symbols.

Small constants are defined using \chardef.

16 \chardef\@ne=1

17 \chardef\tw@=2

15 \chardef\thr@@=3

19 \chardef\sixt@@n=16
20 \chardef\@cclv=255

(End definition for \@ne and others. These functions are documented on page 77.)

Constants above 255 defined using \mathchardef.

1 \mathchardef\@cclvi=256
> \mathchardef\@m=1000

23 \mathchardef\@M=10000
22 \mathchardef\@MM=20000

NN

(End definition for \@cclvi and others. These functions are documented on page 77.)

Allocation of registers

Here are macros for the automatic allocation of \count, \box, \dimen, \skip,
\muskip, and \toks registers, as well as \read and \write stream numbers, \fam codes,
\language codes, and \insert numbers.

s \message{registers,}

When a register is used only temporarily, it need not be allocated; grouping can
be used, making the value previously in the register return after the close of the group.
The main use of these macros is for registers that are defined by one macro and used by
others, possibly at different nesting levels. All such registers should be defined through
these macros; otherwise conflicts may occur, especially when two or more macro packages
are being used at the same time.

Historical BTEX 2.09 comments (not necessarily accurate any more):
The following counters are reserved:
0 to 9 page numbering
10 count allocation
11 dimen allocation
12 skip allocation
13 muskip allocation
14 box allocation
15 toks allocation
16 read file allocation
17 write file allocation
18 math family allocation
19 language allocation
20 insert allocation
21 the most recently allocated number

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 15

\insc@unt
\allocationnumber

\m@ne

\wlog

\count@
\dimen®@
\dimen@i
\dimen@ii
\skip@
\toks@

22 constant -1
End of historical BTEX 2.09 comments.

New counters are allocated starting with 23, 24, etc. Other registers are allocated
starting with 10. This leaves 0 through 9 for the user to play with safely, except that
counts 0 to 9 are considered to be the page and subpage numbers (since they are displayed
during output). In this scheme, \count 10 always contains the number of the highest-
numbered counter that has been allocated, \count 14 the highest-numbered box, etc.
Inserts are given numbers 254, 253, etc., since they require a \count, \dimen, \skip,
and \box all with the same number; \count 20 contains the lowest-numbered insert that
has been allocated. Of course, \box255 is reserved for \output; \count255, \dimen255,
and \skip255 can be used freely.

It is recommended that macro designers always use \global assignments with re-
spect to registers numbered
1,3,5,7,9,
and always non-\global assignments with respect to registers
0, 2, 4, 6, 8, 255.

This will prevent “save stack buildup” that might otherwise occur.

26 \count10=22 % allocates \count registers 23, 24,
27 \count11=9 ¥, allocates \dimen registers 10, 11,
s \count12=9 % allocates \skip registers 10, 11,

20 \count13=9 ¥, allocates \muskip registers 10, 11,
0 \count14=9 ¥ allocates \box registers 10, 11,

51 \count15=9 % allocates \toks registers 10, 11,

2 \count16=-1 % allocates input streams O, 1,

33 \count17=-1 % allocates output streams 0, 1,

32 \count18=3 ¥ allocates math families 4, 5,

55 \count19=0 7% allocates \language codes 1, 2,

3 \count20=255 % allocates insertions 254, 253,

The insertion counter and most recent allocation.
37 \countdef\insc@unt=20

33 \countdef\allocationnumber=21

(End definition for \insc@unt and \allocationnumber. These functions are documented on page 77?.)

The constant —1.
39 \countdef\m@ne=22 \m@ne=-1

(End definition for \mene. This function is documented on page 77?.)

Write on log file (only)
20 \def\wlog{\immediate\write\m@ne}

(End definition for \wlog. This function is documented on page 77.)

Here are abbreviations for the names of scratch registers that don’t need to be allocated.

21 \countdef\count@=255

122 \dimendef\dimen@=0

23 \dimendef\dimen@i=1 7, global only
1 \dimendef\dimen@ii=2

ss \skipdef\skip@=0

1 \toksdef\toks@=0

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 16

\newcount
\newdimen
\newskip
\newmuskip
\newbox
\newtoks
\newread
\newwrite
\newfam
\newlanguage

(End definition for \count@ and others. These functions are documented on page 77.)

Now, we define \newcount, \newbox, etc. so that you can say \newcount\foo and \foo
will be defined (with \countdef) to be the next counter.

47

48

9

50

51

52

54

55

To find out which counter \foo is, you can look at \allocationnumber.

Since there’s no \boxdef command, \chardef is used to define a \newbox,
\newinsert, \newfam, and so on.
KTEX change: remove \outer from \newcount and \newdimen (FMi) This is nec-
essary to use \newcount inside \if... later on. Also remove from \newskip, \newbox
\newwrite and \newfam (DPC) to save later redefinition.

(/2ekernel)

(*2ekernel | latexrelease)
(latexrelease) \ IncludeInRelease{2015/01/01}}

(latexrelease) {\newcount }HExtended Allocation}},

\def\newcount {\e@alloc\count \countdef {\count10}\insc@unt\float@count}
\def\newdimen {\e@alloc\dimen \dimendef {\count11}\insc@unt\float@count}

; \def\newskip {\e@alloc\skip \skipdef {\counti2}\insc@unt\float@count}

\def\newmuskip
{\e@alloc\muskip\muskipdef{\count13}\m@ne\e@alloc@top}

For compatibility use \chardef in the classical range.

56

\def\newbox {\e@alloc\box
{\ifnum\allocationnumber<\@cclvi
\expandafter\chardef
\else
\expandafter\e@alloc@chardef
\fi}
{\count14}\insc@unt\float@count}

; \def\newtoks {\e@alloc\toks \toksdef{\counti15}\m@ne\e@alloc@top}

\def\newread {\e@alloc\read \chardef{\count16}\m@ne\sixt@@n}
Skip \write18 due to its traditional use as a shell-escape.

\ifx\directlua\@undefined
\def\newwrite {\e@alloc\write \chardef{\count17}\m@ne\sixt@e@n}
\else
\def\newwrite {\e@alloc\write
{\ifnum\allocationnumber=18
\advance\count17\@ne
\allocationnumber\counti7 %

\fi
\global\chardef},
{\count17}%
\m@ne
{128}}
\fi
; \def\new@mathgroup

{\e@alloc\mathgroup\chardef{\count18}\m@ne\e@mathgroup@top}

) \let\newfam\new@mathgroup

\ifx\directlua\@undefined
\def\newlanguage {\e@alloc\language \chardef{\count19}\m@ne\@cclvi}

; \else

\def\newlanguage {\e@alloc\language \chardef{\count19}\m@ne{16384}}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

17

\e@alloc@chardef
\e@alloc@top

g5 \fi
/2ekernel | latexrelease)

6

¢7 (latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\newcount}{Extended Allocation}},
latexrelease)\def\newcount{\alloc@0\count\countdef\insc@unt}
latexrelease)\def\newdimen{\alloc@l\dimen\dimendef\insc@unt}
latexrelease)\def \newskip{\alloc@2\skip\skipdef\insc@unt}

(
(
(
(
(
(
(
os (latexrelease)\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
(
(
(
(
(
(
(

88
89

90

91
92

4

)
)
)
)
)
)
latexrelease) \def\newbox{\alloc@4\box\chardef\insc@unt}
latexrelease)\def \newtoks{\alloc@5\toks\toksdef\@cclvi}
)
)
)
)
)
)

5
latexrelease)\def \newread{\alloc@6\read\chardef\sixt@0On}
latexrelease)\def\newwrite{\alloc@7\write\chardef\sixt@@n}
latexrelease)\def \new@mathgroup{\alloc@8\fam\chardef\sixt@@n}
latexrelease) \def\newlanguage{\alloc@9\language\chardef\@cclvi}
latexrelease)\let\newfam\new@mathgroup

w01 (latexrelease)\EndIncludeInRelease

96

7

99

100

(End definition for \newcount and others. These functions are documented on page 77.)

The upper limit of extended registers, which leaves this number (eg \dimen32767) always
unallocated by these macros. cf traditional \dimen255.

> (*2ekernel | latexrelease)

103 (latexrelease) \IncludeInRelease{2015/01/01}}

104 (latexrelease) {\eGalloc@chardef}{Extended Allocation}}

1

105 \ifx\directlua\@undefined
106 \ifx\widowpenalties\@undefined

classic tex has 2% registers.

107 \mathchardef\e@alloc@top=255
108 \let\e@alloc@chardef\chardef
0o \else

etex and xetex have 2% registers.

110 \mathchardef\e@alloc@top=32767
111 \let\e@alloc@chardef\mathchardef
112 \fi

13 \else

luatex has 216

+ \chardef\e@alloc@top=65535
115 \let\e@alloc@chardef\chardef
116 \fi

registers.

1

/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\eGalloc@chardef}{Extended Allocation}/,

latexrelease)\let\e@alloc@top\@undefined
)
)

117

1

8

119

120

121

o~~~ o~~~

latexrelease)\let\e@alloc@chardef\@undefined
123 (latexrelease)\EndIncludeInRelease

22

(End definition for \e@alloc@chardef and \e@alloc@top. These functions are documented on page 77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 18

\e@mathgroup@top

\e@alloc

\e@ch@ck

The upper limit of extended math groups (\fam) 16 in classic TEX and e-TEX, but 256
in Unicode TeX variants.
+ (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2015/01/01}
126 (latexrelease) {\e@mathgroup@top}{Extended Allocation})

1

)

N

127 \ifx\Umathcode\@undefined

classic and e tex have 16 fam (0-15).

s \chardef\e@mathgroup@top=16
120 \else

xetex and luatex have 256 fam (0-255).

130 \chardef\e@mathgroup@top=256
131 \fi

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

\IncludeInRelease{0000/00/00}%
{\e@mathgroup@top}{Extended Allocation},

\let\e@mathgroup@top\Qundefined

\EndIncludeInRelease

132

(

133 <

+ (latexrelease
(
(

latexrelease
136 (latexrelease
137 (latexrelease

35

LA

(End definition for \e@mathgroup@top. This function is documented on page 77?.)

A modified version of \alloc@ that takes the count register rather than just the final
digit of its number (assuming \countlz). It also has an extra argument to give the top
of the extended range.
#1 #2 #3 #4 #5 #6
\e@alloc type defcmd current top extended-top newname
Note that if just a single allocation range is required (not omitting a range up to
255 for inserts) then —1 should be used for the first upper bound argument, #4.

138 (*2ekernel | latexrelease)
130 (latexrelease) \IncludeInRelease{2015/01/01}{\e@alloc}{Extended Allocation}

120 \def\e@alloc#1#2#3#4#5#6{/,

11 \globalladvance#3\@ne

12 \e@ch@ck{#3}{#4}{#5}#1Y

s \allocationnumber#3\relax

1z \global#2#6\allocationnumber

s \wlog{\string#6=\string#i\the\allocationnumber}}J,

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

115 (latexrelease)\IncludeInRelease{0000/00/00}{\e@alloc}{Extended Allocation}%
(latexrelease)\1let\e@alloc\@undefined

150 (latexrelease)\EndIncludeInRelease

151 (*2ekernel)

(End definition for \e@alloc. This function is documented on page 77.)

Extended check command. If the first range is exceeded, bump to 256 (or 266 for counts)
and try again, testing the extended range.

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 19

Allocate matching registers from the top of the extended range and add to \@freelist.
\extrafloats ;, (/2ekernel)

153 (*2ekernel | latexrelease)
15« (latexrelease) \IncludeInRelease{2015/10/01}
155 (latexrelease) {\e@ch@ck}{Extended Allocation (checking)}}

156 \gdef\e@chQck#1#2#3#4{/,
157 \ifnum#1<#2\else

If we’ve reached the classical top limit, bump to 256 or 266 for counts (count 256-265
are reserved by the allocation system).

158 \ifnum#1=#2\relax

159 \global#l\@CClVi

160 \ifx\count#4\global\advance#1 10 \fi

161 \fi

Check we are below the extended limit.

162 \ifnum#1<#3\relax

163 \else

164 \errmessage{No room for a new \string#4}J,
165 \fi

166 \fil}%

latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{2015/01/01}
latexrelease) {\e@ch@ck}{Extended Allocation (checking)}}
latexrelease) \gdef \e@chOck#1#2#3#4{),
latexrelease) \ifnum#i<#2\else
latexrelease) \ifnum#i=#2\relax
latexrelease) #1\@cclvi
latexrelease) \ifx\count#4\advance#1 10 \fi
latexrelease) \fi
latexrelease) \ifnum#1<#3\relax

)

)

)

)

)

)

)

)

)

)

(
(
(
(
(
(
(
(
(
(
177 (latexrelease \else
(
(
(
(
(
(
(
(
(
(

168
169
170
171

172

175 (latexrelease \errmessage{No room for a new #4}},

latexrelease \fi

latexrelease) \fi}/

latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{0000/00/00})

{\e@ch@ck}{Extended Allocation (checking)}J
atexrelease) \1et\e@ch@ck\Q@undefined

atexrelease) \EndIncludeInRelease

179

180

latexrelease
|
|
latexrelease) \IncludeInRelease{2015/01/01}}

latexrelease) {\extrafloats}{Extra floats})

155 \let\float@count\e@alloc@top

\extrafloats \ifx\numexpr\Qundefined

In classic TeX use \newinsert to allocate float boxes.

100 \def\extrafloats#1{}

191 \count@#1\relax

102 \ifnum\count@>\z@

103 \newinsert\reserved@a

192 \global\expandafter\chardef

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 20

195 \csname bx@\the\allocationnumber\endcsname\allocationnumber
196 \@cons\@freelist{\csname bx@\the\allocationnumber\endcsnamely,

197 \advance\count@\m@ne

s \expandafter\extrafloats

199 \expandafter\count@

200 \fi

201 Y%

202 \else

In e-tex take float boxes from the top of the extended range.

203 \def\extrafloats#1{/,

200 \ifnum#1>\z@

205 \count@\numexpr\float@count-1\relax

206 \ch@ckO\count@\count

207 \ch@ckl\count@\dimen

206 \ch@ck2\count@\skip

200 \ch@ck4\count@\box

210 \globalle@alloc@chardef\float@count\count®

211 \global\expandafter\e@alloc@chardef

212 \csname bx@\the\float@count\endcsname\float@count
213 \@cons\@freelist{\csname bx@\the\float@count\endcsnamely,
212 \expandafter

215 \extrafloats\expandafter{\numexpr#1-1\relaxl}

o6 \fi}Y%

o7 \fi

N

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease

20 (latexrelease)\IncludeInRelease{0000/00/00}7

21 (latexrelease) {\extrafloats}{Extra floats}’%
(latexrelease)\let\float@count\@undefined

()

()

219

N

222
latexrelease)\let\extrafloats\@undefined
latexrelease) \EndIncludeInRelease

25 (*2ekernel)

223

224

(End definition for \e@ch@ck, \extrafloats, and \extrafloats. These functions are documented on
page 77.)

\alloc@ Since \e@alloc was added in 2015, \@alloc has not been used, but was left as some
legacy code calls it. However the original defnition gives spurious errors once the “classic”
registers run out, so it is now defined to call \e@alloc internally.

226 (/2ekerne|)

7 (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2020/10/01}

220 (latexrelease) {\alloc@}{emulate alloc@})

230 \def\alloc@#1#2#3#4{\e@alloc#2#3{\count1#1}#4\float@count}

251 {/2ekernel | latexrelease)

2

5

N
IN]

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}%

(latexrelease {\alloc@}{emulate alloc@}},
(latexrelease)\def\alloc@#1#2#3#4#5{\global\advance\count1#1\@ne
(latexrelease) \ch@ck#1#4#2%

(latexrelease) \allocationnumber\counti1#1%

(latexrelease) \global#3#5\allocationnumber

236

237

AL SNSRI

2.

@

8

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 21

230 (latexrelease) \wlog{\string#5=\string#2\the\allocationnumber}}
210 (latexrelease)\EndIncludeInRelease
261 (*2ekernel)

(End definition for \alloc@. This function is documented on page 77.)

\newinsert

222 (/2ekernel)

(*2ekernel | latexrelease)

2 (latexrelease) \IncludeInRelease{2015/10/01}
(

latexrelease) {\newinsert}{Extended \newinsertl}),

243

45
26 \ifx\numexpr\Qundefined

If e-TEX is not available use the original plain TEX definition of \newinsert.

27 \def\newinsert#1{\global\advance\insc@unt \m@ne

25 \ch@ckO\insc@unt\count

220 \ch@ckl\insc@unt\dimen

250 \ch@ck2\insc@unt\skip

251 \ch@ck4\insc@unt\box

2 \allocationnumber\insc@unt

253 \global\chardef#1l\allocationnumber

0 \wlog{\string#i=\string\insert\the\allocationnumber}}

25 \else

The highest register allowed with \insert.

256 \ifx\directlua\@undefined

257 \chardef\e@insert@top255

s \else

250 \chardef\e@insert@top\e@alloc@top
60 \fi

If the classic registers are exausted, take an insert from the free float list and use
\extrafloats to add a new float to that list.

261 \def\newinsert#1{Y

6> \@tempswafalse

263 \global\advance\insc@unt\m@ne
260 \ifnum\count10<\insc@unt

265 \ifnum\count11<\insc@unt

266 \ifnum\count12<\insc@unt

267 \ifnum\count14<\insc@unt

s \Qtempswatrue

s60 \fi\fi\fi\fi

270 \if@tempswa

»71 \allocationnumber\insc@unt
> \else

273 \global\advance\inscQunt\@ne
2z \extrafloats\@ne

o5 \@next\@currbox\@freelist

276 {\ifnum\@currbox<\e@insert@top
277 \allocationnumber\@currbox
278 \else

279 \ch@ckO\m@ne\insert

280 \fil}%

281 {\ch@ck0\m@ne\insert}y,

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 22

\ch@ck

\newhelp

\maxdimen
\hideskip

\p@

\z@
\z@skip
\voidb@x

22 \fi

253 \global\chardef#1\allocationnumber

22 \wlog{\string#1=\string\insert\the\allocationnumberl}y,
285 F

a6 \fi
267 (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\newinsert}{Extended \newinsertl}}
(latexrelease)\let\e@insert@top\Qundefined
(latexrelease)\def\newinsert#1{\global\advance\insc@unt \m@ne
(latexrelease) \ch@ckO\insc@unt\count

20s (latexrelease) \ch@ck1\insc@unt\dimen
(latexrelease) \ch@ck2\insc@unt\skip
()
()
()
()
()

289
290
291
292

293

205
\ch@ck4\insc@unt\box

\allocationnumber\insc@unt

latexrelease) \global\chardef#1\allocationnumber

latexrelease) \wlog{\string#1=\string\insert\the\allocationnumber}}
latexrelease) \EndIncludeInRelease

s (*2ekernel)

latexrelease
latexrelease

296
297
298
299

300

(End definition for \newinsert. This function is documented on page 77.)

502 \gdef\ch@ck#1#2#3{%
503 \ifnum\count1#1<#2\else
304 \errmessage{No room for a new #3}J,

305 \fi}

(End definition for \check. This function is documented on page 77.)

s00 \def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}

(End definition for \newhelp. This function is documented on page 77.)

Here are some examples of allocation.

507 \newdimen\maxdimen \maxdimen=16383.99999pt % the largest legal <dimen>
300 \newskip\hideskip \hideskip=-1000pt plus 1fill % negative but can grow

(End definition for \maxdimen and \hideskip. These functions are documented on page 77.)

300 \newdimen\p@ \p@=1pt % this saves macro space and time
;510 \newdimen\z@ \z@=0pt % can be used both for Opt and O
1 \newskip\z@skip \z@skip=Opt plusOpt minusOpt

;52 \newbox\voidb@x Y, permanently void box register

3

(End definition for \p@ and others. These functions are documented on page ?77.)
Assign initial values to TEX’s parameters

;15 \message{parameters,}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

23

All of TEX’s numeric parameters are listed here, but the code is commented out if
no special value needs to be set. INITEX makes all parameters zero except where noted.
Historical BTEX 2.09 comments (not necessarily accurate any more):

;314 \pretolerance=100

315 \tolerance=200 % INITEX sets this to 10000
316 \hbadness=1000

317 \vbadness=1000

;3:z \linepenalty=10

;19 \hyphenpenalty=50

220 \exhyphenpenalty=50

21 \binoppenalty=700

322 \relpenalty=500

223 \clubpenalty=150

224 \widowpenalty=150

325 \displaywidowpenalty=50
226 \brokenpenalty=100

27 \predisplaypenalty=10000

\postdisplaypenalty=0

\interlinepenalty=0

\floatingpenalty=0, set during \insert
\outputpenalty=0, set before TeX enters \output

s \doublehyphendemerits=10000
20 \finalhyphendemerits=5000
530 \adjdemerits=10000

\looseness=0, cleared by TeX after each paragraph
\pausing=0

\holdinginserts=0

\tracingonline=0

\tracingmacros=0

\tracingstats=0

\tracingparagraphs=0

\tracingpages=0

\tracingoutput=0

;31 \tracinglostchars=1

\tracingcommands=0
\tracingrestores=0
\language=0

;32 \uchyph=1

\lefthyphenmin=2 \righthyphenmin=3 set below

\globaldefs=0

\maxdeadcycles=25 % INITEX does this

\hangafter=1 % INITEX does this, also TeX after each paragraph
\fam=0

\mag=1000 % INITEX does this

\escapechar="\\ 7 INITEX does this

333 \defaulthyphenchar=‘\-
331 \defaultskewchar=-1

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 24

\endlinechar=‘\""M Y% INITEX does this
\newlinechar=-1 \LaTeX\ sets this in ltdefns.dtx.

333 \delimiterfactor=901

\time=now % TeX does this at beginning of job
\day=now % TeX does this at beginning of job

\month=now % TeX does this at beginning of job
\year=now % TeX does this at beginning of job

End of historical BTEX 2.09 comments.
In BTEX we don’t want box information in the transcript unless we do a full tracing.

336 \showboxbreadth=-1
337 \showboxdepth=-1
333 \errorcontextlines=-1

330 \hfuzz=0.1pt

sa0 \vfuzz=0.1pt

31 \overfullrule=5pt

> \maxdepth=4pt

243 \splitmaxdepth=\maxdimen
324 \boxmaxdepth=\maxdimen

@

Historical BTEX 2.09 comments (not necessarily accurate any more):
\lineskiplimit=0pt, changed by \normalbaselines

s \delimitershortfall=5pt
a6 \nulldelimiterspace=1.2pt
27 \scriptspace=0.5pt

\mathsurround=0pt

\predisplaysize=0pt, set before TeX enters $$
\displaywidth=0pt, set before TeX enters $$
\displayindent=0pt, set before TeX enters $$

25 \parindent=20pt

\hangindent=0pt, zeroed by TeX after each paragraph
\hoffset=0pt
\voffset=0pt

\baselineskip=0pt, changed by \normalbaselines
\lineskip=0pt, changed by \normalbaselines

a0 \parskip=Opt plus 1pt

;50 \abovedisplayskip=12pt plus 3pt minus 9pt

351 \abovedisplayshortskip=0Opt plus 3pt

352 \belowdisplayskip=12pt plus 3pt minus 9pt

553 \belowdisplayshortskip=7pt plus 3pt minus 4pt

\leftskip=0pt
\rightskip=0pt

554 \topskip=10pt
355 \splittopskip=10pt

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 25

\tabskip=0pt
\spaceskip=0pt
\xspaceskip=0pt

356 \parfillskip=Opt plus 1fil

End of historical BTEX 2.09 comments.

\normalbaselineskip We also define special registers that function like parameters:

\normallineskip .;; \newskip\normalbaselineskip \normalbaselineskip=12pt
\normallineskiplimit 5 \newskip\normallineskip \normallineskip=1pt
550 \newdimen\normallineskiplimit \normallineskiplimit=0pt

(End definition for \normalbaselineskip, \normallineskip, and \normallineskiplimit. These func-
tions are documented on page ?77.)

\interfootlinepenalty

;0 \newcount\interfootnotelinepenalty \interfootnotelinepenalty=100

(End definition for \interfootlinepenalty. This function is documented on page 77.)
Definitions for preloaded fonts

\magstephalf

\magstep ., \def\magstephalf{1095 }
se2 \def\magstep#1{\ifcase#1 \@m\or 1200\or 1440\or 1728\or
363 2074\or 2488\fi\relax}

(End definition for \magstephalf and \magstep. These functions are documented on page ?7.)
Macros for setting ordinary text

\frenchspacing

\nonfrenchspacing ., \def\frenchspacing{\sfcode‘\.\@n \sfcode‘\?\0m \sfcode‘\!\Cm
s65 \sfcode‘\:\@m \sfcode‘\;\@m \sfcode‘\,\@m}
s66 \def\nonfrenchspacing{\sfcode ‘\.3000\sfcode ‘\73000\sfcode ‘\!3000%
367 \sfcode‘\:2000\sfcode‘\;1500\sfcode‘\,1250 }

(End definition for \frenchspacing and \nonfrenchspacing. These functions are documented on page
?7.)

\normalbaselines

s6s \def\normalbaselines{\lineskip\normallineskip
50 \baselineskip\normalbaselineskip \lineskiplimit\normallineskiplimit}

(End definition for \normalbaselines. This function is documented on page 77?.)

\M Save a bit of space by using \let here.

\I 5 \def\""M{\ } % control <return> = control <space>
571 \1et\""I\""M % same for <tab>

(End definition for \M and \I. These functions are documented on page 77.)

\1q
\rq s \def\lq{‘}
373 \def\rq{’}

(End definition for \1q and \rq. These functions are documented on page ?77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 26

\lbrack
\rbrack

\aa
\AA

\endgraf
\endline

\space

\empty

\null

\bgroup
\egroup

\obeylines
\obeyspaces

s \def\lbrack{[}
375 \def\rbrack{]}

(End definition for \1brack and \rbrack. These functions are documented on page 77.)

These are not from plain.tex but they are similar to other commands found here and
nowhere else, being alternate input forms for characters.

;76 \def \aa {\r a}
377 \def \AA {\r A}

(End definition for \aa and \AA. These functions are documented on page 77.)

sz \let\endgraf=\par
379 \let\endline=\cr

(End definition for \endgraf and \endline. These functions are documented on page 77.)

;50 \def\space{ }

(End definition for \space. This function is documented on page 77.)

This probably ought to go altogether, but let it to the IXTEX version to save space.
;61 \let\empty\@empty

(End definition for \empty. This function is documented on page 77.)

32 \def\null{\hbox{}}

(End definition for \null. This function is documented on page 77.)

563 \let\bgroup={
;a0 \let\egroup=}

(End definition for \bgroup and \egroup. These functions are documented on page 77.)

In \obeylines, we say \let”"M=\par instead of \def~~M{\par} since this allows, for
example, \let\par=\cr \obeylines \halign{...

35 {\catcode‘\""M=\active 7, these lines must end with %

;6 \gdef\obeylines{\catcode‘\""M\active \let~~M\parl/

sz \global\let™"M\par} % this is in case ~"M appears in a \write

;s \def\obeyspaces{\catcode‘\ \active}

;0 {\obeyspaces\global\let =\space}

(End definition for \obeylines and \obeyspaces. These functions are documented on page 77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 27

\loop
\iterate
\repeat

\nointerlineskip
\offinterlineskip

\vglue
\hglue

\slash

\break
\nobreak
\allowbreak

\filbreak
\goodbreak

We use Kabelschacht’s method of doing loops, see TUB 842 (1987). (unless that breaks
something :-). It turned out to need an extra \relax: see pr/642 (\loop could do one
iteration too much in certain cases).

;00 \long\def \loop #1\repeat{y

301 \def\iterate{#1\relax J, Extra \relax

392 \expandafter\iterate\fi

393 }%

39 \iterate

395 \let\iterate\relax

396 }

This setting of \repeat is needed to make \loop...\if...\repeat skippable within
another \if....

307 \let\repeat=\fi

(End definition for \loop, \iterate, and \repeat. These functions are documented on page ?7.)

MTEX defines \smallskip, etc. in 1tspace.dtx.

0¢ \def\nointerlineskip{\prevdepth-\@m\p@}
300 \def\offinterlineskip{\baselineskip-\@m\p@
200 \lineskip\z@ \lineskiplimit\maxdimen}

(End definition for \nointerlineskip and \offinterlineskip. These functions are documented on page
7))

201 \def\vglue{\afterassignment\vgl@\skip@=}

202 \def\vgl@{\par \dimen@\prevdepth \hrule \Gheight\z@

203 \nobreak\vskip\skip@ \prevdepth\dimen@}

204 \def\hglue{\afterassignment\hgl@\skip@=}

205 \def\hgl@{\leavevmode \count@\spacefactor \vrule \Q@width\z@
206 \nobreak\hskip\skip@ \spacefactor\count@}

(End definition for \vglue and \hglue. These functions are documented on page ?7.)

TEX defines ~ in 1tdefns.dtx.

This generates a / acting a bit like - but still allows hyphenation in the word part
preceding it (but not after).

207 \def\slash{/\penalty\exhyphenpenalty}

(End definition for \slash. This function is documented on page 77.)

208 \def\break{\penalty-\@M}
200 \def\nobreak{\penalty \@M}
210 \def\allowbreak{\penalty \z@}

(End definition for \break, \nobreak, and \allowbreak. These functions are documented on page 77.)

211 \def\filbreak{\par\vfil\penalty-200\vfilneg}
212 \def\goodbreak{\par\penalty-500 }

(End definition for \filbreak and \goodbreak. These functions are documented on page ?7.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 28

\eject Define \eject as in plain TEX but define \supereject only in the compatibility file.
213 \def\eject{\par\break}

(End definition for \eject. This function is documented on page 77.)

\removelastskip
214 \def\removelastskip{\ifdim\lastskip=\z@\else\vskip-\lastskip\fi}

(End definition for \removelastskip. This function is documented on page 77.)

\smallbreak

\medbreak ,;; \def\smallbreak{\par\ifdim\lastskip<\smallskipamount
\bigbreak .; \removelastskip\penalty-50\smallskip\fi}

217 \def\medbreak{\par\ifdim\lastskip<\medskipamount

25 \removelastskip\penalty-100\medskip\fi}

210 \def\bigbreak{\par\ifdim\lastskip<\bigskipamount

20 \removelastskip\penalty-200\bigskip\fi}

(End definition for \smallbreak, \medbreak, and \bigbreak. These functions are documented on page
?7.)

\m@th
21 \def\m@th{\mathsurround\z@}

(End definition for \m@th. This function is documented on page 77.)

\underbar Due to KTEX’s redefinition of \underline plain TEX’s \underbar can be done in a
simpler fashion (but do we need it at all?).

22 \def\underbar#1{\underline{\sbox\tw@{#1}\dp\tw@\z@\box\tw@}}

(End definition for \underbar. This function is documented on page ?77.)

\strutbox I4TEX sets \strutbox in \set@fontsize.
\strut ., \newbox\strutbox
24 \def\strut{\relax\ifmmode\copy\strutbox\else\unhcopy\strutbox\fi}

(End definition for \strutbox and \strut. These functions are documented on page 77.)

\hidewidth For alignment entries that can stick out.
25 \def\hidewidth{\hskip\hideskip}

(End definition for \hidewidth. This function is documented on page ?7.)

\narrower

26 \def\narrower{),
27 \advance\leftskip\parindent
28 \advance\rightskip\parindent}

(End definition for \narrower. This function is documented on page 77.)
ITEX defines \ae and similar commands elsewhere.

20 \chardef\%=\%
10 \chardef\&=‘\&
231 \chardef\#=‘\#

Most text commands are actually encoding specific and therefore defined later, so
commented out or removed from this file.

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 29

\leavevmode

\mathhexbox

\ialign

\oalign
\o@lign
\ooalign

\sheft

\1tx@sheft

\hrulefill
\dotfill

begins a paragraph, if necessary
1322 \def\leavevmode{\unhbox\voidb@x}

(End definition for \leavevmode. This function is documented on page ?7.)

133 \def\mathhexbox#1#2#3{\mbox{$\m@th \mathchar"#1#2#3$}}

(End definition for \mathhexbox. This function is documented on page ?7.)

23 \def\ialign{\everycr{}\tabskip\z@skip\halign} 7 initialized \halign

(End definition for \ialign. This function is documented on page 77.)

235 \def\oalign#1{\leavevmode\vtop{\baselineskip\z@skip \lineskip.25ex
w6 \ialign{##\crcr#i\crcr}}}

237 \def\o@lign{\lineskiplimit\z@ \oalign}

235 \def\ooalign{\lineskiplimit-\maxdimen \oalign}

(End definition for \oalign, \o@lign, and \ooalign. These functions are documented on page 77.)

The definition of this macro in plain.tex was improved in about 1997; but as a result its
usage was changed and its new definition is not appropriate for KTEX.

Since the version given here has been in use by IXTEX for many years it does not
seem prudent to remove it now. As far as we can tell it has only been used to define \b
and \d but this cannot be certain.

230 \def\sh@ft#1{\dimen®@.00#1lex\multiply\dimen@\fontdimenl\font
20 \kern-.0156\dimen@} J, compensate for slant in lowered accents

(End definition for \sheft. This function is documented on page 77.)

This is the ITEX version of the second incarnation of the plain macro \sh@ft, which
takes a dimension as its argument. It shifts a pseudo-accent horizontally by an amount
proportional to the product of its argument and the slant-per-point (fontdimen 1).

1 \def\1ltx@sheft #1{%

442 \dimen@ #1%

23 \kern \strip@pt

a4 \fontdimeni\font \dimen@

25 } % kern by #1 times the current slant

(End definition for \1tx@sh@ft. This function is documented on page ?7.)

ETEX change: the text commands such as \d, \b, \c, \copyright, \TeX are now
defined elsewhere.

TEX change: Make \t work in a moving argument. Now defined elsewhere.

IXTEX change: \kern\z@ added to end of \hrulefill and \dotfill to make them work
in ‘tabular’ and ‘array’ environments. (Change made 24 July 1987). KTgX change:
\leavevmode added at beginning of \dotfill and \hrulefill so that they work as
expected in vertical mode.

16 \def\hrulefill{\leavevmode\leaders\hrule\hfill\kern\z@}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 30

\showoverfull

\showoutput
\loggingoutput

\tracingall
\loggingall

The box in \dotfill originally contained (in plain.tex):

\mkern 1.5mu .\mkern 1.5mu;

the width of .44em differs from this by .04pt which is probably an acceptable difference
within leaders.

w7 \def\dot£ill{%

25 \leavevmode

29 \cleaders \hb@xt@ .44em{\hss.\hss}\hfill

w0 \kern\z@}

(End definition for \hrulefill and \dotfill. These functions are documented on page ?7.)
INITEX sets \sfcode x=1000 for all x, except that \sfcode‘X=999 for uppercase
letters. The following changes are needed:

151 \sfcode‘\)=0 \sfcode‘\’=0 \sfcode‘\]=0

The \nonfrenchspacing macro will make further changes to \sfcode values.
Definitions related to output
\magnification doesn’t work in IATEX.

def\magnification{\afterassignment\m@g\count@}
def\m@g{\mag\count®@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

The following commands are used in debugging:

252 \def\showoverfull{\tracingonline\@ne}

(End definition for \showoverfull. This function is documented on page 77.)

.53 \gdef\loggingoutput{\tracingoutput\@ne

454 \showboxbreadth\maxdimen\showboxdepth\maxdimen\errorstopmode}
255 \gdef\showoutput{\loggingoutput\showoverfull}

6 {/2ekernel)

(End definition for \showoutput and \loggingoutput. These functions are documented on page 77.)

w57 (latexrelease)\IncludeInRelease{2015/01/01}{\loggingall}{etex tracingl}y,
s (*2ekernel | latexrelease)

250 \ifx\tracingscantokens\@undefined
«0 \gdef\loggingall{Y

1 \tracingstats\tw@

s> \tracingpages\@ne

23 \tracinglostchars\@ne

w64 \tracingparagraphs\@ne

25 \errorcontextlines\maxdimen

w6 \loggingoutput

27 \tracingmacros\tw@

25 \tracingcommands\tw@

w0 \tracingrestores\@ne

wwo Yh

a1 \else

a2 \gdef\loggingall{Y

w3 \tracingstats\tw@

s \tracingpages\@ne

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 31

275 \tracinglostchars\tw@
w76 \tracingparagraphs\@ne
477 \tracinggroups\@ne

a5 \tracingifs\@ne

279 \tracingscantokens\@ne
20 \tracingnesting\@ne

151 \errorcontextlines\maxdimen
2 \loggingoutput
23 \tracingmacros\tw@

24 \tracingcommands\thr@@

25 \tracingrestores\G@ne

26 \tracingassigns\@ne

w57

458 \fi

20 \gdef\tracingall{\showoverfull\loggingall}

w0 (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}{\loggingall}{etex tracing}¥
(latexrelease)\gdef\loggingall{\tracingcommands\tw@\tracingstats\tw@

sw0s (latexrelease) \tracingpages\@ne\tracinglostchars\@ne
(latexrelease) \tracingmacros\tw@\tracingparagraphs\@ne\tracingrestores\@ne
(latexrelease) \errorcontextlines\maxdimen\loggingoutput}

(latexrelease) \gdef\tracingall{\loggingall\showoverfull}

s (latexrelease)\EndIncludeInRelease

496

497

(End definition for \tracingall and \loggingall. These functions are documented on page 77.)

\tracingnone

\hideoutput . (latexrelease)\IncludeInRelease{2015/01/01}{\tracingnone}’,
so0 {latexrelease) {turn off etex tracingl}’%
sor (*2ekernel | latexrelease)
soo \ifx\tracingscantokens\@undefined
s03 \def\tracingnone{J,

500 \tracingonline\z@

55 \tracingcommands\z@
506 \showboxdepth\m@ne

so7 \showboxbreadth\m@ne
ss \tracingoutput\z@

s0 \errorcontextlines\m@ne
s.0 \tracingrestores\z@
st \tracingparagraphs\z@
sz \tracingmacros\z@

513 \tracinglostchars\@ne
s \tracingpages\z@

si5 \tracingstats\z@

si6 1h

517 \else

si5 \def\tracingnone{

s.9 \tracingassigns\z@
s20 \tracingrestores\z@
521 \tracingonline\z@

52 \tracingcommands\z@
523 \showboxdepth\m@ne
s22 \showboxbreadth\m@ne

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

s \tracingoutput\z@

526 \errorcontextlines\m@ne
527 \tracingnesting\z@

s \tracingscantokens\z@
50 \tracingifs\z@

s \tracinggroups\z@

s31 \tracingparagraphs\z@
522 \tracingmacros\z@

533 \tracinglostchars\@ne
s \tracingpages\z@

535 \tracingstats\z@
A

s37 \fi

538 \def \hideoutput{%

s \tracingoutput\z@

ss0 \showboxbreadth\m@ne
ss0 - \showboxdepth\m@ne
se2 \tracingonline\m@ne

543 }%

/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}{\tracingnone}
latexrelease) {turn off etex tracingl¥
latexrelease)\let\tracingnone\@undefined
)
)

544

545

546

547

548

o~~~ o~~~

latexrelease)\let\hideoutput\@undefined
o (latexrelease)\EndIncludeInRelease

549

a

5!

(End definition for \tracingnone and \hideoutput. These functions are documented on page ?7.)
I¥TEX change: \showhyphens Defined later.
Punctuation affects the spacing.

551 (*2ekerne|)

ss2 \nonfrenchspacing
553 {/2ekernel)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

\fmtname

\fmtversion
\latexreleaseversion
\patch@level

\development@branch@name

File ¢
Itvers.dtx

1 Version Identification

First we identify the date and version number of this release of ITEX, and set \everyjob
so that it is printed at the start of every ITEX run.

A \patch@level of O or higher denotes an official public release. A negative value
indicates a candidate release that is not distributed.

If we put code updates into the kernel that are supposed to go into the next release
we set the \patch@level to -1 and the \fmtversion / \latexreleaseversion to the
dated of the next release (guessed, the real value is not so important and will get corrected
when we make the release official).

If the \patch@level is already at -1 we do nothing here and use the \fmtversion
date for any new\IncludeInRelease line when we add further code.

Finally, if we do make a public release we either just set the \patch@level to zero
(if our initial guess was good) or we also change the date and then have to additionally
change to that date on all the \IncludeInRelease statements that used the “guessed”
date.

1 (*2ekernel)

> \def\fmtname{LaTeX2e}

s \edef\fmtversion

4+ (/2ekernel)

5 (latexrelease)\edef\latexreleaseversion
s (*2ekernel | latexrelease)

7 {2020-10-01}

s (/2ekernel | latexrelease)

o (*2ekernel)

10 \def\patch@level{-8}

For more fine grain control there is the possibility to name the current development
branch. This is only used when the \patch@level is negative (i.e., a pre-release for-
mat) and is intended to help us internally when we locally install a format out of some
development branch.

11 \edef\development@branch@name{develop \the\year-\the\month-\the\day}

(End definition for \fmtname and others. These functions are documented on page 77.)

Check that the format being made is not too old. The error message complains
about ‘more than 5 years’ but in fact the error is not triggered until 65 months.

This code is currently not activated as we don’t know if we already got to the last
official 2e version (due to staff shortage or due to a successor (think positive:-)).

12 \iffalse

13 \def\reserved@a#1/#2/#3\@nil{}

12 \count@\year

15 \advance\count@-#1\relax

16 \multiply\count@ by 12\relax

17 \advance\count@\month

12 \advance\count@-#2\relax}

10 \expandafter\reserved@a\fmtversion\@nil

File c: 1tvers.dtx Date: 2020/03/02 Version vl.le 34

\count@ is now the age of this file in months. Take a generous definition of ‘year’ so this
message is not generated too often.

20 \ifnum\count®@>65

2 \typeout{~"J%

e N N N N N N RN AN /A
23 ! You are attempting to make a LaTeX format from a source file™~J}

2 ! That is more than five years old.”"J%

s 177J%

2% ! If you enter <return> to scroll past this message then the format~"J%
o7 ! will be built, but please consider obtaining newer source files™"J}
26 | before continuing to build LaTeX. "J%

N N N N NN RN A
0

31 \errhelp{To avoid this error message, obtain new LaTeX sources.}

32 \errmessage{LaTeX source files more than 5 years old!'}

313 \fi

s \let\reserved@a\relax

35 \fi

36 \ifnumO\ifnum\patch@level=0 \ifx\development@branch@name\@empty 1\fi\fi>0 %
37 \everyjob\expandafter{\the\everyjob

38 \typeout{\fmtname \space<\fmtversion>}}

39 \immediate

40 \writel16{\fmtname \space<\fmtversion>}

21 \else\ifnum\patch@level>0

2 \everyjob\expandafter{\the\everyjob

a3 \typeout{\fmtname \space<\fmtversion> patch level \patch@levell}}
44 \immediate

45 \writel6{\fmtname \space<\fmtversion> patch level \patch@level}

% \else

47 \everyjob\expandafter{\the\everyjob

48 \typeout{\fmtname \space<\fmtversion> pre-release-\number-\patch@level\space
49 \ifx\development@branch@name\@undefined \else

50 \ifx\development@branch@name\@empty \else

51 \space (\development@branch@name\space branch)?

52 \fi

53 \fi

54 }}

55 \immediate

56 \writel6{\fmtname \space<\fmtversion> pre-release-\number-\patch@level\space
57 \ifx\development@branch@name\@undefined \else

58 \ifx\development@branch@name\@empty \else

59 \space (\development@branch@name\space branch)?

60 \fi

61 \fi

62 }

63 \fi

64 \fi

os {/2ekernel)

\IncludeInRelease

s (2ekernel)\let\@currname\Q@empty

57 (*2ekernel | latexrelease)

File c: 1tvers.dtx Date: 2020/03/02 Version v1.le 35

¢ (latexrelease) \newif\if@includeinrelease
oo (latexrelease) \@includeinreleasefalse

o

70 \def\IncludeInRelease#1{Y%

71 \if@includeinrelease

7 \PackageError{latexrelease}{mis-matched IncludeInReleasel/,

73 {There is an \string\EndIncludeRelease\space missing}}
74 \@includeinreleasefalse

75 \fi

7 \kernel@ifnextchar[

77 {\@IncludeInRelease{#1}}

7 {\@IncludeInRelease{#1} [#1]}}

If a specific date has not been specified in latexrelease use ‘#1°
79 \def\@IncludeInRelease#1 [#2]{\@IncludeInRele@se{#2}}

\def\@IncludeInRele@se#1#2#3{%
81 \toks@{ [#1] #31}/
&2 \expandafter\ifx\csname\string#2+\Q@currname+IIR\endcsname\relax

o
S

If we roll back and the first patch already match then applying that is actually reapplying
what is already in the format, i.e., it is useless and possibly allocating new registers.
However, it makes the logic simpler so this is the way it is for now. In theory we could
always jump overthe first patch because that is only really needed for rolling forward. So
maybe one day ...

83 \ifnum\expandafter\@parse@version#1//00\@nil

84 >\expandafter\@parse@version\fmtversion//00\@nil

8 \GenericInfo{}{Skipping: \the\toks@}%

86 \expandafter\expandafter\expandafter\@gobble@IncludeInRelease
87 \else

88 \GenericInfo{}{Applying: \the\toks@}’

89 \@includeinreleasetrue

9 \expandafter\let\csname\string#2+\@currname+IIR\endcsname\Q@empty
91 \fi

o2 \else

93 \GenericInfo{}{Already applied: \the\toks@}}

% \expandafter\@gobble@IncludeInRelease

95 \fi

o6

o7 \def\EndIncludeInRelease{’,

s \if@includeinrelease

99 \@includeinreleasefalse

w0 \else

01 \PackageError{latexrelease}{mis-matched EndIncludeInRelease}{}%
102 \fi}

103 \long\def\@gobble@IncludeInRelease#1\EndIncludeInRelease{,

104 \@includeinreleasefalse

105 \@check@IncludeInRelease#1\IncludeInRelease\@check@IncludeInRelease
106 \@end@check@IncludeInRelease}

107 \long\def\@check@IncludeInRelease#1\IncludeInRelease

108 #2#3\@end@check@IncludeInRelease{’,

109 \ifx\@check@IncludeInRelease#2\else

110 \PackageError{latexrelease}{skipped IncludeInRelease for tag \string#2}{}%
111 \fi}

File c: 1tvers.dtx Date: 2020/03/02 Version v1.le 36

112 (/2ekernel | latexrelease)

(End definition for \IncludeInRelease. This function is documented on page 77.)

File ¢: 1tvers.dtx Date: 2020/03/02 Version v1.le

37

File d
Itluatex.dtx

1 Overview

LuaTgX adds a number of engine-specific functions to TEX. Several of these require set
up that is best done in the kernel or need related support functions. This file provides
basic support for LuaTEX at the ITEX 2¢ kernel level plus as a loadable file which can
be used with plain TEX and IATEX.

This file contains code for both TEX (to be stored as part of the format) and Lua
(to be loaded at the start of each job). In the Lua code, the kernel uses the namespace
luatexbase.

The following \count registers are used here for register allocation:

\e@alloc@attribute@count Attributes (default 258)

\e@alloc@ccodetable@count Category code tables (default 259)

\e@alloc@luafunction@count Lua functions (default 260)

\e@alloc@whatsit@count User whatsits (default 261)

\e@alloc@bytecode@count Lua bytecodes (default 262)

\e@alloc@luachunk@count Lua chunks (default 263)

\newattribute

\newcatcodetable

\newluafunction

\newwhatsit

\newluabytecode

(\count 256 is wused for \newmarks allocation and \count 257 is used for
\newXeTeXintercharclass with XeTgX, with code defined in 1tfinal.dtx). With any
TEX 2¢ kernel from 2015 onward these registers are part of the block in the extended
area reserved by the kernel (prior to 2015 the IATEX 2¢ kernel did not provide any func-
tionality for the extended allocation area).

2 Core TEX functionality

The commands defined here are defined for possible inclusion in a future IXTEX format,
however also extracted to the file 1tluatex.tex which may be used with older ETEX
formats, and with plain TEX.

\newattribute{(attribute)}

Defines a named \attribute, indexed from 1 (i.e. \attributeO is never defined). At-
tributes initially have the marker value -"7FFFFFFF (‘unset’) set by the engine.
\newcatcodetable{(catcodetable)}

Defines a named \catcodetable, indexed from 1 (\catcodetable0 is never assigned).
A new catcode table will be populated with exactly those values assigned by IniTEX (as
described in the LuaTEX manual).

\newluafunction{(function)}

Defines a named \luafunction, indexed from 1. (Lua indexes tables from 1 so
\luafunctionO is not available).

\newwhatsit{(whatsit)}

Defines a custom \whatsit, indexed from 1.

\newluabytecode{(bytecode)}

File d: 1tluatex.dtx 38

Allocates a number for Lua bytecode register, indexed from 1.
\newluachunkname newluachunkname{(chunkname)}
Allocates a number for Lua chunk register, indexed from 1. Also enters the name of the
regiser (without backslash) into the lua.name table to be used in stack traces.
\catcodetable@initex Predefined category code tables with the obvious assignments. Note that the latex and
\catcodetable@string atletter tables set the full Unicode range to the codes predefined by the kernel.
\catcodetable@latex \setattribute{(attribute)}{(value)}
\catcodetable@atletter \unsetattribute{(attribute)}
\setattribute Set and unset attributes in a manner analogous to \setlength. Note that attributes
\unsetattribute take a marker value when unset so this operation is distinct from setting the value to
Zero.

3 Plain TEgX interface

The Itluatex interface may be used with plain TEX using \input{1ltluatex}. This inputs
ltluatex.tex which inputs etex.src (or etex.sty if used with BTEX) if it is not
already input, and then defines some internal commands to allow the Itluatex interface
to be defined.

The luatexbase package interface may also be used in plain TEX, as before, by in-
putting the package \input luatexbase.sty. The new version of luatexbase is based
on this Itluatex code but implements a compatibility layer providing the interface of the
original package.

4 Lua functionality

4.1 Allocators in Lua

new_attribute luatexbase.new_attribute ({attribute))
Returns an allocation number for the (attribute), indexed from 1. The attribute will
be initialised with the marker value -"7FFFFFFF (‘unset’). The attribute allocation se-
quence is shared with the TEX code but this function does not define a token using
\attributedef. The attribute name is recorded in the attributes table. A metatable
is provided so that the table syntax can be used consistently for attributes declared in
TEX or Lua.
new_whatsit luatexbase.new_whatsit ({whatsit))
Returns an allocation number for the custom (whatsit), indexed from 1.
new_bytecode luatexbase.new_bytecode ({bytecode))
Returns an allocation number for a bytecode register, indexed from 1. The optional
(name) argument is just used for logging.
new_chunkname luatexbase.new_chunkname ({chunkname))
Returns an allocation number for a Lua chunk name for use with \directlua and
\latelua, indexed from 1. The number is returned and also (name) argument is added
to the lua.name array at that index.
new_luafunction luatexbase.new_luafunction({functionname))

Returns an allocation number for a lua function for use with \luafunction, \lateluafunction,
and \luadef, indexed from 1. The optional (functionname) argument is just used for
logging.

These functions all require access to a named TEX count register to manage
their allocations. The standard names are those defined above for access from TgX,

File d: 1tluatex.dtx 39

registernumber

e.g. \e@Qalloc@attribute@count, but these can be adjusted by defining the variable
(type)_count_name before loading 1tluatex.lua, for example

local attribute_count_name = "attributetracker"
require("ltluatex")

would use a TEX \count (\countdef’d token) called attributetracker in place of
\e@alloc@attribute@count.

4.2 Lua access to TEX register numbers

luatexbase.registernumer ((name))
Sometimes (notably in the case of Lua attributes) it is necessary to access a regis-
ter by number that has been allocated by TEX. This package provides a function
to look up the relevant number using LuaTgX’s internal tables. After for example
\newattribute\myattrib, \myattrib would be defined by (say) \myattrib=\attributel15
luatexbase.registernumer ("myattrib") would then return the register number, 15 in
this case. If the string passed as argument does not correspond to a token defined by
\attributedef, \countdef or similar commands, the Lua value false is returned.

As an example, consider the input:

\newcommand\test [1]{%

\typeout{#1: \expandafter\meaning\csname#1\endcsname~"J
\space\space\space\space
\directlua{tex.write(luatexbase.registernumber ("#1") or "bad input")l}/
3

\test{undefinedrubbish}

\test{space}

\test{hbox}

\test{eMM}

\test{@tempdima}
\test{@tempdimb}

\test{strutbox}
\test{sixt@@n}
\attrbutedef\myattr=12

\myattr=200
\test{myattr}

If the demonstration code is processed with Lual&TEX then the following would be
produced in the log and terminal output.

undefinedrubbish: \relax
bad input

File d: 1tluatex.dtx 40

Space: macro: ->

bad input

hbox: \hbox
bad input

@MM: \mathchar"4E20
20000

Qtempdima: \dimenl4
14

Qtempdimb: \dimenl5
15

strutbox: \char"B
11

sixt@@n: \char"10
16

myattr: \attributel2
12

Notice how undefined commands, or commands unrelated to registers do not produce
an error, just return false and so print bad input here. Note also that commands
defined by \newbox work and return the number of the box register even though the
actual command holding this number is a \chardef defined token (there is no \boxdef).

4.3 Module utilities

provides_module luatexbase.provides_module ({info))

This function is used by modules to identify themselves; the info should be a table

containing information about the module. The required field name must contain the

name of the module. It is recommended to provide a field date in the usual ITEX

format yyyy/mm/dd. Optional fields version (a string) and description may be used if

present. This information will be recorded in the log. Other fields are ignored.

module_info luatexbase.module_info((module), (text))
module_warning luatexbase.module_warning({module), (text))
module_error luatexbase.module_error ({module), (text))

These functions are similar to XTEX’s \PackageError, \PackageWarning and \PackageInfo

in the way they format the output. No automatic line breaking is done, you may still use

\n as usual for that, and the name of the package will be prepended to each output line.
Note that luatexbase.module_error raises an actual Lua error with error(),

which currently means a call stack will be dumped. While this may not look pretty,

at least it provides useful information for tracking the error down.

4.4 Callback management

add_to_callback luatexbase.add_to_callback({callback), (function), (description)) Registers the (function)

into the (callback) with a textual (description) of the function. Functions are inserted
into the callback in the order loaded.

remove_from_callback luatexbase.remove_from_callback({callback), (description)) Removes the callback
function with (description) from the (callback). The removed function and its description
are returned as the results of this function.

in_callback luatexbase.in_callback({callback), (description)) Checks if the (description) matches

one of the functions added to the list for the (callback), returning a boolean value.

File d: 1tluatex.dtx 41

disable_callback

callback_descriptions

create_callback

call_callback

luatexbase.disable_callback({callback)) Sets the (callback) to false as described in
the LuaTEX manual for the underlying callback.register built-in. Callbacks will only
be set to false (and thus be skipped entirely) if there are no functions registered using
the callback.

A list of the descriptions of functions registered to the specified callback is returned. {}
is returned if there are no functions registered.

luatexbase.create_callback ({name),metatype,(default)) Defines a user defined call-
back. The last argument is a default function or false.
luatexbase.call_callback((name),...) Calls a user defined callback with the supplied
arguments.

5 Implementation

1 (*2ekernel | tex | latexrelease)
> (2ekernel | latexrelease) \ifx\directlua\Qundefined\else

5.1 Minimum LuaTgX version

LuaTgX has changed a lot over time. In the kernel support for ancient versions is not
provided: trying to build a format with a very old binary therefore gives some information
in the log and loading stops. The cut-off selected here relates to the tree-searching
behaviour of require(): from version 0.60, LuaTgX will correctly find Lua files in the
texmf tree without ‘help’.

s (latexrelease) \IncludeInRelease{2015/10/01}

1+ (latexrelease) {\newluafunction}{LuaTeX}}

5 \ifnum\luatexversion<60 Y
6 \WLog{sokskokokskeskskokokshokokske s skok ke sk ok ks sk ko ek ok ke e kok

7 \wlog{* LuaTeX version too old for ltluatex support *}
s \Wlog{rsrsrsrsrsrskorskokskskokskokokkokok ook kot koot kok ko skokkokkokokkokokokokokok 3

o \expandafter\endinput
0 \fi
Two simple BTEX macros from ltdefns.dtx have to be defined here because lt-
defns.dtx is not loaded yet when ltluatex.dtx is executed.

11 \long\def\@gobble#1{}
1> \long\def\@firstofone#1{#1}

5.2 Older BTEX /Plain TEX setup
13 (*tex)

Older BTEX formats don’t have the primitives with ‘native’ names: sort that out. If
they already exist this will still be safe.

12 \directlua{tex.enableprimitives("",tex.extraprimitives("luatex"))}
15 \ifx\e@alloc\@undefined
In pre-2014 KTEX, or plain TEX, load etex.{sty,src}.

16 \ifx\documentclass\@undefined
17 \ifx\loccount\@undefined

18 \input{etex.src}),
19 \fi
20 \catcode ‘\@=11 7,

21 \outer\expandafter\def\csname newfam\endcsname

File d: 1tluatex.dtx 42

\else
\RequirePackage{etex}
\expandafter\def\csname newfam\endcsname
{\alloc@8\fam\chardef\et@xmaxfam}
\expandafter\let\expandafter\new@mathgroup\csname newfam\endcsname

\fi

{\alloc@8\fam\chardef\et@xmaxfam}

5.2.1 Fixes to etex.src/etex.sty

These could and probably should be made directly in an update to etex.src which
already has some LuaTgX-specific code, but does not define the correct range for LuaTgX.
2015-07-13 higher range in luatex.

20 \edef \et@xmaxregs {\ifx\directlua\Qundefined 32768\else 65536\fi}

luatex /xetex also allow more math fam.
\edef \et@xmaxfam {\ifx\Umathcode\@undefined\sixt@@n\else\@cclvi\fi}

30

5.2.2

\count
\count
\count
\count
\count

; \count

\count

270=\et0xmaxregs
271=\et@xmaxregs
272=\et0@xmaxregs
273=\et@xmaxregs
274=\et@xmaxregs
275=\et0@xmaxregs
276=\et@xmaxregs

% locally allocates \count registers
ditto for \dimen registers

ditto for \skip registers

ditto for \muskip registers

ditto for \box registers

ditto for \toks registers

ditto for \marks classes

%
A
A
%
%
A

and 256 or 16 fam. (Done above due to plain/I¥TEX differences in ltluatex.)

; 7 \outer\def\newfam{\alloc@8\fam\chardef\et@xmaxfam}

End of proposed changes to etex.src

luatex specific settings

Switch to global cf luatex.sty to leave room for inserts not really needed for luatex but
possibly most compatible with existing use.

39

40

41

42

43

N

5

N

7

48

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

newcount \expandafter\expandafter\endcsname
globcount\endcsname
newdimen\expandafter\expandafter\endcsname
globdimen\endcsname
newskip\expandafter\expandafter\endcsname
globskip\endcsname
newbox\expandafter\expandafter\endcsname
globbox\endcsname

Define\e@alloc as in latex (the existing macros in etex.src hard to extend to
further register types as they assume specific 26x and 27x count range. For compatibility
the existing register allocation is not changed.

\chardef\e@alloc@top=65535
\let\e@alloc@chardef\chardef

\def\e@alloc#1#2#3#4#5#6{},
\global\advance#3\@ne
\e@ch@ck{#3}H{#4}{#5}#17,

\allocationnumber#3\relax
\global#2#6\allocationnumber
\wlog{\string#6=\string#1\the\allocationnumber}}},

File d: 1tluatex.dtx

43

\newattribute

\setattribute
\unsetattribute

\newcatcodetable

55 \gdef\e@ch@ck#1#2#3#4{,

56 \ifnum#i<#2\else

57 \ifnum#1=#2\relax

58 #1\@cclvi

59 \ifx\count#4\advance#1 10 \fi
60 \fi

61 \ifnum#1<#3\relax

62 \else

63 \errmessage{No room for a new \string#4}),
64 \fi

65 \fi}y)

Fix up allocations not to clash with etex.src.

¢ \expandafter\csname newcount\endcsname\e@alloc@attribute@count
o7 \expandafter\csname newcount\endcsname\e@alloc@ccodetable@count
s \expandafter\csname newcount\endcsname\e@alloc@luafunction@count
60 \expandafter\csname newcount\endcsname\e@alloc@whatsit@count

70 \expandafter\csname newcount\endcsname\e@alloc@bytecode@count

71 \expandafter\csname newcount\endcsname\e@alloc@luachunk@count

End of conditional setup for plain TEX / old TEX.
72 \fi

- (/tex)

5.3 Attributes

As is generally the case for the LuaTEX registers we start here from 1. Notably, some
code assumes that \attributeO is never used so this is important in this case.

72 \ifx\e@alloc@attribute@count\@undefined

75 \countdef\e@alloc@attribute@count=258

76 \e@alloc@attribute@count=\z@

77 \fi

7 \def\newattribute#1{}

79 \e@alloc\attribute\attributedef

80 \e@alloc@attribute@count\m@ne\e@alloc@top#1y

51 F

(End definition for \newattribute. This function is documented on page 77.)

Handy utilities.

e \def\setattribute#1#2{#1=\numexpr#2\relax}
s \def\unsetattribute#1{#1=-"7FFFFFFF\relax}

(End definition for \setattribute and \unsetattribute. These functions are documented on page 77.)

5.4 Category code tables

Category code tables are allocated with a limit half of that used by LuaTgX for everything
else. At the end of allocation there needs to be an initialisation step. Table 0 is already
taken (it’s the global one for current use) so the allocation starts at 1.

e \ifx\e@alloc@ccodetable@count\Qundefined

&5 \countdef\e@alloc@ccodetable@count=259

s \e@alloc@ccodetable@count=\z@

a7 \fi

File d: 1tluatex.dtx 44

\catcodetable@initex
\catcodetable@string
\catcodetable@latex
\catcodetable®@atletter

(End definition for \newcatcodetable. This function is documented on page 77.)

\def\newcatcodetable#1{}

}

\e@alloc\catcodetable\chardef
\e@alloc@ccodetable@count\m@ne{"8000}#1%
\initcatcodetable\allocationnumber

Save a small set of standard tables. The Unicode data is read here in using a parser sim-
plified from that in load-unicode-data: only the nature of letters needs to be detected.

96

97

98

99

100

102

103

105

106

107

109

110

3 \newcatcodetable\catcodetable@initex

\newcatcodetable\catcodetable@string
\begingroup

\def\setrangecatcode#1#2#3{%
\ifnum#1>#2 %
\expandafter\@gobble
\else
\expandafter\@firstofone
\fi
{4k
\catcode#1=#3 Y,
\expandafter\setrangecatcode\expandafter
{\number\numexpr#1 + 1\relax}{#2}{#3}
Y
}
\efirstofone{’
\catcodetable\catcodetable@initex
\catcode0=12 ¥
\catcodel3=12 Y
\catcode37=12 ¥
\setrangecatcode{65}{90}{12}},
\setrangecatcode{97}{122}{12}%
\catcode92=12 ¥
\catcodel27=12 7,
\savecatcodetable\catcodetable@string
\endgroup
Yh

\newcatcodetable\catcodetable@latex
\newcatcodetable\catcodetable@atletter
\begingroup

\def\parseunicodedatal#l;#2;#3;#4\relax{/,
\parseunicodedatall#1;#3;#2 First>\relax
o
\def\parseunicodedatalIl#1;#2;#3 First>#4\relax{%
\ifx\relax#4\relax
\expandafter\parseunicodedataIIl
\else
\expandafter\parseunicodedataIV
\fi
{#1}#2\relax/,
1A
\def\parseunicodedatalII#1#2#3\relax{’
\ifnum 0%
\if L#21\fi

File d: 1tluatex.dtx

45

\newluafunction

137 \if M#21\fi

138 >0 %

139 \catcode"#1=11 ¥

140 \fi

o Y

12 \def\parseunicodedataIV#1#2#3\relax{%

143 \read\unicoderead to \unicodedataline

144 \if L#2%

145 \countO="#1 7%

146 \expandafter\parseunicodedataV\unicodedataline\relax
147 \fi

148 YA

1o \def\parseunicodedataV#1;#2\relax{/

150 \loop

151 \unless\ifnum\count0>"#1 %

152 \catcode\count0=11 %

153 \advance\countO by 1 %

154 \repeat

155 Y%

156 \def\storedpar{\parl}’

157 \chardef\unicoderead=\numexpr\count16 + 1\relax

155 \openin\unicoderead=UnicodeData.txt %

159 \loop\unless\ifeof\unicoderead %

160 \read\unicoderead to \unicodedataline

161 \unless\ifx\unicodedataline\storedpar

162 \expandafter\parseunicodedataI\unicodedataline\relax
163 \fi

16« \repeat

165 \closein\unicoderead

166 \@firstofone{}

167 \catcode64=12 Y,

168 \savecatcodetable\catcodetable@latex

169 \catcode64=11 Y

170 \savecatcodetable\catcodetable@atletter
171 3

172 \endgroup

(End definition for \catcodetable@initex and others. These functions are documented on page 77.)

5.5 Named Lua functions

Much the same story for allocating LuaTEX functions except here they are just numbers
so they are allocated in the same way as boxes. Lua indexes from 1 so once again slot 0
is skipped.

73 \ifx\e@alloc@luafunction@count\@undefined

174 \countdef\e@alloc@luafunction@count=260

175 \e@alloc@luafunction@count=\z@

176 \fi

177 \def\newluafunction{%

172 \e@alloc\luafunction\e@alloc@chardef

179 \e@alloc@luafunction@count\m@ne\e@alloc@top
180 F

(End definition for \newluafunction. This function is documented on page 77.)

File d: 1tluatex.dtx 46

5.6 Custom whatsits

\newwhatsit These are only settable from Lua but for consistency are definable here.

181 \ifx\e@alloc@whatsit@count\@undefined

122 \countdef\e@alloc@whatsit@count=261

183 \e@alloc@whatsit@count=\z@

182 \fi

155 \def\newwhatsit#1{%

136 \e@alloc\whatsit\e@alloc@chardef

187 \e@alloc@whatsit@count\m@ne\e@alloc@top#17
188

(End definition for \newwhatsit. This function is documented on page 77?.)

5.7 Lua bytecode registers

\newluabytecode These are only settable from Lua but for consistency are definable here.

1.0 \ifx\e@alloc@bytecode@count\@undefined

1o \countdef\e@alloc@bytecode@count=262

191 \e@alloc@bytecode@count=\z@

10 \fi

103 \def\newluabytecode#1{J

192 \e@alloc\luabytecode\e@alloc@chardef

105 \e@alloc@bytecode@count\m@ne\e@alloc@top#17
196

(End definition for \newluabytecode. This function is documented on page 77.)

5.8 Lua chunk registers

\newluachunkname As for bytecode registers, but in addition we need to add a string to the lua.name table
to use in stack tracing. We use the name of the command passed to the allocator, with
no backslash.

107 \ifx\e@alloc@luachunk@count\@undefined
198 \countdef\e@alloc@luachunk@count=263
199 \e@alloc@luachunk@count=\z@

200 \fi

201 \def\newluachunkname#1{

200 \e@alloc\luachunk\e@alloc@chardef

203 \e@alloc@luachunk@count\m@ne\e@alloc@top#1y,

204 {\escapechar\m@ne

205 \directlua{lua.name[\the\allocationnumber]="\string#1"}}%
206 F

(End definition for \newluachunkname. This function is documented on page 77?.)

5.9 Lua loader

Lua code loaded in the format often has to to be loaded again at the beginning of every
job, so we define a helper whch allows us to avoid duplicated code:

207 \def\now@and@everyjob#1{/,
208 \everyjob\expandafter{\the\everyjob
209 #1Y%

File d: 1tluatex.dtx 47

20 Y
211 #1Y%

Load the Lua code at the start of every job. For the conversion of TEX into numbers
at the Lua side we need some known registers: for convenience we use a set of systematic
names, which means using a group around the Lua loader.

213 (2ekernel) \now@and@everyjob{),

22 \begingroup

215 \attributedef\attributezero=0 %
216 \chardef \charzero =0 %
Note name change required on older luatex, for hash table access.
217 \countdef \CountZero =0 %
218 \dimendef \dimenzero =0 %
219 \mathchardef \mathcharzero =0
220 \muskipdef \muskipzero =0 %
221 \skipdef \skipzero =0 %
22 \toksdef \tokszero =0 %
223 \directlua{require("ltluatex")}
224 \endgroup

2ekernel) }
latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{0000/00/00}

latexrelease {\newluafunction}{LuaTeX}}
latexrelease) \1let\e@alloc@attribute@count\@undefined
latexrelease) \1let \newattribute\Q@undefined

latexrelease) \let \setattribute\@undefined

latexrelease) \1let \unsetattribute\@undefined

latexrelease) \1et \e@alloc@ccodetable@count \@undefined
latexrelease) \1let \newcatcodetable\@undefined

latexrelease) \1let \catcodetable@initex\Qundefined
latexrelease) \let\catcodetable@string\@undefined

(

()
()
()
()
()
()
()
()
()
()
()

;7 (latexrelease) \let\catcodetable@latex\@undefined

()
()
()
()
()
()
()
()
()
()
()
(

230

232
233

234

o]

235

236

latexrelease) \1et \catcodetable@atletter\@undefined
latexrelease) \1let\e@alloc@luafunction@count\@undefined
latexrelease) \1et \newluafunction\@undefined

latexrelease) \1et\e@alloc@luafunction@count\@undefined
latexrelease) \let \newwhatsit\@undefined

latexrelease) \1et\e@alloc@whatsit@count \@undefined
latexrelease) \1et \newluabytecode\Qundefined

latexrelease) \let\e@alloc@bytecode@count\@undefined
latexrelease) \1et \newluachunkname\Q@undefined
latexrelease) \1et \e@alloc@luachunk@count \@undefined
latexrelease) \directlua{luatexbase.uninstall ()}
latexrelease) \EndIncludeInRelease

238

239

240

241

242
243
244

245

246

247

248

249

In \everyjob, if luaotfload is available, load it and switch to TU.

latexrelease) \IncludeInRelease{2017/01/01}

latexrelease) {\fontencoding}{TU in everyjobl}}
latexrelease) \fontencoding{TU}\1let\encodingdefault\f@encoding
latexrelease) \ifx\directlua\@undefined\else

2ekernel) \everyjob\expandafter{},

2ekernel) \the\everyjob

b
o~~~ o~~~

File d: 1tluatex.dtx 48

luatexbase

modules

256 (*2ekernel, latexrelease)
257 \directlua{}
25 if xpcall(function ()7

259 require (’luaotfload-main’)},
260 end,texio.write_nl) then
%1 local _void = luaotfload.main ()}

%2 else }

%3 texio.write_nl(’Error in luaotfload: reverting to 0T1’)}
26s tex.print(’\string\\def\string\\encodingdefault{0T1}’)}
265 end %
266 M
267 \let\f@encoding\encodingdefault
265 \expandafter\let\csname ver@luaotfload.sty\endcsname\fmtversion
200 (/2ekernel, latexrelease)
(latexrelease) \f1
(2ekernel) }
(latexrelease) \EndIncludeInRelease
273 (latexrelease) \IncludeInRelease{0000/00/00}%
(latexrelease) {\fontencoding}{TU in everyjob}/
(latexrelease) \fontencoding{0T1}\let\encodingdefault\f@encoding
(latexrelease) \EndIncludeInRelease
(2ekernel | latexrelease) \fi
(/2ekernel | tex | latexrelease)

5.10 Lua module preliminaries
279 (*Iua)

Some set up for the Lua module which is needed for all of the Lua functionality
added here.
Set up the table for the returned functions. This is used to expose all of the public
functions.

230 luatexbase luatexbase or { }
51 local luatexbase = luatexbase

(End definition for luatexbase. This function is documented on page ?7.)
Some Lua best practice: use local versions of functions where possible.

282 local string_gsub = string.gsub

253 local tex_count = tex.count

54 local tex_setattribute = tex.setattribute
2s5 local tex_setcount = tex.setcount

256 local texio_write_nl = texio.write_nl

287 local luatexbase_warning
2ss local luatexbase_error

5.11 Lua module utilities

5.11.1 Module tracking

To allow tracking of module usage, a structure is provided to store information and to
return it.

230 local modules = modules or { }

File d: 1tluatex.dtx 49

provides_module

(End definition for modules. This function is documented on page 77.)

Local function to write to the log.

20 local function luatexbase_log(text)
201 texio_write_nl("log", text)

202 end

Modelled on \ProvidesPackage, we store much the same information but with a

little more structure.

203 local function provides_module(info)
204 if not (info and info.name) then

205 luatexbase_error("Missing module name for provides_module")
296 end

207 local function spaced(text)

208 return text and (" " .. text) or ""

209 end

s0 luatexbase_log(

301 "Lua module: " .. info.name

302 .. spaced(info.date)

303 .. spaced(info.version)
304 .. spaced(info.description)

305)
306 modules[info.name] = info
307 end

308 luatexbase.provides_module = provides_module

(End definition for provides_module. This function is documented on page 77.)

5.11.2 Module messages

There are various warnings and errors that need to be given. For warnings we can get
exactly the same formatting as from TEX. For errors we have to make some changes.
Here we give the text of the error in the IXTEX format then force an error from Lua
to halt the run. Splitting the message text is done using \n which takes the place of

\MessageBreak.

First an auxiliary for the formatting: this measures up the message leader so we

always get the correct indent.

300 local function msg_format(mod, msg_type, text)
3.0 local leader = ""

311 local cont

312 local first_head

313 if mod == "LaTeX" then

314 cont = string_gsub(leader, ".", " ")

315 first_head = leader .. "LaTeX: "

316 else

317 first_head = leader .. "Module " .. msg_type
318 cont = "(" .. mod .. ")"

319 .. string_gsub(first_head, ".", " ")

320 first_head = 1leader .. "Module " .. mod ..
321 end

322 if msg_type == "Error" then

323 first_head = "\n" .. first_head

324 end

25 if string.sub(text,-1) ~= "\n" then

File d: 1tluatex.dtx

. msg_type

50

326 text = text .. " "

327 end

328 return first_head .. " "

320 .. string_gsub(

330 text

331 .. "on input line "

332 .. tex.inputlineno, "\n", "\n" .. cont .. " "
333)

334 .. "\n"

335 end

module_info Write messages.

module_warning i3 local function module_info(mod, text)
module_error 33 texio_write_nl("log", msg_format(mod, "Info", text))
335 end

330 luatexbase.module_info = module_info

30 local function module_warning(mod, text)

341 texio_write_nl("term and log",msg_format(mod, "Warning", text))
322 end

13 luatexbase.module_warning = module_warning

322 local function module_error(mod, text)

25 error (msg_format(mod, "Error", text))

326 end

327 luatexbase.module_error = module_error

(End definition for module_info, module_warning, and module_error. These functions are documented
on page 77.)
Dedicated versions for the rest of the code here.

a5 function luatexbase_warning(text)

;0 module_warning("luatexbase", text)
350 end

351 function luatexbase_error(text)

352 module_error("luatexbase", text)
353 end

5.12 Accessing register numbers from Lua

Collect up the data from the TEX level into a Lua table: from version 0.80, LuaTgX
makes that easy.

35 local luaregisterbasetable = { }
555 local registermap = {

356 attributezero = "assign_attr" s
357 charzero = "char_given" s
358 CountZero = "assign_int" s
350 dimenzero = "assign_dimen" s
360 mathcharzero = "math_given" s
31 muskipzero = "assign_mu_skip" ,
362 skipzero = "assign_skip" s
363 tokszero = "assign_toks" s
364 }

365 local createtoken

366 if tex.luatexversion > 81 then

367 createtoken = token.create

365 elseif tex.luatexversion > 79 then

File d: 1tluatex.dtx 51

registernumber

new_attribute

360 createtoken = newtoken.create

570 end

371 local hashtokens = tex.hashtokens()
372 local luatexversion = tex.luatexversion
373 for i,j in pairs (registermap) do

374 if luatexversion < 80 then

375 luaregisterbasetable [hashtokens[i] [1]] =

376 hashtokens[i] [2]

377 else

378 luaregisterbasetable[j] = createtoken(i).mode
379 end

380 end

Working out the correct return value can be done in two ways. For older LuaTEX releases
it has to be extracted from the hashtokens. On the other hand, newer LuaTgX’s have
newtoken, and whilst .mode isn’t currently documented, Hans Hagen pointed to this
approach so we should be OK.

331 local registernumber

322 1f luatexversion < 80 then

53 function registernumber (name)

384 local nt = hashtokens[name]

385 if (nt and luaregisterbasetable[nt[1]]) then
386 return nt[2] - luaregisterbasetable[nt[1]]

387 else

388 return false

389 end

390 end

301 else

52 function registernumber (name)

303 local nt = createtoken(name)

394 if (luaregisterbasetable[nt.cmdname]) then
395 return nt.mode - luaregisterbasetable[nt.cmdname]
396 else

307 return false

398 end

399 end

200 end

201 luatexbase.registernumber = registernumber

(End definition for registernumber. This function is documented on page 77.)

5.13 Attribute allocation

As attributes are used for Lua manipulations its useful to be able to assign from this end.

102 local attributes=setmetatable(

203 {3},

404 {

205 __index = function(t,key)

206 return registernumber(key) or nil
407 end}

408)

400 luatexbase.attributes = attributes

File d: 1tluatex.dtx 52

210 local attribute_count_name =

411 attribute_count_name or "e@alloc@attribute@count"
412 local function new_attribute(name)

413 tex_setcount("global", attribute_count_name,

414 tex_count [attribute_count_name] + 1)
415 if tex_count[attribute_count_name] > 65534 then

416 luatexbase_error("No room for a new \\attribute")

417 end

1218 attributes[name]= tex_count[attribute_count_name]

210 luatexbase_log("Lua-only attribute " .. name .. " ="

420 tex_count [attribute_count_name])

21 return tex_count[attribute_count_name]

122 end

1223 luatexbase.new_attribute = new_attribute

(End definition for new_attribute. This function is documented on page 77.)

5.14 Custom whatsit allocation

new_whatsit Much the same as for attribute allocation in Lua.

24 local whatsit_count_name = whatsit_count_name or "e@alloc@whatsit@count"
125 local function new_whatsit(name)

426 tex_setcount("global", whatsit_count_name,

427 tex_count [whatsit_count_name] + 1)

428 if tex_count[whatsit_count_name] > 65534 then

429 luatexbase_error("No room for a new custom whatsit")

430 end

21 luatexbase_log("Custom whatsit " .. (name or "") .. " ="
432 tex_count [whatsit_count_name])

133 return tex_count[whatsit_count_name]

132 end

135 luatexbase.new_whatsit = new_whatsit

(End definition for new_whatsit. This function is documented on page ?7.)

5.15 Bytecode register allocation

new_bytecode Much the same as for attribute allocation in Lua. The optional (name) argument is used
in the log if given.

136 local bytecode_count_name =

437 bytecode_count_name or "e@alloc@bytecode@count"

233 local function new_bytecode(name)

439 tex_setcount("global", bytecode_count_name,

440 tex_count [bytecode_count_name] + 1)
441 if tex_count[bytecode_count_name] > 65534 then

442 luatexbase_error("No room for a new bytecode register")
443 end

24 luatexbase_log("Lua bytecode " .. (name or "") .. " ="

445 tex_count [bytecode_count_name])

26 return tex_count [bytecode_count_name]

147 end

s luatexbase.new_bytecode = new_bytecode

(End definition for new_bytecode. This function is documented on page 77.)

File d: 1tluatex.dtx 53

new_chunkname

new_luafunction

5.16 Lua chunk name allocation

As for bytecode registers but also store the name in the lua.name table.

1229 local chunkname_count_name =

450 chunkname_count_name or "e@alloc@luachunk@count"
151 local function new_chunkname (name)

452 tex_setcount("global", chunkname_count_name,

453 tex_count [chunkname_count_name] + 1)
454 local chunkname_count = tex_count [chunkname_count_name]
455 chunkname_count = chunkname_count + 1

456 if chunkname_count > 65534 then

457 luatexbase_error("No room for a new chunkname")

458 end

10 lua.name[chunkname_count]=name

20 luatexbase_log("Lua chunkname " .. (name or "") .. " ="
461 chunkname_count .. "\n")

462 return chunkname_count

163 end

162 luatexbase.new_chunkname = new_chunkname

(End definition for new_chunkname. This function is documented on page 77.)

5.17 Lua function allocation

Much the same as for attribute allocation in Lua. The optional (name) argument is used
in the log if given.

465 local luafunction_count_name =

466 luafunction_count_name or "e@alloc@luafunction@count"
1467 local function new_luafunction(name)

468 tex_setcount("global", luafunction_count_name,

469 tex_count [luafunction_count_name] + 1)

470 if tex_count[luafunction_count_name] > 65534 then

471 luatexbase_error("No room for a new luafunction register")

472 end

473 luatexbase_log("Lua function " .. (name or "") .. " ="

474 tex_count [luafunction_count_name])

475 return tex_count[luafunction_count_name]

476 end

477 luatexbase.new_luafunction = new_luafunction

(End definition for new_luafunction. This function is documented on page 77.)

5.18 Lua callback management

The native mechanism for callbacks in LuaTgEX allows only one per function. That is
extremely restrictive and so a mechanism is needed to add and remove callbacks from
the appropriate hooks.

5.18.1 Housekeeping

The main table: keys are callback names, and values are the associated lists of functions.
More precisely, the entries in the list are tables holding the actual function as func and

File d: 1tluatex.dtx 54

the identifying description as description. Only callbacks with a non-empty list of
functions have an entry in this list.

173 local callbacklist = callbacklist or { }

Numerical codes for callback types, and name-to-value association (the table keys
are strings, the values are numbers).

470 local list, data, exclusive, simple, reverselist =1, 2, 3, 4, 5

20 local types = {

481 list = list,

482 data = data,

483 exclusive = exclusive,
484 simple = simple,

485 reverselist = reverselist,

486 }

Now, list all predefined callbacks with their current type, based on the LuaTgX
manual version 1.01. A full list of the currently-available callbacks can be obtained using

\directlua{
for i,_ in pairs(callback.list()) do
texio.write_nl("- " .. i)
end
}
\bye

in plain LuaTEX. (Some undocumented callbacks are omitted as they are to be removed.)

.7 local callbacktypes = callbacktypes or {
Section 8.2: file discovery callbacks.

488 find_read_file = exclusive,
489 find_write_file = exclusive,
490 find_font_file = data,
491 find_output_file = data,
492 find_format_file = data,
493 find_vf_file = data,
494 find_map_file = data,
495 find_enc_file = data,
496 find_pk_file = data,
497 find_data_file = data,

18 find_opentype_file = data,
499 find_truetype_file = data,

500 find_typel_file = data,

501 find_image_file = data,

502 open_read_file = exclusive,
503 read_font_file = exclusive,
504 read_vf_file = exclusive,
505 read_map_file = exclusive,
506 read_enc_file = exclusive,
507 read_pk_file = exclusive,
508 read_data_file = exclusive,
509 read_truetype_file = exclusive,
5.0 read_typel_file = exclusive,
511 read_opentype_file = exclusive,

File d: 1tluatex.dtx 55

Not currently used by luatex but included for completeness.
handler.

512 find_cidmap_file = data,

513 read_cidmap_file = exclusive,
Section 8.3: data processing callbacks.

s.4 process_input_buffer = data,

515 process_output_buffer = data,

516 process_jobname = data,

Section 8.4: node list processing callbacks.

517 contribute_filter = simple,

518 buildpage_filter = simple,

519 build_page_insert = exclusive,
520 pre_linebreak_filter = list,

521 linebreak_filter = exclusive,
522 append_to_vlist_filter = exclusive,
523 post_linebreak_filter = reverselist,
524 hpack_filter = list,

525 vpack_filter = list,

526 hpack_quality = list,

527 vpack_quality = list,

526 pre_output_filter = list,

529 process_rule = exclusive,
53 hyphenate = simple,

531 ligaturing = simple,

532 kerning = simple,

533 insert_local_par = simple,

534 pre_mlist_to_hlist_filter = list,

535 mlist_to_hlist = exclusive,
53 ~ post_mlist_to_hlist_filter = reverselist,
537 new_graf = exclusive,

Section 8.5: information reporting callbacks.

53 pre_dump = simple,
539 start_run = simple,
540 stop_run = simple,
sa1 start_page_number = simple,
542 stop_page_number = simple,
543 show_error_hook = simple,
524 show_warning_message = simple,
545 show_error_message = simple,
546 show_lua_error_hook = simple,
sa7 start_file = simple,
548 stop_file = simple,
549 call_edit = simple,
ss0o. finish_synctex = simple,
551 Wrapup_run = simple,

Section 8.6: PDF-related callbacks.

552 finish_pdffile = data,
553 finish_pdfpage = data,
554 page_objnum_provider = data,
555 page_order_index = data,
556 process_pdf_image_content = data,

File d: 1tluatex.dtx

may be used by a font

56

callback.register

Section 8.7: font-related callbacks.

557 define_font = exclusive,
ss6 glyph_info = exclusive,
550 glyph_not_found = exclusive,
s60 glyph_stream_provider = exclusive,
561 make_extensible = exclusive,

se2 font_descriptor_objnum_provider = exclusive,

563 }
se« luatexbase.callbacktypes=callbacktypes

Save the original function for registering callbacks and prevent the original being used.
The original is saved in a place that remains available so other more sophisticated code
can override the approach taken by the kernel if desired.

ses local callback_register = callback_register or callback.register

se6 function callback.register()

se7 luatexbase_error("Attempt to use callback.register() directly\n")

565 end

(End definition for callback.register. This function is documented on page 77?.)

5.18.2 Handlers

The handler function is registered into the callback when the first function is added to
this callback’s list. Then, when the callback is called, the handler takes care of running
all functions in the list. When the last function is removed from the callback’s list, the
handler is unregistered.

More precisely, the functions below are used to generate a specialized function (clo-
sure) for a given callback, which is the actual handler.

The way the functions are combined together depends on the type of the callback.
There are currently 4 types of callback, depending on the calling convention of the func-
tions the callback can hold:

simple is for functions that don’t return anything: they are called in order, all with the
same argument;

data is for functions receiving a piece of data of any type except node list head (and
possibly other arguments) and returning it (possibly modified): the functions are
called in order, and each is passed the return value of the previous (and the other
arguments untouched, if any). The return value is that of the last function;

list is a specialized variant of data for functions filtering node lists. Such functions may
return either the head of a modified node list, or the boolean values true or false.
The functions are chained the same way as for data except that for the following. If
one function returns false, then false is immediately returned and the following
functions are not called. If one function returns true, then the same head is passed
to the next function. If all functions return true, then true is returned, otherwise
the return value of the last function not returning true is used.

reverselist is a specialized variant of list which executes functions in inverse order.

exclusive is for functions with more complex signatures; functions in this type of call-
back are not combined: An error is raised if a second callback is registered..

File d: 1tluatex.dtx 57

Handler for data callbacks.

se0 local function data_handler (name)

570 return function(data, ...)

571 for _,i in ipairs(callbacklist[name]) do
572 data = i.func(data,...)

573 end

574 return data

575 end

576 end

Default for user-defined data callbacks without explicit default.

577 local function data_handler_default(value)

sz return value

570 end

Handler for exclusive callbacks. We can assume callbacklist[name] is not empty:
otherwise, the function wouldn’t be registered in the callback any more.

ss0 local function exclusive_handler (name)

581 return function(...)

582 return callbacklist[name] [1].func(...)
583 end

582 end

Handler for 1ist callbacks.

535 local function list_handler (name)

sss return function(head, ...)

587 local ret

588 local alltrue = true

589 for _,i in ipairs(callbacklist[name]) do
500 ret = i.func(head, ...)

501 if ret == false then

592 luatexbase_warning(

593 "Function ‘" .. i.description .. "’ returned false\n"
504 .. "in callback ‘" .. name .."’"
505)

596 break

597 end

508 if ret ~= true then

599 alltrue = false

600 head = ret

601 end

602 end

603 return alltrue and true or head

604 end

605 end

Default for user-defined 1ist and reverselist callbacks without explicit default.

606 local function list_handler_default()
607 return true
605 end

Handler for reverselist callbacks.

600 local function reverselist_handler (name)

610 return function(head, ...)
611 local ret
612 local alltrue = true

File d: 1tluatex.dtx 58

613 local callbacks = callbacklist[name]

614 for i = #callbacks, 1, -1 do

615 local cb = callbacks[i]

616 ret = cb.func(head, ...)

617 if ret == false then

618 luatexbase_warning(

619 "Function ‘" .. cb.description .. "’ returned false\n"
620 .. "in callback ‘" .. name .."’"
621)

622 break

623 end

624 if ret ~= true then

625 alltrue = false

626 head = ret

627 end

628 end

629 return alltrue and true or head

630 end

631 end

Handler for simple callbacks.

622 local function simple_handler (name)

633 return function(...)

634 for _,i in ipairs(callbacklist[name]) do

635 i.func(...)

636 end

637 end

638 end

Default for user-defined simple callbacks without explicit default.

639 local function simple_handler_default()
620 end

Keep a handlers table for indexed access and a table with the corresponding default
functions.

611 local handlers = {

642 [data] = data_handler,

643 [exclusive] = exclusive_handler,

644 [1ist] = list_handler,

645 [reverselist] = reverselist_handler,
646 [simple] = simple_handler,

647 }

s1s local defaults = {

649 [data] = data_handler_default,
650 [exclusive] = nil,

651 [1ist] = list_handler_default,
652 [reverselist] = list_handler_default,
653 [simple] = simple_handler_default,
654

5.18.3 Public functions for callback management

Defining user callbacks perhaps should be in package code, but impacts on add_to_callback.
If a default function is not required, it may be declared as false. First we need a list of
user callbacks.

File d: 1tluatex.dtx 59

local user_callbacks_defaults = {

656 pre_mlist_to_hlist_filter = list_handler_default,
657 mlist_to_hlist = node.mlist_to_hlist,

658 post_mlist_to_hlist_filter = list_handler_default,
659 }

o
&
&

create_callback The allocator itself.

o0 local function create_callback(name, ctype, default)
661 local ctype_id = types[ctypel

62 if not name or name == ""

663 or not ctype_id

664 then

665 luatexbase_error("Unable to create callback:\n"

666 "valid callback name and type required")
667 end

es if callbacktypes[name] then

669 luatexbase_error("Unable to create callback ‘" .. name

670 "?:\ncallback is already defined")

671 end

o> default = default or defaults[ctype_id]

673 if not default then

674 luatexbase_error("Unable to create callback ‘" .. name
675 "> :\ndefault is required for ‘" .. ctype
676 "> callbacks")

o7 elseif type (default) ~= "function" then

678 luatexbase_error("Unable to create callback ‘" .. name
679 "> :\ndefault is not a function")

680 end

651 user_callbacks_defaults[name] = default

62 callbacktypes[name] = ctype_id

633 end

654 luatexbase.create_callback = create_callback

(End definition for create_callback. This function is documented on page 77.)

call_callback Call a user defined callback. First check arguments.

65 local function call_callback(name,...)

686 if not name or name == "" then

687 luatexbase_error("Unable to create callback:\n"
688 "valid callback name required")
689 end

600 if user_callbacks_defaults[name] == nil then

691 luatexbase_error("Unable to call callback ‘" .. name
692 .. "?:\nunknown or empty")

693 end

602 local 1 = callbacklist[name]

695 local £

696 if not 1 then

607 f = user_callbacks_defaults[name]

698 else

699 f = handlers[callbacktypes[name]] (name)

700 end

01 return £(...)

702 end

703 luatexbase.call_callback=call_callback

File d: 1tluatex.dtx

(End definition for call_callback. This function is documented on page 77.)

add_to_callback Add a function to a callback. First check arguments.

704 local function add_to_callback(name, func, description)

705 if not name or name == "" then

706 luatexbase_error("Unable to register callback:\n"
707 "valid callback name required")
708 end

700 if not callbacktypes[name] or

710 type(func) ~= "function" or

711 not description or

712 description == "" then

713 luatexbase_error(

714 "Unable to register callback.\n\n"

715 .. "Correct usage:\n"

716 .. "add_to_callback(<callback>, <function>, <description>)"
717)

718 end

Then test if this callback is already in use. If not, initialise its list and register the proper
handler.

719 local 1 = callbacklist[name]

720 if 1 == nil then

721 1=4{1}

722 callbacklist[name] =1

If it is not a user defined callback use the primitive callback register.

723 if user_callbacks_defaults[name] == nil then

724 callback_register(name, handlers[callbacktypes[name]] (name))
725 end

726 end

Actually register the function and give an error if more than one exclusive one is

registered.

727 local f = {

728 func = func,

729 description = description,

730 }

731 local priority = #1 + 1

722 if callbacktypes[name] == exclusive then
733 if #1 == 1 then

734 luatexbase_error(

735 "Cannot add second callback to exclusive function\n‘"
736 name .. "’")

737 end

738 end

730 table.insert(l, priority, f)
Keep user informed.

70 luatexbase_log(

741 "Inserting ‘" .. description .. "’ at position "
742 .. priority .. " in ‘" .. name .. "’."

743)

744 end

725 luatexbase.add_to_callback = add_to_callback

File d: 1tluatex.dtx 61

remove_from_callback

(End definition for add_to_callback. This function is documented on page 77.)

Remove a function from a callback. First check arguments.

76 local function remove_from_callback(name, description)

747 if not name or name == "" then

748 luatexbase_error("Unable to remove function from callback:\n"
749 "valid callback name required")

750 end

751 if not callbacktypes[name] or

752 not description or

753 description == "" then

754 luatexbase_error(

755 "Unable to remove function from callback.\n\n"

756 .. "Correct usage:\n"

757 .. "remove_from_callback(<callback>, <description>)"
758)

759 end

760 local 1 = callbacklist[name]

761 if not 1 then

762 luatexbase_error(

763 "No callback list for ‘" .. name .. "’\n")
764 end

Loop over the callback’s function list until we find a matching entry.

check if the list is empty: if so, unregister the callback handler.

765 local index = false
6 for i,j in ipairs(l) do

767 if j.description == description then
768 index = i

769 break

770 end

77 end

772 if not index then
773 luatexbase_error(

774 "No callback ‘" .. description .. "’ registered for ‘"
775 name .. "’\n")
776 end

777 local cb = 1l[index]

778 table.remove(l, index)

779 luatexbase_log(

780 "Removing ‘" .. description .. "’ from ‘" .. name .. "
781)

782 if #1 == 0 then

783 callbacklist[name] = nil

784 if user_callbacks_defaults[name] == nil then
785 callback_register(name, nil)

786 end

787 end

78 return cb.func,cb.description

750 end

700 luatexbase.remove_from_callback = remove_from_callback

Remove it and

(End definition for remove_from_callback. This function is documented on page ?7.)

File d: 1tluatex.dtx

62

in_callback Look for a function description in a callback.

791 local function in_callback(name, description)
792 if not name

703 or name == ""

794 or not callbacklist[name]

795 or not callbacktypes [name]

796 or not description then

797 return false

798 end

799 for _, i in pairs(callbacklist[name]) do
800 if i.description == description then
801 return true

802 end

803 end

804 return false

505 end

s06 luatexbase.in_callback = in_callback

(End definition for in_callback. This function is documented on page ?7.)

disable_callback As we subvert the engine interface we need to provide a way to access this functionality.

s07 local function disable_callback(name)

gos if(callbacklist[name] == nil) then

809 callback_register(name, false)

810 else

811 luatexbase_error("Callback list for " .. name .. " not empty")
812 end

513 end

s14 luatexbase.disable_callback = disable_callback

(End definition for disable_callback. This function is documented on page 77.)

callback_descriptions List the descriptions of functions registered for the given callback.

s15 local function callback_descriptions (name)
si6 local d = {}
817 if not name

818 or name == ""

819 or not callbacklist[name]
820 or not callbacktypes[name]
821 then

822 return d

823 else

g4 for k, i in pairs(callbacklist[name]) do
825 d[k]= i.description

826 end

827 end

828 return d

520 end

330 luatexbase.callback_descriptions =callback_descriptions

(End definition for callback_descriptions. This function is documented on page 77.)

uninstall Unlike at the TEX level, we have to provide a back-out mechanism here at the same time
as the rest of the code. This is not meant for use by anything other than latexrelease: as
such this is deliberately not documented for users!

File d: 1tluatex.dtx 63

831 local function uninstall()
g2 module_info(
833 "luatexbase",

834 "Uninstalling kernel luatexbase code"
835)

g3 callback.register = callback_register
837 luatexbase = nil

s3s end

530 luatexbase.uninstall = uninstall

(End definition for uninstall. This function is documented on page 77.)

mlist_to_hlist To emulate these callbacks, the “real” mlist_to_hlist is replaced by a wrapper calling
the wrappers before and after.

220 callback_register("mlist_to_hlist", function(head, display_type, need_penalties)
841 local current = call_callback("pre_mlist_to_hlist_filter", head, display_type, need_penalti

842 if current == false then

843 flush_list (head)

844 return nil

845 elseif current == true then

846 current = head

847 end

848 current = call_callback("mlist_to_hlist", current, display_type, need_penalties)

g0 local post = call_callback("post_mlist_to_hlist_filter", current, display_type, need_penalt

850 if post == true then

851 return current

g2 elseif post == false then
853 flush_list(current)

854 return nil

855 end

856 return post
gs7 end)

(End definition for mlist_to_hlist. This function is documented on page 77.)
858 (/Iua)

Reset the catcode of @.
ss0 (tex)\catcode ‘\@=\etatcatcode\relax

File d: 1tluatex.dtx 64

File e
ltexpl.dtx

1 expl3-dependent code

1.1 Loader

First define some blank commands, so that in case something goes wrong while loading
expl3, we won’t get strange Undefined control sequence errors.

1 (*2ekernel)

> \def\@expl@sys@load@backend@@{}
5 \def\@expl@push@filename@@{}

4 \def\@expl@push@filename@aux@e{}
s \def\@expl@pop@filename@@{}

s (/2ekernel)

Create a hook for last-minute expl3 material.

7 (*2ekernel)
s \def\@expl@finalise@setup@@{}
o (/2ekernel)

Now define some basics to support loading expl3. These macros can be defined here
safely, because they are redefined later on by the kernel, so we define simpler versions
just to suit our needs.

10 (*2ekernel)
1 \long\def\@gobble#1{}

1> \long\def\@firstofone#1{#1}

13 \long\def\@firstoftwo#1#2{#1}

12 \long\def\@secondoftwo#1#2{#2}
15 \long\def\IfFileExists#1{}

16 \openin\@inputcheck"#1" %

17 \ifeof\@inputcheck

18 \expandafter\@secondoftwo

v \else

20 \closein\@inputcheck

21 \expandafter\@firstoftwo

22 \fi}

3 \long\def\@ifnextchar#1#2#3{%

2 \let\reserved@d=#1

s \def\reserved@a{#2}/,

6 \def\reserved@b{#3}%

27 \futurelet\@let@token\@ifnch}
s \def\@ifnch{%

20 \ifx\@let@token\reserved@d

30 \expandafter\reserved@a

51 \else

32 \expandafter\reserved@b

\fi}
51 (/2ekernel)
If we are doing a rollback with a format containing expl3 we aren’t reloading it as

that creates havoc. This may need a refined version!

55 (*2ekernel | latexrelease)

File e: 1texpl.dtx Date: 2020/08/21 Version v1.2e 65

s (latexrelease) \IncludeInRelease{2020/10/01}}

57 (latexrelease) {expl3}{Pre-load expl3}),

55 \expandafter\ifx\csname tex\string _let:D\endcsname\relax

50 \expandafter\@firstofone

20 \else

21 \GenericInfo{}{Skipping: expl3 code already part of the format}’
1 (2ekernel) \expandafter\endinput

s (latexrelease) \expandafter\@gobble

w

2 \fi
Check for the required primitive/engine support and the existence of a loader.
s {h
a6 \IfFileExists{expl3.1ltx}
a7 {h
48 \ifnum0Y%
49 \ifdefined\pdffilesize 1\fi
50 \ifdefined\filesize 1\fi
51 \ifdefined\luatexversion\ifnum\luatexversion>94 1\fi\fi
52 \ifdefined\kanjiskip 1\fi
53 >0 %
54 \expandafter\@firstofone
55 \else

In 2ekernel mode, an error is fatal and building the format is aborted. Use
\batchmode \read -1 to \tokenlist, which errors with ! Emergency stop. (cannot \read from 1
and aborts the TEX run. In latexrelease mode, raise an error and do nothing. Both
ways, the error message shows the minimum expl3 engine requirements.

5o {2ekernel) \def~{ }\def\MessageBreak{ ~J~~~~~~~wmmmmm~x i
57 (2ekernel) \errmessage{LaTeX Error:

ss (latexrelease) \@latex@error{}

59 LaTeX requires the e-TeX primitives and additional\MessageBreak
60 functionality available in the engines:\MessageBreak
61 - pdfTeX v1.40\MessageBreak

62 - XeTeX v0.99992\MessageBreak

63 - LuaTeX v0.95\MessageBreak

64 - e-(u)pTeX mid-2012\MessageBreak

65 or later

o (latexrelease) }\@ehd \expandafter\@gobble

o7 (2ekernel) F\batchmode \read -1 to \reserved@a

68 \fi

69 }

70 {%

1 (*2ekernel)

72 \errmessage{LaTeX requires expl3}],

73 \batchmode \read -1 to \reserved@a

7 (/2ekernel)
75 (*latexrelease)

76 \@latex@error{LaTeX requires expl3}\@ehd
77 \@gobble

76 (/latexrelease)

79 Y

80 {4

81 \input expl3.ltx

82 \ifdefined\NewDocumentCommand

83 \else

File e: 1texpl.dtx Date: 2020/08/21 Version v1.2e 66

84 \IfFileExists{xparse.ltx}
85 {\input xparse.ltx }

86 {}%

87 \fi

88 Yh

89 }

o (latexrelease) \EndIncludeInRelease

o1 (latexrelease)

o> (latexrelease) \IncludeInRelease{2020/02/02})

o5 (latexrelease) {expl3}Pre-load expl3})

s (latexrelease) \IfFileExists{expl3.1ltx}

o5 (latexrelease) {%

o (latexrelease) \ifnum0y%

o7 (latexrelease) \ifdefined\pdffilesize 1\fi

s (latexrelease) \ifdefined\filesize 1\fi

o0 (latexrelease) \ifdefined\luatexversion\ifnum\luatexversion>94 1\fi\fi
100 (latexrelease) >0 %

101 (latexrelease) \else

102 (latexrelease) \message{Skipping expl3-dependent extensions}
10 (latexrelease) \expandafter\@gobbletwo

104 (latexrelease) \fi

05 (latexrelease) }

s (latexrelease) {%

107 (latexrelease) \message{Skipping expl3-dependent extensions}
0s (latexrelease) \@gobbletwo

00 (latexrelease) }%

10 (latexrelease) \input{expl3.1tx}

i1 (latexrelease) \EndIncludeInRelease

1.2 Using expl3 code

In order to ease the implemantation of some new features in WTEX 22 we may (temporar-
ily) use some coding based on the expl3-code. Such macros will eventually vanish and
may be changed unannounced. They are there for internal use in the ITEX 2¢ kernel and
are not meant to be used in third-party packages. These macros will always have the

@expl@ prefix in their name.
The rest of the name matches the expl3 name but with all underscores replaced by
@s and the : replaced by @@, e.g.,

\cs_new_eq:NN \@expl@tl@trim@spaces@apply@0nN \tl_trim_spaces_apply:nN
if that expl3 command is needed in places that are others coded in IXTEX 2¢ conventions.
112 \ExplSyntaxOn
In this file, each release of LaTeX adds an \IncludeInRelease block, in which the

macros copied for that release were defined. In case a rollback is requested, the entire

block is changed.
Each macro copied has a \changes entry to explain when and why it was copied, so

that further to that may spot it easily.

Here \cs_gset_eq:NN is used, instead of the new variant because if different releases
use that same name for different purposes, each can copy the macro without worrying
about redefinitions.

13 (latexrelease) \IncludeInRelease{2020/10/01}{expl3~2020-10-01}}
14 (latexrelease) {expl3~macros~added~for~the~2020-10-01~release}}

File e: 1texpl.dtx Date: 2020/08/21 Version v1.2e 67

115 \cs_gset_eq:NN \Q@expl@cs@to@str@ON \cs_to_str:N
116 \cs_gset_eq:NN \Qexpl@str@if@eq@@nnTF \str_if_eq:nnTF

117 \cs_gset_eq:NN \@expl@cs@prefix@spec@@N \cs_prefix_spec:N
115 \cs_gset_eq:NN \QexplQ@cs@argument@spec@ON \cs_argument_spec:N
119 \cs_gset_eq:NN \@expl@cs@replacement@spec@ON \cs_replacement_spec:N

120 (latexrelease) \EndIncludeInRelease
(latexrelease) \ IncludeInRelease{0000/00/00}{expl3~2020-10-01})
(latexrelease) {expl3~macros~added~for~the~2020-10-01~release}}
(latexrelease) \cs_undefine:N \@expl@cs@to@str@ON
(latexrelease) \cs_undefine:N \@expl@str@if@eq@@nnTF
125 (latexrelease) \cs_undefine:N \@expl@cs@prefix@spec@ON
126 (latexrelease) \cs_undefine:N \@expl@cs@argument@spec@CN
(latexrelease) \cs_undefine:N \@expl@cs@replacement@spec@ON
(latexrelease) \EndIncludeInRelease
(/2ekernel | latexrelease)

127
128

129

o \ExplSyntax0ff

1

@

File e: 1texpl.dtx Date: 2020/08/21 Version v1.2e

68

File f
Itdefns.dtx

1 Definitions

This section contains commands used in defining other macros.

1 (*2ekernel)

1.1 Initex initialisations

\two@digits Prefix a number less than 10 with ‘0’
> \def\two@digits#1{\ifnum#1<10 O\fi\number#1}

(End definition for \two@digits. This function is documented on page 77?.)

\typeout Display something on the terminal.

s (/2ekernel)
4 (*2ekernel | latexrelease)
s (latexrelease) \IncludeInRelease{2020/10/01}%

s (latexrelease) {\typeout}{Allow "par" in \typeoutl}),
7 \protected\long\def\typeout#1{\begingroup
¢ \set@display@protect

o \def\par{~"J""J}%

10 \immediate\write\@unused{#1}\endgroup}

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\typeout}{Allow "par" in \typeoutl}

latexrelease)
)
)
)

1

5

13

14

5
latexrelease)\def\typeout#1{\begingroup\set@display@protect
latexrelease \immediate\write\@unused{#1}\endgroup}

15 (latexrelease)\EndIncludeInRelease

19 (*2ekernel)

6

17

o~ o~~~ o~~~

(End definition for \typeout. This function is documented on page 77.)

\newlinechar A char to be used as new-line in output to files.

20 \newlinechar‘\~"J

(End definition for \newlinechar. This function is documented on page 77.)

1.2 Saved versions of TEX primitives

The TeX primitive \foo is saved as \@@foo. The following primitives are handled in this

way:
\@@par
21 \let\@@par=\par
22 %\let\@@input=\input %% moved earlier
2 %\let\@Q@end=\end %Y

(End definition for \@epar. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 69

\@Chyph

\@@italiccorr

\@height
\@depth
\@width
\@minus

\@plus

\hboxt@

\@namedef
\@nameuse

\@ifnextchar

\@ifstar

\@dblarg

\@ifundefined

\@ifdefinable

\newcommand

\renewcommand

Save original primitive definition.
22 \1let\@@hyph=\-

(End definition for \@ohyph. This function is documented on page 77?.)

Save the original italic correction.
»s \let\@@italiccorr=\/

(End definition for \@eitaliccorr. This function is documented on page 77.)

The following definitions save token space. E.g., using \@height instead of height saves
5 tokens at the cost in time of one macro expansion.

2 \def\@height{height} \def\@depth{depth} \def\@width{width}

7 \def\@minus{minus}

s \def\@plus{plus}

The next one is another 100 tokens worth.
20 \def\hb@xt@{\hbox to}

(End definition for \@height and others. These functions are documented on page 77.)

s \message{hacks,}

1.3 Command definitions

This section defines the following commands:

{(NAME)}

Expands to \def\{(NAME)}, except name can contain any characters.

{(NAME)}

Expands to \{(NAME)}.

X{(YES)XH(NO)?}

Expands to (YES) if next character is an ‘X’, and to (NO) otherwise.
\reserved@a—\reserved@c.) NOTE: GOBBLES ANY SPACE FOLLOWING IT.

{(YES)}H(NO)}

Gobbles following spaces and then tests if next the character is a "*. If it is, then it
gobbles the “*” and expands to (YES), otherwise it expands to (NO).

{{CMD)}{(ARG)?}

Expands to \{{CMD)} [(ARG)1{(ARG)}. Use \@dblarg\CS when \CS takes arguments
[ARG1]{ARG2}, where default is ARG1 = ARG2.

{(NAME)X{(YES)X{(NO)}

: If \NAME is undefined then it executes (YES), otherwise it executes (NO). More pre-
cisely, true if \NAME either undefined or = \relax.

\NAME{(YES)} Executes (YES) if the user is allowed to define \NAME, otherwise it
gives an error. The user can define \NAME if \@ifundefined{NAME} is true, 'NAME' #
‘'relax’ and the first three letters of 'NAME’ are not ’end’, and if \endNAME is not defined.

*{(\FO0)} [(i)]{(TEXT)}

User command to define \FOO0 to be a macro with i arguments (i = 0 if missing) having
the definition (TEXT). Produces an error if \FOO already defined.

Normally the command is defined to be \long (ie it may take multiple paragraphs
in its argument). In the star-form, the command is not defined as \long and a blank line
in any argument to the command would generate an error.

*{(\FOO)} [{{)J{(TEXT)?}

(Uses

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 70

Same as \newcommand, except it checks if \FOO already defined.
\newenvironment *{(FOO)}Y[(:)1{(DEF1)}X{(DEF2)}

equivalent to:

\newcommand{\F00} [i]{DEF1} \def{\endFOO}{DEF2}

(or the appropriate star forms).

\renewenvironment
Obvious companion to \newenvironment.
\@cons : See description of \output routine.
\@car \@car T1 T2 ... Tn\@nil == T1 (unexpanded)
\@cdr \@cdr T1 T2 ... Tn\@nil ==T2 ... Tn (unexpanded)
\typeout {(message)}
Produces a warning message on the terminal.
\typein {(message)}
Types message, asks the user to type in a command, then executes it
\typein [(\CS)I{(MSG)}

Same as above, except defines \CS to be the input instead of executing it.

\typein
;1 \def\typein{%
2 \let\@typein\relax
13 \@testopt\@xtypein\@typein}

3 \ifx\directlua\@undefined

s \def\@xtypein [#1]#2{}

% \typeout{#2}%

37 \advance\endlinechar\@M

35 \read\@inputcheck to#1

30 \advance\endlinechar-\@M
\@typeinl}y,

F3

21 \else

2 \def\@xtypein [#1]#2{%

s \typeout{#2}J

2 \begingroup \endlinechar\m@ne

s \read\@inputcheck to#1J

s \expandafter\endgroup

27 \expandafter\def\expandafter#l\expandafter{#1}}
48 \@typeinl}%

20 \fi

(End definition for \typein. This function is documented on page 77.)

\@namedef
50 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

(End definition for \@namedef. This function is documented on page ?77.)

\@nameuse

51 \def\@nameuse#1{\csname #1\endcsname}

(End definition for \@nameuse. This function is documented on page ?77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m

\@cons

\@car
\@cdr

\@carcube

\@onlypreamble
\@preamblecmds

\@star@or@long

\1l@ngrel@x

\newcommand

\new@command

\@newcommand
\Q@argdef
\@xargdef

s2 \def\Qcons#1#2{\begingroup\let\@elt\relax\xdef#1{#1\Q@elt #2}\endgroup}

(End definition for \@cons. This function is documented on page 77.)

53 \def\@car#1#2\@nil{#1}
52 \def\@cdr#1#2\0nil{#2}

(End definition for \@car and \@cdr. These functions are documented on page ?7.)

\@carcube T1 Tn\@nil =T1 T2T3,n >3
ss \long\def\@carcube#1#2#3#4\0nil{#1#2#3}

(End definition for \@carcube. This function is documented on page 77.)

This macro adds its argument to the list of commands stored in \@preamblecmds
to be disabled after \begin{document}. These commands are redefined to generate
\@notprerr at this point.

6 \def\@preamblecmds{}

s7 \def\@onlypreamble#1{}

55 \expandafter\gdef\expandafter\@preamblecmds\expandafter{y,

59 \@preamblecmds\do#1}}

e \@onlypreamble\@onlypreamble

61 \@onlypreamble\@preamblecmds

@

(End definition for \@onlypreamble and \@preamblecmds. These functions are documented on page 77.)

Look ahead for a *. If present reset \1@ngrel®@x so that the next definition, #1, will be
non-long.

> \def\@star@or@long#1{/

s \@ifstar

64 {\let\l@ngrel@x\relax#1}}

65 {\let\l@ngrel@x\long#1}}

(End definition for \@star@or@long. This function is documented on page 77.)

This is either \relax or \long depending on whether the *-form of a definition command
is being executed.
6 \let\l@ngrel@x\relax

(End definition for \lengrel@x. This function is documented on page 77.)

User level \newcommand.

o7 \def\newcommand{\@star@or@long\new@command}

6s \def\new@command#1{%
e \@testopt{\@newcommand#1}0}

(End definition for \newcommand and \new@command. These functions are documented on page 77.)

Handling arguments for \newcommand.

70 \def\@newcommand#1 [#2]{Y
71 \kernel@ifnextchar [{\@xargdef#1[#2]})
72 {\@argdef#1 [#2]}}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 72

\@testopt

\@protected@testopt

Define #1 if it is definable.
Both here and in \@xargdef the replacement text is absorbed as an argument because
if we are not allowed to make the definition we have to get rid of it completely.
5 \long\def\@argdef#1 [#2]#3{/,
74 \@ifdefinable #1{\@yargdef#1\@ne{#2}{#3}}}
Handle the second optional argument.

s \long\def\@xargdef#1 [#2] [#3]1#4{%
s \@ifdefinable#1{%

~

~

Define the actual command to be:
\def\foo{\@protected@testopt\foo\\foo{default}}

where \\foo is a csname generated from applying \csname and \string to \foo, ie the
actual name contains a backslash and therefore can’t clash easily with existing command
names. “Default” is the contents of the second optional argument of (re)newcommand.

7 \expandafter\def\expandafter#l\expandafter{y,

N~

\expandafter
79 \@protected@testopt
80 \expandafter
81 #1%
82 \csname\string#1\endcsname
83 {#3}}%

Now we define the internal macro ie \\foo which is supposed to pick up all arguments
(optional and mandatory).

84 \expandafter\Q@yargdef

85 \csname\string#1\endcsname
86 \tw@

87 {#2}%

{#4}33

(End definition for \@newcommand, \@argdef, and \@xargdef. These functions are documented on page
7))

This macro encapsulates the most common call to \@ifnextchar, saving several tokens
each time it is used in the definition of a command with an optional argument. #1 The
code to execute in the case that there is a [need not be a single token but can be any
sequence of commands that ‘expects’ to be followed by [. If this command were only
used in \newcommand definitions then #1 would be a single token and the braces could
be omitted from {#1} in the definition below, saving a bit of memory.

s \long\def\@testopt#1#2{J,

o0 \kernel@ifnextchar [{#1}{#1[{#2}]1}}

(End definition for \@testopt. This function is documented on page ?77.)

Robust version of \@testopt. The extra argument (#1) must be a single token. If
protection is needed the call expands to \protect applied to this token, and the 2nd and
3rd arguments are discarded (by \@x@protect). Otherwise \@testopt is called on the
2nd and 3rd arguments.
This method of making commands robust avoids the need for using up two csnames
per command, the price is the extra expansion time for the \ifx test.
o1 \def\@protected@testopt#1{}
o> \ifx\protect\@typeset@protect
93 \expandafter\Qtestopt

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 73

\@yargdef
\@yargdef

\@reargdef

\renewcommand

04 \else
5 \@x@protect#1}
%6 \fi}

(End definition for \@protected@testopt. This function is documented on page 77.)

These generate a primitive argument specification, from a WTEX [(digit)] form; in fact
(digit) can be anything such that \number (digit) is single digit.

Reorganised slightly so that \renewcommand{\reserved@a}[1]{foo} works. I am
not sure this is worth it, as a following \newcommand would over-write the definition of
\reserved@a.

Recall that IATEX2.09 goes into an infinite loop with
\renewcommand [1] {\@tempa}{foo}

(DPC 6 October 93).

Reorganised again (DPC 1999). Rather than make a loop to construct the argument
spec by counting, just extract the required argument spec by using a delimited argument
(delimited by the digit). This is faster and uses less tokens. The coding is slightly odd
to preserve the old interface (using #2 = \tw@ as the flag to surround the first argument
with []. But the new method did not allow for the number of arguments #3 not being
given as an explicit digit; hence (further expansion of this argument and use of) \number
was added later in 1999.

It is not clear why these are still \long.

o7 \long \def \@yargdef #1#2#3{%
98 \ifx#2\tw@
99 \def\reserved@b##11{ [####1]}Y,

100 \else

101 \let\reserved@b\@gobble

102 \fi

103 \expandafter

104 \@yargd@f \expandafter{\number #3}#1,
105 }

106 \long \def \@yargd@f#1#2{%
107 \def \reservedQa ##1#1##2##{,

108 \expandafter\def\expandafter#2\reserved@b ##1#1,

100 Y

110 \1@ngrel@x \reserved@a O##1##2##3I##AHH#OHHCHHTHASHHIHH#HLY,
1}

(End definition for \@yargdef and \@yargd@f. These functions are documented on page ?77.)

112 \long\def\@reargdef#1 [#2]{/,
13 \Q@yargdef#1\@ne{#2}}

(End definition for \@reargdef. This function is documented on page ?7.)

Check the command name is already used. If not give an error message. Then temporarily
disable \@ifdefinable then call \newcommand. (Previous version \let#1=\relax but
this does not work too well if #1 is \@tempa—e.)

114 \def\renewcommand{\@star@or@long\renew@command}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 74

\renew@command

\@ifdefinable
\@@ifdefinable
\@rc@ifdefinable

\newenvironment

\new@environment

\@newenva

\@newenvb

115 \def\renew@command#1{/
116 \begingroup \escapechar\m@ne\xdef\@gtempa{{\string#1}}\endgroup
17 \expandafter\@ifundefined\Qgtempa

118 {\@latex@error{Command \string#1l undefined}\@ehcl}/
119 \relax

120 \let\@ifdefinable\@rc@ifdefinable

121 \new@command#1}

(End definition for \renewcommand and \renew@command. These functions are documented on page 77.)

Test if user is allowed to define a command.
122 \long\def\@ifdefinable #1#2{J

123 \edef\reserved@a{\expandafter\Q@gobble\string #1}/,

124 \@ifundefined\reserved@a

125 {\edef\reserved@{\expandafter\@carcube \reserved@a xxx\@nill}J,
126 \ifx \reserved@b\@gend \@notdefinable\else

127 \ifx \reserved@a\@grelax \@notdefinable\else

128 #2%

129 \fi

130 \fi}%

131 \@notdefinable}

Saved definition of \@ifdefinable.
132 \let\@@ifdefinable\@ifdefinable

Version of \@ifdefinable for use with \renewcommand. Does not do the check this time,
but restores the normal definition.

133 \long\def\@rc@ifdefinable#1#2{%

132 \let\@ifdefinable\@@ifdefinable

135 #23}

(End definition for \@ifdefinable, \@@ifdefinable, and \@rc@ifdefinable. These functions are doc-
umented on page 77.)

Define a new user environment. #1 is the environment name. #2# Grabs all the tokens up
to the first {. These will be any optional arguments. They are not parsed at this point,
but are just passed to \@newenv which will eventually call \newcommand. Any optional
arguments will then be parsed by \newcommand as it defines the command that executes
the ‘begin code’ of the environment.

This #2# trick removed with version 1.2i as it fails if a { occurs in the optional
argument. Now use \@ifnextchar directly.

136 \def\newenvironment{\@star@or@long\new@environment}

137 \def\new@environment#1{%
138 \@testopt{\@newenva#1}0}

130 \def\@newenva#1 [#2]{%
140 \kernel@ifnextchar [{\@newenvb#1[#2]}{\@newenv{#1}{[#2]}}}

111 \def\@newenvb#1 [#2] [#3]{\Cnewenv{#1}{ [#2] [{#3}]1}}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 75

\renewenvironment

\renew@environment

\@newenv

\newif

\@if

(End definition for \newenvironment and others. These functions are documented on page ?7.)

Redefine an environment. For \renewenvironment disable \@ifdefinable and then call
\newenvironment. It is OK to \let the argument to \relax here as there should not
be a @temp. .. environment.

12 \def\renewenvironment{\@star@or@long\renew@environment}

123 \def\renew@environment#1{%

11 \@ifundefined{#1}Y

145 {\@latex@error{Environment #1 undefined}\@ehc
146 Hrelax

w7 \expandafter\let\csname#1\endcsname\relax

s \expandafter\let\csname end#1\endcsname\relax
120 \new@environment{#1}}

(End definition for \renewenvironment and \renew@environment. These functions are documented on
page 77.)

The internal version of \newenvironment.
Call \newcommand to define the (begin-code) for the environment. \def is used for
the (end-code) as it does not take arguments. (but may contain \pars)
Make sure that an attempt to define a ‘graf’ or ‘group’ environment fails.
150 \long\def\@newenv#1#2#3#4{J,
151 \@ifundefined{#1}%

152 {\expandafter\let\csname#1\expandafter\endcsname

153 \csname end#1\endcsnamel},

154 \relax

155 \expandafter\new@command

156 \csname #1\endcsname#2{#3}/,

157 \1l@ngrel@x\expandafter\def\csname end#1\endcsname{#41}}

(End definition for \@newenv. This function is documented on page ?77.)

And here’s a different sort of allocation: For example, \newif\iffoo creates \footrue,
\foofalse to go with \iffoo.

15e \def\newif#1{/

159 \count@\escapechar \escapechar\m@ne
160 \let#1\iffalse

161 \@if#1\iftrue

162 \@if#1\iffalse

16 \escapechar\count@}

160 \def\@if#1#2{%

165 \expandafter\def\csname\expandafter\@gobbletwo\string#1/,

166 \expandafter\Q@gobbletwo\string#2\endcsname
167 {\let#1#2}}

(End definition for \newif and \@if. These functions are documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 76

\providecommand

\provide@command

\CheckCommand

\check@command

\@check@c

\providecommand takes the same arguments as \newcommand, but discards them if #1 is
already defined, Otherwise it just acts like \newcommand. This implementation currently
leaves any discarded definition in \reserved®a (and possibly \\reserved@a) this wastes
a bit of space, but it will be reclaimed as soon as these scratch macros are redefined.

16s \def\providecommand{\@star@or@long\provide@command}

160 \def\provide@command#1{%

170 \begingroup

171 \escapechar\m@ne\xdef\Q@gtempa{{\string#1}}/
12 \endgroup

173 \expandafter\@ifundefined\@gtempa

174 {\def\reserved@a{\new@command#1}1}/
175 {\def\reserved@a{\renew@command\reserved@al}}Y
176 \reserved@al},

(End definition for \providecommand and \provide@command. These functions are documented on page
?7.)

\CheckCommand takes the same arguments as \newcommand. If the command already
exists, with the same definition, then nothing happens, otherwise a warning is is-
sued. Useful for checking the current state befor a macro package starts redefin-
ing things. Currently two macros are considered to have the same definition if they
are the same except for different default arguments. That is, if the old definition
was: \newcommand\xxx [2] [a]l{(#1) (#2)} then \CheckCommand\xxx [2] [b]{(#1) (#2)}
would not generate a warning, but, for instance \CheckCommand\xxx [2]{(#1) (#2)}
would.

177 \def\CheckCommand{\@star@or@long\check@command}
\CheckCommand is only available in the preamble part of the document.

175 \@Qonlypreamble\CheckCommand

179 \def\check@command#1#2#{\@check@c#1{#2}}
150 \@onlypreamble\check@command

(End definition for \CheckCommand and \check@command. These functions are documented on page 77.)

\CheckCommand itself just grabs all the arguments we need, without actually looking for
[optional argument forms. Now define \reserved@a. If \\reserved@a is then defined,
compare it with the “\#1’ otherwise compare \reserved@a with #1.

151 \long\def\@check@c#1#2#3{%

122 \expandafter\let\csname\string\reserved@a\endcsname\relax
153 \renew@command\reserved@a#2{#3},

14 \@ifundefined{\string\reserved@aly,

185 {\@check@eqg#1\reserved@aly

186 {\expandafter\@check@eq

187 \csname\string#1\expandafter\endcsname

188 \csname\string\reserved@a\endcsname}}

159 \@onlypreamble\@check@c

(End definition for \@check@c. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 7

\@check@eq

\@gobble
\@gobbletwo
\@gobblethree
\@gobblefour

\@firstofone
\efirstoftwo
\@secondoftwo

\@iden

\@thirdofthree

\@expandtwoargs

\@backslashchar

Complain if #1 and #2 are not \ifx equal.
100 \def\@check@eq#1#2{/

w1 \ifx#1#2\else

192 \@latex@warning@no@line

103 {Command \noexpand#1 has

194 changed.\MessageBreak

195 Check if current package is validl}¥%
196 \fi}

107 \@onlypreamble\@check@eq

(End definition for \@check@eq. This function is documented on page ?7.)

The \@gobble macro is used to get rid of its argument.

s \long\def \@gobble #1{}

199 \long\def \@gobbletwo #1#2{}

200 \long\def \@gobblethree #1#2#3{}
201 \long\def \Qgobblefour #1#2#3#4{}

(End definition for \@gobble and others. These functions are documented on page 77.)

Some argument-grabbers.

202 \long\def\@firstofone#1{#1}
203 \long\def\@firstoftwo#1#2{#1}
4 \long\def\@secondoftwo#1#2{#2}

2

\@iden is another name for \@firstofone for compatibility reasons.
205 \let\@iden\@firstofone

(End definition for \@firstofone and others. These functions are documented on page ?77?.)

Another grabber now used in the encoding specific section.
206 \long\def\@thirdofthree#1#2#3{#3}

(End definition for \@thirdofthree. This function is documented on page 77.)

A macro to totally expand two arguments to another macro

207 \def\@expandtwoargs#1#2#3{/,
208 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@alt

(End definition for \@expandtwoargs. This function is documented on page 77.)

A category code 12 backslash.
200 \edef\@backslashchar{\expandafter\@gobble\string\\}

(End definition for \@backslashchar. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m

78

1.4 Robust commands and protect

Fragile and robust commands are one of the thornier issues in BTEX’s commands. Whilst
typesetting documents, IXTEX makes use of many of TEX’s features, such as arithmetic,
defining macros, and setting variables. However, there are (at least) three different
occasions when these commands are not safe. These are called ‘moving arguments’ by
ITEX, and consist of:

o writing information to a file, such as indexes or tables of contents.
e writing information to the screen.

 inside an \edef, \message, \mark, or other command which evaluates its argument
fully.

The method ITEX uses for making fragile commands robust is to precede them with
\protect. This can have one of five possible values:

e \relax, for normal typesetting. So \protect\foo will execute \foo.
e \string, for writing to the screen. So \protect\foo will write \foo.

e \noexpand, for writing to a file. So \protect\foo will write \foo followed by a
space.

¢ \Qunexpandable@protect, for writing a moving argument to a file. So \protect\foo
will write \protect\foo followed by a space. This value is also used inside \edefs,
\marks and other commands which evaluate their arguments fully. More precisely,
whenever the content of an \edef or \xdef etc. can contain arbitrary user input
not under the direct control of the programmer, one should use \proetected@edef
instead of \edef, etc., so that \protect has a suitable definition and the user input
will not break if it contains fragile commands.

\@unexpandable@protect
210 \def\@unexpandable@protect{\noexpand\protect\noexpand}

(End definition for \@unexpandable@protect. This function is documented on page ?7.)

\DeclareRobustCommand This is a package-writers command, which has the same syntax as \newcommand, but
\declare@robustcommand which declares a protected command. It does this by having
\DeclareRobustCommand\foo
define \foo to be \protect\foo<space>,
and then use \newcommand\foo<space>.
Since the internal command is \foo<space>, when it is written to an auxiliary file, it
will appear as \foo.
We have to be a bit cleverer if we're defining a short command, such as _, in order

to make sure that the auxiliary file does not include a space after the command, since
_ a and _a aren’t the same. In this case we define _ to be:

\x@protect_\protect_<space>

which expands to:

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 79

\@x@protect
\x@protect

\@typeset@protect

\ifx\protect\@typeset@protect\else
\@x@protect@_

\fi

\protect_<space>

Then if \protect is \@typeset@protect (normally \relax) then we just perform
_<space>, and otherwise \@x@protect® gobbles everything up and expands to \protect\ _
Note: setting \protect to any value other than \relax whilst in ‘typesetting’ mode
will cause commands to go into an infinite loop! In particular, setting \protect to
\@empty will cause _ to loop forever. It will also break lots of other things, such as
protected \ifmmodes inside \haligns. If you really have to do such a thing, then please
set \@typeset@protect to be \@empty as well. (This is what the code for \patterns
does, for example.)
More fun with \expandafter and \csname.
211 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

»12 \def\declare@robustcommand#1{%
213 \ifx#1\@undefined\else\ifx#1\relax\else

214 \@latex@info{Redefining \string#1}/,
215 \fi\fi

216 \edef\reserved@a{\string#1}J,

217 \def\reserved@b{#1}/,

218 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@bl}
219 \edef#1{J,

220 \ifx\reserved@a\reserved@b

21 \noexpand\x@protect

222 \noexpand#1,

223 \fi

224 \noexpand\protect

225 \expandafter\noexpand\csname

226 \expandafter\@gobble\string#1 \endcsname
227 Y%

228 \let\@ifdefinable\@rc@ifdefinable

229 \expandafter\new@command\csname

230 \expandafter\@gobble\string#1l \endcsname
231 }

(End definition for \DeclareRobustCommand and \declare@robustcommand. These functions are docu-
mented on page 77.)

232 \def\x@protect#1{},

233 \ifx\protect\@typeset@protect\else
234 \@xQ@protect#1,

235 \fi

236 }

237 \def\@x@protect#1\fi#2#3{%
238 \fi\protect#1%

239 }

(End definition for \@x@protect and \x@protect. These functions are documented on page 77.)

We set \@typeset@protect to \relax rather than \Q@empty to make sure that the pro-
tection mechanism stops the look-ahead and expansion performed at the start of \halign
cells.

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 80

\set@display@protect
\set@typeset@protect

\protected@edef
\protected@xdef
\unrestored@protected@xdef
\restore@protect

\protect

\MakeRobust

20 \let\@typeset@protect\relax

(End definition for \@typeset@protect. This function is documented on page 77.)

These macros set \protect appropriately for typesetting or displaying.

221 \def\set@display@protect{\let\protect\string}
2> \def\set@typeset@protect{\let\protect\@typeset@protect}

(End definition for \set@display@protect and \set@typeset@rotect. These functions are documented
on page 77.)

The commands \protected@edef and \protected@xdef perform ‘safe’ \edefs and
\xdefs, saving and restoring \protect appropriately. For cases where restoring \protect
doesn’t matter, there’s an ‘unsafe’ \unrestored@protected@xdef, useful if you know
what you’re doing!

23 \def\protected@edef{%

244 \let\@@protect\protect

245 \let\protect\Qunexpandable@protect

246 \afterassignment\restore@protect
247 \edef

248 }

20 \def\protected@xdef{%

250 \let\@@protect\protect

251 \let\protect\Qunexpandable@protect
252 \afterassignment\restore@protect
253 \xdef

254 }

255 \def\unrestored@protected@xdef{y,

256 \let\protect\@unexpandable@protect
257 \xdef

258 }

20 \def\restore@protect{\let\protect\@@protect}

(End definition for \protected@edef and others. These functions are documented on page 77.)

The normal meaning of \protect

20 \set@typeset@protect

(End definition for \protect. This function is documented on page 77.)

This macro makes an existing fragile macro robust, but only if it hasn’t been robust
in the past, i.e., it checks for the existence of the macro \<name>_, and if that exists it
assumes that \<name> is already robust. In that case either undefine the inner macro first
or use \DeclareRobustCommand to define it in a robust way directly. We could probably
test the top-level definition to have the right kind of structure, but this is somewhat
problematical as we then have to distinguish between \long macros and others and also
take into account that sometimes the top-level is deliberately dones manually (like with
\begin).

The macro firstly checks if the control sequence in question exists at all.

(/2ekernel)

22 (latexrelease)\IncludeInRelease{2020/10/01}{\MakeRobust}{\MakeRobust}%

(*2ekernel | latexrelease)

26 \def\MakeRobust#1{%

265 \count@=\escapechar

261

263

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 81

\@kernel@rename@newcommand

266 \escapechar=‘\\

267 \@ifundefined{\expandafter\@gobble\string#1}{%

268 \@latex@error{The control sequence ‘\string#1’ is undefined!%

269 \MessageBreak There is nothing here to make robust}/,

270 \@eha

271 IvA

Then we check if the macro is already robust. We do this by testing if the internal
name for a robust macro is defined, namely \foo.,. If it is already defined do nothing,
otherwise set \fooy, equal to \foo and redefine \foo so that it acts like a macro defined
with \DeclareRobustCommand. We use \@kernel@rename®@newcommand to copy \foo
over to \foo,, including a possible default optional argument.

a2 A%

273 \@ifundefined{\expandafter\@gobble\string#1l\spacel’

274 {%

275 \expandafter\@kernel@rename@newcommand

276 \csname\expandafter\Q@gobble\string#1\space\endcsname

277 #19%

278 \edef\reserved@a{\string#1}J,

279 \def\reserved@b{#1}/

280 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@bl}y
281 \xdef#1{J,

282 \ifx\reserved@a\reserved@b

283 \noexpand\x@protect\noexpand#1/,

284 \fi

285 \noexpand\protect\expandafter\noexpand

286 \csname\expandafter\@gobble\string#1\space\endcsnamel}y,

287 iy

288 {\@latex@info{The control sequence ‘\string#l’ is already robust}l}}
289 Y%

200 \escapechar=\count@

201 }h

This macro renames a command, possibly with an optional argument (defined with
\newcommand) from #2 to #1, by renaming the internal macro \\#2 to \\#1 and defining
\#1 appropriately, then undefining \#2 and \\#2. The \afterassignment trick is to
make both definitions in \@copy@newcommand global (which are local by default).

In case the macro was defined with \newcommand and an optional argument,
to replicate exactly the behaviour of \DeclareRobustCommand we have to move also
the internal \\foo to \\foo,. In that case, #1 will be a parameterless macro
(\robust@command@chk@safe checks that), and \@if@newcommand will return true (both
defined below in this file). If so, we can use \@copy@newcommand rather than plain \let
to copy the command over. \@kernel@rename@newcommand does this test and carries out
the renaming.

202 \def\@kernel@rename@newcommand#1#2{%
203 \robust@command@chk@safe#2Y

204 {\@if@newcommand#2

295 {\afterassignment\global

296 \global\@copy@newcommand#1#27

207 \global\let#2\@undefined

298 \global\expandafter\let\csname\string#2\endcsname\@undefined}y,
299 {\global\let#1=#2}1}/

300 {\global\let#1=#2}}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 82

/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease

(
(
303 %

°

latexrelease)\IncludeInRelease{2019/10/01}{\MakeRobust}{\MakeRobust}%
latexrelease)\def \MakeRobust#1{%

latexrelease) \@ifundefined{\expandafter\@gobble\string#1}{%

latexrelease \@latex@error{The control sequence ‘\string#1’ is undefined!%
latexrelease \MessageBreak There is nothing here to make robustl}V
latexrelease \@eha

latexrelease) 1}
latexrelease) {%
latexrelease
latexrelease
latexrelease

()
()
()
()
()
()
()
()
() \@ifundefined{\expandafter\@gobble\string#l\spacel}’
() 1k
() \global\expandafter\let\csname
(latexrelease) \expandafter\@gobble\string#1\space\endcsname=#1
(latexrelease) \edef\reserved@a{\string#1}/
517 (latexrelease) \def\reserved@b{#1}
(latexrelease) \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}y
(latexrelease) \xdef#1{/,
(latexrelease) \ifx\reserved@a\reserved@
(latexrelease) \noexpand\x@protect\noexpand#1%
(latexrelease) \fi
(latexrelease) \noexpand\protect\expandafter\noexpand
(latexrelease) \csname\expandafter\@gobble\string#1i\space\endcsname}y,
(latexrelease)
(latexrelease)
(latexrelease)
(latexrelease)}%
(latexrelease)\1let\@kernel@rename@newcommand\Qundefined
(latexrelease)\EndIncludeInRelease

Yh
{\@latex@info{The control sequence ‘\string#l’ is already robust}}
Y
328
329

330

331 %

s22 (latexrelease)\IncludeInRelease{2015/01/01}{\MakeRobust}{\MakeRobust}%

533 (latexrelease)\def \MakeRobust#1{/,

s:4 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1}{}

335 (latexrelease) \@latex@error{The control sequence ‘\string#1’ is undefined!’
336 (latexrelease) \MessageBreak There is nothing here to make robustl}/

337 (latexrelease) \@eha

s (latexrelease) }%

s30 (latexrelease) {%

320 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1\space}%

sa (latexrelease) {4

2 (latexrelease) \expandafter\let\csname

33 (latexrelease) \expandafter\@gobble\string#1\space\endcsname=#17

sua (latexrelease) \edef\reserved@a{\string#11}/,

25 (latexrelease) \def\reserved@b{#1}%

36 (latexrelease) \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}j,
w7 (latexrelease) \edef#1{%

s (latexrelease) \ifx\reserved@a\reserved@b

30 (latexrelease) \noexpand\x@protect\noexpand#1%

50 (latexrelease) \fi

51 (latexrelease) \noexpand\protect\expandafter\noexpand

352 (latexrelease) \csname\expandafter\Q@gobble\string#1\space\endcsnamel}y,

353 (latexrelease) Y

0 (latexrelease) {\@latex@info{The control sequence ‘\string#1l’ is already robustl}}/

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 83

\kernel@make@fragile

(latexrelease) 1}

(latexrelease)}%

s57 (latexrelease)\let\@kernel@rename@newcommand\Qundefined
(latexrelease)\EndIncludeInRelease

359 %
latexrelease
latexrelease
latexrelease
latexrelease

s (*2ekernel)

\IncludeInRelease{0000/00/00}{\MakeRobust}{\MakeRobust}/,
\let\MakeRobust\@undefined
\let\@kernel@rename@newcommand\@undefined
\EndIncludeInRelease

363

(
(
(
(

~— o~ ~—

(End definition for \MakeRobust and \@kernel@rename@newcommand. These functions are documented on
page ?7.)

The opposite of \MakeRobust execpt that it doesn’t do many checks as it is internal to the
kernel. Why does one want such a thing? Only for compatibility reasons if latexrelease
requests a rollback of the kernel. For this reason we pretend that this command existed
in all earler versions of XTEX i.e., we are not rolling it back since we need it precisely
then. But we have to get it into the latexrelease file so that a roll forward is possible
too.

365 (/2ekerne|)
(

56 (*2ekernel | latexrelease)

se7 (latexrelease) \IncludeInRelease{2020/10/01}%

s (latexrelease) {\kernel@make@fragile}{Undo robustness}}
360 \def\kernel@make@fragile#1{}

s70 \@ifundefined{\expandafter\@gobble\string#1\spacel}’,

If not robust do nothing.

371 {34

Otherwise copy \foo., back to \foo. Then use \@kernel@rename@newcommand to check

and copy \\fooy, back to \\foo in case the command has an optional argument. If so,
also undefine \\foo,,, and at the end undefine \foo,,.

372 {%

373 \global\expandafter\let\expandafter #1\csname

374 \expandafter\Qgobble\string#1\space\endcsname

375 \expandafter\@kernel@rename@newcommand

376 \csname\expandafter\@gobble\string#1\expandafter\endcsname

377 \csname\expandafter\Q@gobble\string#1\space\endcsname

378 \global\expandafter\let\csname

379 \expandafter\@gobble\string#1\space\endcsname\@undefined
380 o

381 F

(latexrelease) \EndIncludeInRelease
383 /,
(latexrelease) \IncludeInRelease{0000/00/00}%
(latexrelease {\kernel@make@fragile}{Undo robustness}},
(latexrelease) \def \kernel@make@fragile#1{},
37 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1\space}),

(

(

(

(

(

)
)
)
)
latexrelease) {}
)
)
)
)

384
385

386

388
latexrelease
latexrelease
latexrelease
latexrelease

389 {%
\global\expandafter\let\expandafter #1\csname
\expandafter\@gobble\string#1\space\endcsname

\global\expandafter\let\csname

390
391

392

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 84

latexrelease
latexrelease

()

()
05 (latexrelease) }

(

(

393

\expandafter\@gobble\string#1\space\endcsname\@undefined
394 M
306 (latexrelease) \EndIncludeInRelease
so7 (/2ekernel | latexrelease)

s0s (*2ekernel)

(End definition for \kernel@make@fragile. This function is documented on page 77.)

1.5 Acting on robust commands

300 (/2ekernel)

wo (latexrelease)\IncludeInRelease{2020-10-01}{\robust@command@act}

w1 (latexrelease) {Add \robust@command@actl}’
(

w02 (*2ekernel | latexrelease)

With most document level commands being robust now there is more of a require-
ment to have a standard way of aliasing (or copying) a command to a new name, for ex-
ample to save an original definition before changing a command. \DeclareCommandCopy
is analogous to TEX’s \let, except that it copes with the different types of robust com-
mands defined by ETEX’s mechanisms.

A couple of “types of robustness” are defined by the INTEX 2¢ kernel, namely robust
commands defined with \DeclareRobustCommand and commands with optional argu-
ments defined with \newcommand. However there are other types of robust commands
that are frequently used, which are not defined in the KTEX 2¢ kernel, like commands
defined with xparse’s \NewDocumentCommand and etoolbox’s \newrobustcmd.

In this section we will define a generic extensible machinery to act on robust com-
mands. This code will then be used to test if a command is robust, considered the different
types of robustness, and then either copy that definition, if \DeclareCommandCopy (or
similar) is used, or show the definition of the command, if \ShowCommmand is used.

\robust@command@act The looping machinery is generic and knows nothing about what is to be done for each
case. The syntax of the main macro \robust@command®@act is:

\robust@command@act{action-list)({robust-cmd)
(fallback-action){act-arg)

(action-list) is a token list of the form:

{(if-type-1) {act-type-1)}
{(if-type-2) (act-type-2)}

\robust@command@act will iterate over the (action-list), evaluating each (if-type-n){robust-cmd){{true)H
If the (if-type-n) conditional returns (true), then (act-type-n){act-arg) is executed, and

the loop ends. If the conditional returns (false), then (if-type-n 4+ 1) is executed in

the same way, until either one of the conditionals return (true), or the end of the

(action-list) is reached. If the end is reached, then (fallback-action)(act-arg) is executed

before \robust@command@act exits.

\robust@command@act will start by using \robust@command@act@chk®@args to check
if the (robust-cmd) (#2) is a parameterless (possibly \protected) macro. If it is not, the
command is not a robust command: these always start with a parameterless user-level
macro; in that case, \robust@command@act®@end is used to short-circuit the process and
do the (fallback-action) (#3). This first test is necessary because later on we need to be

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 85

\robust@command@act@loop
\robust@command@act@loop@aux
\robust@command@act@do

\robust@command@act@end

\robust@command@chk@safe
\robust@command@act@chk@args

able to expand the (robust-cmd) without the risk of it Breaking Badly, and as a bonus,
this speeds up the process in case we used \NewCommandCopy in a “normal” macro.

203 \long\def\robust@command@act#1#2#3#4{},
204 \robust@command@chk@safe#2

405 {\expandafter\robust@command@act@loop
406 \expandafter#2/,

407 #1{\Onnil\@nnill}y,

408 \robust@command@act@end}%

400 {\robust@command®@act@end}’,

410 {#3H{#43}7%

If \robust@command@act@chk@args branched to false, then \robust@command@act@loop
will loop over the list of items in the (action-list) (#1), and process each item as described
earlier. If the (if-type-n) command expands to (true) then \robust@command@act@do is
used to execute (act-type-n) on the (act-arg), otherwise the loop resumes with the next
item.

211 \long\def\robust@command@act@loop#1#2{\robust@command@act@loop@aux#1#2}
212 \long\def\robust@command@act@loopQaux#1#2#3{%
413 \ifx\Onnil#2%

414 \else

415 #2{#1},

416 {\robust@command@act@do{#3}}/

417 {\expandafter\robust@command@act@loop\expandafter#1}y,
418 \fi}

219 \long\def\robust@command@act@do#1%

420 \fi#2Y%

21 \robust@command@act@end#3#4{7

422 \fi

423 #1#4}

If the end is reached and no action was taken, then do (fallback-action){act-arg).
24 \long\def\robust@command@act@end#1#2{#1#2}

25 \long\def\robust@command@chk@safe#1{}

26 \begingroup

427 \escapechar="‘\\

s \expandafter\endgroup\expandafter

20 \robust@command@act@chk@args\meaning#1:->\0nil}
230 \def\robust@command@act@chk@args#1:->#2\0nil{}

231 \Qexpl@str@if@eq@@nnTF{#1}{macro}y,

432 {\@firstoftwol}¥

433 {\@expl@str@if@eq@@nnTF{#1}{\protected macrol}
434 {\efirstoftwol}’

435 {\@secondoftwo}}}

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\robust@command@act}

130 (latexrelease) {Add \robust@command@act}Y,
(latexrelease)\let\robust@command@act\Qundefined
()
()

438

440
21 (latexrelease)\let\robust@command@act@loop\@undefined

latexrelease)\1let\robust@command@act@loop@aux\Q@undefined

4

42

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 86

\NewCommandCopy
\RenewCommandCopy
\DeclareCommandCopy

\declare@commandcopy

(latexrelease)\let\robust@command@act@do\@undefined
uas (latexrelease)\let\robust@command@act@end\@undefined
s (latexrelease)\let\robust@command@chk@safe\Qundefined
()
()

443

latexrelease)\1let\robust@command@act@chk@args\@undefined
latexrelease)\EndIncludeInRelease
ws (*2ekernel)

46

447

(End definition for \robust@command@act and others. These functions are documented on page 77.)

1.5.1 Copying robust commands

(/2ekernel)

10 (latexrelease)\IncludeInRelease{2020-10-01}{\DeclareCommandCopy}

i1 (latexrelease) {Add \NewCommandCopy, \RenewCommandCopy, and \DeclareCommandCopy}%
2 (*2ekernel | latexrelease)

449

\NewCommandCopy starts by checking if #1 is already defined, and raises an error if so,
otherwise the definition is carried out. \RenewCommandCopy does (almost) the opposite.
If the command is not defined, then an error is raised. But the definition is carried out
anyhow, so the behaviour is consistent with \renewcommand.

A \ProvideCommandCopy isn’t defined because it’s not reasonably useful. \provide. ..
commands mean “define this if there’s no other definition”, but copying a command (usu-
ally) implies that the command being copied is defined, so \ProvideCommandCopy doesn’t
make a lot of sense. But more importantly, the most common use case of copying a com-
mand is to redefine it later, while preserving the old definition, as in:

\ProvideComandCopy \A \B
\renewcommand \B { ... \A ... }

then, if \A is already defined the first line is skipped, an in this case \B won’t work as
expected.

The three versions call the internal \declare@commandcopy with the proper action.
\@firstofone will carry out the copy. The only case when the copy is not made is the
(false) case for \NewCommandCopy, in which the command already exists and the definition
is aborted.

253 \def\NewCommandCopy{%

454 \declare@commandcopy
455 {\efirstofonel})
456 {\efirstoftwo\@notdefinable}}

.57 \def \RenewCommandCopy{%
255 \declare@commandcopy

459 {\@latex@error{Command \@backslashchar\reserved@a\space undefined}\@ehc
460 \e@firstofonely,
461 {\efirstofone}}

22 \def\DeclareCommandCopy{/
23 \declare@commandcopy

464 {\@firstofonel},

465 {\@firstofone}}

Start by checking if the command is already defined. The proper action is taken by
each specific command above. If all’s good, then \robust@command@act is called with
the proper arguments as described earlier, with \@declarecommandcopylisthook as the
(action-listy and \declare@commandcopy@let as the (fallback-action).

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 87

w6 \long\def\declare@commandcopy#1#2#3#4{J,

267 \edef\reserved@a{\@expl@csO@to@str@@N#31}}
w5 \@ifundefined\reserved@a{#1}{#2}/

469 {\robust@command®@act

470 \@declarecommandcopylisthook#47

471 \declare@commandcopy@let{#3#4}}}

The initial definition of \@declarecommandcopylisthook contains the tests for the two
types of robust command in the kernel.

272 \def\@declarecommandcopylisthook{’
\@declarecommandcopylisthook .;; {\@if@DeclareRobustCommand \@copy@DeclareRobustCommand}
a2 {\@if@newcommand \@copy@newcommand}}

The initial definition of \@declarecommandcopylisthook contains the tests for the two
types of robust command in the kernel.
275 \long\def\declare@commandcopy@let#1#2{\let#1=#2\relax}

\declare@commandcopy@let
Now the rollback code.

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\DeclareCommandCopy}
(latexrelease) {Undefine \NewCommandCopy, \RenewCommandCopy, and \DeclareCommandCopy}%
(latexrelease)\1let \NewCommandCopy\@undefined

w1 (latexrelease)\1let\RenewCommandCopy\@undefined
(latexrelease)\let\DeclareCommandCopy\@undefined
()
()
()
()

476

477

478

&

479

480

482
253 (latexrelease)\let\declare@commandcopy\@undefined
latexrelease)\let\@declarecommandcopylisthook\@undefined
latexrelease)\let\declare@commandcopy@let\@undefined

s (latexrelease)\EndIncludeInRelease

487 (*2ekerne|)

484

85

(End definition for \NewCommandCopy and others. These functions are documented on page ?77.)

1.5.2 Showing robust commands

\ShowCommand Most of the machinery defined for \NewCommandCopy can be used to show the definition
of a robust command, in a similar fashion to texdef. The difference is that after the
command’s is detected to has a given type of robustness, rather than making a copy, we
use a separate routine to show its definition.

With all the machinery in place, \ShowCommand itself is quite simple: use \robust@command®@act
to iterate through the \@showcommandlisthook list, and if nothing is found, fallback to
\show.

s (/2ekernel)

0 (latexrelease)\IncludeInRelease{2020-10-01}{\ShowCommand}
o (latexrelease) {Add \ShowCommand},

w1 (*2ekernel | latexrelease)

22 \long\def\ShowCommand#1{/

103 \robust@command@act
492 \@showcommandlisthook#1
495 \show#1}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 88

The initial definition of \@showcommandlisthook contains the same tests as used for copy-
\@showcommandlisthook ing, but \@show@. .. commands instead of \@copy@. ... Same as before, it is initialised
to cope with \DeclareRobustCommand and \newcommand with optional arguments.

106 \def\@showcommandlisthook{%
107 {\@if@DeclareRobustCommand \@show@DeclareRobustCommand}/,
108 {\@if@newcommand \@show@newcommand}}

Now the rollback code.

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\ShowCommand}
s> (latexrelease) {Undefine \ShowCommand}Y,
(latexrelease)\let\ShowCommand\@undefined
(latexrelease)\1let\@showcommandlisthook\@undefined
(latexrelease) \EndIncludeInRelease

so0 (*2ekernel)

(End definition for \ShowCommand and \@showcommandlisthook. These functions are documented on page

27.)

sor {/2ekernel)

s0s (latexrelease)\IncludeInRelease{2020-10-01}{\@if@DeclareRobustCommand}
so0 (latexrelease) {Add \@if@DeclareRobustCommand, \@if@newcommand,

si0 (latexrelease) \@copy@DeclareRobustCommand, \@copy@newcommand,
su (latexrelease) \@show@DeclareRobustCommand, \@show@newcommand}’
s12 (*2ekernel | latexrelease)

1.5.3 Commands defined with \DeclareRobustCommand

\@if@DeclareRobustCommand Now that we provided a generic way to copy one macro to another, we need to define
a way to check if a command is one of INTEX 2¢’s robust types. These tests are heavily
based on Heiko’s \LetLtxMacro, but chopped into separate macros.
\@if@DeclareRobustCommand checks if a command \cmd was defined by \DeclareRobustCommand.
The test returns true if the expansion of \cmd is exactly \protect\cmd,,.

513 \long\def\@if@DeclareRobustCommand#1{%
5.2 \begingroup

515 \escapechar="°\\

516 \edef\reserved@a{\string#1}/,

517 \edef\reserved@b{\detokenize{#1}1}/,

518 \xdef\Q@gtempa{’%

519 \ifx\reserved®@a\reserved@b

520 \noexpand\x@protect

521 \noexpand#1,

522 \fi

523 \noexpand\protect

524 \expandafter\noexpand\csname\@expl@cs@to@str@A@N#1 \endcsname},

s \endgroup
56 \ifx\Q@gtempa#1\relax

527 \expandafter\@firstoftwo
528 \else

529 \expandafter\@secondoftwo
530 \fi}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 89

If a command was defined by \DeclareRobustCommand (that is, \@if@DeclareRobustCommand
\@copy@eclareRobustCommand returns true), then to make a copy of \cmd into \foo we define the latter such that it
\copy@kernel@robust@command expands to \protect\foo,, then make \foo, equal to \cmd,.

There is one detail we need to take care of: if a command was defined with

\DeclareRobustCommand it may still have an optional argument, in which case there

is one more macro layer before the actual definition of the command. We use

\@if@newcommand to check that and \@copy@newcommand to do the copying.

531 \long\def\@copy@DeclareRobustCommand#1#2{/

522 \begingroup

533 \escapechar="‘\\

534 \edef\reserved@a{\string#1}/

535 \edef\reserved@b{\detokenize{#1}}%

536 \edef\reserved@a{,

537 \endgroup

s \def\noexpand#1{/,

539 \ifx\reserved®@a\reserved@b

540 \noexpand\x@protect

541 \noexpand#1%

542 \fi

543 \noexpand\protect

544 \expandafter\noexpand\csname\@expl@cs@to@str@@N#1 \endcsnamel,
55 \noexpand\copy@kernel@robust@command

546 \expandafter\noexpand\csname\Q@expl@cs@to@str@ON#1 \endcsname
547 \expandafter\noexpand\csname\@expl@cs@to@str@@N#2 \endcsnamel,

sis \reserved®@a}
520 \long\def\copy@kernel@robust@command#1#2{/,
550 \robust@command@chk@safe#2,

551 {\@if@newcommand#2

552 {\@copy@newcommand}

553 {\declare@commandcopy@let}}
554 {\declare@commandcopy@letl}’,

555 #1#23}

Showing the command is pretty simple. This command prints the top-level expan-
\@show@DeclareRobustCommand sion as TEX’s \show would, but with robust macro: rather than just macro:, then
\show@kernel@robust@command a blank line and then \show the inner command. For a macro defined with, say

\DeclareRobustCommand\foo [1]{bar}, it will print:

> \foo=robust macro:
->\protect \foo

> \foo =\long macro:
#1->bar.

If the inner command is defined with an optional argument, then \@show@newcommand is
also used.
The value of \escapechar is deliberately not enforced, so \ShowCommand behaves
more like \show.
ss6 \long\def\@show@DeclareRobustCommand#1{%
ss7 \typeout{> \string#l=robust macro:}%
555 \typeout{->\@expl@cs@replacement@spec@CON#1."~J}/,
sso \expandafter\show@kernel@robust@command
560 \csname\@expl@csQto@str@@N#1 \endcsname}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 90

se1 \long\def\show@kernel@robust@command#1{%
s \robust@command@chk@safe#17

563 {\@if@newcommand#1Y,

564 {\@show@newcommand}¥
565 {\show}}/

566 {\ShOW}%

567 #1}

(End definition for \@if@DeclareRobustCommand and others. These functions are documented on page
77.)

1.5.4 Commands defined with \newcommand (with optional argument)

\@if@newcommand A command \cmd (or \cmd,, if it was defined with \DeclareRobustCommand) with an
optional argument will expand to \@protected@testopt\cmd\\cmd{<opt>}. To check
that we look at the first three tokens in the expansion of \cmd, and return true or false
accordingly.

This test requires that the command be a parameterless macro, otherwise it will not
work (and probably break). This is ensured with \robust@command@chk@safe before
calling \@if@newcommand.

s6s \long\def\@if@newcommand#1{%
seo \edef\reserved@a{y,

570 \noexpand\@protected@testopt

571 \noexpand#17,

572 \expandafter\noexpand\csname\@backslashchar\@expl@cs@to@str@@N#1\endcsname}y,
s3 \edef\reserved@b{,

574 \unexpanded\expandafter\expandafter\expandafter

575 {\expandafter\@carcube#1{}{}{}\e@nil}}Y

s \ifx\reserved@a\reserved@b
577 \expandafter\@firstoftwo

578 \else
579 \expandafter\@secondoftwo
580 \fi}

Then, if a command \cmd takes an optional argument, we copy it to \foo by defining
\@copy@newcommand the latter to expand to \@protected@testopt\foo\\foo{<opt>}.

531 \long\def\@copy@newcommand#1#2{/,
s22 \edef#1{\noexpand\@protected@testopt

583 \noexpand#17,

584 \expandafter\noexpand\csname\@backslashchar\Q@expl@cs@to@str@@N#1\endcsname
585 \unexpanded\expandafter\expandafter\expandafter

586 {\expandafter\@gobblethree#2}1}/,

ss7 \expandafter

s33 \let\csname\@backslashchar\Q@expl@cs@to@str@@N#1\expandafter\endcsname

589 \csname\@backslashchar\Q@expl@cs@to@str@@N#2\endcsname}

A command being \shown here is guaranteed to have an optional argument. Start by
\@show@newcommand showing the top-level expansion of the command (using \typeout to avoid TeX asking for
\@show@newcommand@aux interaction and extra context lines), then call \@show@newcommand®@aux with the internal
command, which contains the actual definition, and with the expansion of the command

to extract the default value of the optional argument.

50 \long\def\@show@newcommand#1{%
so0 \typeout{> \string#l=robust macro:}%

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 91

\@ifundefined

50 \typeout{->\@expl@cs@replacement@spec@CON#1."~J}/,

503 \expandafter\@show@newcommandQaux

594 \csname\@backslashchar\Q@expl@cs@to@str@@N#1\expandafter\endcsname
595 \expandafter{#1}}

For a macro defined with, say, \newcommand\foo[1] [opt]{bar}, it will print:

> \foo=robust macro:
->\@protected@testopt \foo \\foo {opt}.

> \\foo=\long macro:
> default #l1=opt.
[#1]->bar.

If the command was defined with \DeclareRobustCommand, then another pair of lines
show the top-level expansion \protect, \foo y,.

The extra gymnastics with \showtokens ensures that \showtokens itself, and the
internals of this macro aren’t showed in the context lines.

so0 \long\def\@show@newcommandQaux#1#2{%

57 \typeout{> \string#1=\0Qexpl@cs@prefix@spec@CN#1imacro:l}/

s \edef\reserved@a{J,

599 default \string##l=\expandafter\detokenize\@gobblethree#2.~~J},

600 \@expl@cs@argument@spec@ON#1->\Qexpl@cs@replacement@spec@CON#1}%

c01 \showtokens\expandafter\expandafter\expandafter{\expandafter\reserved@a}}

Now the rollback code.

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000-00-00}{\@if@DeclareRobustCommand}
latexrelease) {Undefine \@if@DeclareRobustCommand, \@if@newcommand,
latexrelease \@copy@DeclareRobustCommand, \@copy@newcommand,
latexrelease \@show@DeclareRobustCommand, \@show@newcommandl}’,
latexrelease)\1let\@if@DeclareRobustCommand\Qundefined
latexrelease)\1let\@copy@DeclareRobustCommand\@undefined
latexrelease)\1let\@show@DeclareRobustCommand\Qundefined
latexrelease)\let\@if@newcommand\@undefined
latexrelease)\let\@copy@newcommand\@undefined
latexrelease)\1let\@show@newcommand\Q@undefined

614 Jh

latexrelease)\let\copy@kernel@robust@command\@undefined
latexrelease)\let\show@kernel@robust@command\@undefined
latexrelease)\let\@show@newcommand@aux\Qundefined

o1 (latexrelease)\EndIncludeInRelease

o0 (*2ekernel)

602

603

604

605

609

610

611

o

S
o~~~ o~~~ o~~~ o~ o~
LN SN LR SN L SRS L

615
616

617

(
(
(
(

(End definition for \@if@newcommand and others. These functions are documented on page ?7.)

1.6 Internal defining commands
These commands are used internally to define other BTEX commands.

Check if first arg is undefined or \relax and execute second or third arg depending,

620 (/2ekerne|)
o1 (latexrelease)\IncludeInRelease{2018-04-01}{\@ifundefined}

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 92

o2 (latexrelease){Leave commands undefined in \@ifundefined}Y
03 (*2ekernel | latexrelease)

Version using \ifcsname to avoid defining undefined tokens to \relax. Defined here to
simplify using unmatched \fi.

624 \def\@ifundefined#1{’,

65 \ifcsname#1\endcsname\Q@ifundefin@d@i\else\Q@ifundefin@d@ii\fi{#1}}

026 \long\def\@ifundefin@d@i#1\fi#2{\fi

627 \expandafter\ifx\csname #2\endcsname\relax
628 \Q@ifundefin@d@ii
629 \fi

630 \@secondoftwo}
031 \long\def\@ifundefin@d@ii\fi#1#2#3{\fi #2}

Now test of engine.
6322 \ifx\numexpr\Qundefined
Classic version (should not be needed as etex is assumed).

633 \def\@ifundefined#1{},
63« \expandafter\ifx\csname#1\endcsname\relax

635 \expandafter\@firstoftwo
636 \else

637 \expandafter\@secondoftwo
638 \fi}

630 \else\ifx\directlua\@undefined

Use the \ifcsname defined above.

si0 \else

Optimised version for LuaTEX, using \lastnamedcs

61 \def\@ifundefined#1{},

o2 \ifcsname#1\endcsname

643 \expandafter\ifx\lastnamedcs\relax\else\@ifundefin@d@i\fi
644 \fi

o5 \@firstoftwol}

616 \long\def\@ifundefin@dQi#1#2#3#4#5{#1#2#5}

6a7 \fi

65 \fi

oo (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\@ifundefined}
(latexrelease){Leave commands undefined in \@ifundefinedl}},
(latexrelease)\def\@ifundefined#1{%

s+ (latexrelease) \expandafter\ifx\csname#1\endcsname\relax
(latexrelease) \expandafter\@firstoftwo

()

()

()

()

650

651

652

653

o
a

5

o
o

latexrelease) \else

latexrelease \expandafter\@secondoftwo
latexrelease) \fi}

ss0 {latexrelease)\EndIncludeInRelease

oo (*2ekernel)

656

o
a

7

658

(End definition for \@ifundefined. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 93

\@gend
\@grelax

\@ifnextchar

\kernel@ifnextchar

\@ifnch

\@sptoken

The following define \@gend and \@qrelax to be the strings ‘end’ and ‘relax’ with the
characters \catcoded 12.

et \edef\@gend{\expandafter\@cdr\string\end\@nil}
62 \edef\@qrelax{\expandafter\Qcdr\string\relax\@nil}

(End definition for \@gend and \@grelax. These functions are documented on page 77.)

\@ifnextchar peeks at the following character and compares it with its first argument.
If both are the same it executes its second argument, otherwise its third.

663 \long\def\@ifnextchar#1#2#3{%

66 \let\reserved@d=#1

65 \def\reserved@a{#21}

o6 \def\reserved@b{#31}

67 \futurelet\@let@token\@ifnch}

(End definition for \@ifnextchar. This function is documented on page 77.)

This macro is the kernel version of \@ifnextchar which is used in a couple of places
to prevent the AMS variant from being used since in some places this produced chaos
(for example if an fd file is loaded in a random place then the optional argument to
\ProvidesFile could get printed there instead of being written only in the log file. This
happened when there was a space or a newline between the mandatory and optional
arguments! It should really be fixed in the amsmath package one day, but. ..

Note that there may be other places in the kernel where this version should be used
rather than the original, but variable, version.

68 \let\kernel@ifnextchar\@ifnextchar

(End definition for \kernel@ifnextchar. This function is documented on page ?77.)

\@ifnch is a tricky macro to skip any space tokens that may appear before the character
in question. If it encounters a space token, it calls xifnch.

sc0 \def\@ifnch{%
670 \ifx\@let@token\@sptoken

671 \let\reserved@c\@xifnch

62 \else

673 \ifx\@let@token\reserved@d
674 \let\reserved@c\reserved@a
675 \else

676 \let\reserved@c\reserved@b
677 \fi

678 \fi

670 \reserved@c}

(End definition for \@ifnch. This function is documented on page 77?.)

The following code makes \@sptoken a space token. It is important here that the control
sequence \: consists of a non-letter only, so that the following whitespace is significant.
Together with the fact that the equal sign in a \1let may be followed by only one optional
space the desired effect is achieved. NOTE: the following hacking must precede the
definition of \: as math medium space.

60 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

(End definition for \@sptoken. This function is documented on page ?77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 94

\@xifnch

\@ifstar

\@dblarg
\@xdblarg

\@sanitize

\@onelevel@sanitize

\makeatletter
\makeatother

In the following definition of \@xifnch, \: is again used to get a space token as delimiter
into the definition.

es1 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

(End definition for \@xifnch. This function is documented on page 77.)

The new implementation below avoids passing the (true code) Through one more \def
than the (false code), which previously meant that # had to be written as #### in one
argument, but ## in the other. The * is gobbled by \@firstoftwo.

62 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

(End definition for \@ifstar. This function is documented on page ?77.)

63 \long\def\@dblarg#1i{\kernel@ifnextchar [{#1}{\@xdblarg{#1}}}
o2 \long\def\@xdblarg#i#2{#1 [{#2}]{#2}}

(End definition for \@dblarg and \@xdblarg. These functions are documented on page 77.)

The command \@sanitize changes the catcode of all special characters except for braces
to ‘other’. It can be used for commands like \index that want to write their arguments
verbatim. Needless to say, this command should only be executed within a group, or
chaos will ensue.

65 \def\@sanitize{\@makeother\ \@makeother\\\@makeother\$\@makeother\&J
66 \@makeother\#\@makeother\~\@makeother_\@makeother\)\@makeother\~}

(End definition for \@sanitize. This function is documented on page ?7.)

This makes the whole “meaning” of #1 (its one-level expansion) into catcode 12 tokens:
it could be used in \DeclareRobustCommand.

If it is to be used on default float specifiers, this should be done when they are
defined.

637 \def \Qonelevel@sanitize #1{%

ess \edef #1{\expandafter\strip@prefix
689 \meaning #1}J

600 }

(End definition for \@onelevel@sanitize. This function is documented on page 77.)

Make internal control sequences accessible or inaccessible.

s01 \DeclareRobustCommand\makeatletter{\catcode‘\@11\relax}
s> \DeclareRobustCommand\makeatother{\catcode ‘\@12\relax}

(End definition for \makeatletter and \makeatother. These functions are documented on page 77.)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 95

_
\@dischyph

2 Discretionary Hyphenation

Moved here to be after the definition of \DeclareRobustCommand.

The primitive \- command adds a discretionary hyphen using the current font’s
\hyphenchar. Monospace fonts are usually declared with \hyphenchar set to —1 to
suppress hyhenation.

BTEX, from [2TEX2.09 in 1986 defined \- by

\def\-{\discretionary{-}{}{}}
The following comment was added when these commands were first set up, 19 April 1986:

the \- command is redefined to allow it to work in the \ttfamily type style,
where automatic hyphenation is suppressed by setting \hyphenchar to —1.
The original primitive TEX definition is saved as \@@hyph just in case anyone
needs it.

IXTEX 2¢, between 1993 and 2017, had a comment at this point saying that the
definition “would probably change” because the definition always uses —. The definition
used below was given in comments at this point during time.

In 2017 we finally enabled this definition by default, with the older KTEX definition
accessible via latexrelease as usual.

In LuaATEX the primitive definition of \- is used directly because it’s use of extended
hyphenation parameters means that \~ works correctly even with \hyphenchar set to —1.
This change makes \- under Lual&TEX compatible with language specific hyphenation
characters.

Temporary definition of \@latex@info, final definition is later.

503 \def\@latex@info#1{}

694 (/2ekerne|)

o5 (latexrelease)\IncludeInRelease{2020/10/01}{\-}{Use primitive \- in Lua\LaTeX}%
oo (*2ekernel | latexrelease)

eo7 \ifx\directlua\Qundefined

es \DeclareRobustCommand{\-}{/

699 \discretionary{%

700 \char \ifnum\hyphenchar\font<\z@

701 \defaulthyphenchar

702 \else

703 \hyphenchar\font

704 \fi

705 HIYL

706 }

07 \else

705 \let\-\@C@hyph

700 \fi

710 (/2ekernel | latexrelease)

711 (latexrelease)\EndIncludeInRelease

712 (latexrelease)\IncludeInRelease{2017/04/15}{\-}{Use \hyphenchar in \-1}J,
713 (latexrelease)\DeclareRobustCommand{\-}{%

714 (latexrelease) \discretionary{%

715 (latexrelease) \char \ifnum\hyphenchar\font<\z@
716 (latexrelease) \defaulthyphenchar

717 (latexrelease) \else

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 96

latexrelease)
latexrelease)
latexrelease)
latexrelease)}

)

)

)

(\hyphenchar\font
(
(
(
72> (latexrelease)\EndIncludeInRelease
(
(
(
(

\fi
H3{3%

latexrelease)\IncludeInRelease{0000/00/00}{\-}{Use \hyphenchar in \-}%
latexrelease)\def\-{\discretionary{-+{}{}}
latexrelease)\EndIncludeInRelease

*2ekernel | latexrelease)
77 \let\@dischyph=\-

28 (/2ekernel | latexrelease)
720 (*2ekernel)

(End definition for \-= and \@dischyph. These functions are documented on page ?7.)
Delayed from ltvers.dtx

720 \newif\if@includeinrelease

731 \@includeinreleasefalse
Delayed from 1ltplain.dtx

(/2ekernel)
733 (*2ekernel | latexrelease)
(latexrelease) \IncludeInRelease{2019/10/01}

735 (latexrelease) {\allowbreak}{Make various commands robustl}),
73 \MakeRobust\allowbreak

737 \MakeRobust\bigbreak

735 \MakeRobust\break

730 \MakeRobust\dotfill

70 \MakeRobust\frenchspacing
721 \MakeRobust\goodbreak
722 \MakeRobust\hrulefill
723 \MakeRobust\medbreak
722 \MakeRobust\nobreak
75 \MakeRobust\nonfrenchspacing
76 \MakeRobust\obeylines
727 \MakeRobust\obeyspaces
s \MakeRobust\slash
720 \MakeRobust\smallbreak
0 \MakeRobust\strut
751 \MakeRobust\underbar
72 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}Y%
(latexrelease) {\allowbreak}{Make various commands robust}}
(latexrelease)
(latexrelease) \kernel@make@fragile\allowbreak
(latexrelease)\kernel@make@fragile\bigbreak
0 (latexrelease)\kernel@make@fragile\break
70 (latexrelease)\kernel@make@fragile\dotfill
761 (latexrelease)\kernel@make@fragile\frenchspacing
(latexrelease)\kernel@make@fragile\goodbreak
(latexrelease)\kernel@make@fragile\hrulefill
(latexrelease)\kernel@make@fragile\medbreak
(latexrelease)\kernel@make@fragile\nobreak
(latexrelease)\kernel@make@fragile\nonfrenchspacing

62

~

63

764

/65

766

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m 97

\g@addto®@macro

o7 (latexrelease
o5 (latexrelease
70 (latexrelease
o (latexrelease
71 (latexrelease
22 (latexrelease
775 (latexrelease
7 (latexrelease
775 (*2ekernel)

\kernel@make@fragile\obeylines
\kernel@make@fragile\obeyspaces
\kernel@make@fragile\slash
\kernel@make@fragile\smallbreak
\kernel@make@fragile\strut
\kernel@make@fragile\underbar

~

e~ —— ~—r i~~~

\EndIncludeInRelease

Globally add to the end of a macro.
776 \long\def\gOaddto@macro#1#2{%

777 \begingroup

778 \toks@\expandafter{#1#2}J
779 \xdef#1{\the\toks@}/

780 \ endgroup}

(End definition for \g@addto®macro. This function is documented on page 77.)

71 (/2ekernel)

File f: 1tdefns.dtx Date: 2020/08/21 Version v1.5m

98

\NewHook

File g
Ithooks.dtx

Contents

1 Introduction

Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface

The hook management system is offered as a set of CamelCase commands for traditional
IWTEX 2¢ packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of IXTEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

2.1 KETEX 2¢ interfaces
2.1.1 Declaring hooks and using them in code

With two exceptions, hooks have to be declared before they can be used. The exceptions
are hooks in environments (i.e., executed at \begin and \end) and hooks run when
loading files, e.g. before and after a package is loaded, etc. Their hook names depend on
the environment or the file name and so declaring them beforehand is difficult.

\NewHook {(hook)}

Creates a new (hook). If this is a hook provided as part of a package it is suggested
that the (hook) name is always structured as follows: (package-name)/{hook-name). If
necessary you can further subdivide the name by adding more / parts. If a hook name
is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

File g: 1thooks.dtx 99

\NewReversedHook

\NewMirroredHookPair

\UseHook

\UseOneTimeHook

\NewReversedHook {(hook)}

Like \NewHook declares a new (hook). the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewMirroredHookPair {(hook-1)} {(hook-2)}

A shorthand for \NewHook{(hook-1)}\NewReversedHook{(hook-2)}.
The (hooks) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\UseHook {(hook)}

Execute the hook code inside a command or environment.

Before \begin{document} the fast execution code for a hook is not set up, so in
order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\UseOneTimeHook {(hook)}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \(addto-cmd) command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \(addto-cmd) to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

FMi: Maybe add an error version as well?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

File g: 1thooks.dtx 100

\AddToHook

\RemoveFromHook

2.1.2 Updating code for hooks

\AddToHook {(hook)}[{(label)]l{({code)}

Adds (code) to the (hook) labeled by (label). If the optional argument (label) is not
provided, if \AddToHook is used in a package/class, then the current package/class name
is used, otherwise top-level is used (see section 2.1.3).

If there already exists code under the (label) then the new (code) is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the (label), first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared later then obviously the added (code) will never be executed. This allows for
hooks to work regardless of package loading order and enables packages to add to hook of
other packages without worrying whether they are actually used in the current document.
See section 2.1.5.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\RemoveFromHook {(hook)}[(label)]

Removes any code labeled by (label) from the (hook). If the optional argument (label) is
not provided, if \AddToHook is used in a package/class, then the current package/class
name is used, otherwise top-level is used.

If the optional argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

In contrast to the voids relationship between two labels in a \DeclareHookrule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}

\RemoveFromHook{env/quote/before}
. now back to normal for further quotes

Note that you can’t cancel the setting with
\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means to font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

File g: 1thooks.dtx 101

\AddToHookNext

\AddToHookNext {(hook)}{(code)}

Adds (code) to the next invocation of the (hook). The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.
Using the declaration is a global operation, i.e., the code is not lost, even if the
declaration is used inside a group and the next invocation happens after the group. If
the declaration is used several times before the hook is executed then all code is executed
in the order in which it was declared.?
It is possible to nest declarations using the same hook (or different hooks), e.g.,

\AddToHookNext{(hook)}{{code-1)\AddToHookNext{(hook)}{(code-2)}}

will execute (code-1) next time the (hook) is used and at that point puts (code-2) into
the (hook) so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.5.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.3 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a (label)
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the (label).

Using an explicit (label) is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same (label) throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

It is not enforced, but highly recommended that the hooks defined by a package, and
the (labels) used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a (hook) and in a (label). If (hook) name or (label) consist just of a single dot
(.), or starts with a dot followed by a slash (./) then the dot denotes the (default label)
(usually the current package or class name—see \DeclareDefaultHookLabel). A “.” or
“./” anywhere else in a (hook) or in (label) is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}

\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./subl{code}
\DeclareHookRule{begindocument}{.}{before}{babel}

\AddToHook {file/after/foo.tex}{code}

are equivalent to:

\NewHook {mypackage/hook}
\AddToHook {mypackage/hook}[mypackage]{code}

2There is no mechanism to reorder such code chunks (or delete them).

File g: 1thooks.dtx 102

\DeclareDefaul tHookLabel

\AddToHook {mypackage/hook} [mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/after/foo.tex}{code} % unchanged

The (default label) is automatically set to the name of the current package or class
(using \@currname). If \@currname is not set (because the hook command is used outside
of a package, or the current file wasn’t loaded with \usepackage or \documentclass),
then the top-level is used as the (default label).

This syntax is available in all (label) arguments and most (hook), both in the ITEX 2¢
interface, and the ITEX3 interface described in section 2.2.

Note, however, that the replacement of . by the (default label) takes place when the
hook command is executed, so actions that are somehow executed after the package ends
will have the wrong (default label) if the dot-syntax is used. For that reason, this syntax is
not available in \UseHook (and \hook_use:n) because the hook is most of the time used
outside of the package file in which it was defined. This syntax is also not available in the
hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF) and \IfHookExistsTF
(and \hook_if_exist:nTF) because these conditionals are used in some performance-
critical parts of the hook management code, and because they are usually used to refer
to other package’s hooks, so the dot-syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as (label), then the (default label) can be set
using \DeclareDefaultHookLabel:

\DeclareDefaultHookLabel {(default label)}

Sets the (default label) to be used in (label) arguments. If \DeclareDefaultHookLabel
is not used in the current package, \@currname is used instead. If \@currname is not set,
the code is assumed to be in the main document, in which case top-level is used.

The effect of \DeclareDefaultHookLabel holds for the current file, and is reset to
the previous value when the file is closed.

2.1.4 Defining relations between hook code

The default assumption is that code added to hooks by different packages is independent
and the order in which it is executed is irrelevant. While this is true in many case it is
obviously false in many others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

File g: 1thooks.dtx 103

\DeclareHookRule

\DeclareHookRule {(hook)}{(labell)}{(relation)}{(label2)}

Defines a relation between (labell) and (label2) for a given (hook). If (hook) is 7?7 this
defines a default relation for all hooks that use the two labels, i.e., that have chunks of
code labeled with (labell) and (label2). Rules specific to a given hook take precedence
over default rules that use 7?7 as the (hook).

Currently, the supported relations are the following:

before or < Code for (labell) comes before code for (label2).

after or > Code for (labell) comes after code for (label2).

incompatible-warning Only code for either (labell) or (label2) can appear for that hook (a way to say

that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a ETEX error is raised, and

the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for (labell) overwrites code for (label2). More precisely, code for (label2) is

dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for (labell) and (label2) is irrelevant. This rule is there to undo

\ClearHookRule

\DeclareDefaultHookRule

an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookrule overwrites any previous delcaration.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\ClearHookRule{(hook)}{(label1)}{(label2)}

Syntactic sugar for saying that (label!) and (label2) are unrelated for the given (hook).

\DeclareDefaultHookRule{(labell)}{(relation)}{(label2)}

This sets up a relation between (labell) and (label2) for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

Declaring default rules is only supported in the document preamble.?

The (label) can be specified using the dot-syntax to denote the current package name.
See section 2.1.3.

2.1.5 Querying hooks

Simpler data types, like token lists, have three possible states; they can:

e exist and be empty;

3Trying to do so, e.g., via \DeclareHookRule with 77 has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

File g: 1thooks.dtx 104

\IfHookEmptyTF *

\IfHookExistsTF x

e exist and be non-empty; and
e not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: they have four possible states. A hook may exist or
not, and either way it may or may not be empty. This means that even a hook that
doesn’t exist may be non-empty.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool. A hook is said to exist when it was declared with \NewHook or
some variant thereof.

\IfHookEmptyTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookExistsTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

FMi: Would be helpful if we provide some use cases

2.1.6 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

File g: 1thooks.dtx 105

\ShowHook

\DebugHooksOn
\DebugHooksOf f

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_use:n

\hook_use_once:n

\ShowHook {(hook)}

Displays information about the (hook) such as
« the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,
« any code executed on the next invocation only.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.7 Debugging hook code

\DebugHooksOn

Turn the debugging of hook code on or off. This displays changes made to the hook data
structures. The output is rather coarse and not really intended for normal use.

2.2 L3 programming layer (expl3) interfaces

This is a quick summary of the ITEX3 programming interfaces for use with packages
written in expl3. In contrast to the KTEX2¢ interfaces they always use mandatory
arguments only, e.g., you always have to specify the (label) for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

\hook_new:n{(hook)}
\hook_new_pair:nn{(hook-1)}{(hook-2)}

Creates a new (hook) with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_use:n {(hook)}

Executes the {(hook)} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.
The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:n {({hook)}

Changes the {(hook)} status so that from now on any addition to the hook code is
executed immediately. Then execute any {(hook)} code already set up.

FMi: better L3 name?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

File g: 1thooks.dtx 106

\hook_gput_code:nnn

\hook_gput_next_code:nn

\hook_gremove_code:nn

\hook_gset_rule:nnnn

\hook_if_empty_p:n *
\hook_if_empty:nTF *

\hook_gput_code:nnn {(hook)} {(label)} {(code)}

Adds a chunk of (code) to the (hook) labeled (label). If the label already exists the (code)
is appended to the already existing code.

If code is added to an external (hook) (of the kernel or another package) then the
convention is to use the package name as the (label) not some internal module name or
some other arbitrary string.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gput_next_code:nn {(hook)} {(code)}

Adds a chunk of (code) for use only in the next invocation of the (hook). Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
(code).

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_gremove_code:nn {(hook)} {(label)}

Removes any code for (hook) labeled (label).

If the code for that (label) wasn’t yet added to the (hook), an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gset_rule:nnnn {(hook)} {(labell)} {(relation)} {(label2)}

Relate (labell) with (label2) when used in (hook). See \DeclareHookRule for the allowed
(relation)s. If (hook) is 77 a default rule is specified.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3. The dot-syntax is parsed in both (label) arguments,
but it usually makes sense to be used in only one of them.

\hook_if_empty:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

File g: 1thooks.dtx 107

\hook_if_exist_p:n *
\hook_if_exist:nTF x

\hook_debug_on:
\hook_debug_off:

\hook_if_exist:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

FMi: what are the results for generic hooks that do not need to be declared?

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_debug_on:
Turns the debugging of hook code on or off. This displays changes to the hook data.

2.3 On the order of hook code execution

Chunks of code for a (hook) under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}

\AddToHook{myhook} [packageA]l {\typeout{A}}
\AddToHook{myhook} [packageB] {\typeout{B}}
\AddToHook{myhook} [packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

The hook ’myhook’:

Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}

Extra code next invocation:

Rules:
Execution order:
packageA, packageB, packageC

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, or example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook} [packageA]
\AddToHook{myhook} [packageA] {\typeout{A altl}}

File g: 1thooks.dtx 108

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}
instead of the previous lines we get

The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Extra code next invocation:
Rules:
packageA|packageB with relation before
Execution order (after applying rules):
packageA, packageC, packageB

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{label-3}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules
that partially or fully define the order (in which you can rely on them being fulfilled).

2.4 The use of “reversed” hooks

You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example?, suppose there is a package
adding the following:

\AddToHook{env/quote/before} [package-1] {\begin{itshapel}}
\AddToHook{env/quote/after} [package-1]{\end{itshapel}}

As a result, all quotes will be in italics. Now suppose further that the user wants the
quotes also in blue and therefore adds:

4there are simpler ways to achieve the same effect.

File g: 1thooks.dtx 109

\usepackage{color}
\AddToHook{env/quote/before}{\begin{color}{blue}}
\AddToHook{env/quote/after} {\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, top-level
(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshapel}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

The hook ’env/quote/after’:
Code chunks:
package-1 -> \end {itshape}
top-level -> \end {color}
Extra code next invocation:

Rules:
Execution order (after reversal):
top-level, package-1

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

2.5 Difference between “normal” and “one-time” hooks

When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the (code) immediately.

This has some consequences one needs to be aware of:

o If (code) is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new (code) will never be
executed.

o In contrast if that happens with a one-time hook the (code) is executed immediately.

In particular this means that construct such as

File g: 1thooks.dtx 110

\AddToHook{myhook}
{ (code-1) \AddToHook{myhook}{{code-2)} (code-3) }

works for one-time hooks® (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook} is executed it would

o execute (code-1),

o then execute \AddToHook{myhook}{code-2} which adds the code chunk (code-2)
to the hook for use on the next invocation,

o and finally execute (code-3).

The second time \UseHook is called it would execute the above and in addition (code-2)
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of (code-2) is added and so that code chunk is executed
(# of invocations) — 1 times.

2.6 Private BTEX kernel hooks

There are a few places where it is absolutely essential for A TEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document un-
necessary slow, because there has to be sorting even through the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break ITEX).

For that reason such code is not using the hook management, but instead private
kernel commands directly before or after a public hook with the following naming con-
vention: \@kernel@before@(hookname) or \@kernel@after@(hookname). For example,
in \enddocument you find

\UseHook{enddocument}/,
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.”

2.7 Legacy KTEX 2¢ interfaces

ITEX 2¢ offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management several additional hooks have been added to ITEX
and more will follow. See the next section for what is already available.

5This is sometimes used with \AtBeginDocument which is why it is supported.

6As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

File g: 1thooks.dtx 111

\AtBeginDocument \AtBeginDocument [(Iabel)] {(code)}

If used without the optional argument (label), it works essentially like before, i.e., it is
adding (code) to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level if done outside of
a package or class or with the package/class name if called inside such a file.

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after the top-level code. When using the optional argument the call is
equivalent to running \AddToHook {begindocument} [(label)] {(code)}.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtEndDocument \AtEndDocument [{label)] {(code)}
Like \AtBeginDocument but for the enddocument hook.

\AtBeginDvi \AtBeginDvi [(label)] {(code)}

This hook is discussed in conjunction with the shipout hooks.

The few hooks that existed previously in ITEX 2¢ used internally commands such as
\@begindocumenthook and packages sometimes augemented them directly rather than
working through \AtBeginDocumement. For that reason there is currently support for
this, that is, if the system detects that such an internal legacy hook command contains
code it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of ITEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

2.8 FKETEX2¢ commands and environments augmented by hooks

intro to be written

2.8.1 Generic hooks for all environments

Every environment (env) has now four associated hooks coming with it:

env/(env)/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/(env)/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/(env)/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the third argument of \newenvironment).

File g: 1thooks.dtx 112

\BeforeBeginEnvironment

\AtBeginEnvironment

\AtEndEnvironment

\AfterEndEnvironment

env/(env)/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.

The hook is implemented as a reversed hook so if two packages add code to
env/(env)/before and to env/(env)/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Generic environment hooks are never one-time hooks even with environments that are
supposed to appear only once in a document.” In contrast to other hooks there is also
no need to declare them using \NewHook.

The hooks are only executed if \begin{(env)} and \end{(env)} is used. If the
environment code is executed via low-level calls to \(env) and \end(env) (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

\BeforeBeginEnvironment [(label)] {(code)}

This declaration adds to the env/(env)/before hook using by default the current package
or class name as a label or top-level if used in the document directly.

\AtBeginEnvironment [(label)] {{code)}

Like \BeforeBeginEnvironment but adds to the env/({env)/begin hook.

\AtEndEnvironment [(label)] {{code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/end hook.

\AfterEndEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/after hook.

2.8.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.

"Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

File g: 1thooks.dtx 113

begindocument This hook is added to when using \AtBeginDocument and it is executed
after the .aux file as be read in and most initialization are done, so they can be
altered and inspected by the hook code. It is followed by a small number of further
initializations that shouldn’t be altered and are therefore coming later.

The hook should not be used to add material for typesetting as we are still in
TEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

2.8.3 Hooks provided by \end{document}

TEX 2¢ always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in IXTEX 2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.

When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data). It is also the correct place to set up any
testing code to be run when the .aux file is re-read in the next step.

After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.

File g: 1thooks.dtx 114

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.

This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \1istfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
XTEX needs to be run several times, so initially it might get executed on the wrong page.
See section 2.8.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is execuded
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time I¥TEX has finished the document processing.

2.8.4 Hooks provided \shipout operations
There are several hooks and mechanisms added to ITEX’s process of generating pages.
These are documented in 1tshipout-doc.pdf or with code in 1tshipout-code.pdf.

2.8.5 Hooks provided by file loading operations

There are several hooks added to KTEX’s process of loading file via its high-level
interfaces such as \input, \include, \usepackage, etc. These are documented in
1ltfilehook-doc.pdf or with code in 1tfilehook-code.pdf.

2.8.6 Hooks provided in NFSS commands

In languages that need to support for more than one script in parallel (and thus several
sets of fonts), e.g., Latin and Japanese fonts, NFSS font commands, such as \sffamily,
need to switch both the Latin family to “Sans Serif” and in addition alter a second set
of fonts.

To support this several NFSS have hooks in which such support can be added.

rmfamily After \rmfamily has done its initial checks and prepared a any font series
update this hook is executed and only afterwards \selectfont.

sffamily Like the rmfamily hook but for the \sffamily command.
ttfamily Like the rmfamily hook but for the \ttfamily command.

normalfont The \normalfont command resets font encoding family series and shape to
their document defaults. It then executes this hook and finally calls \selectfont.

File g: 1thooks.dtx 115

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the meta families (rm/sf/tt) and the meta series
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user its
new value is used to set the bf series defaults for the meta families (rm/sf/tt) when
\bfseries is called. In the bfseries/defaults hook further adjustments can be
made in this case. This hook is only executed if such a change is detected. In
contrast the bfseries hook is always executed just before \selectfont is called
to change to the new series.

mdseries/defaults, mdseries These two hooks are like the previous ones but used in
\mdseries command.

3 The Implementation

3.1 Loading further extensions
1 (@@=hook)

At the moment the whole module rolls back in one go, but if we make any modifi-
cations in later releases this will then need splitting.
> (*2ekernel | latexrelease)
s (latexrelease) \IncludeInRelease{2020/10/01}%
1 (latexrelease) {\NewHook}{The hook management}J,

s \ExplSyntaxOn
3.2 Debugging

\g__hook_debug_bool Holds the current debugging state.
6 \bool_new:N \g__hook_debug_bool

(End definition for \g__hook_debug_bool.)

\hook_debug_on: Turns debugging on and off by redefining __hook_debug:n.

\hook_debug_off: 7 \cs_new_eq:NN __hook_debug:n \use_none:n
__hook_debug:n ¢ \cs_new_protected:Npn \hook_debug_on:
9

__hook_debug_gset: {
10 \bool_gset_true:N \g__hook_debug_bool
1 __hook_debug_gset:
1}
13 \cs_new_protected:Npn \hook_debug_off:
14 {
15 \bool_gset_false:N \g__hook_debug_bool
16 __hook_debug_gset:
17 }
12 \cs_new_protected:Npn __hook_debug_gset:
1w o
20 \cs_gset_protected:Npx __hook_debug:n ##1
21 { \bool_if:NT \g__hook_debug_bool {#i#1} }
22 }

(End definition for \hook_debug_on: and others. These functions are documented on page 108.)

File g: 1thooks.dtx 116

__hook_str_compare ‘nn

\1__hook_tmpa_bool

\1__hook_return_tl
\1__hook_tmpa_tl
\1__hook_tmpb_tl

\g__hook_all_seq

\g__hook_removal_list_prop

\1__hook_cur_hook_tl

\1__hook_work_prop

\g__hook_hook_curr_name_tl
\g__hook_name_stack_seq

__hook_tmp:w

\tl_gremove_once:Nx

3.3 Borrowing from internals of other kernel modules

Private copy of __str_if_eq:nn

>3 \cs_new_eq:NN __hook_str_compare:nn __str_if_eq:nn

(End definition for __hook_str_compare:nn.)

3.4 Declarations

Scratch boolean used throughout the package.
22 \bool_new:N \1__hook_tmpa_bool

(End definition for \1__hook_tmpa_bool.)

Scratch variables used throughout the package.

»s \tl_new:N \1__hook_return_tl
26 \tl_new:N \1__hook_tmpa_tl
27 \tl_new:N \1__hook_tmpb_tl

(End definition for \1__hook_return_t1, \1__hook_tmpa_tl, and \1__hook_tmpb_t1.)

In a few places we need a list of all hook names ever defined so we keep track if them in
this sequence.

s \seq_new:N \g__hook_all_seq
(End definition for \g__hook_all_seq.)
A token list to hold delayed removals.
20 \tl_new:N \g__hook_removal_list_tl

(End definition for \g__hook_removal_list_prop.)

Stores the name of the hook currently being sorted.
30 \tl_new:N \1__hook_cur_hook_t1l

(End definition for \1__hook_cur_hook_t1.)

A property list holding a copy of the \g__hook_(hook)_code_prop of the hook being
sorted to work on, so that changes don’t act destructively on the hook data structure.

st \prop_new:N \1__hook_work_prop

(End definition for \1__hook_work_prop.)

Default label used for hook commands, and a stack to keep track of packages within
packages.

32 \tl_new:N \g__hook_hook_curr_name_tl

33 \seq_new:N \g__hook_name_stack_seq

(End definition for \g__hook_hook_curr_name_t1 and \g__hook_name_stack_seq.)

Temporary macro for generic usage.

s \cs_new_eq:NN __hook_tmp:w ?

(End definition for __hook_tmp:w.)

Some variants of expl3 functions.

File g: 1thooks.dtx 117

\s__hook_mark

\g__hook_..._code_prop
\g__hook_..._code_tl
\g__hook_..._code_next_tl

\hook_new:n

FMi: should be moved to expl3
35 \cs_generate_variant:Nn \tl_gremove_once:Nn { Nx }

(End definition for \tl_gremove_once:Nx. This function is documented on page ?7.)

Scan mark used for delimited arguments.

3 \scan_new:N \s__hook_mark

(End definition for \s__hook_mark.)

3.5 Providing new hooks

Hooks have a (name) and for each hook we have to provide a number of data structures.
These are

\g__hook_(name)_code_prop A property list holding the code for the hook in separate
chunks. The keys are by default the package names that add code to the hook, but
it is possible for packages to define other keys.

\g__hook_(name)_rule_(labell)|(label2)_t1 A token list holding the relation be-
tween (labell) and (label2) in the (name). The (labels) are lexically (reverse) sorted
to ensure that two labels always point to the same token list. For global rules, the
(name) is 77.

\g__hook_(name)_code_t1 The code that is actually executed when the hook is called
in the document is stored in this token list. It is constructed from the code chunks
applying the information.

\g__hook_(name)_reversed_t1l Some hooks are “reversed”. This token list stores a - for
such hook so that it can be identified. The - character is used because (reversed)l
is +1 for normal hooks and —1 for reversed ones.

\g__hook_(name)_code_next_t1 Finally there is extra code (normally empty) that is
used on the next invocation of the hook (and then deleted). This can be used
to define some special behavior for a single occasion from within the document.
This token list is called code_next rather than next_code because otherwise a
hook called (name)_next would have its code-token list named \g__hook_(name)_-
code_next_tl, which would clash with the next code-token list of a hook called
(name).

(End definition for \g__hook_..._code_prop, \g__hook_..._code_t1l, and \g__hook_..._code_next_-
tl.)

The \hook_new:n declaration declare a new hook and expects the hook (name) as its
argument, e.g., begindocument.

57 \cs_new_protected:Npn \hook_new:n #1

38 {

39 \exp_args:Nx __hook_new:n

a0 { __hook_parse_label_default:nn {#1} { top-level } }

a)

2 \cs_new_protected:Npn __hook_new:n #1 {

We check for one of the internal data structures and if it already exists we complain.

22 \hook_if_exist:nTF {#1}
44 { \msg_error:nnn { hooks } { exists } {#1} }

File g: 1thooks.dtx 118

__hook_declare:n

\hook_new_reversed:n

Otherwise we add the hook name to the list of all hooks and allocate the necessary data
structures for the new hook.

45 { \seq_gput_right:Nn \g__hook_all_seq {#1}

This is only used by the actual code of the current hook, so declare it normally:

46 \tl_new:c { g__hook_#1_code_tl }
Now ensure that the base data structure for the hook exists:

a7 __hook_declare:n {#1}

The \g__hook_(hook)_labels_clist holds the sorted list of labels (once it got sorted).
This is used only for debugging.

a8 \clist_new:c {g__hook_#1_labels_clist}

Some hooks should reverse the default order of code chunks. To signal this we have a
token list which is empty for normal hooks and contains a - for reversed hooks.

49 \tl_new:c { g__hook_#1_reversed_tl }

The above is all in L3 convention, but we also provide an interface to legacy IATEX 2¢
hooks of the form \@...hook, e.g., \@begindocumenthook. there have been a few of
them and they have been added to using \g@addto@macro. If there exists such a macro

matching the name of the new hook, i.e., \@{hook-name)hook and it is not empty then
we add its contents as a code chunk under the label legacy.

Warning: this support will vanish in future releases!

50 __hook_include_legacy_code_chunk:n {#1}
51 }
52 F

(End definition for \hook_new:n. This function is documented on page 106.)

This function declares the basic data structures for a hook without actually declaring the
hook itself. This is needed to allow adding to undeclared hooks. Here it is unnecessary
to check whether both variables exist, since both are declared at the same time (either
both exist, or neither).

53 \cs_new_protected:Npn __hook_declare:n #1

54 {

55 __hook_if_exist:nF {#1}

56 {

57 \prop_new:c { g__hook_#1_code_prop }

58 \tl_new:c { g__hook_#1_code_next_tl }

59 ¥

o0 }

(End definition for __hook_declare:n.)

Declare a new hook. The default ordering of code chunks is reversed, signaled by setting
the token list to a minus sign.

61 \cs_new_protected:Npn \hook_new_reversed:n #1 {
2 \hook_new:n {#1}

If the hook already exists the above will generate an error message, so the next line should
be executed (but it is — too bad).

63 \tl_gset:cn { g__hook_#1 _reversed_tl } { - }
64 F

File g: 1thooks.dtx 119

\hook_new_pair:nn

__hook_include legacy code_chunk:n

__hook parse label default:m

__hook parse label default:Vn

(End definition for \hook_new_reversed:n. This function is documented on page 106.)

A shorthand for declaring a normal and a (matching) reversed hook in one go.

65 \cs_new_protected:Npn \hook_new_pair:nn #1#2 {
66 \hook_new:n {#1} \hook_new_reversed:n {#2}
67 }

(End definition for \hook_new_pair:nn. This function is documented on page 106.)

The IMTEX legacy concept for hooks uses with hooks the following naming scheme in the
code: \@. . .hook.

If this macro is not empty we add it under the label legacy to the current hook and
then empty it globally. This way packages or classes directly manipulating commands
such as \@begindocumenthook still get their hook data added.

Warning: this support will vanish in future releases!

6s \cs_new_protected:Npn __hook_include_legacy_code_chunk:n #1

69 {

If the expl3 code is run with checking on then assigning or using non L3 names such as
\@enddocumenthook with expl3 functions will trigger warnings so we run this code with
debugging explicitly suspended.

70 \debug_suspend:
If the macro doesn’t exist (which is the usual case) then nothing needs to be done.

7 \tl_if_exist:cT { @#1ihook }

Of course if the legacy hook exists but is empty, there is no need to add anything under
legacy the legacy label.

72 {

7 \tl_if_empty:cF { @#1lhook }

74 {

75 \exp_args:Nnnv __hook_hook_gput_code_do:nnn {#1}
76 { legacy } { @#1hook }

Once added to the hook, we need to clear it otherwise it might get added again later if
the hook data gets updated.

77 \tl_gclear:c { @#1lhook }

8 }

79 T

80 \debug_resume:

81 }

(End definition for __hook_include_legacy_code_chunk:n.)

3.6 Parsing a label

This macro checks if a label was given (not \c_novalue_t1), and if so, tries to parse the
label looking for a leading . to replace for \@currname. Otherwise __hook_currname_-
or_default:n is used to pick \@currname or the fallback value.

&2 \cs_new:Npn __hook_parse_label_default:nn #1 #2

83 {
84 \tl_if_novalue:nTF {#1}
85 { __hook_currname_or_default:n {#2} }

File g: 1thooks.dtx 120

86 { \tl_trim_spaces_apply:nN {#1} __hook_parse_dot_label:nn {#2} }
87 }

ss \cs_generate_variant:Nn __hook_parse_label_default:nn { V }

(End definition for __hook_parse_label_default:nn.)

__hook_parse_dot_label:nn Start by checking if the label is empty, which raises an error, and uses the fallback value.

__hook_parse_dot_label:nw If not, split the label at a ./, if any, and check if no tokens are before the ./, or if the

_hook parse dot label cleanup:v only character is a .. If these requirements are fulfilled, the leading . is replaced with
_hook parse dot label aur:nw __hook_currname_or_default:n. Otherwise the label is returned unchanged.

s \cs_new:Npn __hook_parse_dot_label:nn #1 #2

90 {

o1 \tl_if_empty:nTF {#1}

92 {

93 \msg_expandable_error:nnn { hooks } { empty-label } {#2}
94 #2

95 }

96 {

o7 \str_if_eq:nnTF {#1} { . }

08 { __hook_currname_or_default:n {#1} }

99 { __hook_parse_dot_label:nw {#2} #1 ./ \s__hook_mark }
100 }

101 }

12 \cs_new:Npn __hook_parse_dot_label:nw #1 #2 ./ #3 \s__hook_mark
103 {

104 \tl_if_empty:nTF {#2}

105 { __hook_parse_dot_label_aux:nw {#1} #3 \s__hook_mark }
106 {

107 \tl_if_empty:nTF {#3}

108 {#2}

109 { __hook_parse_dot_label_cleanup:w #2 ./ #3 \s__hook_mark }
110 }

111 }

112 \cs_new:Npn __hook_parse_dot_label_cleanup:w #1 ./ \s__hook_mark {#1}
113 \cs_new:Npn __hook_parse_dot_label_aux:nw #1 #2 ./ \s__hook_mark
s { __hook_currname_or_default:n {#1} / #2 }

(End definition for __hook_parse_dot_label:nn and others.)

_hook_currnane or defanlt:n Uses \g__hook_hook_curr_name_t1 if it is set, otherwise tries \@currname. If neither is
set, uses the fallback value #1 (usually top-level).

115 \cs_new:Npn __hook_currname_or_default:n #1

116 {

117 \tl_if_empty:NTF \g__hook_hook_curr_name_tl
118 {

119 \tl_if_empty:NTF \@currname

120 {#1}

121 { \@currname }

122 }

123 { \g__hook_hook_curr_name_tl }

124 }

(End definition for __hook_currname_or_default:n.)

File g: 1thooks.dtx 121

\hook_gput_code:nnn
__hook_gput_code:nnn
__hook_gput_code:nxv

__hook hook _gput_code do:nnn

With \hook_gput_code :nnn{{hook)}{{label)}{{code)} a chunk of (code) is added to an
existing (hook) labeled with (label).

125 \cs_new_protected:Npn \hook_gput_code:nnn #1 #2

e {

127 \exp_args:Nxx __hook_gput_code:nnn

128 { __hook_parse_label_default:nn {#1} { top-level } }
129 { __hook_parse_label_default:nn {#2} { top-level } }
130 }

131 \cs_new_protected:Npn __hook_gput_code:nnn #1 #2 #3

132 {

First check if the current (hook)/(label) pair was marked for removal, in which case __-
hook_unmark_removal:nn is used to remove that mark (once). This may happen when
a package removes code from another package which was not yet loaded: the removal
order is stored, and at this stage it is executed by not adding to the hook.
133 __hook_if_marked_removal:nnTF {#1} {#2}
134 { __hook_unmark_removal:nn {#1} {#2} }
135 {
If no removal is queued, we are free to add. Start by checking if the hook exists.
136 \hook_if_ exist:nTF {#1}
If so we simply add (or append) the new code to the property list holding different chunks
for the hook. At \begin{document} this is then sorted into a token list for fast execution.
137 {
138 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}
However, if there is an update within the document we need to alter this execution code
which is done by __hook_update_hook_code:n. In the preamble this does nothing.
139 __hook_update_hook_code:n {#1}
140 }

If the hook does not exist, however, before giving up try to declare it as a generic
hook, if its name matches one of the valid patterns.

141 { __hook_try_declaring_generic_hook:nnn {#1} {#2} {#3} }
142 }
143 }
s \cs_generate_variant:Nn __hook_gput_code:nnn { nxv }

This macro will unconditionally add a chunk of code to the given hook.
15 \cs_new_protected:Npn __hook_hook_gput_code_do:nnn #1 #2 #3
146 {

However, first some debugging info if debugging is enabled:

147 __hook_debug:n{\iow_term:x{***x~ Add~ to~

148 \hook_if_exist:nF {#1} { undeclared~ }
149 hook~ #1~ (#2)

150 \on@line\space <-~ \tl_to_str:n{#3}} }

Then try to get the code chunk labeled #2 from the hook. If there’s code already there,
then append #3 to that, otherwise just put #3.

151 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
152 {

153 \prop_gput:cno { g__hook_#1_code_prop } {#2}

154 { \1__hook_return_tl #3 }

155 }

File g: 1thooks.dtx 122

156 { \prop_gput:cnn { g__hook_#1_code_prop } {#2} {#3} }
157 }

(End definition for \hook_gput_code:nnn, __hook_gput_code:nnn, and __hook_hook_gput_code_-
do:nnn. This function is documented on page 107.)

_hook gput undeclared hook:nn Often it may happen that a package A defines a hook foo, but package B, that adds
code to that hook, is loaded before A. In such case we need to add code to the hook
before its declared.

155 \cs_new_protected:Npn __hook_gput_undeclared_hook:nnn #1 #2 #3
159 {

160 __hook_declare:n {#1}

161 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}

162 }

(End definition for __hook_gput_undeclared_hook:nnn.)

_hook_try declaring generic hook:nnn These entry-level macros just pass the arguments along to the common __hook_try_-
_hook_try declaring generic next hook:nn declaring_generic_hook:nNNnn with the right functions to execute when some action
is to be taken.

The wrapper __hook_try_declaring generic_hook:nnn then defers \hook_-
gput_code:nnn if the generic hook was declared, or to __hook_gput_undeclared_-
hook:nnn otherwise (the hook was tested for existence before, so at this point if it isn’t
generic, it doesn’t exist).

The wrapper __hook_try_declaring_generic_next_hook:nn for next-execution
hooks does the same: it defers the code to \hook_gput_next_code:nn if the generic hook
was declared, or to __hook_gput_next_do:nn otherwise.

163 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1

164 {

165 __hook_try_declaring_generic_hook:nNNnn {#1}

166 \hook_gput_code:nnn __hook_gput_undeclared_hook:nnn

167 }

s \cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
169 {

170 __hook_try_declaring_generic_hook:nNNnn {#1}

171 \hook_gput_next_code:nn __hook_gput_next_do:nn

172 }

__hook_try_declaring_generic_hook:nNNnn now splits the hook name at the first /

(if any) and first checks if it is a file-specific hook (they require some normalization) using

\ hook try declaring generic hook:nilimn __hook_if_file_hook:wTF. If not then check it is one of a predefined set for generic

hook try declaring generic hook split:nlim names. We also split off the second component to see if we have to make a reversed hook.
__hook_try declaring generic hook:infF In either case the function returns (true) for a generic hook and (false) in other cases.

172 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nNNnn #1

174 {

175 __hook_if_file_hook:wTF #1 / / \s__hook_mark

176 {

177 \exp_args:Ne __hook_try_declaring_generic_hook_split:nNNnn
178 { \exp_args:Ne __hook_file_hook_normalize:n {#1} }

179 }

180 { __hook_try_declaring_generic_hook_split:nNNnn {#1} }

181 }

\cs_new_protected:Npn __hook_try_declaring_generic_hook_split:nNNnn #1 #2 #3

File g: 1thooks.dtx 123

__hook_if_file_hook_p:w
__hook_if_file_hook:wTF

183 {

184 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
185 { #2 }

186 { #3 } {#1}

187 }

s \prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
189 #1 / #2 / #3 / #4 \scan_stop: #5 { TF }

190 {

101 \tl_if_empty:nTF {#2}

192 { \prg_return_false: }

193 {

194 \prop_if_in:NnTF \c__hook_generics_prop {#1}

195 {

196 \hook_if_exist:nF {#5} { \hook_new:n {#5} }

After having declared the hook we check the second component (for file hooks) or the
third component for environment hooks) and if it is on the list of components for which
we should have declared a reversed hook we alter the hook data structure accordingly.

197 \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}

108 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

199 {

200 \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
201 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

202 }

Now that we know that the hook is declared we can add the code to it.

203 \prg_return_true:

204 }

205 { \prg_return_false: }
206 }

207 }

(End definition for __hook_try_declaring_generic_hook:nnn and others.)

__hook_if_file_hook:wTF checks if the argument is a valid file-specific hook (not, for
example, file/before, but file/before/foo.tex). If it is a file-specific hook, then it
executes the (true) branch, otherwise (false).

A file-specific hook is file/(position)/(name). If any of these parts don’t exist,
it is a general file hook or not a file hook at all, so the conditional evaluates to (false).
Otherwise, it checks that the first part is file and that the (position) is in the \c__-
hook_generics_file_prop.

A property list is used here to avoid having to worry with catcodes, because expl3’s
file name parsing turns all characters into catcode-12 tokens, which might differ from
hand-input letters.

208 \prg_new_conditional:Npnn __hook_if_file_hook:w

209 #1 / #2 / #3 \s__hook_mark { TF }

20

211 \str_if_eq:nnTF {#1} { file }

212 {

213 \bool_lazy_or:nnTF

214 { \tl_if_empty_p:n {#3} }

215 { \str_if _eq_ p:nn {#3} { / } }
216 { \prg_return_false: }

217 {

File g: 1thooks.dtx 124

__hook file hook normalize:n
__hook_strip_double_slash:n
__hook_strip_double_slash:w

\c__hook_generics_prop

\c__hook _generics reversed ii prop
\c__hook generics reversed iii prop

\c__hook_generics_file_prop

\hook_gremove_code:nn
__hook_gremove_code:nn

218 \prop_if_in:NnTF \c__hook_generics_file_prop {#2}
219 { \prg_return_true: }
220 { \prg_return_false: }

221 }

222 T

223 { \prg_return_false: }
224 }

(End definition for __hook_if_file_hook:wTF.)

When a file-specific hook is found, before being declared it is lightly normalized by
__hook_file_hook_normalize:n. The current implementation just replaces two con-
secutive slashes (//) by a single one, to cope with simple cases where the user did some-
thing like \def\input@path{{./mypath/}}, in which case a hook would have to be
\AddToHook{file/after/./mypath//file.tex}.

25 \cs_new:Npn __hook_file_hook_normalize:n #1

26 { __hook_strip_double_slash:n {#1} }

27 \cs_new:Npn __hook_strip_double_slash:n #1

28 { __hook_strip_double_slash:w #1 // \s__hook_mark }

220 \cs_new:Npn __hook_strip_double_slash:w #1 // #2 \s__hook_mark

230 {

231 \tl_if_empty:nTF {#2}

232 {#1}

233 { __hook_strip_double_slash:w #1 / #2 \s__hook_mark }
234 ¥

(End definition for __hook_file_hook_normalize:n, __hook_strip_double_slash:n, and __hook_-
strip_double_slash:w.)

Property list holding the generic names. We don’t provide any user interface to this as
this is meant to be static.

env The generic hooks used in \begin and \end.
file The generic hooks used when loading a file

235 \prop_const_from_keyval:Nn \c__hook_generics_prop
236 {env=,file=,package=,class=,include=}

(End definition for \c__hook_generics_prop.)

Some of the generic hooks are supposed to use reverse ordering, these are the following
(only the second or third sub-component is checked):

237 \prop_const_from_keyval:Nn \c__hook_generics_reversed_ii_prop {after=,end=}

233 \prop_const_from_keyval:Nn \c__hook_generics_reversed_iii_prop {after=}

230 \prop_const_from_keyval:Nn \c__hook_generics_file_prop {before=,after=}

(End definition for \c__hook_generics_reversed_ii_prop, \c__hook_generics_reversed_iii_prop,
and \c__hook_generics_file_prop.)

With \hook_gremove_code:nn{(hook)}{(label)} any code for (hook) stored under (label)
is removed.

20 \cs_new_protected:Npn \hook_gremove_code:nn #1 #2

241 {

242 \exp_args:Nxx __hook_gremove_code:nn

243 { __hook_parse_label_default:nn {#1} { top-level } }

File g: 1thooks.dtx 125

__hook_gremove_code_do:nn

__hook_mark_removal :nn

244 { __hook_parse_label_default:nn {#2} { top-level } }

245 }

26 \cs_new_protected:Npn __hook_gremove_code:nn #1 #2

247 {

First check that the hook code pool exists. \hook_if_exist:nTF isn’t used here because
it should be possible to remove code from a hook before its defined (see section 2.1.5).

248 __hook_if_exist:nTF {#1}

Then remove the chunk and run __hook_update_hook_code:n so that the execution
token list reflects the change if we are after \begin{document}.

249 {

250 \str_if_eq:nnTF {#2} {*}

251 { \prop_gclear:c { g__hook_#1_code_prop } }
252 {

Check if the label being removed exists in the code pool. If it does, just call __hook_-
gremove_code_do:nn to do the removal, otherwise mark it to be removed.

253 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
254 { __hook_gremove_code_do:nn }

255 { __hook_mark_removal:nn }

256 {#1} {#2}

257 }

Finally update the code, if the hook exists.

258 \hook_if_exist:nT {#1}

259 { __hook_update_hook_code:n {#1} }

260 }

If the code pool for this hook doesn’t exist it means that nothing tried to add to it
before, so we just queue this removal order for later.

261 { __hook_mark_removal:nn {#1} {#2} }

263 \cs_new_protected:Npn __hook_gremove_code_do:nn #1 #2
¢ { \prop_gremove:cn { g__hook_#1_code_prop } {#2} }

(End definition for \hook_gremove_code:nn, __hook_gremove_code:nn, and __hook_gremove_code_-
do:nn. This function is documented on page 107.)

Marks (label) (#2) to be removed from (hook) (#1). The number of removals should be
fairly small, and \tl_gremove_once:Nx is fairly efficient even for longer token lists, so
we use a single global token list, rather than one for each hook.

265 \cs_new_protected:Npn __hook_mark_removal:nn #1 #2

266 {

267 \tl_gput_right:Nx \g__hook_removal_list_tl
268 { __hook_removal_tl:nn {#1} {#2} }

269 }

(End definition for __hook_mark_removal:nn.)

File g: 1thooks.dtx 126

__hook_unmark_removal:nn

__hook_if_marked_removal:nnTF

__hook_removal_tl:nn

\g__hook_77_code_prop
\g__hook_77_code_tl
\g__hook_77_reversed_tl

Unmarks (label) (#2) to be removed from (hook) (#1). \tl_gremove_once:Nx is used
rather than \t1_gremove_all:Nx so that two additions are needed to cancel two marked
removals, rather than only one.

70 \cs_new_protected:Npn __hook_unmark_removal:nn #1 #2

271 {

272 \tl_gremove_once:Nx \g__hook_removal_list_tl
273 { __hook_removal_tl:nn {#1} {#2} }

274 }

(End definition for __hook_unmark_removal:nn.)

Checks if the \g__hook_removal_list_t1 contains the current (label) (#2) and (hook)
(#1).

275 \prg_new_protected_conditional:Npnn __hook_if_marked_removal:nn #1 #2 { TF }
s {

77 \exp_args:NNx \tl_if_in:NnTF \g__hook_removal_list_tl

78 { __hook_removal_tl:nn {#1} {#2} }

279 { \prg_return_true: } { \prg_return_false: }

280 }

(End definition for __hook_if_marked_removal:nnTF.)

Builds a token list with #1 and #2 which can only be matched by #1 and #2. The &4
anchors a removal, so that #1 can’t be mistaken by #2 and vice versa, and the two $3
delimit the two arguments

261 \cs_new:Npn __hook_removal_tl:nn #1 #2
220 { & \tl_to_str:n {#2} $ \tl_to_str:n {#1} $ }

(End definition for __hook_removal_tl:nn.)

Initially these variables simply used an empty “label” name (not two question marks).
This was a bit unfortunate, because then 13doc complains about __ in the middle of a
command name when trying to typeset the documentation. However using a “normal”
name such as default has the disadvantage of that being not really distinguishable from
a real hook name. I now have settled for ?? which needs some gymnastics to get it into
the csname, but since this is used a lot things should be fast, so this is not done with ¢
expansion in the code later on.

\g__hook_77_code_t1 isn’t used, but it has to be defined to trick the code into
thinking that 77 is actually a hook.
253 \prop_new:c {g__hook_77_code_prop}
2ss \prop_new:c {g__hook_?7_code_t1}

Default rules are always given in normal ordering (never in reversed ordering). If
such a rule is applied to a reversed hook it behaves as if the rule is reversed (e.g., after
becomes before) because those rules are applied first and then the order is reversed.

265 \tl_new:c {g__hook_77_reversed_tl}

(End definition for \g__hook_??_code_prop, \g__hook_??_code_t1, and \g__hook_7??_reversed_tl.)

File g: 1thooks.dtx 127

\hook_gset_rule:nnnn
__hook_gset_rule:nnnn

__hook_rule_before_gset:
__hook_rule_after_gset:
__hook_rule_<_gset:
__hook_rule_>_gset:

nnn

nnn

nnn

nnn

3.7 Setting rules for hooks code

FMi: needs docu correction given new implementation

With \hook_gset_rule:nnnn{(hook)}{(labell)}{(relation)}{(label2)} a relation is
defined between the two code labels for the given (hook). The special hook 7?7 stands for
any hook describing a default rule.

256 \cs_new_protected:Npn \hook_gset_rule:nnnn #1#2#3#4

287 {

288 \use:x

289 {

200 __hook_gset_rule:nnnn

201 { __hook_parse_label_default:nn {#1} { top-level } }
202 { __hook_parse_label_default:nn {#2} { top-level } }
293 {#3}

204 { __hook_parse_label_default:nn {#4} { top-level } }
295 }

296 }

207 \cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4

298 {

First we ensure the basic data structure of the hook exists:

209 __hook_declare:n {#1}

Then we clear any previous relationship between both labels.

300 __hook_rule_gclear:nnn {#1} {#2} {#4}

Then we call the function to handle the given rule. Throw an error if the rule is invalid.
301 \debug_suspend:

302 \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }
303 {

304 {#1} {#2} {#4}

305 __hook_update_hook_code:n {#1}

306 }

307 { \msg_error:nnnnnn { hooks } { unknown-rule }
308 {#1} {#2} {#3} {#4} ¥
309 \debug_resume:

310 }

(End definition for \hook_gset_rule:nnnn and __hook_gset_rule:nnnn. This function is documented
on page 107.)

Then we add the new rule. We need to normalize the rules here to allow for faster pro-
cessing later. Given a pair of labels [4 and [g, the rule [4 > [is the same as [g < [4 only
presented differently. But by normalizing the forms of the rule to a single representation,
say, lp < la, reduces the time spent looking for the rules later considerably.

Here we do that normalization by using \ (pdf)strcmp to lexically sort labels [4 and
Ip to a fixed order. This order is then enforced every time these two labels are used
together.

Here we use __hook_label_pair:nn {(hook)} {(l4)} {(l5)} to build a string ip |14
with a fixed order, and use __hook_label_ordered:nnTF to apply the correct rule to
the pair of labels, depending if it was sorted or not.
s11 \cs_new_protected:Npn __hook_rule_before_gset:nnn #1#2#3
312 {

313 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl1 }

File g: 1thooks.dtx 128

314 { __hook_label_ordered:nnTF {#2} {#3} { <} { >} }
315 }

516 \cs_new_eq:cN { __hook_rule_<_gset:nnn } __hook_rule_before_gset:nnn

;317 \cs_new_protected:Npn __hook_rule_after_gset:nnn #1#2#3

318 {

319 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#3} {#2} _tl1 }
320 { __hook_label_ordered:nnTF {#3} {#2} { <} { > 1} }

321 }

522 \cs_new_eq:cN { __hook_rule_>_gset:nnn } __hook_rule_after_gset:nnn

(End definition for __hook_rule_before_gset:nnn and others.)

__hook_rule_voids_gset:nnn This rule removes (clears, actually) the code from label #3 if label #2 is in the hook #1.

323 \cs_new_protected:Npn __hook_rule_voids_gset:nnn #1#2#3

324 {

325 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl1 }
326 { __hook_label_ordered:nnTF {#2} {#3} { > } { <- } }

327 }

(End definition for __hook_rule_voids_gset :nnn.)

__hook_rule_incompatible-error gset:nn These relations make an error/warning if labels #2 and #3 appear together in hook #1.

__hook_rule_incompatible-varning gset:nmn \cs_new_protected:cpn { __hook_rule_incompatible-error_gset:nnn } #1#2#3
20 { \tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xE } }
530 \cs_new_protected:cpn { __hook_rule_incompatible-warning gset:nnn } #1#2#3
;31 { \tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xW } }

(End definition for __hook_rule_incompatible-error_gset:nnn and __hook_rule_incompatible-warning_-
gset:nnn.)

_hook rule unrelated gset:nmn Undo a setting. __hook_rule_unrelated_gset :nnn doesn’t need to do anything, since
__hook_rule_gclear:nnn we use __hook_rule_gclear:nnn before setting any rule.

532 \cs_new_protected:Npn __hook_rule_unrelated_gset:nnn #1#2#3 { }
333 \cs_new_protected:Npn __hook_rule_gclear:nnn #1#2#3
s { \cs_undefine:c { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } }

(End definition for __hook_rule_unrelated_gset:nnn and __hook_rule_gclear:nnn.)

__hook_label_pair:nn Ensure that the lexically greater label comes first.

335 \cs_new:Npn __hook_label_pair:nn #1#2

336 {

337 \if _case:w __hook_str_compare:nn {#1} {#2} \exp_stop_f:
338 #1 | #1 7 O

339 \or: #1 | #2 % +1

340 \else: #2 | #1 % -1

341 \fi:

342 }

(End definition for __hook_label_pair:nn.)

File g: 1thooks.dtx 129

__hook_label_ordered_p:nn
__hook_label_ordered:nnTF

__hook_if_label_case:nnnnn

__hook_update_hook_code:n

__hook_initialize_all:

Check that labels #1 and #2 are in the correct order (as returned by __hook_label_-
pair:nn) and if so return true, else return false.

23 \prg_new_conditional:Npnn __hook_label_ordered:nn #1#2 { TF }
344 {

345 \if _int_compare:w __hook_str_compare:nn {#1} {#2} > 0 \exp_stop_f:
346 \prg_return_true:

347 \else

348 \prg_return_false:

349 \fi:

350 }

(End definition for __hook_label_ordered:nnTF.)

To avoid doing the string comparison twice in __hook_initialize_single:NNNn (once
with \str_if_eq:nn and again with __hook_label_ordered:nn), we use a three-way
branching macro that will compare #1 and #2 and expand to \use_i:nnn if they are
equal, \use_ii:nn if #1 is lexically greater, and \use_iii:nn otherwise.

551 \cs_new:Npn __hook_if_label_case:nnnnn #1#2

352 {

353 \cs:w use_

354 \if_case:w __hook_str_compare:nn {#1} {#2}
355 i \or: ii \else: iii \fi: :nnn

356 \cs_end:

357 3

(End definition for __hook_if_label_case:nnnnn.)

Before \begin{document} this does nothing, in the body it reinitializes the hook code
using the altered data.

355 \cs_new_eq:NN __hook_update_hook_code:n \use_none:n

(End definition for __hook_update_hook_code:n.)

Initialize all known hooks (at \begin{document}), i.e., update the fast execution token
lists to hold the necessary code in the right order.

350 \cs_new_protected:Npn __hook_initialize_all: {

First we change __hook_update_hook_code:n which so far was a no-op to now initialize
one hook. This way any later updates to the hook will run that code and also update
the execution token list.

0 \cs_gset_eq:NN __hook_update_hook_code:n __hook_initialize_hook_code:n
Now we loop over all hooks that have been defined and update each of them.

361 __hook_debug:n { \prop_gclear:N \g__hook_used_prop }
52 \seq_map_inline:Nn \g__hook_all_seq

363 {
364 __hook_update_hook_code:n {##1}
365 }

If we are debugging we show results hook by hook for all hooks that have data.
36 __hook_debug:n

367 { \iow_term:x{""JAl11l~ initialized~ (non-empty)~ hooks:}
368 \prop_map_inline:Nn \g__hook_used_prop

360 { \iow_term:x{""J~ ##1~ ->~

370 \exp_not:v {g__hook_##1_code_tl}~ }

371 }

372 }

File g: 1thooks.dtx 130

__hook initialize hook code:n

After all hooks are initialized we change the “use” to just call the hook code and not
initialize it (as it was done in the preamble.

573 \cs_gset_eq:NN \hook_use:n __hook_use_initialized:n
sz \cs_gset_eq:NN __hook_preamble_hook:n \use_none:n

375
(End definition for __hook_initialize_all:.)

Initializing or reinitializing the fast execution hook code. In the preamble this is selec-
tively done in case a hook gets used and at \begin{document} this is done for all hooks
and afterwards only if the hook code changes.

76 \cs_new_protected:Npn __hook_initialize_hook_code:n #1 {

7 __hook_debug:n{ \iow_term:x{"~JUpdate~ code~ for~ hook~

8 ’#1° \on@line :7"J} }

This does the sorting and the updates. First thing we do is to check if a legacy hook
macro exists and if so we add it to the hook under the label legacy. This might make
the hook non-empty so we have to do this before the then following test.

[

7
37
27,

37

s __hook_include_legacy_code_chunk:n {#1}

If there aren’t any code chunks for the current hook, there is no point in even starting
the sorting routine so we make a quick test for that and in that case just update \g__-
hook_(hook)_code_t1 to hold the next code. If there are code chunks we call __hook_-
initialize_single:NNNn and pass to it ready made csnames as they are needed several
times inside. This way we save a bit on processing time if we do that up front.

350 \hook_if_exist:nT {#1}

381 {

362 \prop_if_empty:cTF {g__hook_#1_code_prop}

383 { \tl_gset:co {g__hook_#1_code_t1}

384 {\cs:w g__hook_#1_code_next_tl \cs_end: } }
385 {

By default the algorithm sorts the code chunks and then saves the result in a token list for
fast execution by adding the code one after another using \tl_gput_right:NV. When
we sort code for a reversed hook, all we have to do is to add the code chunks in the
opposite order into the token list. So all we have to do in preparation is to change two
definitions used later on.

386 __hook_if_reversed:nTF {#1}

387 { \cs_set_eq:NN __hook_tl_gput:NV \tl_gput_left:NV

388 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_left:NV }
380 { \cs_set_eq:NN __hook_tl_gput:NV \tl_gput_right:NV

390 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_right:NV }

When sorting, some relations (namely voids) need to act destructively on the code
property lists to remove code that shouldn’t appear in the sorted hook token list, so we
temporarily save the old code property list so that it can be restored later.

301 \prop_set_eq:Nc \1__hook_work_prop { g__hook_#1_code_prop }
302 __hook_initialize_single:cccn

303 { g__hook_#1_code_t1l } { g__hook_#1_code_next_tl }

304 { g__hook_#1_labels_clist } {#1}

For debug display we want to keep track of those hooks that actually got code added to
them, so we record that in plist. We use a plist to ensure that we record each hook name
only once, i.e., we are only interested in storing the keys and the value is arbitrary.

File g: 1thooks.dtx 131

\g__hook_used_prop

__hook_tl_csname:n
__hook_seq_csname:n

\1__hook_labels_seq
\1__hook_labels_int
\1__hook_front_tl
\1__hook_rear_tl
\1__hook_label_0O_t1

395
396
397
398

399 }

__hook_debug:n{ \exp_args:NNx \prop_gput:Nnn
\g__hook_used_prop {#1}{} }

(End definition for __hook_initialize_hook_code:n.)

All hooks that receive code (for use in debugging display).

200 \prop_new:N\g__hook_used_prop

(End definition for \g__hook_used_prop.)

It is faster to pass a single token and expand it when necessary than to pass a bunch of
character tokens around.

FMi: note to myself: verify

201 \cs_new:Npn __hook_tl_csname:n #1 { 1__hook_label_#1_tl1 }
202 \cs_new:Npn __hook_seq_csname:n #1 { 1__hook_label_#1_seq }

(End definition for __hook_tl_csname:n and __hook_seq_csname:n.)

For the sorting I am basically implementing Knuth’s algorithm for topological sorting as
given in TAOCP volume 1 pages 263-266. For this algorithm we need a number of local
variables:

403

404

406

407

List of labels used in the current hook to label code chunks:
\seq_new:N \1__hook_labels_seq

Number of labels used in the current hook. In Knuth’s algorithm this is called IV:
\int_new:N \1__hook_labels_int

The sorted code list to be build is managed using two pointers one to the front of
the queue and one to the rear. We model this using token list pointers. Knuth calls
them F' and R:

\tl_new:N \1__hook_front_tl
\tl_new:N \1__hook_rear_tl

The data for the start of the queue is kept in this token list, it corresponds to what
Don calls QLINK[0] but since we aren’t manipulating individual words in memory

it is slightly differently done:

\tl_new:c { __hook_tl_csname:n { O } }

(End definition for \1__hook_labels_seq and others.)

File g: 1thooks.dtx 132

__hook initialize single:NNNn

__hook_initialize_single:NNNn implements the sorting of the code chunks for a

_hook initialize single:ccen hook and saves the result in the token list for fast execution (#3). The arguments

are (hook-code-plist), (hook-code-tl), (hook-next-code-tly, {hook-ordered-labels-clist) and
(hook-name) (the latter is only used for debugging—the (hook-rule-plist) is accessed us-
ing the (hook-name)).

The additional complexity compared to Don’s algorithm is that we do not use simple
positive integers but have arbitrary alphanumeric labels. As usual Don’s data structures
are chosen in a way that one can omit a lot of tests and I have mimicked that as far as
possible. The result is a restriction I do not test for at the moment: a label can’t be
equal to the number 0!

FMi: Needs checking for, just in case
205 \cs_new_protected:Npn __hook_initialize_single:NNNn #1#2#3#4 {
200 \debug_suspend:
Step T1: Initialize the data structure ...
210 \seq_clear:N \1__hook_labels_seq
a1 \int_zero:N \1__hook_labels_int

Store the name of the hook:
a2 \tl_set:Nn \1__hook_cur_hook_tl {#4}

We loop over the property list holding the code and record all labels listed there.
Only rules for those labels are of interest to us. While we are at it we count them (which
gives us the N in Knuth’s algorithm. The prefix label_ is added to the variables to
ensure that labels named front, rear, labels, or return don’t interact with our code.
213 \prop_map_inline:Nn \1__hook_work_prop

414

415 \int_incr:N \1__hook_labels_int

416 \seq_put_right:Nn \1__hook_labels_seq {##1}

a17 \tl_set:cn { __hook_tl_csname:n {##1} }{0}

418 \seq_clear_new:c { __hook_seq_csname:n {##1} }
a19 }

Steps T2 and T3: Sort the relevant rules into the data structure. ..

This loop constitutes a square matrix of the labels in \1__hook_work_prop in the
vertical and the horizontal directions. However since the rule [4(rel)lp is the same as
Ig(rel)='l4 we can cut the loop short at the diagonal of the matrix (i.e., when both
labels are equal), saving a good amount of time. The way the rules were set up (see
the implementation of __hook_rule_before_gset:nnn above) ensures that we have no
rule in the ignored side of the matrix, and all rules are seen. The rules are applied
in __hook_apply_label_pair:nnn, which takes the properly-ordered pair of labels as
argument.

20 \prop_map_inline:Nn \1__hook_work_prop

421 {

422 \prop_map_inline:Nn \1__hook_work_prop

423

424 __hook_if_label_case:nnnnn {##1} {####1}

425 { \prop_map_break: }

426 { __hook_apply_label_pair:nnn {##1} {####1} }
427 { __hook_apply_label_pair:nnn {####1} {##1} }
428 {#4}

429 }

430 }

File g: 1thooks.dtx 133

Take a breath and take a look at the data structures that have been set up:
431 __hook_debug:n { __hook_debug_label_data:N \1__hook_work_prop }
Step T4:

222 \tl_set:Nn \1__hook_rear_tl { O }
13 \tl_set:cn { __hook_tl_csname:n { 0 } } { 0 }
232 \seq_map_inline:Nn \1__hook_labels_seq

435 {

436 \int_compare:nNnT { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
437 {

438 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_t1 } }{##1}
439 \tl_set:Nn \1__hook_rear_tl {##1}

440 }

441 }

22 \tl_set_eq:Nc \1__hook_front_tl { __hook_tl_csname:n { O } }
w23 \tl_gclear:N #1
ws \clist_gclear:N #3

The whole loop combines steps TH-T7:

25 \bool_while_do:nn { ! \str_if_eq_p:Vn \1__hook_front_tl { 0 } }
446 {

This part is step T5:

447 \int_decr:N \1__hook_labels_int

448 \prop_get:NVN \1__hook_work_prop \1__hook_front_tl \1__hook_return_tl
449 __hook_t1l_gput:NV #1 \1__hook_return_tl

450 __hook_clist_gput:NV #3 \1__hook_front_tl

451 __hook_debug:n{ \iow_term:x{Handled~ code~ for~ \1__hook_front_tl} }

This is step T6 except that we don’t use a pointer P to move through the successors,
but instead use ##1 of the mapping function.

452 \seq_map_inline:cn { __hook_seq_csname:n { \1__hook_front_tl } }

453 {

454 \tl_set:cx { __hook_tl_csname:n {##1} }

455 { \int_eval:n

456 { \cs:w __hook_tl_csname:n {##1} \cs_end: - 1 }
457 3

458 \int_compare:nNnT

450 { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0

460 {

461 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_tl } } {##1}
462 \tl_set:Nn \1__hook_rear_tl {##1}

463 ¥

464 }

and step T7:

465 \tl_set_eq:Nc \1__hook_front_tl

466 { __hook_tl_csname:n { \1__hook_front_tl1 } }

This is step T8: If we haven’t moved the code for all labels (i.e., if \1__hook_-
labels_int is still greater than zero) we have a loop and our partial order can’t be
flattened out.

467 }
25 \int_compare:nNnF \1__hook_labels_int = 0
469 {

File g: 1thooks.dtx 134

__hook_t1l_gput:NV
__hook_clist_gput:NV

__hook_apply_label_pair:nnn

\

__hook label if exist apply:nmnF

470 \iow_term:x{ }
471 \iow_term:x{Error:~ label~ rules~ are~ incompatible:}

This is not really the information one needs in the error case but will do for now ...

472 __hook_debug_label_data:N \1__hook_work_prop
473 \iow_term:x{ T
474 }

After we have added all hook code to #1 we finish it off with adding extra code for a one
time execution. That is stored in #2 but is normally empty.

a5 \tl_gput_right:Nn #1 {#2}

¢ \debug_resume:

7}

275 \cs_generate_variant:Nn __hook_initialize_single:NNNn {ccc}

(End definition for __hook_initialize_single:NNNn.)

These append either on the right (normal hook) or on the left (reversed hook). This is
setup up in __hook_initialize_hook_code:n, elsewhere their behavior is undefined.

279 \cs_new:Npn __hook_tl_gput:NV {\ERROR}
20 \cs_new:Npn __hook_clist_gput:NV {\ERROR}

(End definition for __hook_tl_gput:NV and __hook_clist_gput:NV.)

This is the payload of steps T2 and T3 executed in the loop described above. This macro
assumes #1 and #2 are ordered, which means that any rule pertaining the pair #1 and #2
is \g__hook_(hook)_rule_#1|#2_t1, and not \g__hook_(hook)_rule_#2|#1_t1. This
also saves a great deal of time since we only need to check the order of the labels once.
The arguments here are (labell), (label2), (hook), and (hook-code-plist). We are
about to apply the next rule and enter it into the data structure. __hook_apply_-
label_pair:nnn will just call __hook_label_if_exist_apply:nnnF for the (hook),
and if no rule is found, also try the (hook) name ?? denoting a default hook rule.
__hook_label_if_exist_apply:nnnF will check if the rule exists for the given
hook, and if so call __hook_apply_rule:nnn.
251 \cs_new_protected:Npn __hook_apply_label_pair:nnn #1#2#3
482 {
Extra complication: as we use default rules and local hook specific rules we first have to
check if there is a local rule and if that exist use it. Otherwise check if there is a default
rule and use that.

483 __hook_label_if_exist_apply:nnnF {#1} {#2} {#3}

484 {

If there is no hook-specific rule we check for a default one and use that if it exists.
485 __hook_label_if_exist_apply:nnnF {#1} {#2} { 7?7 } { }

486 ¥

487 }

255 \cs_new_protected:Npn __hook_label_if_exist_apply:nnnF #1#2#3
489 {
490 \if_cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl1 \cs_end:

File g: 1thooks.dtx 135

__hook_apply_rule:nnn

__hook_apply_rule_<:nnn
__hook_apply_rule_>:nnn

__hook_apply_rule_xE:nnn
__hook_apply_rule_xW:nnn

What to do precisely depends on the type of rule we have encountered. If it is a before
rule it will be handled by the algorithm but other types need to be managed differently.
All this is done in __hook_apply_rule:nnnN.

491 __hook_apply_rule:nnn {#1} {#2} {#3}
492 \exp_after:wN \use_none:n

493 \else:

492 \use:nn

495 \fi:

496 }

(End definition for __hook_apply_label_pair:nnn and __hook_label_if_exist_apply:nnnF.)

This is the code executed in steps T2 and T3 while looping through the matrix This is
part of step T3. We are about to apply the next rule and enter it into the data structure.
The arguments are (labell), (label2), (hook-name), and (hook-code-plist).

207 \cs_new_protected:Npn __hook_apply_rule:nnn #1#2#3

498 {

499 \cs:w __hook_apply_

500 \cs:w g__hook_#3_reversed_tl \cs_end: rule_

501 \cs:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end: :nnn \cs_end:
502 {#1} {#2} {#3}

503 }

(End definition for __hook_apply_rule:nnn.)

The most common cases are < and > so we handle that first. They are relations < and
> in TAOCP, and they dictate sorting.

500 \cs_new_protected:cpn { __hook_apply_rule_<:nnn } #1#2#3

505 {

506 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

507 \tl_set:cx { __hook_tl_csname:n {#2} }

508 { \int_eval:n{ \cs:w __hook_tl_csname:n {#2} \cs_end: + 1 } }
500 \seq_put_right:cn{ __hook_seq_csname:n {#1} }{#2}

510 }

si1 \cs_new_protected:cpn { __hook_apply_rule_>:nnn } #1#2#3

512 {

513 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

514 \tl_set:cx { __hook_tl_csname:n {#1} }

515 { \int_eval:n{ \cs:w __hook_tl_csname:n {#1} \cs_end: + 1 } }
516 \seq_put_right:cn{ __hook_seq_csname:n {#2} }{#1}

517 }

(End definition for __hook_apply_rule_<:nnn and __hook_apply_rule_>:nnn.)

These relations make two labels incompatible within a hook. xE makes raises an error if
the labels are found in the same hook, and xW makes it a warning.

sis \cs_new_protected:cpn { __hook_apply_rule_xE:nnn } #1#2#3

519 {

520 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
521 \msg_error:nnnnnn { hooks } { labels-incompatible }

522 {#1}> {#2} {#3> {1}

523 \use:c { __hook_apply_rule_->:nnn } {#1} {#2} {#3}

524 \use:c { __hook_apply_rule_<-:nnn } {#1} {#2} {#33}

55}

File g: 1thooks.dtx 136

__hook_apply_rule_->:nnn

__hook_apply_rule_<-:nnn

__hook_apply_-rule_<:
__hook_apply_-rule_>:
__hook_apply_-rule_<-:
__hook_apply_-rule_->:
__hook_apply_-rule_x:

nnn

nnn

nnn

nnn

nnn

s26 \cs_new_protected:cpn { __hook_apply_rule_xW:nnn } #1#2#3

527 {

528 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
529 \msg_warning:nnnnnn { hooks } { labels-incompatible }

530 {#1} {#2} #3} {0 }

531 }

(End definition for __hook_apply_rule_xE:nnn and __hook_apply_rule_xW:nnn.)

If we see => we have to drop code for label #3 and carry on. We could do a little better
and drop everything for that label since it doesn’t matter where we sort in the empty
code. However that would complicate the algorithm a lot with little gain.® So we still
unnecessarily try to sort it in and depending on the rules that might result in a loop that
is otherwise resolved. If that turns out to be a real issue, we can improve the code.

Here the code is removed from \1__hook_cur_hook_t1 rather than #3 because the
latter may be 7?7, and the default hook doesn’t store any code. Removing from \1__-
hook_cur_hook_t1l makes default rules -> and <- work properly.

s \cs_new_protected:cpn { __hook_apply_rule_->:nnn } #1#2#3

533 {

534 __hook_debug:n

535 {

536 __hook_msg_pair_found:nnn {#1} {#2} {#3}

537 \iow_term:x{--->~ Drop~ ’#2’~ code~ from~

538 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~
539 because~ of~ ’#1° }

540 }

541 \prop_put:Nnn \1__hook_work_prop {#2} { }

542 }

ss3 \cs_new_protected:cpn { __hook_apply_rule_<-:nnn } #1#2#3

544 {

545 __hook_debug:n

546 {

547 __hook_msg_pair_found:nnn {#1} {#2} {#3}

548 \iow_term:x{--->~ Drop~ ’#1’~ code~ from~

549 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~
550 because~ of~ ’#2° }

551 }

552 \prop_put:Nnn \1__hook_work_prop {#1} { }

(End definition for __hook_apply_rule_->:nnn and __hook_apply_rule_<-:nnn.)

Reversed rules.

_hook_apply_-rule_<:nnn } { __hook_apply_rule_>:nnn }

_hook_apply_-rule_>:nnn } { __hook_apply_rule_<:nnn }

_hook_apply_-rule_<-:nnn } { __hook_apply_rule_<-:nnn }
} { __hook_apply_rule_->:nnn }

s \cs_new_eq:cc { _ _
555 \cs_new_eq:cc { _ _
s56 \cs_new_eq:cc { _
ss7 \cs_new_eq:cc { __hook_apply_-rule_->:nnn
{ __hook_apply_-rule_xE:nnn _hook_apply_rule_xE:nnn }
{_

55 \CS_new_eq:cc AL _
_hook_apply_-rule_xW:nnn 3} { __hook_apply_rule_xW:nnn }

s50 \CS_new_eq:cc

(End definition for __hook_apply_-rule_<:nnn and others.)

8This also hase the advantage that the result of the sorting doesn’t change which might otherwise
(for unrelated chunks) if we aren’t careful.

File g: 1thooks.dtx 137

__hook_msg_pair_found:nnn A macro to avoid moving this many tokens around.

se0 \cs_new_protected:Npn __hook_msg_pair_found:nnn #1#2#3

561 {

562 \iow_term:x{~ \str_if_eq:nnTF {#3} {77} {default} {-normal} ~

563 rule~ __hook_label_pair:nn {#1} {#2}:~

564 \use:c { g__hook_#3_rule_ __hook_label_pair:nn {#1} {#2} _t1 } ~
565 found}

566 }

(End definition for __hook_msg_pair_found:nnn.)

__hook_debug_label_data:N
s67 \cs_new_protected:Npn __hook_debug_label_data:N #1 {
s6s \iow_term:x{Code~ labels~ for~ sorting:}
se0 \iow_term:x{~ \seq_use:Nnnn\l__hook_labels_seq {~and~}{,~}{~and~} }

570 \iow_term:x{""J Data~ structure~ for~ label~ rules:}

571 \prop_map_inline:Nn #1

572 {

573 \iow_term:x{~ ##1~ =~ \tl_use:c{ __hook_tl_csname:n {##1} }~ ->~
574 \seq_use:cnnn{ __hook_seq_csname:n {##1} }{~->~}{~->~}{~->~3}
575 ¥

576 ¥

577 \iow_term:x{}

578

(End definition for __hook_debug_label_data:N.)

\hook_log:n This writes out information about the hook given in its argument onto the terminal and

the .log file.

s \cs_new_protected:Npn \hook_log:n #1

580 {

581 \exp_args:Nx __hook_log:n

582 { __hook_parse_label_default:nn {#1} { top-level } }
583 }

53« \cs_new_protected:Npn __hook_log:n #1

585 {

586 __hook_preamble_hook:n {#1}

587 \iow_term:x{""JThe~ hook~ ’#1’:}

588 \hook_if_exist:nF {#1}

589 { \iow_term:x {~Hook~ is~ not~ declared!'} }

590 __hook_if_exist:nTF {#1}

591 {

502 \iow_term:x{~Code~ chunks:}

503 \prop_if_empty:cTF {g__hook_#1_code_prop}

594 { \iow_term:x{\@spaces ---} }

595 {

596 \prop_map_inline:cn {g__hook_#1_code_prop}
597 { \iow_term:x{\@spaces ##1~ ->~ \tl_to_str:n{##2} } }
598 }

599 \iow_term:x{~Extra~ code~ next~ invocation:}
600 \iow_term:x{\@spaces

601 \tl_if_empty:cTF { g__hook_#1_code_next_tl }
602 {---}

File g: 1thooks.dtx 138

__hook_list_rules:nn
__hook_list_one_rule:nnn

__hook list if rule exists:nnnF

If the token list is not empty we want to display it but without the first tokens (the code
to clear itself) so we call a helper command to get rid of them.

603 {->~ \exp_args:Nv

604 __hook_log_next_code:n {g__hook_#1_code_next_tl1l} } }
Loop through the rules in a hook and for every rule found, print it. If no rule is

there, print -=—-. The boolean \1__hook_tmpa_bool here indicates if the hook has no

rules.

605 \iow_term:x { ~Rules: }

606 \bool_set_true:N \1__hook_tmpa_bool

607 __hook_list_rules:nn {#1}

608 {

609 \bool_set_false:N \1__hook_tmpa_bool

610 \iow_term:x

611 {

612 \@spaces ##2~ with~

613 \str_if_eq:nnT {##3} {77} { default~ }

614 relation~ ##1 }

615 }

616 \bool_if:NT \1__hook_tmpa_bool

617 { \iow_term:x { \@spaces --- } }

618 \bool_lazy_and:nnT

619 { \hook_if_exist_p:n {#1} }

620 { ! \hook_if_empty_p:n {#1} }

621 { \iow_term:x { ~Execution~ order

622 \bool_if:NTF \1__hook_tmpa_bool

623 { __hook_if_reversed:nT {#1}

624 { ~ (after~ reversal) }

625 }

626 { ~ (after~

627 __hook_if_reversed:nT {#1} {reversal~ and~}

628 applying~ rules)

629 }

630 :

631 ¥

632 \iow_term:x

633 { \@spaces \clist_use:cn {g__hook_#1_labels_clist} { ,~ } }

634 }

635 }

636 { \iow_term:n { ~The~hook~is~empty. } }

637 \iow_term:n { }

638 }

To display the code for next invocation only (i.e., from \AddToHookNext we have to
remove the first two tokens at the front which are \t1_gclear:N and the token list to
clear.

639 \cs_new:Npn __hook_log_next_code:n #1 {
60 \exp_args:No \tl_to_str:n {\use_none:nn #1}

641 }

(End definition for \hook_log:n. This function is documented on page ?7.)

This macro takes a (hook) and an (inline function) and loops through each pair of (labels)
in the (hook), and if there is a relation between this pair of (labels), the (inline function)

File g: 1thooks.dtx 139

__hook_debug_print_rules:n

is executed with #1 = (relation), #2 = (labely) | {labely), and #3 = (hook) (the latter may
be the argument #1 to __hook_list_rules:nn, or 77 if it is a default rule).
622 \cs_new_protected:Npn __hook_list_rules:nn #1 #2

643 {

644 \cs_set_protected:Npn __hook_tmp:w ##1 ##2 ##3 {#2}
645 \prop_map_inline:cn { g__hook_#1_code_prop }

646 {

647 \prop_map_inline:cn { g__hook_#1_code_prop }

648

649 __hook_if_label_case:nnnnn {##1} {####1}

650 { \prop_map_break: }

651 { __hook_list_one_rule:nnn {##1} {####1} }
652 { __hook_list_one_rule:nnn {####1} {##1} }
653 {#1}

654 }

655 }

656 }

These two are quite similar to __hook_apply_label_pair:nnn and __hook_-
label_if_exist_apply:nnnF, respectively, but rather than applying the rule, they pass
it to the (inline function).

657 \cs_new_protected:Npn __hook_list_one_rule:nnn #1#2#3

658 {

659 __hook_list_if_rule_exists:nnnF {#1} {#2} {#3} { }

660 { __hook_list_if_rule_exists:nnnF {#1} {#2} { 7?7 } { } }
661 }

62 \cs_new_protected:Npn __hook_list_if_rule_exists:nnnF #1#2#3
663 {

664 \if _cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:

665 \exp_args:Nv __hook_tmp:w

666 { g__hook_ #3 _rule_ #1 | #2 _t1 } { #1 | #2 } {#3}
667 \fi:

668 }

(End definition for __hook_list_rules:nn, __hook_list_one_rule:nnn, and __hook_list_if_-
rule_exists:nnnF.)

A shorthand for debugging that prints similar to \prop_show:N.
6o \cs_new_protected:Npn __hook_debug_print_rules:n #1

670 {

671 \iow_term:n { The~hook~#1l~contains~the~rules: }

672 \cs_set_protected:Npn __hook_tmp:w ##1

673 {

674 __hook_list_rules:nn {#1}

675 {

676 \iow_term:x

677 {

678 > ##1 {####2} ##1 => ##1 {####1}

679 \str_if_eq:nnT {####3} {77} { ~(default) }
680 ¥

681 }

682 T

683 \exp_args:No __hook_tmp:w { \use:nn { ~ } { ~ } }
684 }

(End definition for __hook_debug_print_rules:n.)

File g: 1thooks.dtx 140

\hook_gput_next_code:nn

\hook_use:n
__hook_use_initialized:n
__hook_preamble_hook:n

3.8 Specifying code for next invocation

635 \cs_new_protected:Npn \hook_gput_next_code:nn #1

686 {

687 \exp_args:Nx __hook_gput_next_code:nn

683 { __hook_parse_label_default:nn {#1} { top-level } }
689 ¥

60 \cs_new_protected:Npn __hook_gput_next_code:nn #1 #2

601 {

692 __hook_declare:n {#1}

603 \hook_if_exist:nTF {#1}

604 { __hook_gput_next_do:nn {#1} {#2} }

695 { __hook_try_declaring_generic_next_hook:nn {#1} {#2} }
696 }

607 \cs_new_protected:Npn __hook_gput_next_do:nn #1

698 {

699 \exp_args:Nc __hook_gput_next_do:Nnn

700 { g__hook_#1_code_next_t1l } {#1}

701 }

First check if the “next code” token list is empty: if so we need to add a \t1l_gclear:c
to clear it, so the code lasts for one usage only. The token list is cleared early so that
nested usages don’t get lost. \tl_gclear:c is used instead of \tl_gclear:N in case
the hook is used in an expansion-only context, so the token list doesn’t expand before
\tl_gclear:N: that would make an infinite loop. Also in case the main code token list
is empty, the hook code has to be updated to add the next execution token list.

102 \cs_new_protected:Npn __hook_gput_next_do:Nnn #1 #2

703 {

704 \tl_if_empty:cT { g__hook_#2_code_tl }

705 { __hook_update_hook_code:n {#2} }

706 \tl_if_empty:NT #1

707 { \tl_gset:Nn #1 { \tl_gclear:c { g__hook_#2_code_next_tl } } }
708 \tl_gput_right:Nn #1

709 ¥

(End definition for \hook_gput_next_code:nn. This function is documented on page 107.)

3.9 Using the hook

\hook_use:n as defined here is used in the preamble, where hooks aren’t initialized
by default. __hook_use_initialized:n is also defined, which is the non-\protected
version for use within the document. Their definition is identical, except for the __-
hook_preamble_hook:n (which wouldn’t hurt in the expandable version, but it would be
an unnecessary extra expansion).

__hook_use_initialized:n holds the expandable definition while in the pream-
ble. __hook_preamble_hook:n initializes the hook in the preamble, and is redefined to
\use_none:n at \begin{document}.

Both versions do the same internally: check if the hook exist as given, and if so use
it as quickly as possible. If it doesn’t exist, the a call to __hook_use:wn checks for file
hooks.

At \begin{document}, all hooks are initialized, and any change in them causes an
update, so \hook_use:n can be made expandable. This one is better not protected

File g: 1thooks.dtx 141

so that it can expand into nothing if containing no code. Also important in case of
generic hooks that we do not generate a \relax as a side effect of checking for a csname.
In contrast to the TEX low-level \csname ...\endcsname construct \tl_if_exist:c is
careful to avoid this.

710 \cs_new_protected:Npn \hook_use:n #1

711 {

712 \tl_if_exist:cTF { g__hook_#1_code_tl }

713 {

714 __hook_preamble_hook:n {#1}

715 \cs:w g__hook_#1_code_tl \cs_end:

716 }

77 { __hook_use:wn #1 / \s__hook_mark {#1} }
718 }

719 \cs_new:Npn __hook_use_initialized:n #1

720 {

721 \tl_if_exist:cTF { g__hook_#1_code_tl }

722 { \cs:w g__hook_#1_code_tl \cs_end: }

723 { __hook_use:wn #1 / \s__hook_mark {#1} }
724 }

725 \cs_new_protected:Npn __hook_preamble_hook:n #1
726 { __hook_initialize_hook_code:n {#1} }

(End definition for \hook_use:n, __hook_use_initialized:n, and __hook_preamble_hook:n. This
function is documented on page 106.)

__hook_use:wn __hook_use:wn does a quick check to test if the current hook is a file hook: those
__hook_try_file_hook:n mneed a special treatment. If it is not, the hook does not exist. If it is, then __hook_-
__hook_if_exist_use:n try_file_hook:n is called, and checks that the current hook is a file-specific hook using
__hook_if_file_hook:wTF. If it’s not, then it’s a generic file/ hook and is used if it
exist.

If it is a file-specific hook, it passes through the same normalization as during decla-
ration, and then it is used if defined. __hook_if_exist_use:n checks if the hook exist,

and calls __hook_preamble_hook:n if so, then uses the hook.

77 \cs_new:Npn __hook_use:wn #1 / #2 \s__hook_mark #3

728 {

729 \str_if_eq:nnTF {#1} { file }

730 { __hook_try_file_hook:n {#3} }

731 { } / Hook doesn’t exist

732 }

733 \cs_new_protected:Npn __hook_try_file_hook:n #1

734 {

735 __hook_if_file_hook:wTF #1 / / \s__hook_mark

736 {

737 \exp_args:Ne __hook_if_exist_use:n

738 { \exp_args:Ne __hook_file_hook_normalize:n {#1} }
739 ¥

740 { __hook_if_exist_use:n {#1} } % file/ generic hook (e.g. file/before)
741 }

722 \cs_new_protected:Npn __hook_if_exist_use:n #1

743 {

744 \tl_if_exist:cT { g__hook_#1_code_tl }

745 {

746 __hook_preamble_hook:n {#1}

File g: 1thooks.dtx 142

\hook_use_once:n

\hook_if_empty_p:n
\hook_if_empty:nTF

747 \cs:w g__hook_#1_code_tl \cs_end:
748 }
749 ¥

nd definition for __hook_use:wn, __hook_try_file_hook:n, and __hook_if_exist_use:n.
End d itd __hook , __hook_try_file_hook:n, d __hook_if i

For hooks that can and should be used only once we have a special use command that
remembers the hook name in \g__hook_execute_immediately_clist. This has the
effect that any further code added to the hook is executed immediately rather than
stored in the hook.

750 \cs_new_protected:Npn \hook_use_once:n #1

751 {

752 \tl_if_exist:cT { g__hook_#1_code_tl }

753 {

754 \clist_gput_left:Nn \g__hook_execute_immediately_clist {#1}
755 \hook_use:n {#1}

756 }

757 }

(End definition for \hook_use_once:n. This function is documented on page 106.)

3.10 Querying a hook

Simpler data types, like token lists, have three possible states; they can exist and be
empty, exist and be non-empty, and they may not exist, in which case emptiness doesn’t
apply (though \t1_if_empty:N returns false in this case).

Hooks are a bit more complicated: they have four possible states. A hook may exist
or not, and either way it may or may not be empty (even a hook that doesn’t exist may
be non-empty).

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool (it may happen that a package A defines a hook foo, but it’s
loaded after package B, which adds some code to that hook. In this case it is important
that the code added by package B is remembered until package A is loaded).

A hook is said to exist when it was declared with \hook_new:n or some variant
thereof.

Test if a hook is empty (that is, no code was added to that hook). A hook being
empty means that both its \g__hook_(hook)_code_prop and its \g__hook_(hook)_-
code_next_t1 are empty.

e \prg_new_conditional :Npnn \hook_if_empty:n #1 { p , T , F , TF }
759 {

760 __hook_if_exist:nTF {#1}

761 {

762 \bool_lazy_and:nnTF

763 { \prop_if_empty_p:c { g__hook_#1_code_prop } }
764 { \tl_if_empty_p:c { g__hook_#1_code_next_tl } }
765 { \prg_return_true: }

766 { \prg_return_false: }

767 }

768 { \prg_return_true: }

769 }

File g: 1thooks.dtx 143

\hook_if_exist_p:n
\hook_if_exist:nTF

__hook_if_exist_p:n
__hook_if_exist:nTF

__hook_if_reversed_p:n
__hook_if_reversed:nTF

\g_ hook execute immediately clist

(End definition for \hook_if_empty:nTF. This function is documented on page 107.)

A canonical way to test if a hook exists. A hook exists if the token list that stores the
sorted code for that hook, \g__hook_(hook)_code_t1, exists. The property list \g__-
hook_(hook)_code_prop cannot be used here because often it is necessary to add code
to a hook without knowing if such hook was already declared, or even if it will ever be
(for example, in case the package that defines it isn’t loaded).

770 \prg_new_conditional:Npnn \hook_if_exist:n #1 { p , T , F , TF }

771 {

72 \tl_if_exist:cTF { g__hook_#1_code_tl }
3 { \prg_return_true: }

774 { \prg_return_false: }

775 }

(End definition for \hook_if_exist:nTF. This function is documented on page 108.)

An internal check if the hook has already been declared with __hook_declare:n. This
means that the hook was already used somehow (a code chunk or rule was added to it),
but it still wasn’t declared with \hook_new:n.

776 \prg_new_conditional:Npnn __hook_if_exist:n #1 { p , T , F , TF }

777 {

778 \prop_if_exist:cTF { g__hook_#1_code_prop }
779 { \prg_return_true: }

780 { \prg_return_false: }

781 }

(End definition for __hook_if_exist:nTF.)

An internal conditional that checks if a hook is reversed.

752 \prg_new_conditional:Npnn __hook_if_reversed:n #1 { p , T , F , TF }
783 {

784 \if_int_compare:w \cs:w g__hook_#1_reversed_tl \cs_end: 1 < O \exp_stop_f:
785 \prg_return_true:

786 \else:

787 \prg_return_false:

788 \fi:

789 }

(End definition for __hook_if_reversed:nTF.)

List of hooks that from no on should not longer receive code.

790 \clist_new:N \g__hook_execute_immediately_clist

(End definition for \g__hook_execute_immediately_clist.)

3.11 Messages

791 \msg_new:nnnn { hooks } { labels-incompatible }

792 {

793 Labels~‘#1’~and~‘#2’~are~incompatible

794 \str_if_eq:nnF {#3} {??} { ~in~hook~‘#3’ } .~

795 \int_compare:nNnTF {#4} = { 1 }

79 { The~ code~ for~ both~ labels~ will~ be~ dropped. }

797 { You~ may~ see~ errors~ later. }

File g: 1thooks.dtx 144

799 { LaTeX~found~two~incompatible~labels~in~the~same~hook.~
800 This~indicates~an~incompatibility~between~packages. 1}

s \msg_new:nnnn { hooks } { exists }

802 { Hook~‘#1’~ has~ already~ been~ declared. }

803 { There~ already~ exists~ a~ hook~ declaration~ with~ this~
804 name.\\

805 Please~ use~ a~ different~ name~ for~ your~ hook.}

s \msg_new:nnn { hooks } { empty-label }
g7 { Empty~code~label~\msg_line_context:.~Using~‘#1’~instead. }

20 \msg_new:nnnn { hooks } { unknown-rule }
g0 { Unknown~ relationship~ ‘#3’~
810 between~ labels~ ‘#2°~ and~ ‘#4°~

811 \str_if_eq:nnF {#1} {77} { ~in~hook~‘#1’ }. ~

812 Perhaps~ a~ missspelling?

813 }

814 {

815 The~ relation~ used~ not~ known~ to~ the~ system.~ Allowed~ values~ are~
816 ‘before’~ or~ ‘<’ ,~

817 ‘after’~ or~ ‘>7,~

818 ‘incompatible-warning’,~

819 ‘incompatible-error’,~

820 ‘voids’~ or~

821 ‘unrelated’.

822 }

23 \msg_new:nnn { hooks } { should-not-happen }

824 {

825 ERROR!~This~should~not~happen.~#1 \\

826 Please~report~at~https://github.com/latex3/latex2e.
827 }

3.12 FKETgEX 2¢ package interface commands

\NewHook Declaring new hooks ...

\NewReversedHook g; \NewDocumentCommand \NewHook { m }{ \hook_new:n {#1} }
\NewMirroredHookPair g9 \NewDocumentCommand \NewReversedHook { m }{ \hook_new_reversed:n {#1} }
230 \NewDocumentCommand \NewMirroredHookPair { mm }{ \hook_new_pair:nn {#1}{#2} }

(End definition for \NewHook , \NewReversedHook , and \NewMirroredHookPair. These functions are doc-
umented on page 99.)

\AddToHook
#31 \NewDocumentCommand \AddToHook { m o +m }
832 {
833 \clist_if_in:NnTF \g__hook_execute_immediately_clist {#1}
834 {#3}
835 { \hook_gput_code:nnn {#1} {#2} {#3} }
336 }
(End definition for \AddToHook. This function is documented on page 101.)
\AddToHookNext

337 \NewDocumentCommand \AddToHookNext { m +m }
s3s. { \hook_gput_next_code:nn {#1} {#2} }

File g: 1thooks.dtx 145

\RemoveFromHook

\DeclareDefaultHookLabel
__hook_curr_name_push:n

__hook_curr_name_pop:

(End definition for \AddToHookNext. This function is documented on page 102.)

330 \NewDocumentCommand \RemoveFromHook { m o }
20 { \hook_gremove_code:nn {#1} {#2} }

(End definition for \RemoveFromHook. This function is documented on page 101.)

The token list \g__hook_hook_curr_name_tl stores the name of the current pack-
age/file to be used as label for hooks. Providing a consistent interface is tricky,
because packages can be loaded within packages, and some packages may not use
\DeclareDefaultHookLabel to change the default label (in which case \@currname is
used, if set).

To pull that off, we keep a stack that contains the default label for each level of
input. The bottom of the stack contains the default label for the top-level. Since the
string top-level is hardcoded, here this item of the stack is empty. Also, since we're
in an input level, add 1thooks to the stack as well. This stack should never go empty.
An empty entry is added to the stack to account for the top-level. The item is empty
so that the hard-coded default is used, but a call to \DeclareDefaultHookLabel will
change it if needed.

s \seq_gpush:Nn \g__hook_name_stack_seq { }

Two commands keep track of the stack: when a file is input, __hook_curr_name_-
push:n pushes an (empty by default) label to the stack:

s \cs_new_protected:Npn __hook_curr_name_push:n #1

843 {

844 \seq_gpush:Nn \g__hook_name_stack_seq {#1}
845 \tl_gset:Nn \g__hook_hook_curr_name_tl {#1}
846 }

87

and when an input is over, the topmost item of the stack is popped, since the label will
not be used again, and \g__hook_hook_curr_name_tl is updated to the now topmost
item of the stack:

315 \cs_new_protected:Npn __hook_curr_name_pop:

849 {

850 \seq_gpop:NN \g__hook_name_stack_seq \1__hook_return_tl

851 \seq_get :NNTF \g__hook_name_stack_seq \1__hook_return_tl

852 { \tl_gset_eq:NN \g__hook_hook_curr_name_tl \1__hook_return_tl }
853 {

854 \msg_error:nnn { hooks } { should-not-happen }

855 { Tried~to~pop~from~an~empty~default~label~stack. }

856 }

857 }

The token list \g__hook_hook_curr_name_t1 is but a mirror of the top of the stack.
Now define a wrapper that replaces the top of the stack with the argument, and
updates \g__hook_hook_curr_name_tl accordingly.

355 \NewDocumentCommand \DeclareDefaultHookLabel { m }

859 {

860 \seq_gpop:NN \g__hook_name_stack_seq \1__hook_return_tl
861 __hook_curr_name_push:n {#1}

862 }

File g: 1thooks.dtx 146

(End definition for \DeclareDefaultHookLabel, __hook_curr_name_push:n, and __hook_curr_name_-
pop:. This function is documented on page 103.)

\UseHook Avoid the overhead of xparse and its protection that we don’t want here (since the hook
\UseOneTimeHook should vanish without trace if empty)!

363 \newcommand \UseHook { \hook_use:n }
s \newcommand \UseOneTimeHook { \hook_use_once:n }

(End definition for \UseHook and \UseOneTimeHook. These functions are documented on page 100.)

\ShowHook
85 \cs_new_protected:Npn \ShowHook { \hook_log:n }
(End definition for \ShowHook. This function is documented on page 106.)
\DebugHooks0On
\DebugHooksOff ., \cs_new_protected:Npn \DebugHooksOn { \hook_debug_on: }
s7 \cs_new_protected:Npn \DebugHooksOff { \hook_debug_off: }
(End definition for \DebugHooksOn and \DebugHooksOff. These functions are documented on page 106.)
\DeclareHookRule

s6s \NewDocumentCommand \DeclareHookRule { m m m m }
869 { \hook_gset_rule:nnnn {#1}{#2}{#3}{#4} }

(End definition for \DeclareHookRule. This function is documented on page 104.)

\DeclareDefaultHookRule This declaration is only supported before \begin{document}.

s70 \NewDocumentCommand \DeclareDefaultHookRule { m m m }
871 { \hook_gset_rule:nnnn {?77}{#1}{#2}{#3} }
s2 \@onlypreamble\DeclareDefaultHookRule

(End definition for \DeclareDefaultHookRule. This function is documented on page 10/.)

\ClearHookRule A special setup rule that removes an existing relation. Basically @Q_rule_gclear:nnn
plus fixing the property list for debugging.

FMi: Need an L3 interface, or maybe it should get dropped?

273 \NewDocumentCommand \ClearHookRule { m m m }
572 { \hook_gset_rule:nnnn {#1}{#2}{unrelated}{#3} }

(End definition for \ClearHookRule. This function is documented on page 104.)

\IfHookExistsTF

\IfHookEmptyTF g \NewExpandableDocumentCommand \IfHookExistsTF { m }
576 { \hook_if_exist:nTF {#1} }
577 \NewExpandableDocumentCommand \IfHookEmptyTF { m }
sz { \hook_if_empty:nTF {#1} }

(End definition for \IfHookExistsTF and \IfHookEmptyTF. These functions are documented on page
105.)
5

File g: 1thooks.dtx 147

3.13 Internal commands needed elsewhere

Here we set up a few horrible (but consistent) IXTEX 2 names to allow for internal
commands to be used outside this module. We have to unset the @@ since we want
double “at” sign in place of double underscores.

879 <@@=>

\Q@expl@@Rinitialize@all@@

\Qexpl000hook@curr@nameCpush@® 5, \cs_new_eq:NN \Q@expl@@Qinitialize0allQQ@
\Qexpl0@hookOcurrCnane@pop@l 55 __hook_initialize_all:

s> \cs_new_eq:NN \@expl@@@hook@curr@name@push@@n
883 __hook_curr_name_push:n

ses \cs_new_eq:NN \@expl@@Ghook@curr@name@pop@@
885 __hook_curr_name_pop:

(End definition for \@expl@@@initialize@all@@, \@expl@@Chook@curr@name@ush@@n, and \@expl@0Chook@curr@name@popC
These functions are documented on page 77.)

ss6 \ExplSyntax0ff

Rolling back here doesn’t undefine the interface commands as they may be used in
packages without rollback functionality. So we just make them do nothing which may or
may not work depending on the code usage.

ss7 (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\NewHook}{The hook managementl},
latexrelease

latexrelease)\def \NewHook#1{}

latexrelease)\def \NewReversedHook#1{}

latexrelease)\def \NewMirroredHookPair#1#2{}

latexrelease

latexrelease)\long\def \AddToHook#1#2{}

latexrelease

latexrelease)\def \AddToHookNext#1{\@gobble@AddToHook@args}
latexrelease)\providecommand\@gobble@AddToHook@args [2] [1{}

(
()
()
()
()
()
()
()
()
()
()
()
a0 (latexrelease)
()
()
()
()
()
()
()
()
()
()
()

890
892

893

894

895
896

897

898
899
o1 (latexrelease)\def\RemoveFromHook#1{\@gobble@RemoveFromHook@arg}
latexrelease)\providecommand\@gobble@RemoveFromHook@arg[1] [1{}
latexrelease

latexrelease)\def \UseHook #1{}

latexrelease)\def \UseOneTimeHook #1{}

latexrelease)\def \ShowHook #1{}

latexrelease)\1let \DebugHooksOn \@empty

latexrelease)\let \DebugHooksOff\@empty

latexrelease

latexrelease)\def \DeclareHookRul#1#2#3#4{}

latexrelease)\def \DeclareDefaultHookRule #1#2#3{}

o2 (latexrelease)\def \ClearHookRule#1#2#3{}

902

903

904

905

906

907

908

909

910

9

1

If the hook management is not provided we make the test for existence false and the test
for empty true in the hope that this is most of the time reasonable. If not a package
would need to guard against running in an old kernel.

o3 (latexrelease)\def \IfHookExistTF #1#2#3{#3}

File g: 1thooks.dtx 148

ou (latexrelease)\def \IfHookEmptyTF #1#2#3{#2}
o5 (latexrelease)
a1 (latexrelease)\EndIncludeInRelease

File g: 1thooks.dtx 149

File h
Italloc.dtx

1 Counters

This section deals with counter and other variable allocation.
1 (*2ekernel)
The following are from plain TEX:

\z@ A zero dimen or number. It’s more efficient to write \parindent\z@ than
\parindent Opt.

\@ne The number 1.

\m@ne The number —1.
\tw@ The number 2.
\sixt@0n The number 16.
\@m The number 1000.
\@MM The number 20000.

\@xxxii The constant 32.
> \chardef\@xxxii=32

(End definition for \@xxxii. This function is documented on page 77.)

\eMi Constants 10001-10004.

\@Mii , \mathchardef\@Mi=10001
\@Miii 4+ \mathchardef\@Mii=10002
\@Miv 5 \mathchardef\@Miii=10003

s \mathchardef\@Miv=10004

(End definition for \@Mi and others. These functions are documented on page 77.)

\@tempcnta Scratch count registers used by ITEX kernel commands.
\@tempcntb ; \newcount\@tempcnta

¢ \newcount\@tempcntb

(End definition for \@tempcnta and \@tempcntb. These functions are documented on page ?7.)

\if@tempswa General boolean switch used by ETEX kernel commands.

o \newif\if@tempswa

(End definition for \if@tempswa. This function is documented on page ?7.)

\@tempdima Scratch dimen registers used by EXTEX kernel commands.
\@tempdimb ; \newdimen\@tempdima
\@tempdimc 1, \newdimen\@tempdimb
\newdimen\@tempdimc

N}

File h: 1talloc.dtx Date: 2018/08/05 Version v1.1c 150

\@tempboxa

\@tempskipa
\@tempskipb

\@temptokena

\@flushglue

(End definition for \@tempdima, \@tempdimb, and \@tempdimc. These functions are documented on page
7))

Scratch box register used by KTEX kernel commands.
13 \newbox\@tempboxa

(End definition for \@tempboxa. This function is documented on page ?7.)

Scratch skip registers used by ITEX kernel commands.

12 \newskip\@tempskipa
15 \newskip\@tempskipb

(End definition for \@tempskipa and \@tempskipb. These functions are documented on page 77.)

Scratch token register used by IMTEX kernel commands.
16 \newtoks\@temptokena

(End definition for \@temptokena. This function is documented on page 77.)

Glue used for \right- & \leftskip = Opt plus 1fil
17 \newskip\@flushglue \@flushglue = Opt plus 1fil

(End definition for \@flushglue. This function is documented on page ?7.)
15 (/2ekernel)

File h: 1talloc.dtx Date: 2018/08/05 Version v1.1c 151

File i
Itcntrl.dtx

1 Program control structure

This section defines a number of control structure macros, such as while-loops and for-

loops.
Historical BTEX 2.09 comments (not necessarily accurate any more):

1 (*2ekernel)
> \message{control,}

\@whilenum TEST \do {BODY}
\@vhiledim TEST \do {BODY?} : These implement the loop
while TEST do BODY od
where TEST is a TeX \ifnum or \ifdim test, respectively.
They are optimized for the normal case of TEST initially false.

\@whilesw SWITCH \fi {BODY?} : Implements the loop
while SWITCH do BODY od
Optimized for normal case of SWITCH initially false.

\@for NAME := LIST \do {BODY?} : Assumes that LIST expands to Al,A2,
... ,An .
Executes BODY n times, with NAME = Ai on the i-th iteration.
Optimized for the normal case of n = 1. Works for n=0.

\@tfor NAME := LIST \do {BODY?}
if, before expansion, LIST = T1 ... Tn where each Ti is a
token or {...}, then executes BODY n times, with NAME = Ti
on the i-th iteration. Works for n=0.

NOTES: 1. These macros use no \@temp sequences.
2. These macros do not work if the body contains anything that
looks syntactically to TeX like an improperly balanced \if
\else \fi.

\@whilenum TEST \do {BODY} ==
BEGIN
if TEST
then BODY
\@iwhilenum{TEST \relax BODY}
END

\@iwhilenum {TEST BODY} ==
BEGIN
if TEST
then BODY
\@nextwhile = def(\@iwhilenum)

File i: 1tcntrl.dtx Date: 2014/04/21 Version v1.0h

152

else \@nextwhile = def(\@whilenoop)
fi
\@nextwhile {TEST BODY?}
END

\@whilesw SWITCH \fi {BODY} ==
BEGIN
if SWITCH
then BODY
\@iwhilesw {SWITCH BODY}\fi
fi
END

\@iwhilesw {SWITCH BODY} \fi ==
BEGIN
if SWITCH
then BODY
\@nextwhile = def(\@iwhilesw)
else \@nextwhile = def(\@whileswnoop)
fi
\@nextwhile {SWITCH BODY} \fi
END

End of historical ETEX 2.09 comments.

\@whilenoop
\ewhilenum ; \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
\@iwhilenum 4 #2\relax}\fi}
5 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum
6 \else\expandafter\@gobble\fi{#1}}

(End definition for \@whilenoop, \@whilenum, and \@iwhilenum. These functions are documented on
page ?7.)
\@whiledim

\@ivhiledim ; \long\def\@whiledim#1\do #2{\ifdim #1\relax#2\Q@iwhiledim{#1\relax#2}\fi}
¢ \long\def\@iwhiledim#1{\ifdim #1\expandafter\@iwhiledim
9 \else\expandafter\Q@gobble\fi{#1}}

(End definition for \@whiledim and \@iwhiledim. These functions are documented on page 77.)

\@whileswnoop
\@whilesw ., \long\def\@whilesw#1\fi#2{#1#2\Qiwhilesw{#1#2}\fi\fi}
\@iwhilesw 1. \long\def\@iwhilesw#1\fi{#1\expandafter\@iwvhilesw

12 \else\@gobbletwo\fi{#1}\fi}

File i: 1tcntrl.dtx Date: 2014/04/21 Version v1.0h 153

(End definition for \@whileswnoop, \@whilesw, and \@iwhilesw. These functions are documented on
page 77.)
Historical BTEX 2.09 comments (not necessarily accurate any more):

\@for NAME := LIST \do {BODY} ==
BEGIN \@forloop expand(LIST)\@nil,\@nil \e@ NAME {BODY} END

\@forloop CAR, CARCDR, CDRCDR \@ee NAME {BODY} ==
BEGIN
NAME = CAR
if def(NAME) = def(\@nnil)
else BODY;
NAME = CARCDR
if def(NAME) = def(\@nnil)
else BODY
\@iforloop CDRCDR \ee NAME \do {BODY}

i
END

\@iforloop CAR, CDR \ee NAME {BODY} =
NAME = CAR
if def(NAME) = def(\@nnil)
then \@nextwhile = def(\@fornoop)
else BODY ;
\@nextwhile = def(\@iforloop)
i
\@nextwhile name cdr {body}

\@tfor NAME := LIST \do {BODY}
= \@tforloop LIST \e@nil \@@ NAME {BODY}

\@tforloop car cdr \@@ name {body} =
name = car
if def(name) = def(\@nnil)

then \@nextwhile == \@fornoop
else body ;
\@nextwhile == \@forloop

fi
\@nextwhile name cdr {body}
End of historical B'TEX 2.09 comments.

\@nnil
13 \def\@nnil{\@nil}

(End definition for \@nnil. This function is documented on page ?7.)

\Q@empty
12 \def\@empty{}

(End definition for \@empty. This function is documented on page 77.)

File i: 1tcntrl.dtx Date: 2014/04/21 Version v1.0h 154

\@fornoop

\@for

\@forloop

\@iforloop

\@tfor

\@break@tfor

\@removeelement

15 \long\def\@fornoop#1\@e#2#3{}

(End definition for \@fornoop. This function is documented on page ?77.)

16 \long\def\@for#1:=#2\do#3{/,

17 \expandafter\def\expandafter\@fortmp\expandafter{#2}}
15 \ifx\@fortmp\@empty \else

19 \expandafter\@forloop#2,\@nil,\O@nil\@O#1{#3}\fi}

(End definition for \@for. This function is documented on page 77.)

20 \long\def\@forloop#1,#2,#3\00#4#5{\def#4{#1}\ifx #4\@nnil \else
21 #5\def#4{#2}\ifx #4\@nnil \else#5\Q@iforloop #3\Q@#4{#5}\fi\fi}

(End definition for \@forloop. This function is documented on page ?77.)

22 \long\def\@iforloop#1,#2\0@#3#4{\def#3{#1}\ifx #3\@nnil
23 \expandafter\@fornoop \else
2% #4\relax\expandafter\@iforloop\fi#2\Q@o#3{#4}}

(End definition for \@iforloop. This function is documented on page 77.)

s \def\@tfor#1l:={\@tfor#1 }

¢ \long\def\@tfor#1#2\do#3{\def\@fortmp{#2}\ifx\@fortmp\space\else
27 \@tforloop#2\@nil\@nil\@@#1{#3}\fi}

s \long\def\@tforloop#1#2\Q0#3#4{\def#3{#1}\ifx #3\Onnil

29 \expandafter\@fornoop \else

30 #4\relax\expandafter\Q@tforloop\fi#2\Q0#3{#4}}

N

N}

N}

(End definition for \@tfor. This function is documented on page 77.)

Break out of a \@tfor loop. This should be called inside the scope of an \if. See
\@iffileonpath for an example.

51 \long\def\@break@tfor#1\Q@#2#3{\fi\fi}

(End definition for \@break@tfor. This function is documented on page 77.)

Removes an element from a comma-separated list and puts it into a control se-
quence, called as \@removeelement{{element)}{(list)}{(cs)}. Due to the implemen-
tation method the (element) is not allowed to contain braces.

5> \def\Q@removeelement#1#2#3{/,

33 \def\reservedQ@a#i#l,#1,##2\reservedQa{##1,##2\reserved@bl}’,

32 \def\reserved@b##1,\reserved@b##2\reserved@b{’

35 \ifx,##1\Qempty\else##1\fil}/,

% \edef#3{},

37 \expandafter\reserved@b\reserved@a,#2,\reserved@b,#1,\reserved@al}}

(End definition for \@removeelement. This function is documented on page 77.)

s (/2ekernel)

File i: 1tcntrl.dtx Date: 2014/04/21 Version v1.0h 155

\MessageBreak

\GenericInfo

\GenericWarning

File j
Iterror.dtx

1 Error handling and tracing

This section defines I#TEX’s error commands.
1 (*2ekernel)

The ‘2ekernel’ code ensures that a \usepackage{autoerr} is essentially ignored if
a ‘full’ format is being used that has the error messages already in the format.

These days we don’t support autoloading approach any longer, but this part bit is
kept in case it is used in old documents.

> \expandafter\let\csname verQautoerr.sty\endcsname\fmtversion

1.1 General commands

This command prints a new-line inside a message, followed by a continuation line begun
with \@msg@continuation. Normally it is defined to be \relax, but inside messages, it
is let to \@message@break.

s \let\MessageBreak\relax

(End definition for \MessageBreak. This function is documented on page 77.)

This takes two arguments: a continuation and a message, and sends the result to the log
file.

2 \DeclareRobustCommand{\GenericInfo}[2]{}

5 \begingroup

6 \def\MessageBreak{ " J#1}/,

7 \set@display@protect

8 \immediate\write\m@ne{#2\on@line.}%

9 \endgroup

0}

(End definition for \GenericInfo. This function is documented on page 77.)

This takes two arguments: a continuation and a message, and sends the result to the
screen.

11 \DeclareRobustCommand{\GenericWarning} [2]{%

12 \begingroup

13 \def\MessageBreak{ " J#1}%

14 \set@display@protect

15 \immediate\write\Qunused{~~J#2\on@line. ~J}%

16 \endgroup

7 ¥

(End definition for \GenericWarning. This function is documented on page 77.)

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 156

\GenericError

This macro takes four arguments: a continuation, an error message, where to go for
further information, and the help information. It displays the error message, and sets
the error help (the result of typing h to the prompt), and does a horrible hack to turn
the last context line (which by default is the only context line) into just three dots. This
could be made more efficient.

15 \bgroup

19 \lccode‘\@=*\ %

20 \lccode‘\~=‘\ %

21 \lccode‘\}=‘\ %

2> \lccode‘\{=‘\ %

23 \lccode ‘\T=‘\T%

22 \lccode ‘\H=*‘\HY,

»s \catcode‘\ =11\relax¥

s \lowercase{%

7 \egroup’

Unfortunately TEX versions older than 3.141 have a bug which means that ~~J does
not force a linebreak in \message and \errmessage commands. So for these old TEX’s we
use \typeout to produce the message, and then have an empty \errmessage command.
This causes an extra line of the form

To appear on the terminal, but if you do not like it, you can always upgrade your TEX!
In order for your format to use this version, you must define the macro \@TeXversion
to be the version number, e.g., 3.14 of the underlying TEX. See the comments in
ltdircheck.dtx.

¢ \dimen@\ifx\@TeXversion\@undefined4\else\@TeXversion\fi\pQy,
20 \ifdim\dimen®@>3.14\p@%

First the ‘standard case’.

N

50 \DeclareRobustCommand{\GenericError}[4]{%
51 \begingroup’

32 \immediate\write\@unused{}),

3 \def\MessageBreak{~~J}/

1 \set@display@protect’

35 \edefY,

36 <= mmm do not delete this space!-———-—————————————- >Y,
57 \Qerr@ A
a5 {{#4}},

39 \errhelp

w0 h h<mmmmm e do not delete this space!--————-----—————--—- >%
21 \Qerr@ YA
2 \let

s h h<mmmmm e do not delete this space!--————-----—————--—- >%
21 \Qerr@ %
25 \Q@empty

s \def\MessageBreak{~~J#1}%
27 \def~{\errmessage{’

5 #2.77J77J%

20 #3°°J%

s0o Type H <return> for immediate helpj,

A A G ittt do not delete this space!--——---——--————————- >Y,
s> \Q@err@ YA

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 157

\PackageError
\PackageWarning
\PackageWarningNoLine
\PackageInfo
\ClassError
\ClassWarning
\ClassWarningNoLine
\ClassInfo

53 11

sa ~%h

55 \endgroupl}/,
s6 \else

Secondly the version for old TEX’s.

57 \DeclareRobustCommand{\GenericError} [4]{/
ss \begingroup,

50 \immediate\write\@unused{}),

o \def\MessageBreak{"~J}}

o1 \set@display@protect

o2 \edef’,

63 h<—mmmmmmmm oo do not delete this space!-———--——--———-————- >%
61 \Qerr@ YA
os {{#4}}

o \errhelp

o7 h Hh<mmmmmmmmmm o do not delete this space!------—---——--————- >%
ss \Qerr@ %
o \let

0 % A G do not delete this space!------—---——--————- >%
71 \@err@ yA
7 \errmessage

73 \def\MessageBreak{ "~ J#11}/

72 \def~{\typeout{! %

s #2.°°J3°"J3%

6 #3°°J%

77 Type H <return> for immediate help.l}%

s h h<mmm—mmmmmm o m e do not delete this space!-------—--——--———-- >%
79 \Q@err@ %
so {33}%

a1 ~%

2 \endgroupl}/,

&3 \fi}J}

(End definition for \GenericError. This function is documented on page ?77.)

These commands are intended for use by package and class writers, to give information
to authors. The syntax is:

\PackageError{(package)}{{error)}{(help)}
\PackageWarning{(package)}{(warning)}
\PackageWarningNoLine{(package)}{ {warning)}
\PackageInfo{(package)}{({info)}

and similarly for classes. The Error commands print the {error) message, and present
the interactive prompt; if the author types h, then the (help) information is displayed.
The Warning commands produce a warning but do not present the interactive prompt.
The WarningNoLine commands do the same, but don’t print the input line number. The
Info commands write the message to the log file. Within the messages, the command
\MessageBreak can be used to break a line, \protect can be used to protect command
names, and \space is a space, for example:

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 158

\newcommand{\foo}{F00}

\PackageWarning{ethel}{%
Your hovercraft is full of eels,\MessageBreak
and \protect\foo\space is \fool}

produces:

Package ethel warning: Your hovercraft is full of eels,

(ethel) and \foo is FOO on input line 54.
s« \gdef\PackageError#1#2#3{J
85 \GenericError{}
86 (#1)\@spaces\@spaces\@spaces\@spaces
87 H
88 Package #1 Error: #2,
89 H
9 See the #1 package documentation for explanation.’
o1 H#3}
o }
o3 \def\PackageWarning#1#2{%
o4 \GenericWarning{}
05 (#1)\@spaces\@spaces\@spaces\@spaces
% Ho
o7 Package #1 Warning: #2J,
98 Y%
99 }

w0 \def\PackageWarningNoLine#1#2{%
101 \PackageWarning{#1}{#2\0gobblel}/,

102 }

103 \def\PackageInfo#1#2{J

104 \GenericInfo{%

105 (#1) \G@spaces\@spaces\@spaces

106 H%

107 Package #1 Info: #2%

108 %

100 }

110 \gdef\ClassError#1#2#3{J,

111 \GenericError{}

112 (#1) \space\@spaces\@spaces\@spaces
113 H

114 Class #1 Error: #2,

115 H%

116 See the #1 class documentation for explanation.
117 H#3},

118 F

119 \def\ClassWarning#1#2{%

120 \GenericWarning{’

121 (#1) \space\@spaces\@spaces\@spaces
122 H%

123 Class #1 Warning: #2J

124 %

125 }

26 \def\ClassWarningNoLine#1#2{J

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 159

\@latex@error
\@latex@warning
\@latex@warning@no@line
\@latex@info
\@latex@info@no@line

127 \ClassWarning{#1}{#2\@gobble}},

128 }

120 \def\ClassInfo#1#2{%

130 \GenericInfo{’

131 (#1) \space\space\@spaces\@spaces
132 H%

133 Class #1 Info: #2J,

134 YA

135 F

(End definition for \PackageError and others. These functions are documented on page 77.)

Errors and other info, for use in the KTEX core.
136 \gdef\@latex@error#1#2{%

137 \GenericError{}

138 \space\space\space\@spaces\@spaces\@spaces
139 Hu%

140 LaTeX Error: #17

141 Hu

142 See the LaTeX manual or LaTeX Companion for explanation.
143 H#2}%

144 }

1s \def\@latex@warning#1{J,

146 \GenericWarning{’,

147 \space\space\space\@spaces\@spaces\@spaces
148 Hu

149 LaTeX Warning: #1%

150 Y

151 }

152 \def\@latex@warning@no@line#1{%

153 \@latex@warning{#1\@gobblel}}

152 \def\@latex@info#1{%

155 \GenericInfo{%

156 \@spaces\@spaces\@spaces

157 Hu

158 LaTeX Info: #1%

159 }%

160 }

161 \def\@latex@info@no@line#1{%
12 \@latex@info{#1\@gobble}}

\@font@warning and \@font@info are defined later since they have to be redefined

by the tracefnt package.

def\@font@warning#1{’
\GenericWarning{’
{(font)\@spaces\@spaces}’
{Font Warning: #1}%
}
def\@font@info#1{}
\GenericInfo{%
(font) \space\@spaces
H%

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q

160

\c@errorcontextlines

\on@line

\@warning
\@@warning
\@latexerr

\@spaces

\@eha
\@ehb
\@ehc
\@ehd

Font Info: #1Y
A
}

(End definition for \@latex@error and others. These functions are documented on page 77.)

\errorcontextlines as a TEX counter, so that it may be manipulated with \setcounter
(once it is defined :-)

163 \let\c@errorcontextlines\errorcontextlines
164 \c@errorcontextlines=-1

(End definition for \c@errorcontextlines. This function is documented on page ?7.)

The message ‘ on input line n’.
165 \def\on@line{ on input line \the\inputlineno}

(End definition for \on@line. This function is documented on page 77.)

Older I'TEX messages. For the moment, these \1let to the new message commands. They
may be changed later, once only obsolete packages and classes contain them.

166 \let\@warning\@latex@warning

167 \let\@@warning\@latex@warning@no@line

165 \global\let\@latexerr\@latex@error

(End definition for \@warning, \@@warning, and \@latexerr. These functions are documented on page
?7.)

Four spaces.

10 \def\@spaces{\space\space\space\space}

(End definition for \@spaces. This function is documented on page 77.)

1.2 Specific errors

The more common error help messages.

170 \gdef\@eha{,

171 Your command was ignored.\MessageBreak

172 Type \space I <command> <return> \space to replace it %
173 with another command,\MessageBreak

174 or \space <return> \space to continue without it.}

175 \gdef\@ehb{%

176 You’ve lost some text. \space \@ehc}

177 \gdef\@ehc{/,

175 Try typing \space <return> %

179 \space to proceed.\MessageBreak

1.0 If that doesn’t work, type \space X <return> \space to quit.}
181 \gdef\@ehd{’

122 You’re in trouble here. \space\@ehc}

(End definition for \@eha and others. These functions are documented on page 77.)

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 161

\@notdefinable KError message generated in \@ifdefinable from calls to one of the commands \newcommand,
\newlength or \newtheorem specifying an already-defined command name or one that
begins \end. ...

153 \gdef\@notdefinabled{},

14 \@latex@error{’

185 Command \@backslashchar\reserved@a\space
186 already defined.\MessageBreak

187 Or name \@backslashchar\@gend... illegal,
188 see p.192 of the manual}\@eha}

(End definition for \@notdefinable. This function is documented on page 77.)

\@nolnerr Generated by \newline and \\ when called in vertical mode.
10 \gdef\@nolnerr{y,
10 \@latex@error{There’s no line here to end}\@eha}

(End definition for \@nolnerr. This function is documented on page ?7.)

\@nocounterr Generated by \setcounter, \addtocounter or \newcounter if applied to an undefined
counter (cnt).

Obsolete error message generated in KTEX2.09 by \setcounter, \addtocounter or
\@nocnterr \newcounter for undefined counter. DO NOT use for BTEX 2¢ it MIGHT vanish! Use
\@nocounterr{(cnt)} instead.

101 \gdef\@nocounterr#1{}
12 \@latex@error{No counter ’#1’ defined}\@eha}
103 \gdef\@nocnterr{\@nocounterr?}

(End definition for \@nocounterr and \@nocnterr. These functions are documented on page 77.)

\@ctrerr Called when trying to print the value of a counter numbered by letters that’s greater
than 26.
104 \gdef\Qctrerr{/,
15 \@latex@error{Counter too large}\@ehb}

(End definition for \@ctrerr. This function is documented on page ?77.)

\@nodocument Error produced if paragraphs are typeset in the preamble.
196 \gdef\@nodocument{’,
107 \@latex@error{Missing \protect\begin{document}}\@ehd}

(End definition for \@nodocument. This function is documented on page 77.)

\@adend Called by \end that doesn’t match its \begin. RmS 1992/08/24: added code to \@badend
to display position of non-matching \begin. FMi 1993/01/14: missing space added.

10 \gdef\@badend#1{%
199 \@latex@error{\protect\begin{\@currenvir}\Qcurrenvline
200 \space ended by \protect\end{#1}}\@eha}

(End definition for \@badend. This function is documented on page 77.)

\@badmath Called by \[, \1, \(or \) when used in wrong mode.

201 \gdef\@badmath{%
200 \@latex@error{Bad math environment delimiter}\@eha}

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 162

\@toodeep

\@badpoptabs

\@badtab

\@preamerr

\@badlinearg

\@parmoderr

\@fltovf

(End definition for \@badmath. This function is documented on page 77.)

Called by a list environment nested more than six levels deep, or an enumerate or itemize
nested more than four levels.

203 \gdef\@toodeep{’
200 \@latex@error{Too deeply nested}\@ehd}

(End definition for \@toodeep. This function is documented on page ?7.)

Called by \endtabbing when not enough \poptabs have occurred, or by \poptabs when
too many have occurred.

205 \gdef\@badpoptabs{%

206 \@latex@error{\protect\pushtabs\space and \protect\poptabs

207 \space don’t match}\@ehd}

(End definition for \@badpoptabs. This function is documented on page 77.)

Called by \>, \+ , \- or \< when stepping to an undefined tab.

205 \gdef\@badtab{’
200 \@latex@error{Undefined tab position}\@ehd}

(End definition for \@badtab. This function is documented on page 77.)

This error is special: it appears in places where we normally have to \protect expansions.
However, to prevent a protection of the error message itself (which would result in the
message getting printed not issued on the terminal) we need to locally reset \protect to
\relax.

210 \gdef\@preamerr#1{%

21 \begingroup

212 \let\protect\relax

213 \@latex@error{\ifcase #1 Illegal character\or
214 Missing @-exp\or Missing p-arg\fi\space

215 in array arg}\@ehd

216 \endgroup}

(End definition for \@preamerr. This function is documented on page ?7.)

Occurs in \1ine and \vector command when a bad slope argument is encountered.

217 \gdef\@badlinearg{%

215 \@latex@error{}

219 Bad \protect\line\space or \protect\vector
220 \space argument}\@ehb}

(End definition for \@badlinearg. This function is documented on page 77.)

Occurs in a float environment or a \marginpar when encountered in inner vertical mode.
21 \gdef\@parmoderr{%
22 \@latex@error{Not in outer par mode}\@ehb}

(End definition for \@parmoderr. This function is documented on page ?7.)

Occurs in float environment or \marginpar when there are no more free boxes for storing
floats.

23 \gdef\@fltovi{l
24 \@latex@error{Too many unprocessed floats}\@ehb}

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 163

\@latexbug

\@badcrerr

\@noitemerr

\@notprerr

\@inmatherr

\@invalidchar

(End definition for \@fltovf. This function is documented on page 77.)

Occurs in output routine. This is bad news.
25 \gdef\@latexbug{’
26 \@latex@error{This may be a LaTeX bug}{Call for help}}

(End definition for \@latexbug. This function is documented on page ?7.)

This error was removed and replaced by \@nolnerr.
27 %\def\@badcrerr {\@latex@error{Bad use of \protect\\}\@ehc}

(End definition for \@badcrerr. This function is documented on page ?7.)

\addvspace or \addpenalty was called when not in vmode. Probably caused by a
missing \item.

228 \gdef\@noitemerr{y

29 \@latex@error{Something’s wrong--perhaps a missing 7%

230 \protect\item}\Q@ehc}

(End definition for \@noitemerr. This function is documented on page ?7.)

A command that can be used only in the preamble appears after the command
\begin{document}.

231 \gdef\@notprerr{%

22 \@latex@error{Can be used only in preamble}\@ehal}

(End definition for \@notprerr. This function is documented on page ?7.)

Issued by commands that don’t work correctly within math (like \item). There is no
real error recovery happening, e.g., the user might get additional errors afterwards.

233 \gdef\Q@inmatherr#1{/,

234 \relax

235 \ifmmode

236 \@latex@error{Command \protect#1 invalid in math mode}\@ehc
237 \fi}

(End definition for \@inmatherr. This function is documented on page ?7.)

An error for use with invalid characters. This is commented out, since we decided to use
catcode 15 instead.

238 % \def\@invalidchar{\@latex@error{Invalid character in input}\@ehc}

(End definition for \@invalidchar. This function is documented on page 77.)
As well as the above error commands some error messages are directly coded to save
space. The messages already present in K¥TEX2.09 include:
Environment --- undefined
Issued by \begin for undefined environment.
Tab overflow
Occurs in \= when maximum number of tabs exceeded.
\< in mid line
Occurs in \< when it appears in middle of line.
Float(s) lost
In output routine, caused by a float environment or \marginpar occurring in inner vertical
mode.

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 164

\conditionally@traceon
\conditionally@traceoff

1.3 Tracing

The trace package implements the commands \traceon and \traceoff that work simi-
lar to \tracingall but skip certain code blocks that produce a lot of tracing output being
of no interest during debugging (for example loading a font). Code blocks that should be
hidden during tracing need to be surrounded by the macros \conditionally@traceoff
and \contionally@traceon.

For the kernel code the trace package then redefines a number of macros to include
this tracing support.

However, in order to allow any macro package to react to \traceon we also provide
dummy definitions for the two commands in the kernel so that they can be used by
external packages without the need to distinguish between trace being loaded or not.

These are only dummy definitions. For details see the trace package.
230 \let\conditionally@traceon\Qempty
220 \let\conditionally@traceoff\@empty

(End definition for \conditionally@traceon and \conditionally@traceoff. These functions are doc-
umented on page 77.)

241 (/2ekerne|)

File j: 1terror.dtx Date: 2019/08/30 Version v1.2q 165

File k
ltpar.dtx

1 Paragraphs

This section of the kernel declares the commands used to set \par and \everypar when
ever their function needs to be changed for a long time.

1.1 Implementation

There are two situations in which \par may be changed:

o Long-term changes, in which the new value is to remain in effect until the cur-
rent environment is left. The environments that change \par in this way are the
following:

— All list environments (itemize, quote, etc.)
— Environments that turn \par into a noop: tabbing, array and tabular.

o Temporary changes, in which \par is restored to its previous value the next time
it is executed. The following are all such uses.

— \end when preceded by \@endparenv, which is called by \endtrivlist
— The mechanism for avoiding page breaks and getting the spacing right after

section heads.

\@setpar To permit the proper interaction of these two situations, long-term changes are made
by the \@setpar{(VAL)} command. It’s function is:

To set \par. It \def’s \par and \@par to (VAL).

\@restorepar Short-term changes are made by the usual \def\par commands. The original values
are restored after a short-term change by the \@restorepar commands.
\@@par \@@par always is defined to be the original TEX \par.
\everypar \everypar is changed only for the short term. Whenever \everypar is set non-null,

it should restore itself to null when executed.
The following commands change \everypar in this way:

e \item
e \end when preceded by \@endparenv, which is called by endtrivlist
e \minipage
When dealing with \par and \everypar remember the following two warnings:

1. Commands that make short-term changes to \par and \everypar must take ac-
count of the possibility that the new commands and the ones that do the restoration
may be executed inside a group. In particular, \everypar is executed inside a group
whenever a new paragraph begins with a left brace. The \everypar command that
restores its definition should be local to the current group (in case the command
is inside a minipage used inside someplace where \everypar has been redefined).

File k: 1tpar.dtx Date: 1995/04/29 Version v1.1c 166

Thus, if \everypar is redefined to do an \everypar{} it could take several execu-
tions of \everypar before the restoration “holds”. This usually causes no problem.
However, to prevent the extra executions from doing harm, use a global switch to
keep anything harmful in the new \everypar from being done twice.

2. Commands that change \everypar should remember that \everypar might be
supposed to set the following switches false:

e Onobreak
e @minipage
they should do the setting if necessary.

1 (*2ekernel)
> \message{par,}

\@setpar Initiate a long-term change to \par.
\@par s \def\@setpar#1{\def\par{#1}\def\@par{#1}}

The default definition of \@par will ensure that if \@restorepar defines \par to
execute \@par it will redefine itself to the primitive \@@par after one iteration.

4 \def\@par{\let\par\@@par\par}

(End definition for \@setpar and \@par. These functions are documented on page 77.)

\@restorepar Restore from a short-term change to \par.

5 \def\@restorepar{\def\par{\@par}}
s (/2ekernel)

(End definition for \@restorepar. This function is documented on page 77.)

File k: 1tpar.dtx Date: 1995/04/29 Version v1.1c 167

\nopagebreak

\pagebreak
\linebreak
\nolinebreak
\samepage

\\

File 1
Itspace.dtx

1 Spacing
This section deals with spacing, and line- and page-breaking.

1.1 User Commands
()] ¢ (i) = 0,....4.

Default argument = 4. Puts a penalty into the vertical list output as follows:

0 : penalty = 0
1 : penalty = \@lowpenalty
2 : penalty = \@medpenalty
3 : penalty = \@highpenalty
4 : penalty = 10000
[(¢)] : same as except negatives of its penalty
[(#)] : analog of the above
[(7)] : analog of the above
: inhibits page breaking most places by setting the following penalties to 10000:
\interlinepenalty
\postdisplaypenalty
\interdisplaylinepenalty
\@beginparpenalty
\@endparpenalty
\@itempenalty
\@secpenalty

\interfootnotelinepenalty
: initially defined to be \newline
\\ [{length)] : initially defined to be \vspace{(length)}\newline
Note: * adds a \vadjust{\penalty 10000}
OBSOLETE COMMANDS (which never made it into the manual):
\obeycr : defines <CR> == \\\relax
\restorecr : restores <CR> to its usual meaning.

1.2 Chris’ comments

There are several aspects of the handling of space in horizontal mode that are inconsistent
or do not work well in some cases. These are largely concerned with ignoring the effect
of space tokens that would otherwise typeset an inter-word space.

Negating the effect of such space tokens is achieved by two mechanisms:

e \unskip is used to remove the glue just added by a space that has already had its
effect; it is sometimes invoked after an \ifdim test on \lastskip (see below);

o \ignorespaces is used to ignore space-tokens yet to come.

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 168

The test done on \lastskip is sometimes for equality with zero and sometimes for
being positive. Recall also that the test is only on the natural length of the glue and that
no glue cannot be distinguished from glue whose natural length is zero: to summarise, a
pretty awful test. It is not clear why these tests are not all the same; I think that they
should all be for equality. One place where \unskip is often used is just before a \par
(which itself internally does an \unskip) and one bit of code (in \@item) even has two
\unskips before a \par. These uses may be fossil code but if they are necessary, maybe
\@killglue would be even safer.

Such removal of glue by \unskip may sometimes have the wrong result, removing
not the glue from a space-token but other explicit glue; this is sometimes not what is
intended.

A common way to prevent such removal is to add an \hskip\z@ after the glue that
should not be removed. This protects that glue against one \unskip with no test but
not against more than one. It does work for ‘tested \unskips’ This is used by \hspace*
but not by \hspace; this is inconsistent as the star is supposed to prevent removal only
at the beginning of a line, not at the end, or in a tabular, etc.

If this reason for removing glue were the only consideration then a tested-\unskip
and protection by \hskip\z@ would suffice but would need to be consistently imple-
mented.

However, the class of invisibles, commands and environments tries to be even clev-
erer: one of these tries to leave only one inter-word space whenever there is one before it
and one after it; and it does this quite well.

But problems can arise when there is not a space-token on both sides of it; in
particular, when an invisible appears at the beginning or end of a piece of text the
method still leaves one space token whereas usually in these cases it should leave none.

Also, the current rules do not work well when more than one such command appears
consecutively, separated by space-tokens; it leaves glue between every other invisible.

There is also a question about what these commands should do when they occur next
to spaces that do not come from space tokens but, for example, from \hspace. Should
they still produce ‘just one space’? If so, which one? It is good to note that the manual
is sufficiently cautious about invisibles that we are not obliged to make anything work.

Another interesting side-road to explore is whether the space-tokens either side of
an \hspace{. ..} should be ignored.

One alternative to the current algorithm that is often suggested is that all glue
around the invisible should be consolidated into a space after it (usually without stating
how much glue should be put there). The command \nolinebreak is implemented this
way (and \linebreak should also be). This does not work correctly for the following
common case:

. some text
\index{some-word}
some-word and more text.

This is optimal coding since it is normal to index a word that gets split across a page-
break on its starting page. This would, on the other hand, fix another common (and
documented) failure of the current system: when the invisible is the last thing in a
paragraph the space before it is not removed and, worse, it is also hidden from the
paragraph-ending mechanism so that an ‘empty’ line can be created at the end of the
paragraph.

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 169

Another deficiency (I think) of the current system is that the following is treated as
having the \index command between the paragraphs, which is probably not what the
author intended (since there is no empty line after it).

\index{beginnings}
Beginnings of paragraphs ...

I know of no algorithm that will handle satisfactorily even all the most common cases;
note that it could be that the best algorithm may be different for different invisibles
since, for example, the common uses and expected behaviour of \index, \marginpar,
\linebreak, \pagebreak and \vspace are somewhat different. [For example, is \vspace
ever used in the middle of a paragraph?]

One method that can (and is) used to make invisible commands produce no space
when used at the beginning of text is to put in some glue that is nearly enough the same
as no glue or glue of zero length in all respects except for the precise test for not being
exactly equal to zero; examples of such glue are \hskip 1sp and, possibly better but
more complex, \hskip -1sp \hskip 1sp. However, this only works when it is known
that user-supplied text is about to start.

Some similar concerns apply to the handling of space and penalties in vertical mode;
there is an extra hurdle here as \unskip does not work on the main vertical list. The
complexity of the tests done by \addvspace have never been explained.

The implementation of space hacks etc for vertical mode is another major area that
needs further attention; my earlier experiments did not produce much improvement over
the current unsatisfactory situation.

One particular problem is what happens when the following very natural coding is
used (part of the problem here is that this looks like an hmode problem, but it is not):

. end of text.

\begin{enumerate}
\item \label{item:xxx} Item text.
\end{enumerate}

1.3 Some immediate actions
e Fix bug in \linebreak.
o Fix bug in *.

o Reimplement \\, etc, removing extra \vadjusts and getting better error trapping
(this seems to involve a lot more tokens).

o Investigate whether \\, etc need to be errors in vmode; I think that they could be
noops (maybe with a warning).

o Make all(?) \unskips include test for zero skip (rather than other tests or no test).

o Consider replacing \hskip 1sp by something better (here called an ‘infinitesimal’
skip).

o Look at all \hskip\z@ (or similar) to see if they should be changed to an ‘infinites-
imal’ skip.

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 170

o Resolve the inconsistency between \hspace and \hspacex*.
e Remove unnecessary \unskips.
o Investigate and rationalise the ‘newline’ code.

o Find better algorithms for all sorts of things or, easier(?), fix TEX itself.

1.4 The code

1 (*2ekernel)
> \message{spacing,}

(/2ekernel)

(*2ekernel | latexrelease)

(latexrelease) \IncludeInRelease{2019/10/01}}

(latexrelease) {\pagebreak}{Make commands robust}},

3
5
6

\pagebreak

\nopagebreak 7 \DeclareRobustCommand\pagebreak{\Q@testopt{\@no@pgbk-}4}
s \DeclareRobustCommand\nopagebreak{\@testopt\@no@pgbk4}

(End definition for \pagebreak and \nopagebreak. These functions are documented on page 77.)

\linebreak
\nolinebreak s \DeclareRobustCommand\linebreak{\@testopt{\@no@lnbk-}4}
10 \DeclareRobustCommand\nolinebreak{\@testopt\@no@lnbk4}
(End definition for \linebreak and \nolinebreak. These functions are documented on page 77.)
\samepage

11 \DeclareRobustCommand\samepage{\interlinepenalty\@M
12 \postdisplaypenalty\@M

13 \interdisplaylinepenalty\@M

14 \@beginparpenalty\@QM

15 \@endparpenalty\OM

16 \@itempenalty\@M

17 \@secpenalty\OM

18 \interfootnotelinepenalty\@M}

(End definition for \samepage. This function is documented on page ?7.)

o (/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease) {\pagebreak}{Make commands robustl}/
latexrelease)
latexrelease) \kernel@make@fragile\pagebreak
latexrelease) \kernel@make@fragile\nopagebreak

)

)

)

)

)

N

0

21

latexrelease)\kernel@make@fragile\linebreak
latexrelease) \kernel@make@fragile\nolinebreak
latexrelease)\kernel@make@fragile\samepage
latexrelease

latexrelease) \EndIncludeInRelease

*2ekernel)

N}

7

28

N

9

30

o~~~ o~~~ o~ o~~~ o~

31

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 171

\@no@pgbk
s> \def\@no@pgbk #1[#2]1{/

13 \ifvmode

3 \penalty #1\@getpen{#2}/,

35 \else

36 \@bsphack

37 \vadjust{\penalty #1\@getpen{#2}}/
38 \@esphack

39 \fi}

(End definition for \@no@pgbk. This function is documented on page ?7.)

\@no@lnbk
w0 \def\@no@lnbk #1[#2]{%
2r \ifvmode
2 \@nolnerr
3 \else
44 \@tempskipa\lastskip
45 \unskip
4 \penalty #1\@getpen{#2}%
47 \ifdim\@tempskipa>\z@
48 \hskip\@tempskipa
49 \ignorespaces
50 \fi
51 \fi}

(End definition for \@no@lnbk. This function is documented on page ?77.)

\\ The purpose of the new code is to fix a few bugs; however, it also attempts to optimize
the following, in order of priority:

1. efficient execution of plain \\;
2. efficient execution of \\[...];
3. memory use;

4. name-space use.

The changes should make no difference to the typeset output. It appears to be safe to use
\reserved@e and \reserved@f here (other reserved macros are somewhat disastrous).

These changes made \newline even less robust than it had been, so now it is ex-
plicitly robust, like \\.

The internal definition of the ‘normal’ definition of \\.

\@normalcr ., (/2ekernel)
53 (*2ekernel | latexrelease)
s+ (latexrelease) \IncludeInRelease{2020/02/02},
s (latexrelease) {\@normalcr}{Make robust}}
s \protected\def\@normalcr{y,
\let \reserved@e \relax
\let \reserved@f \relax
so \@ifstar{\let \reserved@e \vadjust \let \reserved@f \nobreak
60 \@xnewlinel}
61 \@xnewline}

o

o

@

o
23

a

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 172

> \let\\\@normalcr
(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\@normalcr}{Make robustl}}
(latexrelease)
(latexrelease)\DeclareRobustCommand\\{%
(latexrelease) \let \reserved@e \relax
o (latexrelease) \let \reserved@f \relax
(latexrelease) \@ifstar{\let \reserved@e \vadjust \let \reserved@f \nobreak
()
()
()
()
()
()

o

o

3

4

65

66

7

68

=3

9

~

71
latexrelease \@xnewlinel}’,

latexrelease) \@xnewline}
latexrelease)\expandafter\let\expandafter\@normalcr
latexrelease
latexrelease
latexrelease)\EndIncludeInRelease

s (*2ekernel)

5

~

~

3
74

\csname\expandafter\Q@gobble\string\\ \endcsname

5

~

6

7

(End definition for \\ and \@normalcr. These functions are documented on page 77.)

\@vspace@calcify Helper command to produce a \vskip that is first run through \setlength. This way

\newline

\@xnewline

\@newline

the calc package can operate on the argument value.

/2ekernel)

*2ekernel | latexrelease)

latexrelease) \IncludeInRelease{2020/10/01}}

latexrelease) {\@vspace@calcify}{Add calc support}y

s \def\@vspace@calcify#1{\begingroup\setlength\skip@{#1}\vskip\skip@\endgroup}
/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

~

9

80

81

o~~~ o~

>

o

-3
S

@

5

(
{
(latexrelease)\IncludeInRelease{0000/00/003}%

(latexrelease) {\@vspace@calcify}{Add calc support}’
(latexrelease)

()

()

©

6

@
2

8

latexrelease)\let\@vspace@calcify\Qundefined
o (latexrelease)\EndIncludeInRelease
1 (*2ekernel)

@

9

(End definition for \@vspace@calcify. This function is documented on page 77.)

A simple form of the ‘normal’ definition of \\.

92 \DeclareRobustCommand\newline{\@normalcr\relax}

(End definition for \newline. This function is documented on page 77.)

o3 \def\@xnewline{\@ifnextchar[)] bracket matching
% \@newline
95 {\@gnewline\relaxl}}

(End definition for \@xnewline. This function is documented on page ?7.)

o (/2ekernel)
o7 (*2ekernel | latexrelease)
o5 (latexrelease) \IncludeInRelease{2020/10/01})

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 173

\@gnewline

\@getpen

\if@nobreak

\@savsk
\@savsf

90 (latexrelease) {\@newline}{\newline calc support}y
100 \def\@newline [#1]{\1let \reserved@e \vadjust

101 \@gnewline {\@vspace@calcify{#1}}}

/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease

(
(
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\@newline}{\newline calc supportl}/,
106 (latexrelease)
(latexrelease)\def\@newline [#1]1{\1let \reserved@e \vadjust
(latexrelease) \@gnewline {\vskip #1}}
100 (latexrelease)\EndIncludeInRelease

10 (*2ekernel)

107

108

(End definition for \@newline. This function is documented on page ?77.)

The \nobreak added to prevent null lines when \\ ends an overfull line. Change made
24 May 89 as suggested by Frank Mittelbach and Rainer Schopf

111 \def\@gnewline #1{J
12 \ifvmode

113 \@nolnerr

114 \else

115 \unskip \reserved@e {\reserved@f#1}\nobreak \hfil \break
116 \fi}

(End definition for \@gnewline. This function is documented on page 77.)

117 \def\@getpen#1{\ifcase #1 \z@ \or \@lowpenalty\or
118 \@medpenalty \or \@highpenalty
119 \else \@M \fi}

(End definition for \@getpen. This function is documented on page ?77.)

Switch used to avoid page breaks caused by \label after a section heading, etc. It
should be GLOBALLY set true after the \nobreak and globally set false by the next
invocation of \everypar.

Commands that reset \everypar should globally set it false if appropriate.
120 \def\@nobreakfalse{\global\let\if@nobreak\iffalse}
121 \def\@nobreaktrue {\globalllet\if@nobreak\iftrue}
12> \@nobreakfalse

]

S

(End definition for \if@nobreak. This function is documented on page 77.)

Registers used to save the space factor and last skip.

123 \newdimen\@savsk
122 \newcount\@savsf

(End definition for \@savsk and \@savsf. These functions are documented on page 77.)

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 174

\@bsphack \@bsphack and \@esphack used by macros such as \index and \begin{@float}
... \end{@float} that want to be invisible — i.e., not leave any extra space when used in
the middle of text. Such a macro should begin with \@bsphack and end with \@esphack.
The macro in question should not create any text, nor change the mode.

Before giving the current definition we give an extended definition that is currently
not used (because it doesn’t work as advertised:-)

These are generalised hacks which attempt to do sensible things when ‘invisible
commands’ appear in vmode too.

They need to cope with space in both hmode (plus spacefactor) and vmode, and also
cope with breaks etc. In vmode this means ensuring that any following \addvspace, etc
sees the correct glue in \lastskip.

In fact, these improved versions should be used for other cases of ‘whatsits, thingies
etc’ which should be invisible. They are only for commands, not environments (see notes
on \@Esphack).

BTW, anyone know why the standard hacks are surrounded by \ifmmode\else
rather than simply \ifhmode?

And are there any cases where saving the spacefactor is essential? I have some
extensions where it is, but it does not appear to be so in the standard uses.

def \@bsphack{%

\relax \ifvmode
\@savsk \lastskip
\ifdim \lastskip=\z@
\else

\vskip -\lastskip
\fi
\else
\ifhmode
\@savsk \lastskip
\@savsf \spacefactor
\fi
\fi

I think that, in vmode, it is the safest to put in a \nobreak immediately after such
things since writes, inserts etc followed by glue give valid breakpoints and, in general, it
is possible to create breaks but impossible to destroy them.

def \@esphack{%
\relax \ifvmode
\nobreak
\ifdim \@savsk=\z@
\else
\vskip\@savsk
\fi
\else
\ifhmode
\spacefactor \@savsf
\ifdim \@savsk>\z@
\ignorespaces
\fi

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 175

\@esphack

\fi
\fi

For the moment we are going to ignore the vertical versions until they are correct.

125 \def\@bsphack{%
126 \relax

127 \ifhmode

128 \@savsk\lastskip

129 \@savsf\spacefactor
130 \fi}

(End definition for \@bsphack. This function is documented on page 77.)

Companion to \@bsphack. If this command is not properly paired with \@bsphack one
might end up with a low-level TEX error: “BAD spacefactor”. One possible cause is
calling \@bsphack in vertical mode, then doing something that gets you (sometimes)
into horizontal mode and finally calling \@esphack. Even if no error is generated that
is wrong, because \@esphack will then use the saved values for \@savsk and \@savsf
from some earlier invocation of \@bsphack which will have nothing to do with the current
situation.

131 (/2ekernel)
132 (latexrelease)\IncludeInRelease{2018/10/10}Y%
133 (latexrelease) {\@esphack}{hyphenation and nobreak after space hack}/

134 (*2ekernel | latexrelease)
135 \def\@esphack{%
136 \relax

137 \ifhmode

138 \spacefactor\@savsf

139 \ifdim\@savsk>\z@

140 \ifdim\lastskip=\z@

141 \nobreak \hskip\z@skip
142 \fi

143 \ignorespaces

144 \fi

145 \else

146 \ifvmode

147 \if@nobreak\nobreak\else\if@noskipsec\nobreak\fi\fi
148 \fi

149 \fil}%

/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{2015/10/01}Y
latexrelease) {\@esphack}{hyphenation and nobreak after space hackl}},
latexrelease)\def \@esphack{%
latexrelease) \relax
latexrelease) \ifhmode

)

)

)

)

)

152

155
156

15

7

latexrelease \spacefactor\@savsf
latexrelease \ifdim\@savsk>\z@
latexrelease \ifdim\lastskip=\z@
latexrelease \nobreak \hskip\z@skip
latexrelease \fi

158

15

159

160

161

o~~~ o~~~ o~~~ o~ o~

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 176

latexrelease
latexrelease
latexrelease

\ignorespaces
\fi
\fi}%
latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{2015/01/01}%
latexrelease {\@esphack}{hyphenation and nobreak after space hackl}’
latexrelease)\def \@esphack{’,

162

163

164

165

166

167

168

160 (latexrelease) \relax

170 (latexrelease) \ifhmode

171 (latexrelease \spacefactor\@savsf

172 (latexrelease \ifdim\@savsk>\z@

173 (latexrelease \nobreak \hskip\z@skip
174 (latexrelease \ignorespaces

1

6 (latexrelease) \fil}}

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/003}%
{\@esphack}{hyphenation and nobreak after space hackl}/

177
178
latexrelease

latexrelease)\def \@esphack{’,

179

180

151 {latexrelease) \relax

12 (latexrelease) \ifhmode

153 (latexrelease \spacefactor\@savsf
184 {latexrelease \ifdim\@savsk>\z@
185 (latexrelease \ignorespaces

156 (latexrelease \fi

157 (latexrelease) \fil}%

()
()
()
()
()
()
()
()
()
()
()
()
()
75 (latexrelease) \fi
()
()
()
()
()
()
{)
()
()
()
()
()
()

188 (latexrelease)\EndIncludeInRelease
180 (*2ekernel)

(End definition for \@esphack. This function is documented on page ?77.)

\@Esphack A variant of \@esphack that sets the @ignore switch to true (as \@esphack used to do
previously). This is currently used only for floats and similar environments. w

10 (/2ekernel)
101 (latexrelease)\IncludeInRelease{2015/01/01}Y

192 (latexrelease) {\@Esphack}{hyphenation after space hack}’
103 (*2ekernel | latexrelease)

104 \def\@Esphack{},

105 \relax

196 \ifhmode

197 \spacefactor\@savsf

108 \ifdim\@savsk>\z@

199 \nobreak \hskip\z@skip

200 \@ignoretrue

201 \ignorespaces

202 \fi

203 \ f i }3‘

204 (/2ekernel | latexrelease)

205 (latexrelease)\EndIncludeInRelease

206 (latexrelease)\IncludeInRelease{0000/00/00}%

207 (latexrelease) {\@Esphack}{hyphenation after space hack}/
208 (latexrelease)\def\@Esphack{/,

200 (latexrelease) \relax

210 (latexrelease) \ifhmode

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 177

\@vbsphack

2u (latexrelease) \spacefactor\@savsf
212 (latexrelease) \ifdim\@savsk>\z@
215 (latexrelease) \@ignoretrue

21 (latexrelease) \ignorespaces

215 (latexrelease) \fi

26 (latexrelease) — \fil}%

217 (latexrelease)\EndIncludeInRelease

215 (*2ekernel)

(End definition for \@Esphack. This function is documented on page ?7.)

Another variant which is useful for invisible things which should not live in vmode (this
is how some people feel about marginals).

If it occurs in vmode then it enters hmode and ensures that \@savsk is nonzero so
that the \ignorespaces is put in later. It is not used at present.

\def \@vbsphack{ %
\relax \ifvmode
\leavevmode
\@savsk 1sp
\@savsf \spacefactor
\else
\ifhmode
\@savsk \lastskip
\@savsf \spacefactor
\fi
\fi
}

(End definition for \@vbsphack. This function is documented on page ?7.)

1.5 Vertical spacing

ETEX supports the plain TEX commands \smallskip, \medskip and \bigskip. How-
ever, it redefines them using \vspace instead of \vskip.

Extra vertical space is added by the command \addvspace{(skip)}, which adds a
vertical skip of {skip) to the document. The sequence
\addvspace{(s!)} \addvspace{(s2)} is equivalent to
\addvspace{(mazimum of s1, s2)}

\addvspace should be used only in vertical mode, and gives an error if it’s not. The
\addvspace command does not add vertical space if @minipage is true. The minipage
environment uses this to inhibit the addition of extra vertical space at the beginning.

Penalties are put into the vertical list with the \addpenalty{(penalty)} command.
It works properly when \addpenalty and \addvspace commands are mixed.

The @nobreak switch is set true used when in vertical mode and no page break
should occur. (Right now, it is used only by the section heading commands to inhibit
page breaking after a heading.)

\addvspace{SKIP} ==
BEGIN
if vmode
then if Ominipage

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 178

\@xaddvskip

\addvspace

else if \lastskip =0
then \vskip SKIP
else if \lastskip < SKIP
then \vskip -\lastskip
\vskip SKIP
else if SKIP < 0 and \lastskip >= 0
then \vskip -\lastskip
\vskip \lastskip + SKIP
fi fi fi fi
else useful error message (CAR).
fi
END

Internal macro for \vspace handling the case that space has previously been added.

219 \def\@xaddvskip{/,
20 \ifdim\lastskip<\@tempskipb

221 \vskip-\lastskip

222 \vskip\@tempskipb

223 \else

224 \ifdim\@tempskipb<\z@
225 \ifdim\lastskip<\z@
226 \else

207 \advance\@tempskipb\lastskip
228 \vskip-\lastskip
229 \vskip \@tempskipb
230 \fi

231 \fi

232 \fi}

(End definition for \@xaddvskip. This function is documented on page 77.)

Add vertical space taking into account space already added, as described above.

233 (/2ekernel)

231 (*2ekernel | latexrelease)

235 (latexrelease) \IncludeInRelease{2020/10/01}
256 (latexrelease) {\addvspace}{\addvspace calc support}
237 \def\addvspace#1{},

23 \ifvmode

239 \if@minipage\else

240 \ifdim \lastskip =\z@

241 \@vspace@calcify{#1}}

242 \else

243 \setlength\@tempskipb{#11}/,

244 \@xaddvskip

25 \fi

246 \fi

27 \else

248 \@noitemerr

249 \fi}

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}%
latexrelease) {\addvspace}{\addvspace calc supportl}’

o~ o~~~

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 179

\addpenalty

latexrelease
latexrelease)\def\addvspace#1{/,
latexrelease) \ifvmode

latexrelease \if@minipage\else
latexrelease \ifdim \lastskip =\z@
latexrelease \vskip #1\relax
latexrelease \else

()
()
()
()
()
()
()
261 (latexrelease) \@tempskipb#1\relax
()
()
()
()
()
()
()

254
5

54
55

262 (latexrelease \@xaddvskip
latexrelease \fi
latexrelease \fi
latexrelease) \else
latexrelease \@noitemerr
latexrelease) \fi}

28 {latexrelease)\EndIncludeInRelease

20 (*2ekernel)

263
264
265
266

267

(End definition for \addvspace. This function is documented on page ?7.)

20 (/2ekernel)

211 (latexrelease)\IncludeInRelease{2015/01/01}%

272 (latexrelease) {\addpenalty}{\addpenaltyl}’
273 (*2ekernel | latexrelease)

Fix provided by Donald (though the original fix was not good enough). In 2005 Plamen
Tanovski discovered that this fix wasn’t good enough either as the \vskip kept getting
bigger if several \addpenalty commands followed each other. Donald kindly send a new
fix.

74 \def\addpenalty#1{%
275 \ifvmode

276 \if@minipage

217 \else

278 \if@nobreak

279 \else

280 \ifdim\lastskip=\z@

281 \penalty#1l\relax

282 \else

283 \@tempskipb\lastskip

We have to make sure the final \vskip seen by TgEX is the correct one, namely
\@tempskipb. However we may have to adjust for \prevdepth when placing the penalty
but that should not affect the skip we pass on to TEX.

284 \begingroup
285 \@tempskipa\@tempskipb
286 \advance \@tempskipb

287 \ifdim\prevdepth>\maxdepth\maxdepth\else
If \prevdepth is -1000pt due to \nointerlineskip we better not add it!

288 \ifdim \prevdepth = -\@m\p@ \z@ \else \prevdepth \fi
289 \fi

290 \vskip -\@tempskipb

201 \penalty#1

292 \ifdim\@tempskipa=\Q@tempskipb

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 180

\vspace
\@vspace
\@vspacer

Do nothing if the \prevdepth check made no adjustment.
203 \else

Combine the prevdepth adjustment into a single skip.

294 \advance\@tempskipb -\@tempskipa
295 \vskip \@tempskipb

296 \fi

The final skip is always the specified length.

297 \vskip \@tempskipa

208 \endgroup

299 \fl

300 \fi

301 \fi

302 \else

303 \@noitemerr

304 \fil}¥%

s0s {/2ekernel | latexrelease)

s06 (latexrelease)\EndIncludeInRelease

s07 (latexrelease)\IncludeInRelease{0000/00/00}%
s0s (latexrelease) {\addpenalty}{\addpenaltyl}%
s00 (latexrelease)\def\addpenalty#1{/,

s0 (latexrelease) \ifvmode

su (latexrelease) \if@minipage

si2 (latexrelease) \else

s13 (latexrelease) \if@nobreak

su (latexrelease) \else

s (latexrelease) \ifdim\lastskip=\z@

s16 (latexrelease) \penalty#1\relax

si7 (latexrelease) \else

s (latexrelease) \@tempskipb\lastskip
s10 (latexrelease) \vskip -\lastskip

20 (latexrelease) \penalty#1Y

221 (latexrelease) \vskip\@tempskipb

32 (latexrelease) \fi

3 (latexrelease) \fi

224 (latexrelease) \fi

25 (latexrelease) \else

26 (latexrelease) \@noitemerr

27 (latexrelease) \fil}’

225 (latexrelease)\EndIncludeInRelease

20 (*2ekernel)
(End definition for \addpenalty. This function is documented on page ?7.)
The new code for these commands depends on the following facts:

o The value of prevdepth is changed only when a box or rule is created and added to
a vertical list;

e The value of prevdepth is used only when a box is created and added to a vertical
list;

e The value of prevdepth is always local to the building of one vertical list.

330 \DeclareRobustCommand\vspace{\@ifstar\@vspacer\@vspace}

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 181

31 (/2ekernel)

332 (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2020/10/01}}

2+ (latexrelease) {\@vspace}{Support calc in \vspacel}),

33
We support calc syntax in the argument and therefore use \setlength.
135 \def\@vspace #1{

336 \ifvmode

337 \@vspace@calcify{#1}}
338 \vskip\z@skip

339 \else

340 \@bsphack

341 \vadjust{\@restorepar
342 \@vspace@calcify{#1}%
343 \vskip\z@skip
344 Y

345 \@esphack

346 \fi}

;a7 \def\@vspacer#1{%
348 \ifvmode

349 \dimen®@\prevdepth

350 \hrule \@height\z@

351 \nobreak

352 \@vspace@calcify{#11}}

353 \vskip\z@skip

354 \prevdepth\dimen®@

35 \else

356 \@bsphack

357 \vadjust{\@restorepar

358 \hrule \Gheight\z@
359 \nobreak

360 \@vspace@calcify{#1}%
361 \vskip\z@skip}’

362 \@esphack

363 \fi}

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\@vspace}{Support calc in \vspace}%
(latexrelease)
(latexrelease)\def\@vspace #1{%
(latexrelease) \ifvmode
(latexrelease) \vskip #1
(latexrelease) \vskip\z@skip

s (latexrelease) \else
(latexrelease) \@bsphack
()
()
()
()
()
()
()
()

364
365

366

latexrelease \vadjust{\@restorepar
latexrelease \vskip #1
latexrelease \vskip\z@skip
latexrelease Y

latexrelease \@esphack

latexrelease \fi}

latexrelease)\def \@vspacer#1{/
latexrelease

381

382

\ifvmode

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 182

\smallskip
\medskip
\bigskip

\smallskipamount
\medskipamount
\bigskipamount

\nobreakdashes

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) \else

latexrelease \@bsphack

()
()
()
()
()
()
()
()
s (latexrelease) \vadjust{\@restorepar
()
()
()
()
()
()
()

\dimen®@\prevdepth
\hrule \G@height\z@
\nobreak

\vskip #1
\vskip\z@skip
\prevdepth\dimen@

383

4

3

385

386

87

388
389

390

latexrelease \hrule \@height\z@
latexrelease \nobreak
latexrelease \vskip #1
latexrelease \vskip\z@skipl}%
latexrelease \@esphack

latexrelease) \fi}

205 (latexrelease)\EndIncludeInRelease

399 (*Zekernel)

392

w

93

94
395
396

397

(End definition for \vspace, \@vspace, and \@vspacer. These functions are documented on page 77.)

200 \def\smallskip{\vspace\smallskipamount}
201 \def\medskip{\vspace\medskipamount}
202 \def\bigskip{\vspace\bigskipamount}

(End definition for \smallskip, \medskip, and \bigskip. These functions are documented on page ?7?.)

203 \newskip\smallskipamount \smallskipamount=3pt plus 1pt minus 1pt
20+ \newskip\medskipamount \medskipamount =6pt plus 2pt minus 2pt
205 \newskip\bigskipamount \bigskipamount =12pt plus 4pt minus 4pt

(End definition for \smallskipamount, \medskipamount, and \bigskipamount. These functions are doc-
umented on page 77.)

1.6 Horizontal space (and breaks)

This idea is borrowed from the amsmath package but here we define a robust command.

This command is a low-level command designed for use only before hyphens or dashes
(such as -, ==, or ——-).

It could probably be better implemented: it may need its own private token register
and temporary command.

Setting the hyphen in a box and then unboxing it means that the normal penalty will
not be added after it—and if the penalty is not there a break will not be taken (unless
an explicit penalty or glue follows, thus the final \nobreak).

(3

Note that even if it is not followed by a ‘-’ it still leaves vimode and sets the space-
factor; so use it carefully!

106 \DeclareRobustCommand{\nobreakdashes}{%

407 \leavevmode

408 \toks@{}’

200 \def\reserved@a##1{\toks@\expandafter{\the\toks@-}/

410 \futurelet\@let@token \reserved@bly
a11 \def\reserved@ {\ifx\@let@token -7

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 183

\nobreakspace
\@xobeysp

\e

\hspace

412 \expandafter\reserved@a

413 \else

414 \setbox\z@ \hbox{\the\toks@\nobreak}/,
415 \unhbox\z@

416 \spacefactor\sfcode‘\-

417 \fi}¥%

215 \futurelet\@let@token \reserved@b

a9 }

(End definition for \nobreakdashes. This function is documented on page 77.)

This is a robust command that produces a horizontal space at which, in paragraph-mode,
a line-break is not possible. We then define an active ~ to expand to it since this is the
documented behaviour of ~. One reason for introducing this is that some 8-bit input
encodings have a slot for such a space and we do not want to use active characters as the
ETEX internal commands.

The braces in the definition of ~ are needed to ensure that a following space is
preserved when reading to/from internal files.

We need to keep \@xobeysp as it is widely used; so here it is let to the non-robust
command \nobreakspace .

20 \DeclareRobustCommand{\nobreakspace}{’,

421 \leavevmode\nobreak\ }

2> \catcode ‘\~=13

s \def~{\nobreakspace{}}

24 \expandafter\let\expandafter\@xobeysp\csname nobreakspace \endcsname

IS
e}

(End definition for \nobreakspace and \@xobeysp. These functions are documented on page 77.)

Placed before a ’’, makes it a sentence-ending period. Does the right thing for other
punctuation marks as well. Does this by setting spacefactor to 1000.

w5 (/2ekernel)

26 (latexrelease)\IncludeInRelease{2015/01/01}%

w7 (latexrelease) {\@}{Space after \@}}

s (*2ekernel | latexrelease)

]

4

]

20 \def\@{\spacefactor\@m{}}/
130 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
133 (latexrelease {\@}{Space after \@}}
(
(

431

432

latexrelease)\def\@{\spacefactor\@m}}
latexrelease) \EndIncludeInRelease
136 (*2ekernel)

434

435

e ~— —— ~——

(End definition for \@. This function is documented on page ?7.)

237 \DeclareRobustCommand\hspace{\@ifstar\@hspacer\@hspace}

(End definition for \hspace. This function is documented on page 77?.)

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 184

\@hspace

\@hspacer

\fill

\stretch

\enspace

\leavevmode@ifvmode

/2ekernel)

*2ekernel | latexrelease)

latexrelease) \IncludeInRelease{2020/10/01}%

21 (latexrelease) {\@hspace}{Support calc with \hspacel}’
422 \def\@hspace#1{\begingroup\setlength\skip@{#1}\hskip\skip@\endgroup}
/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease

IS
S
o~ o~~~

latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease) {\@hspace}{Support calc with \hspacel}/

o~ o~~~

(latexrelease)

wo (latexrelease)\def\@hspace#1{\hskip #1\relax}
10 (latexrelease)\EndIncludeInRelease

i1 (*2ekernel)

(End definition for \@hspace. This function is documented on page 77.)

Extra \hskip Opt added 1985/17/12 to guard against a following \unskip \relax added
13 Oct 88 for usual TEX lossage replaced both changes by \hskip\z@skip 27 Nov 91

25> \def\@hspacer#1{\vrule \@width\z@\nobreak
453 \@hspace{#1}\hskip \z@skip}

(End definition for \@hspacer. This function is documented on page ?77.)

«ss \newskip\fill
5 \fill = Opt plus 1fill

(End definition for \fill. This function is documented on page 77?.)

156 \def\stretch#1{\z@ \@plus #1fill\relax}

(End definition for \stretch. This function is documented on page ?77.)

w7 (/2ekernel)
s (*2ekernel | latexrelease)
0 (latexrelease) \IncludeInRelease{2018/12/01})
(latexrelease) {\thinspace}{Start LR-model}}

460

21 \DeclareRobustCommand\enspace{\leavevmode@ifvmode\kern.5em }

(End definition for \enspace. This function is documented on page 77.)

Leave vmode but only if we are really in vimode, otherwise the expansion is empty (which
is not the case with the default definition).

22 \protected\def\leavevmode@ifvmode{\ifvmode\expandafter\indent\fi}

File 1: 1tspace.dtx Date: 2020/05/06 Version v1.3n 185

(End definition for \leavevmode@ifvmode. This function is documented on page ?7.)

163 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\thinspace}{Start LR-model}/,
w7 (latexrelease)\def\thinspace{\kern .16667em }
s (latexrelease)\def\negthinspace{\kern-.16667em }

()

()

()

(

464
465

466

w0 (latexrelease)\def\enspace{\kern.5em }
latexrelease)\let\leavevmode@ifvmode\@undefined
latexrelease)\EndIncludeInRelease

*2ekernel)

70
471

472

\enskip
\quad ,;; \def\enskip{\hskip.5em\relax}
\qquad .z \def\quad{\hskiplem\relax}
275 \def\qquad{\hskip2em\relax}

(End definition for \enskip, \quad, and \qquad. These functions are documented on page 77?.)
For Unicode engines, make the Unicode soft hyphen an active character defined as

176 \ifx\Umathcode\@undefined\else
477 \catcode "AD=13

478 \defAAad{\‘}

a0 \fi

\obeycr The following definitions will probably get deleted or moved to compatibility mode soon.

\restorecr (\catcode‘\""M=13 \gdef\obeycr{\catcode‘\""M13 \def "M{\\\relax}y,
481 \@gobblecr}
22 {\catcode‘\""M=13 \gdef\@gobblecr{\@ifnextchar
253 \@gobble\ignorespaces}}
«4 \gdef\restorecr{\catcode‘\""M5 }}

(End definition for \obeycr and \restorecr. These functions are documented on page 77?.)

w5 (/2ekernel)

File I: 1tspace.dtx Date: 2020/05/06 Version v1.3n 186

File m

Itlogos.dtx

1 Logos
Various logos are defined here.

\TeX The TEX logo, adjusted so that a full stop after the logo counts as ending a sentence.
1 (*2ekernel)
> \DeclareRobustCommand\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-. 125emX\@}

(End definition for \TeX. This function is documented on page 77.)

\LaTeX The IXTEX logo.

3 \DeclareRobustCommand{\LaTeX}{L\kern-.36em},
4 {\sbox\z@ T%
5 \vbox to\ht\z@{\hbox{\check@mathfonts

6 \fontsize\sf@size\z@

7 \math@fontsfalse\selectfont
8 AYY

9 \vss}

10 Y

11 \kern-.15em},

12 \TeX}

(End definition for \LaTeX. This function is documented on page 77.)

\LaTeXe The IXTEX 2¢ logo as proposed by A-W designers.

15 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

12 \if b\expandafter\@car\f@series\@nil\boldmath\fi
15 \LaTeX\kern.15em2$_{\textstyle\varepsilon}$}}

16 (/2ekernel)

(End definition for \LaTeXe. This function is documented on page 77.)

File m: 1tlogos.dtx Date: 2019/08/27 Version v1.1j 187

\document
\nofiles

\includeonly

\include

\input

\IfFileExists

\InputIfFileExists

File n

Itfiles.dtx

1 File Handling

The following user commands are defined in this part:
(ie \begin{document})
Reads in the .AUX files and \catcode’s @ to 12.

Suppresses all file output by setting \@filesw false.
{(NAME1, ... ,NAMEn)}
Causes only parts NAMEL, ... NAMEn to be read by their \include commands. Works
by setting partsw true and setting \@partlist to NAMEI, ... NAMEn.
{(NAME)}
Does an \input NAME unless \@partsw is true and NAME is not in \@partlist. If
\@filesw is true, then it directs .AUX output to NAME.AUX, including a checkpoint
at the end.
{(NAME)}
The same as TeX’s \input, except it allows optional braces around the file name. In
IXTEX 2¢, it also avoids the primitive ‘missing file’ error, if the file can not be found.
{(NAME)}{(then)}{(else)}
If the file exists on the system, execute then otherwise execute else.
{(NAME)}{(then)}{(else)}
If the file exists on the system, execute then and input NAME otherwise execute else.
Historical B'TEX 2.09 comments (not necessarily accurate any more):

1 (*2ekernel)
> \message{files,}

VARIABLES, SWITCHES AND INTERNAL COMMANDS:

\@mainaux : Output file number for main .AUX file.
\@partaux : Output file number for current part’s .AUX file.
\Q@auxout : Either \@mainout or \@partout, depending on

which .AUX file output goes to.
\@input{foo} : If file foo exists, then \input’s it,
otherwise types a warning message.

@filesw : Switch — set false if no .AUX, .TOC, .IDX etc
files are to be written
@partsw : Set true by a \includeonly command.
\@partlist : Set to the argument of the \includeonly command.
\cp@FQ0 : The checkpoint for \include’d file FOO.TEX, written

by \@writeckpt at the end of file FOO.AUX

\includeonly{FILELIST} ==
BEGIN
\@partsw =T

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 188

\@partlist := FILELIST
END

\include{FILE} ==
BEGIN
\clearpage
if \efilesw = T
then \immediate\write\@mainaux{\string\@input{FILE.AUX}}
fi
if \@partsw = T
then \@tempswa := F

\reserved@ == FILE
for \reserved@a := \@partlist
do if eval(\reserved@a) = eval(\reserved@b)
then \Q@tempswa := T fi
od

fi

if \@tempswa = T
then \Qauxout := \@partaux
if \efilesw = T
then \immediate\openout\@partaux{FILE.AUX}
\immediate\write\@partaux{\relax}

fi
\@input{FILE. TEX}
\clearpage
\@writeckpt{FILE}
if @filesw then \closeout \@partaux fi
\Qauxout := \@mainaux
else \cp@FILE
fi

END

\@writeckpt{FILE} ==

BEGIN

if \efilesw = T
\immediate\write on file \@partaux:
\@setckpt{FILE}{ hh ¥
for \reserved®@a := \cl@@ckpt
do \immediate\write on file \@partaux:
\global\string\setcounter
{eval(\reserved@a) }{eval(\c@eval (\reserved@a))}
od VYRR
\immediate\write on file \@partaux: }
fi
END

\@setckpt{FILE}LIST} ==

BEGIN
G \cp@FILE := LIST

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i

189

\@inputcheck
\@unused

\@mainaux
\@partaux

\if@filesw
\if@partsw

\@clubpenalty

\document

END

INITIALIZATION
\@tempswa := T

End of historical B'TEX 2.09 comments.

Allocate read stream for testing and output stream.

s \newread\@inputcheck
1+ \newwrite\@unused

(End definition for \@inputcheck and \@unused. These functions are documented on page ?7.)

5 \newwrite\@mainaux
s \newwrite\@partaux

(End definition for \@mainaux and \@partaux. These functions are documented on page ?77.)

7 \newif\if@filesw \@fileswtrue
¢ \newif\if@partsw \@partswfalse

(End definition for \if@filesw and \if@partsw. These functions are documented on page 77.)

This stores the current normal (non-infinite) value of \clubpenalty; it should therefore
be reset whenever the normal value is changed (as in the bibliography in the standard
styles).

o \newcount\@clubpenalty

10 \@clubpenalty \clubpenalty

(End definition for \@clubpenalty. This function is documented on page 77.)

1 (/2ekernel)

(latexrelease)\IncludeInRelease{2020/10/01}%

15 (latexrelease) {\document}{Added hook to load 13backend codel}/
11 (*2ekernel | latexrelease)

15 \def\document{},

5

We do cancel the grouping as part of the \begin handling (this is now done inside
\begin instead) so that the env/(env)/begin hook is not hidden inside \begingroup
... \endgroup.

16 % \endgroup

17 \UseOneTimeHook{begindocument/beforel}y,
1z \@kernel@after@begindocument@before

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 190

Added hook to load 13backend code:

19 \Qexpl@sys@load@backend@@

20 \ifx\Qunusedoptionlist\@empty\else

21 \@latex@warning@no@line{Unused global option(s):~"J}
2 \@spaces [\@Qunusedoptionlist]}/

23 \fi

2 \@colht\textheight

25 \@colroom\textheight \vsize\textheight

2 \columnwidth\textwidth

>z \@clubpenalty\clubpenalty

26 \if@twocolumn

29 \advance\columnwidth -\columnsep
30 \divide\columnwidth\tw@ \hsize\columnwidth \@firstcolumntrue
31 \fi

52 \hsize\columnwidth \linewidth\hsize
33 \begingroup\@floatplacement\@dblfloatplacement
34 \makeatletter\let\@uritefile\@gobbletwo

35 \global \let \@multiplelabels \relax

36 \@input{\jobname.aux}/

;7 \endgroup

s \if@filesw

39 \immediate\openout\@mainaux\jobname.aux
40 \immediate\write\@mainaux{\relaxl}y,

41 \fi

Dateline 1991/03/26: FMi added \process@table to support NFSS; This will also
work with old Ifonts if no other style defines \process@table. The following line forces
the initialization of the math fonts.

22 \process@table
s \let\glb@currsize\@empty % Force math initialization.

2 \normalsize
s \everypar{}%

So that punctuation in headings is not disturbed by verbatim or other local changes
to the space factor codes, save the document default here. This will be locally reset by
the output routine. For special cases a class may want to define \normalsfcodes directly,
in case that definition will be used. (This is an old bug, problem existed in BTEX2.0x
and plain TEX.)

26 \ifx\normalsfcodes\@empty

47 \ifnum\sfcode‘\.=\@m

a8 \let\normalsfcodes\frenchspacing

49 \else

50 \let\normalsfcodes\nonfrenchspacing
51 \fi

52 \fi

For similar reasons also save the default language, this will be reset locally in the output
routine. In particular it allows hyphenation in the page head even if the page break
happens in verbatim. If this has already been set by a package, set to the value of
\language at this spoint.

53 \ifx\document@default@language\m@ne

54 \chardef\document@default@language\language
55 \fi

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 191

Way back in 1991 (08/26) FMi & RmS set the \@noskipsec switch to true in the
preamble and to false here. This was done to trap lists and related text in the preamble
but it does not catch everything; hence Change 1.1g was introduced.

56 \@noskipsecfalse

57 \let \@refundefined \relax

Just before disabling the preamble commands we execute the begin document hook which
contains any code contributed by \AtBeginDocument. Also disable the gathering of the
file list, if no \1listfiles has been issued. \AtBeginDocument is redefined at this point
so that and such commands that get into the hook do not chase their tail. ..

55 \@kernel@before@begindocument

5o \UseOneTimeHook{begindocument}y,
e \@kernel@after@begindocument

Most of the following assignments will be done globally in case the user adds
something like \begin{multicols} to the document hook, i.e. starts are group in
\begin{document}.

Since a value of exactly Opt for \topskip causes \twocolumn[] to misbehave, we
add this check, hoping that it will not cause any problems elsewhere.

60 \ifdim\topskip<isp\global\topskip 1sp\relax\fi
e \global\@maxdepth\maxdepth

63 \global\let\@begindocumenthook\@undefined

62 \ifx\@listfiles\Qundefined

65 \global\let\@filelist\relax
66 \globalllet\@addtofilelist\@gobble
67 \fi

At the very end we disable all preamble commands. This has to happen after the begin
document hooks was executed so that this hook can still use such commands.

65 \gdef\do##1{\global\let ##1\@notprerrl}y,
60 \@preamblecmds

The next line saves tokens and also allows \@nodocument to be used directly to trap
preamble errors.
70 \globalllet \@nodocument \relax
The next line is a pure safety measure in case a do list is ever expanded at the wrong
place. In addition it will save a few tokens to get rid of the above definition.
7 \global\let\do\noexpand
7 \UseOneTimeHook{begindocument/end}/,
Use of the hook might mean that we are already in horizontal mode, so ignore the space
after \begin{document}.
73 \ignorespaces}
The begindocument hook already existed in the kernel since 1994 under the name

\atbegindocumenthook the additional ones are originally from the etoolbox package
under the names \@endpreamblehook \afterpreamble.

72 \NewHook{begindocument}
75 \NewHook{begindocument/before}
7 \NewHook{begindocument/end}

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 192

\Okernel@af ter@begindocunent@before
\Qkernel@eforelbegindocument
\@kernel@after@begindocument

Above we used two kernel only hooks to be run after the public begindocument/before
and after begindocument hooks.

In \@kernel@after@begindocument@before we already place one action: drop the
fast execution code for the env/document/begin hook. That hook marks the end of the
preamble and should therefore only be run once. In a normal document that is anyway
the case (so the code would just sit there taking up space afterwards, which these days is
rather harmless), however, in more complicated scenarios where several full documents
are combined to a single document it might get applied several times with harmful effects.
We therefore explicitly drop it at this point. the coing is somewhat obscure due to the
name of the macro which requires constructing.

77 \edef \@kernel@after@begindocument@before {%

75 \let\expandafter\noexpand\csname

79 g__hook_env/document/begin_code_tl\endcsname
20 \noexpand\@empty}

st \let \@kernel@before@begindocument \@empty
\let \@kernel@after@begindocument \Qempty

o
o

o

3

/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease

84

atexrelease)\IncludeInRelease{2017/04/15}%
atexrelease) {\document}{Save language for hyphenation}y,

85 I
86 I
latexrelease

latexrelease)\def\document{\endgroup

latexrelease) \ifx\@unusedoptionlist\@empty\else

latexrelease \@latex@warning@no@line{Unused global option(s):~"J%
latexrelease \@spaces[\Qunusedoptionlist]}%

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

87

©

(
(
()
()
()
|)
89 < >
o)
o)
() \fi
() \@colht\textheight
() \@colroom\textheight \vsize\textheight
() \columnwidth\textwidth
() \@clubpenalty\clubpenalty
() \if@twocolumn
() \advance\columnwidth -\columnsep
9 (latexrelease) \divide\columnwidth\tw@ \hsize\columnwidth \@firstcolumntrue
wo (latexrelease) \fi
(latexrelease) \hsize\columnwidth \linewidth\hsize
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

2

93

9

4

5

96

7

98

1

1
\begingroup\@floatplacement\@dblfloatplacement
\makeatletter\let\Quwritefile\@gobbletwo
\global \let \@multiplelabels \relax
\@input{\jobname.aux}/,
\endgroup
\if@filesw
\immediate\openout\@nainaux\jobname.aux
\immediate\write\@mainaux{\relax}y,
\fi
\process@table
\let\glb@currsize\Q@empty 7 Force math initialization.
\normalsize
\everypar{}/,
\ifx\normalsfcodes\@empty
\ifnum\sfcode‘\.=\0@m
\let\normalsfcodes\frenchspacing

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

102

03

104

1

=)

5

106

107

1

=)

8

109

110

1

1

5

3

1

4

5
116

117

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 193

\else
\let\normalsfcodes\nonfrenchspacing
\fi
\fi
\ifx\document@default@language\m@ne
\chardef\document@default@language\language
\fi
\@noskipsecfalse
\let \@refundefined \relax
\let\AtBeginDocument\@firstofone
\@begindocumenthook
\ifdim\topskip<isp\global\topskip 1sp\relax\fi
\global\@maxdepth\maxdepth
\global\let\@begindocumenthook\@undefined
\ifx\@listfiles\@undefined
\globalllet\@filelist\relax
\global\let\@addtofilelist\@gobble

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

N}

8

29

130

131

132

133

134

135 (latexrelease) \fi
136 (latexrelease) \gdef\do##1{\global\let ##1\@notprerr}y,
137 (latexrelease) \@preamblecmds

latexrelease
latexrelease
latexrelease

\global\let \@nodocument \relax
\global\let\do\noexpand
\ignorespaces}

latexrelease) \EndIncludeInRelease

latexrelease
latexrelease)\IncludeInRelease{0000/00/00}%

()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
{)
()
()
()
=
112 (latexrelease) {\document}{Save language for hyphenation}
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

138
139
140
141

142

=

3

latexrelease)\def \document{\endgroup
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

145
\ifx\Qunusedoptionlist\@empty\else
\@latex@warning@no@line{Unused global option(s):~"J}
\@spaces[\Qunusedoptionlist]}’

146

147

148

149 \fi

\@colht\textheight

\@colroom\textheight \vsize\textheight

\columnwidth\textwidth

\@clubpenalty\clubpenalty

\if@twocolumn
\advance\columnwidth -\columnsep
\divide\columnwidth\tw@ \hsize\columnwidth
\@firstcolumntrue

\fi

\hsize\columnwidth \linewidth\hsize

\begingroup\@floatplacement\@dblfloatplacement
\makeatletter\let\Quwritefile\@gobbletwo
\global \let \@multiplelabels \relax
\@input{\jobname.aux}/,

\endgroup

\if@filesw
\immediate\openout\@mainaux\jobname.aux
\immediate\write\@mainaux{\relax}y

150

151

o

7

5

53

154

o

55

17

6

1

-

7

58

159

160

161

1

62

163

164

1

65

166

167

165 (latexrelease) \fi

160 (latexrelease) \process@table

170 (latexrelease) \let\glb@currsize\@empty
171 (latexrelease) \normalsize

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 194

\normalsfcodes

\nofiles

172

78

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

(End definition for \document and others. These functions are documented on page 77?.)

The setting of \@empty is just a flag. This command may be defined in a class or package
file. If it is still \@empty at \begin{document} it will be defined to be \frenchspacing
or \nonfrenchspacing, depending on which of those appears to be in effect at that point.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

\everypar{}%

\ifx\normalsfcodes\@empty
\ifnum\sfcode‘\.=\@m

\let\normalsfcodes\frenchspacing
\else
\let\normalsfcodes\nonfrenchspacing

\fi

\fi

\@noskipsecfalse

\let \@refundefined \relax

\let\AtBeginDocument\@firstofone

\@begindocumenthook

\ifdim\topskip<isp\global\topskip 1sp\relax\fi

\global\@maxdepth\maxdepth

\global\let\@begindocumenthook\@undefined

\ifx\@listfiles\@undefined
\globalllet\@filelist\relax
\globalllet\@addtofilelist\@gobble

\fi

\gdef\do##1{\global\let ##1\@notprerrl}y,

\@preamblecmds

\global\let \@nodocument \relax

\global\let\do\noexpand

\ignorespaces}

latexrelease)\EndIncludeInRelease

*2ekernel)

\@onlypreamble\document

199 \let\normalsfcodes\Qempty

(End definition for \normalsfcodes. This function is documented on page 77.)

Set \@fileswfalse which suppresses the places where XTEX makes \immediate writes.
The \makeindex and \makeglossary are disabled. \protected@urite is redefined not
to write to the file specified, but rather to write a blank line to the log file. This ensures
that a (whatsit) node is still created, and so spacing is not affected by the \nofiles
command; to ensure this more generally, the \if@nobreak test is needed.

200 \def\nofiles{Y%
\@fileswfalse
\typeout{No auxiliary output files. ~J}}
\long\def\protected@urite##1##2##3%

{\write\m@ne{}\if@nobreak\ifvmode\nobreak\fi\fil}},

\let\makeindex\relax
\let\makeglossary\relax}

\@onlypreamble\nofiles

201

207

(End definition for \nofiles. This function is documented on page ?77.)

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i

\protected@urite

\include
\includeonly

This takes three arguments: an output stream, some initialization code, and some text
to write. It then writes this, with appropriate handling of \protect and \thepage.

208 \long\def \protected@urite#1#2#3{%

209 \begingroup

210 \let\thepage\relax

211 #27,

212 \let\protect\Qunexpandable@protect
213 \edef\reserved@a{\write#1{#3}}%

214 \reserved@a

215 \endgroup

216 \if@nobreak\ifvmode\nobreak\fi\fi
217

(End definition for \protected@write. This function is documented on page 77?.)

215 \let\@auxout=\@mainaux

In the definition of \include, \def\reserved@b changed to \edef\reserved@ to be
consistent with the \edef in \includeonly. (Suggested by Rainer Schopf & Frank
Mittelbach. Change made 20 Jul 88.)

Changed definition of \include to allow space at end of file name — otherwise,
typing \include{foo } would cause XTEX to overwrite foo.tex. Change made 24 May
89, suggested by Rainer Schopf and Frank Mittelbach

Made \include check for being used inside an \include’d file, as this will not work
and cause surprising results.

210 (/2ekernel)

20 (*2ekernel | latexrelease)

221 (latexrelease) \IncludeInRelease{2020/10/01}

222 (latexrelease) {\includeonly}{Spaces in file names}),

23 \def\include#1{\relax

2 \ifnum\@auxout=\Q@partaux

225 \@latex@error{\string\include\space cannot be nested}\@eha
226 \else

NN

Here the normalisation will add .tex for all files, (it uses the the same normalisation as
the hooks), so we need to remove that manually. \@strip@tex@ext does that.
227 \set@curr@file{#1}%
228 \edef\Qcurr@file{\@strip@tex@ext\Q@curr@file}y,
For historical reasons \@include expects an argument delimited by a space. This is kept
(though uncessary now) to avoid errors in other packages that use \@include directly.
229 \expandafter\@include\expandafter{\@curr@file} 7% deliberate space
230 \fi}

Here in \includeonly we also need to strip .tex after normalisation:
231 \def\includeonly#1{J,
22 \@partswtrue
Because the argument to \includeonly is a comma-separated list of filenames where
there may be comma’s precedeing some of the filenames or trailing them. Therefore we
need to take the list apart, remove the unwanted spaces while leaving the spaces in the
filenames intact.

233 \let\@partlist\@empty
231 \@for\reserved@a:=#1 \do

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 196

235 4

236 \expandafter\set@curr@file\expandafter{\reserved@alj,

237 \ifx\@partlist\@empty

238 \edef\@partlist{\@strip@tex@ext\@curr@filel}y,

239 \else

240 \edef\@partlist{\@partlist,\@strip@tex@ext\Q@curr@file}y,
241 \fi

242 }%

243 }

224 \Qonlypreamble\includeonly

(End definition for \include and \includeonly. These functions are documented on page ?7.)

\@strip@tex@ext These macros take a (\detokenized file name and remove any .tex extension). Extra
\@strip@tex@ext@aux care is taken to not remove the string .tex from the middle of a file name: it is only
removed if it’s the very last thing in the file name.

225 \def\reserved@a#1{%

26 \def\@strip@texQext##1{J,

27 \expandafter\@strip@tex@ext@aux

248 ##1\@nil\@nil

249 #1\0Onil\relax\@nnil}

250 \def\@strip@tex@extQ@aux##1#1\Cnil##2\Cnnil{y,
51 \ifx\relax##2\Qempty

252 \expandafter\@cdr\expandafter\Q@empty\Q@cdr{}##1
53 \else##1\fi}}),

25: \expandafter\reserved0a

255 \expandafter{\detokenize{.tex}}

26 {/2ekernel | latexrelease)

(End definition for \@strip@tex@ext and \@strip@tex@ext@aux. These functions are documented on
page ?7.)

N

s7 (latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{2019/10/01}Y
(latexrelease) {\includeonly}{Spaces in file namesl}
(latexrelease)
(latexrelease)\def\includeonly#1{Y
(latexrelease) \@partswtrue
(latexrelease) \set@curr@file{\zap@space#l \Q@emptyl}/
(latexrelease) \let\@partlist\@curr@file
(latexrelease)
266 (latexrelease)
267 (latexrelease)\def\include#1{\relax
(latexrelease) \ifnum\@auxout=\@partaux
(latexrelease) \@latex@error{\string\include\space cannot be nested}\@eha
(latexrelease) \else
(latexrelease) \set@curr@file{#1 }%
(latexrelease) \expandafter\@include\Qcurr@file
(latexrelease) \fi}
(latexrelease)
(latexrelease)\let\@strip@tex@ext\Qundefined
(latexrelease)\let\@strip@tex@ext@aux\@undefined
(latexrelease)
(latexrelease)\EndIncludeInRelease

268

269

270

271

272

273

274

275

I

276

277

278

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 197

\@include

\IncludeInRelease{0000/00/00}%
{\includeonly}{Spaces in file names}/,
\def\includeonly#1{%
\@partswtrue
\edef\@partlist{\zap@space#1 \Q@empty}}

(latexrelease
(latexrelease
(latexrelease
(latexrelease
(latexrelease
(latexrelease
25 (latexrelease)\def\include#1{\relax

(\ifnum\@auxout=\@partaux

(\@latex@error{\string\include\space cannot be nested}\@eha
(\else \@include#1 \fi}

(
(
(

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
*2ekernel)

~ L L L

\EndIncludeInRelease

202 (/2ekernel)

203 (*2ekernel | latexrelease)

20: (latexrelease) \IncludeInRelease{2020/10/01}},

205 (latexrelease) {\@include}{Spaces in file names and hooks}}
206 \def\@include#1l {7

207 \clearpage

208 \if@filesw

299 \immediate\write\@mainaux{\string\Q@input{"#1.aux"}1}%
300 \fi

500 \@tempswatrue

s \if@partsw

303 \@tempswafalse

304 \edef\reserved@b{#11}%

305 \@for\reserved@a:=\Q@partlist\do

306 {\ifx\reserved@a\reserved@b\Qtempswatrue\fi}y
307 \fi

;8 \if@tempswa

309 \let\Qauxout\@partaux

310 \if@filesw

311 \immediate\openout\@partaux "#1.aux"

312 \immediate\write\@partaux{\relax}y,

313 \fi

Now before going to the hooks we need to set \CurrentFile:

314 % - -
315 \@filehook@set@CurrentFile
Execute the before hooks just after we switched the .aux file ...

316 \UseHook{include/beforel},
317 \UseHook{include/before/#1}Y%

318 o/u ———

319 \@input@{#1.tex}/,

320 % - TTTTTTT T T T T T T
then end hooks ...

321 \UseHook{include/end/#1}/

32 \UseHook{include/end}V,

323 o/g _____________ TTTTT T T T T T

324 \clearpage

325 -—= -—=

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i

198

and after the \clearpage the after hooks followed by another \clearpage just
in case new material got added (after all we need to be in well defined state after the

\include).

326 \UseHook{include/after/#1}}

327 \UseHook{include/afterl}’

328 \clearpage

329 % - -

330 \@uriteckpt{#11}7

331 \if@filesw

332 \immediate\closeout\@partaux
333 \fi

334 \else

If the file is not included, reset \deadcycles, so that a long list of non-included files does

not generate an ‘Output loop’ error.

335 \deadcycles\z@
336 \@nameuse{cp@#1}/,
337 \fi

s:2 \let\@auxout\@mainaux}
latexrelease) \EndIncludeInRelease
/2ekernel | latexrelease)

latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease {\@include}{Spaces in file names}j,
latexrelease)\def\@include#1 {%

344 (latexrelease) \clearpage

a5 (latexrelease) \if@filesw

6 (latexrelease \immediate\write\@mainaux{\string\@input{#1.aux}}%
27 (latexrelease) \fi

us (latexrelease) \@tempswatrue

a0 (latexrelease) \if@partsw

350 (latexrelease \@tempswafalse

\edef\reserved@b{#1}/,
\@for\reserved@a:=\@partlist\do
{\ifx\reserved@a\reserved@b\Q@tempswatrue\fi}y,

(
(
(
()
()
()
()
()
()
()
()
()
(latexrelease)
(latexrelease)
(latexrelease)
(latexrelease) \fi
(latexrelease) \if@tempswa
356 (latexrelease) \let\@auxout\@partaux
(latexrelease) \if@filesw
(latexrelease) \immediate\openout\@partaux #1.aux
(latexrelease) \immediate\write\@partaux{\relax}%
()
()
()
()
()
()
()
()
()
{)
()
()
()
()

s0 (latexrelease \fi

361 (latexrelease \@input@{#1.tex}/,
s62 (latexrelease \clearpage

563 (latexrelease \@writeckpt{#1}%
364 (latexrelease \if@filesw

365 (latexrelease \immediate\closeout\@partaux
66 (latexrelease \fi

367 (latexrelease) \else

365 (latexrelease \deadcycles\z@

sc0 (latexrelease \@nameuse{cp@#1}%
a0 (latexrelease) \fi

latexrelease) \let\@auxout\@mainaux}
latexrelease

latexrelease)\EndIncludeInRelease

371

373

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i

199

\@writeckpt

\@wckptelt

\@setckpt

\@charlb
\@charrb

\@curr@file
\set@curr@file

572 (*2ekernel)

(End definition for \@include. This function is documented on page ?77.)

a5 \def\@writeckpt#1{%
376 \if@filesw

377 \immediate\write\@partaux{\string\@setckpt{#1}\@charlbl}y,
378 {\let\@elt\@uckptelt \cl@@ckptl}

379 \immediate\write\@partaux{\@charrbl}y,

380 \fi}

(End definition for \@uriteckpt. This function is documented on page 77.)

;51 \def\@wckptelt#1{%
s \immediate\write\@partaux{/
383 \string\setcounter{#1}{\the\@nameuse{c@#1}}}}

(End definition for \@wckptelt. This function is documented on page ?7.)

RmS 93/08/31: introduced \@setckpt
;3¢ \def\@setckpt#1{\global\@namedef{cp@#1}}

(End definition for \@setckpt. This function is documented on page ?77.)

The following defines \@charlb and \@charrb to be { and }, respectively with \catcode
11.

355 {\catcode‘[=1 \catcode‘]=2
36 \catcode‘{=11 \catcode‘}=11
se7 \gdef\@charlb [{]

s \gdef\@charrb[}]

50 1% }brace matching

(End definition for \@charlb and \@charrb. These functions are documented on page 77.)

1.1 Safe Input Macros

File name handling is done by generating a csname from the provided file name (which
means that UTF-8 octets gets turned into strings as this is what happens if they appear
in a csname due to the code in utf8.def). By setting \escapchar to -1 we ensure that
we don’t get a backslash in front. As a result we end up with all characters as catcode
12 (plus spaces). We then sometimes add quotes around the construct (removing any
existing inner quotes. Sometimes we only remove the quotes if they have been supplied
by the user. There is clearly some room for improvement.

A side effect of the new code is that we will see quotes around file name displays
where there haven’t been any before.

For compatibilty with existing code using {abcl}.tex or {one.twol}.png an initial
brace group is discarded before expansion and \string is applied The content of the
brace group is discarded. This means that a leading space will be lost unless protected
(by { Yor " " or \space) but filenames with a space are hopefully rare.

The definition below is from 2019 and only used during kernel bootstrapping, later
on in 1tfilehook.dtx it will get overwritten.

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 200

\quote@name
\quote@@name
\unquote®@name

\IfFileExists

\IfFileExists@

300 \def\set@curr@file#1{Y%
301 \begingroup

392 \escapechar\m@ne

303 \xdef\Qcurr@file{’,

304 \expandafter\expandafter\expandafter\unquote@name
395 \expandafter\expandafter\expandafter{’

396 \expandafter\string

397 \csname\@firstofone#1\@empty\endcsname}1}’,

;6 \endgroup

399 }

(End definition for \@curr@file and \set@curr@file. These functions are documented on page 77.)

Quoting spaces

abc -> "a b c"

|Ia b Cll _> Ila b CII

all Ilbll "C _> Ila b CII
_> nn

(/2ekernel)
w1 (*2ekernel | latexrelease)
(latexrelease) \IncludeInRelease{2019/10/01}},
105 (latexrelease) {\quote@name}{Quote file names}’
20+ \def\quote@name#1{"\quote@Oname#1\@gobble""}
205 \def\quote@@name#1"{#1\quote@Oname}

4

0

402

and removing quotes . ..
w06 \def\unquote@name#1{\quote@@name#1\@gobble"}

(End definition for \quote@name, \quote@@name, and \unquote@name. These functions are documented
on page 77.)

207 \DeclareRobustCommand\IfFileExists[1]{%
205 \set@curr@file{#1}%
200 \expandafter\IfFileExists@\expandafter{\@curr@file}}

(End definition for \IfFileExists. This function is documented on page 77.)

Argument #1 is \@curr@file so catcode 12 string with no quotes.

210 \long\def \IfFileExists@#1#2#3{/,
211 \openin\@inputcheck"#1" ¥

22 \ifeof\@inputcheck

413 \ifx\input@path\@undefined

414 \def\reserved@a{#3}/

415 \else

416 \def\reserved@a{\@iffileonpath{#1}{#2}{#3}}%
417 \fi

418 \else

419 \closein\@inputcheck

420 \edef\@filef@und{"#1" }%

421 \def\reserved@a{#21}

422 \fi

423 \reserved@a}

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 201

\@iffileonpath

(End definition for \IfFileExists@. This function is documented on page 77.)

If the file is not found by \openin, and \input@path is defined, look in all the directories
specified in \input@path.

24 \long\def\@iffileonpath#1{%

25 \let\reserved@a\@secondoftwo

26 \expandafter\@tfor\expandafter\reserved@b\expandafter

:\expandafter=\input@path\do{%

428 \openin\@inputcheck\expandafter\quote@name\expandafter{\reserved@b#1} %
420 \ifeof\@inputcheck\else

430 \edef\@filef@und{\expandafter\quote@name\expandafter{\reserved@#1} 1}/
431 \let\reserved@a\@firstoftwo,

432 \closein\@inputcheck

433 \@break@tfor

434 \fi}%

235 \reserved@a}

(End definition for \@iffileompath. This function is documented on page 77.)

4

&

4

o (/2ekernel | latexrelease)
7 (latexrelease)\EndIncludeInRelease

135 (latexrelease)\IncludeInRelease{0000/00/003}%

130 (latexrelease
o (latexrelease

4

{\quote@name}{Quote file names}

a1 (latexrelease)\let\quote@name\@undefined
w2 (latexrelease)\let\quote@@name\Qundefined
w3 (latexrelease)\let\unquote@name\Qundefined

s (latexrelease

us (latexrelease)\let\IfFileExists@\Qundefined

s (latexrelease

w7 (latexrelease)\long\def \IfFileExists#1#2#3{}

us (latexrelease
o (latexrelease
o (latexrelease
1 (latexrelease
52 (latexrelease
s (latexrelease

4

&

4

el

4

4

&

4

55 (latexrelease
o (latexrelease
w7 (latexrelease
ss (latexrelease
10 (latexrelease
w0 (latexrelease
1 (latexrelease

IS
&

4

\openin\@inputcheck#1 %
\ifeof\@inputcheck
\ifx\input@path\@undefined
\def\reserved@a{#3}%
\else
\def\reserved@a{\@iffileonpath{#1}{#2}{#3}}/
\fi
\else
\closein\@inputcheck
\edef\@filef@und{#1 }J,
\def\reserved@a{#2}Y
\fi
\reserved@a}

w2 (latexrelease)\long\def\@iffileonpath#1{Y

13 (latexrelease
s (latexrelease
105 (latexrelease
6 (latexrelease
w7 (latexrelease
s (latexrelease
w0 (latexrelease
a0 (latexrelease
a1 (latexrelease

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
e (latexrelease)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

\let\reserved@a\@secondoftwo
\expandafter\@tfor\expandafter\reserved@b\expandafter
:\expandafter=\input@path\do{’

\openin\@inputcheck\reserved@b#1 7
\ifeof\@inputcheck\else
\edef\@filef@und{\reserved@#1l }%
\let\reserved@a\@firstoftwo,
\closein\@inputcheck
\@break@tfor

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i

202

\InputIfFileExists

\@swaptwoargs

\input

\@iinput

\fi}%

\reserved@a}

latexrelease
latexrelease

()
()
s (latexrelease)
2)

72

473

Y]

latexrelease)\EndIncludeInRelease
*2ekernel)

75

476

Now define \InputIfFileExists to input #1 if it seems to exist. Immediately prior to
the input, #2 is executed. If the file #1 does not exist, execute ‘#3’.

This here is a temporary definition for the kernel. The real one comes somewhat
later in the file 1tfilehook.dtx.

277 \DeclareRobustCommand \InputIfFileExists[2]{%

478 \IfFileExists{#1}/,

479 {%

20 \expandafter\@swaptwoargs\expandafter

481 {\efilef@und}{#2\0@addtofilelist{#1}\@@inputl}}}

(End definition for \InputIfFileExists. This function is documented on page 77.)

Swap two arguments and return them unbraced (like \@firstoftwo etc).

482 (/2ekerne|)

13 (*2ekernel | latexrelease)

s+ (latexrelease) \IncludeInRelease{2019/10/01}},

5 (latexrelease) {\@swaptwoargs}{Don’t lose the file name});
46 \long\def\@swaptwoargs#1#2{#2#1}

4

a7 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
w0 (latexrelease) {\@swaptwoargs}{Don’t lose the file namel},
()
()

488

489

latexrelease)\let\@swaptwoargs\@undefined
latexrelease) \EndIncludeInRelease
103 (*2ekernel)

491

492

(End definition for \@swaptwoargs. This function is documented on page ?77.)

Input a file: if the argument is given in braces use safe input macros, otherwise use TEX’s
primitive \input command (which is called \@@input in I4TEX).

201 \def\input{\@ifnextchar\bgroup\@iinput\@@input}

(End definition for \input. This function is documented on page 77.)

Define \@iinput (i.e., \input) in terms of \InputIfIfileExists.
Changes to \@iinput: adapt to the changes to \@missingfileerror.

w05 (/2ekernel)

w6 (*2ekernel | latexrelease)

a7 (latexrelease) \IncludeInRelease{2020/10/01}},

105 (latexrelease) {\@iinput}{Change in file error handling}),
19 \def\@iinput#1{%

s0 \InputIfFileExists{#1}{}/,
so0. {\filename@parse\@curr@file

502 \edef\reserved@a{\noexpand\@missingfileerror
503 {\filename@area\filename@basel}’,
504 {\ifx\filename@ext\relax tex\else\filename@ext\fi}1}%

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 203

This line now just sets \@missingfile®@(part):
505 \reserved@a

Now here we have to use it. The file here is guaranteed to exist, because \@missingfileerror
ensures so, but we have to use \InputIfFileExists because it executes the file hooks.

506 \edef\reserved@a{\noexpand\@iinput{%
507 \@missingfile@area\@missingfile@base.\@missingfile@ext}}/,
508 \reserved@al}}

/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease

(
(
(latexrelease)\IncludeInRelease{2019/10/01}%
(latexrelease {\@iinput}{Quote file names},
(latexrelease
(latexrelease)\def\@iinput#1{%
(latexrelease) \InputIfFileExists{#1}{}/
(latexrelease) {\filename®@parse\@curr@file
(latexrelease \edef\reserved@a{\noexpand\@missingfileerror
(latexrelease {\filename@area\filename@basel}’,
s10 (latexrelease {\ifx\filename@ext\relax tex\else\filename®@ext\fi}}/
s20 (latexrelease \reserved@a}}
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
latexrelease)\EndIncludeInRelease
)
)
)
)
)
)
)
)
)
)

515

516

5

7

518

9

521

latexrelease)\IncludeInRelease{0000/00/00}%
{\@iinput}{Quote file names}%

522

latexrelease

latexrelease)\def\@iinput#1{%

\InputIfFileExists{#1}{}V

{\filename@parse{#1}%

\edef\reserved@a{\noexpand\@nissingfileerror
{\filename®@area\filename@basel},

latexrelease {\ifx\filename@ext\relax tex\else\filename@ext\fil}}/,

latexrelease \reserved@al}}

531 (latexrelease) \EndIncludeInRelease

522 (*2ekernel)

523

)

524
latexrelease
latexrelease
latexrelease

latexrelease

o
0

5
526
527
528
529

530

(End definition for \@iinput. This function is documented on page 77.)

\@input Define \@input in terms of \IfIfileExists. So this is a ‘safe input’ command, but the
files input are not listed by \listfiles.
We don’t want .aux, .toc files etc be listed by \listfiles. However, something
like .bbl probably should be listed and thus should be implemented not by \@input.
533 \def\@input#1{/,
532 \IfFileExists{#1}{\@@input\@filef@und}{\typeout{No file #1.}}}

(End definition for \@input. This function is documented on page 77.)

\@input@ Version of \@input that does add the file to \@filelist.
535 \def\@input@#1{\InputIfFileExists{#1}{}{\typeout{No file #1.}}}

(End definition for \@input@. This function is documented on page ?7.)

\@missingfileerror This ‘error’ command avoids TEX’s primitive missing file loop.
Missing file error. Prompt for a new filename, offering a default extension.
Changes to \@missingfileerror: rather than trying to input the file by force, now
\@missingfileerror just returns three \@missingfile@(part) and the caller macro is
responsible for doing the right thing with it.

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 204

536 {/2ekernel)

s37 (*2ekernel | latexrelease)

533 (latexrelease) \IncludeInRelease{2020/10/01}}

530 (latexrelease) {\@missingfileerror}{Do not load missing file immediately}),
50 \gdef\@missingfileerror#1#2{/

541 \typeout{~"J! LaTeX Error: File ‘#1.#2° not found." ~J~"J%

542 Type X to quit or <RETURN> to proceed,”"J%

543 or enter new name. (Default extension: #2)7~J})

544 \message{Enter file name: 1},

545 {\endlinechar\m@ne

546 \global\read\m@ne to\@gtempal},

547 \ifx\Ogtempa\Qempty

If the user answers with (return), fallback to the .tex file (previously it did nothing).
548 \let\@missingfile@area\Qempty

549 \let\@missingfile@base\Qempty

550 \def\@missingfile@ext{tex}%

551 \else

Use \batchmode\read-1 to (#) to end the TEX run, same as expl3 does (it was
\batchmode\@@end before).

552 \def\reserved@b{\batchmode\read-1 to \reserved@aly

553 \def\reserved@a{x}\ifx\reserved@a\@gtempa\reserved@b\fi
554 \def\reserved@a{X}\ifx\reserved@a\@gtempa\reserved@b\fi
555 \filename@parse\@gtempa

556 \edef\filename@ext{%

557 \ifx\filename®@ext\relax#2\else\filename@ext\fi}’

558 \edef\reserved@a{y,

Only check \IfFileExists (it was \InputIfFileExists).

559 \noexpand\IfFileExists

560 {\filename®@area\filename@base.\filename@extl}},

If the file exists, define \@missingfile@(part).

561 {\def\noexpand\@missingfile@area{\filename@arealy,
562 \def\noexpand\@nissingfile@base{\filename@basel}’
563 \def\noexpand\@missingfile@ext {\filename®@extl}}/
564 {\noexpand\@nissingfileerror

565 {\filename®@area\filename@base}{\filename@ext}}}%
566 \reserved@a

567 \fi

568 }

/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease

(
(
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\@missingfileerror}{Do not load missing file immediatelyl}’
(latexrelease)
(latexrelease)\gdef\@missingfileerror#1#2{%
s75 (latexrelease) \typeout{~"J! LaTeX Error: File ‘#1.#2’ not found. "J""JJ
(latexrelease) Type X to quit or <RETURN> to proceed,”"~J%
(latexrelease) or enter new name. (Default extension: #2)""J}}
(latexrelease) \message{Enter file name: }J,

(latexrelease) {\endlinechar\m@ne

(latexrelease) \global\read\m@ne to\@gtempal’,

(latexrelease) \ifx\Qgtempa\Qempty

580

581

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 205

\else
\def\reserved@a{x}\ifx\reserved@a\@gtempa\batchmode\@Q@end\fi
\def\reserved@a{X}\ifx\reserved@a\@gtempa\batchmode\@@end\fi
\filename@parse\Q@gtempa
\edef\filename@ext{’

\ifx\filename@ext\relax#2\else\filename@ext\fil}%
latexrelease \edef\reserved@a{’

latexrelease \noexpand\InputIfFileExists

(latexrelease)
()
()
()
()
()
—

so0 (latexrelease) {\filename@area\filename@base.\filename@ext}/
()
()
()
()
()
()
()

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

582

584
585
586
587

,,,,,

latexrelease 3%

latexrelease {\noexpand\@missingfileerror

latexrelease {\filename@area\filename@base}{\filename@ext}1}}%
latexrelease \reserved@a

latexrelease \fi}

latexrelease

507 {latexrelease)\EndIncludeInRelease

598 (*Zekernel)

595

596

(End definition for \@missingfileerror. This function is documented on page ?77.)

\@obsoletefile For compatibility with IXTEX 2.09 document styles, we distribute files called article. sty,
book.sty, report.sty, slides.sty and letter.sty. These use the command
\@obsoletefile, which produces a warning message.

s00 \def\Qobsoletefile#1#2{%
600 \@latex@warning@no@line{inputting ‘#1’ instead of obsolete ‘#2’}}
s01 \@onlypreamble\@obsoletefile

1.2 Listing files

A list of files input so far. The initial value of \@gobble eats the comma before the first
\efilelist file name.

62 \let\@filelist\@gobble

Add to the list of files input so far. This ‘real’ definition is only used for ‘cfg’ files during
\@addtofilelist initex. An initial definition of \@gobble has already been set.

603 %h\def\@addtofilelist#1{\xdef\@filelist{\@filelist,#1}}

A preamble command to cause \end{document} to list files input from the main file.

\listfiles ., \def\listfiles{%
605 \let\listfiles\relax
606 \def\@listfiles##1##2##3##4##5H##OHH#THH#SH#O\QC{Y,

607 \def\reserved@d{\\1}%

608 \@tfor\reserved@c: =##1##2##IH#AH#OHHOHH#TH##8\do{)
609 \ifx\reserved@c\reserved@d

610 \edef\filename@area{ \filename®@areal’,
611 \f 1}}%

612 \def\@dofilelist{%

613 \typeout{~"J *File Listx1}},

614 \@for\@currname:=\@filelist\do{%

615 \filename@parse\@currname

616 \edef\reserved@a{y

617 \filename@base.

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 206

618 \ifx\filename@ext\relax tex\else\filename@ext\fil}},

619 \expandafter\let\expandafter\reserved@b

620 \csname ver@\reserved®@a\endcsname

621 \expandafter\expandafter\expandafter\@listfiles\expandafter
622 \filename@area\filename@base\\\\\\\\\\\\\\\\\\\eo

623 \typeout{%

624 \filename@area\reserved@a

625 \ifx\reserved@b\relax\else\@spaces\reserved@b\fi}}%

626 \typeout{ skkxkskkikkk™"J}}}

The \@filelist will be de-activated if \1istfiles does not appear in the preamble
\begin{document} contains code equivalent to the following:

\AtBeginDocument{/,
\ifx\@listfiles\@undefined
\let\@filelist\relax
\let\@addtofilelist\@gobble
\fi}

527 \@onlypreamble\listfiles

\@dofilelist ; \let\@dofilelist\relax

oo (/2ekernel)

(End definition for \@obsoletefile and others. These functions are documented on page 77.)

File n: 1tfiles.dtx Date: 2020/08/21 Version v1.2i 207

File o
ltoutenc.dtx

1 Font encodings

This section of the kernel contains commands for declaring encoding-specific commands,
such as accents. It also contains the code for some of the encoding files, including
omlenc.def, omsenc.def, tlenc.def and otlenc.def files, which define the OLM, OMS,
T1 and 0T1 encodings, and the fontenc package for selecting encodings.

The fontenc package has options for encodings, of which the last option is the
default encoding. For example, to use the 0T2, 0T3 and T1 encodings, with T1 as the
default, you say:

\usepackage [0T2,0T3,T1]{fontenc}
The standard kernel set-up loads font encoding files and selects an encoding as follows.

\input {omlenc.def}
\input {tlenc.def}
\input {otlenc.def}
\input {omsenc.def}
\fontencoding{0T1}

Note that the files in the standard inputenc package depend on this behaviour of the
kernel.
The syntax for declaring encoding-specific commands is:

\DeclareTextCommand{(command)}{{encoding)}
[(number)] [{default)1{{commands)}

This command is like \newcommand, except that it defines a command which is specific
to one encoding. The resulting command is always robust, even if its definition is fragile.
For example, the definition of \1 in the 0T1 encoding is:

\DeclareTextCommand{\1}{0T1}{{\@xxxii 1}}
\DeclareTextCommand takes the same optional arguments as \newcommand.

\ProvideTextCommand{(command)}{{encoding)}
[(number)] [{default)]1{{commands)}

This acts like \DeclareTextCommand, but does nothing if the command is already defined.
\DeclareTextSymbol{{command)}I{(encoding)} (slot)}

This command defines a text symbol, with a particular slot in that encoding. The
commands:

\DeclareTextSymbol{\ss}{0T1}{25}
\DeclareTextCommand{\ss}{0T1}{\char25 }

have the same effect, but the \DeclareTextSymbol is faster.

\DeclareTextAccent{{command)}{(encoding)}{ (slot)}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 208

This command declares a text accent. The commands:

\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextCommand{\"}{0T1}{\add@accent {127}}

have the same effect.

\DeclareTextComposite{(command)}
{({encoding) H (argument)}{(slot)}

This command declares a composite letter, for example in the T1 encoding \’{a} is slot
225, which is declared by:

\DeclareTextComposite{\’}{T1}{a}{225}

The command will normally have been declared with \DeclareTextAccent, or as a one-
argument \DeclareTextCommand.

\DeclareTextComposite is the most common example of using the more general
declaration \DeclareTextCompositeCommand, which can define a composite to be an
arbitrary piece of text.

\DeclareTextCompositeCommand{(command)}
{{encoding) H {argument) }H (text)}

For example, in the OT1 encoding A has a hand-crafted definition this is declared as
follows

\DeclareTextCompositeCommand{\r}{0T1}{A}
{\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z0\advance\dimen@-1ex%
\rlap{\raise.67\dimen@\hbox{\char23}}A}

The command will normally have been declared with \DeclareTextAccent, or as a one-
argument \DeclareTextCommand.

The commands defined using the above declarations can be used in two ways. Nor-
mally they are used by just calling the command in the appropriate encoding, for example
\ss. However, sometimes you may wish to use a command in an encoding where it is
not defined. If the command has no arguments, then you can use it in another encoding
by calling \UseTextSymbol:

\UseTextSymbol{(encoding)}{{command)}
For example, \UseTextSymbol{0T1}{\ss} has the same effect as:
{\fontencoding{0T1}\selectfont\ss}

If the command has one argument then you can use it in another encoding by calling
\UseTextAccent:

\UseTextAccent{(encoding)}{(command)}{ (text)}

For example, if the current encoding is 0T2 then \UseTextAccent{0T1}{\’}{a} has the
same effect as:

{\fontencoding{0T1}\selectfont\’{\fontencoding{0T2}\selectfont a}}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 209

You can also declare a default definition for a text command, which will be used if the
current encoding has no appropriate definition. Such use will also set the definition
for this command in the current encoding to equal this default definition; this makes
subsequent uses of the command much faster.

\DeclareTextCommandDefault{{command)}{(definition)}

For example, the default definition of the command \textonequarter (which produces

the fraction %) could be built using math mode:

\DeclareTextCommandDefault{\textonequarter}{\ensuremath {\frac14}}

There is a matching \Provide command which will not override an existing default
definition:

\ProvideTextCommandDefault{{command)}{(definition)}

The most common use for these commands is to use symbols from other encodings, so
there are some optimizations provided:

\DeclareTextSymbolDefault{(command)}{encoding)}
\DeclareTextAccentDefault{(command)}{encoding)}

are short for:

\DeclareTextCommandDefault{({command)}
{\UseTextSymbol{(encoding)}{{command)}?}
\DeclareTextCommandDefault [1]{({command)}
{\UseTextAccent{(encoding)}H (command)}{#1}3}

For example, to make 0T1 the default encoding for \ss and \’ you say:

\DeclareTextSymbolDefault{\ss}{0T1}
\DeclareTextAccentDefault{\’}{0T1}

Note that you can use these commands on any zero- or one-argument commands declared
with \DeclareText* or \ProvideText*, not just those defined using \DeclareTextSymbol
or \DeclareTextAccent.

1.1 Removing encoding-specific commands

In some cases encoding definitions are given to provide some limited support since nothing
better is available, for example, the definition for \textdollar in OT1 is a hack since $
and £ actually share the same slot in this encoding. Thus if such a glyph becomes
available in a different encoding (e.g., TS1) one would like to get rid of the flacky one and
make the default definition point to the new encoding. In such a case defining

\DeclareTextSymbol{\textdollar}{TS1}{36}
\DeclareTextSymbolDefault{\textdollar}{TS1}

is not enough since if typesetting in 0T1 KTEX will still find the encoding specific-
definition for 0T1 and therefore ignore the new default. Therefore to ensure that in
this case the TS1 version is used we have to remove the 0T1 declaration:

\UndeclareTextCommand{\textdollar}{0T1}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 210

Since the $ sign is a proper glyph in the T1 encoding there is no point removing its
definition and forcing KTEX to pick up the TS1 version if typesetting in this encoding.
However, assume you want to use the variant dollar sign, i.e., $ for your dollars. In that
case you have to get rid of the T1 declaration as well, e.g., the following would do that
for you:

\UndeclareTextCommand{\textdollar}{0T1}

\UndeclareTextCommand{\textdollar} {T1}

\DeclareTextCommandDefault{\textdollar}
{\UseTextSymbol{TS1}\textdollaroldstyle}

1.2 The order of declarations

If an encoding-specific command is defined for more than one encoding, then it will
execute fastest in the encoding in which it was defined last since its top-level definition
will be set up to execute in that encoding without any overhead.

For this reason the file fonttext.ltx currently first loads the definitions for the
T1 encoding and then those for the 0T1 encoding so that typesetting in 0T1 is op-
timized since that is (still) the default. However, when T1 is explicitly requested
(via \usepackage[T1]{fontenc}) the top-level definitions are automatically changed
to favour T1 since its declarations are reloaded in the process.

For the same reason default declarations should never come last since they are im-
plemented as a special encoding themselves (with the name 7). Specifying them last
would simply mean to make those encoding-specific commands equally inefficient in all
encodings. Therefore the textcomp package, for example, first sets up all defaults to
point to TS1 and then declares the commands in the TS1 encoding.

1.3 Docstrip modules

This .dtx file is be used to generate several related files containing font encoding defini-
tions. The mutually exclusive docstrip options are listed here.

T1 generates tlenc.def for the Cork encoding.

TS1 generates tslenc.def for the Text Companion encoding.

TSisty generates textcomp.sty, package that sets up use of the Text
Companion encoding.

0T1 generates otlenc.def for Knuth’s CM encoding.

OMS generates omsenc.def for Knuth’s math symbol encoding.

OML generates omlenc.def for Knuth’s math letters encoding.

0T4 generates ot4enc.def for the Polish extension to the OT1 encod-

ing, created by B. Jackowski and M. Rycko for use with the Polish
version of Computer Modern and Computer Concrete.

TU generates tuenc.def for Unicode font encoding.

package generates fontenc.sty for selecting encodings.

2ekernel for the kernel commands.

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 211

\DeclareTextCommand
\ProvideTextCommand
\DeclareTextSymbol
\@dec@text@cmd
\chardef@text@cmd
\@changed@cmd
\@changed@x
\TextSymbolUnavailable
\@inmathwarn

1.4 Definitions for the kernel
1.4.1 Declaration commands

This section contains definitions for commands such as accents which depend on the
current encoding. These commands will usually be kept in .def files, for example
otlenc.def contains the definitions for the 0T1 encoding.

1 (*2ekernel)
> \message{font encodings,}

Far too many macros in one block here!
If you say:
\DeclareTextCommand{\foo}{T1}...

then \foo is defined to be \T1-cmd \foo \T1\foo, where \T1\foo is one control se-
quence, not two! We then call \newcommand to define \T1\foo.

3 \def\DeclareTextCommand{¥
4 \@dec@text@cmd\newcommand}

s \def\ProvideTextCommand{’
6 \@dec@text@cmd\providecommand}

7 \def\@dec@text@cmd#1#2#3{/,
8 \expandafter\def\expandafter#2y

9 \expandafter{’

10 \csname#3-cmd\expandafter\endcsname

1 \expandafter#2y

12 \csname#3\string#2\endcsname

13 jyA

14 \let\@ifdefinable\@rc@ifdefinable

15 \expandafter#1\csname#3\string#2\endcsname}

This command was introduced to fix a major bug in \@dec@text@cmd without changing
that command itself. This was thought to be necessary because it is defined in more than
one package. (Perhaps the more serious bug is to put complex low-level commands like
this in packages?)

The problem it solves is that whereas both \newcommand and \providecommand
(used just above) both handle the resetting of \@ifdefinable (following its disabling
in \@dec@text@cmd), the primitive \chardef neither needs the disabling, nor does the
resetting.

16 \def\chardef@text@cmd{’
7 \let\@ifdefinable\@@ifdefinable

18 \chardef

v ¥

20 \def\DeclareTextSymbol#1#2#3{%

21 \@dec@text@cmd\chardef@text@cmd#1{#2}#3\relax
» }

The declarations are only available before \begin{document}.

N}

\@onlypreamble\DeclareTextCommand
2« \@onlypreamble\DeclareTextSymbol

The sneaky bit in all this is what \T1-cmd \foo \T1\foo does. There are five possibili-
ties, depending on the current values of \protect, \cf@encoding and \ifmmode:

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 212

o If \protect is \@typeset@protect and \cf@encoding is T1, then we execute
\T1\foo. This should be the normal behaviour, and is optimized for speed.

o If \protect is \@typeset@protect, \cf@encoding is (say) 0T1, and \0T1\foo is
defined, then we execute \OT1\foo.

o If \protect is \@typeset@protect, \cf@encoding is (say) OT1, we're in text mode,
and \OT1\foo is undefined, then we define \OT1\foo to be the default value of \foo,
and execute \0T1\foo.

o If \protect is \@typeset@protect, \cf@encoding is (say) 0T1, we're in math
mode, and \OT1\foo is undefined, then we execute the default value of \foo. (This
is necessary so that things like X_\copyright work properly.)

e If \protect is not \@typeset@protect then we execute \noexpand\foo. For ex-
ample, if we are writing to a file, then this results in \foo being written. If we are
in a \mark, then \foo will be put in the mark—since \foo is robust, it will then
survive all the things which may happen to it whilst it’s a \mark.

So after all that, we will either execute the appropriate definition of \foo for the current
encoding, or we will execute \noexpand\foo.
The default value of \foo is \?\foo if it is defined, and an error message otherwise.
When the encoding is changed from T1 to 0T1, \T1-cmd is defined to be \@changed@cmd
and \OT1-cmd is defined to be \@current@cmd. This means that the test for what the
current encoding is can be performed quickly.

»s \def\@current@cmd#1{%

2 \ifx\protect\@typeset@protect

27 \@inmathwarn#1%

28 \else

29 \noexpand#1\expandafter\@gobble
30 \fi}

31 \def\@changed@cmd#1#2{/,
32 \ifx\protect\@typeset@protect

33 \@inmathwarn#1

34 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
35 \expandafter\ifx\csname 7\string#1\endcsname\relax

36 \expandafter\def\csname 7\string#1\endcsname{%

37 \TextSymbolUnavailable#1

38 }%

39 \fi

40 \global\expandafter\let

a \csname\cf@encoding \string#1\expandafter\endcsname
a2 \csname ?\string#1\endcsname

43 \fi

44 \csname\cf@encoding\string#1%

45 \expandafter\endcsname

46 \else

a7 \noexpand#17

48 \fi}

20 \gdef\TextSymbolUnavailable#1{%

50 \@latex@error{/

51 Command \protect#1 unavailable in encoding \cf@encodingy
52 F\eeha}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 213

\DeclareTextCommandDefault
\ProvideTextCommandDefault

\DeclareTextAccent

\add@accent

The command \@inmathwarn produces a warning message if we are currently in math
mode. Note that since this command is used inside text commands, it can’t call \relax
before the \ifmmode. This means that it is possible for the warning to fail to be issued at
the beginning of a row of an halign whose template enters math mode. This is probably
a bad feature, but there’s not much that can be done about it, since adding a \relax
would break ligatures and kerning between text symbols.

A more efficient solution would be to make \@inmathwarn and \@inmatherr equal
to \@empty and \relax by default, and to have \everymath reset them to their usual
definitions. This is left for future investigation (for example it may break some third
party code).

53 \def\@inmathwarn#1{%

54 \ifmmode
55 \@latex@warning{Command \protect#1 invalid in math model,
56 \fi}

(End definition for \DeclareTextCommand and others. These functions are documented on page 77.)

These define commands with encoding 7.
Note that \DeclareTextCommandDefault can only be used in the preamble, but that
the \Provide version is allowed in inputenc .def files, so is allowed anywhere.

57 \def\DeclareTextCommandDefault#1{Y
58 \DeclareTextCommand#17}

50 \def\ProvideTextCommandDefault#1{Y
60 \ProvideTextCommand#17}

61 \@onlypreamble\DeclareTextCommandDefault
> %\@onlypreamble\ProvideTextCommandDefault

o

They require \7-cmd to be initialized as \@changed@cmd.

o3 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

(End definition for \DeclareTextCommandDefault and \ProvideTextCommandDefault. These functions
are documented on page ?7.)

This is just a disguise for defining a TEX \accent command.

s« \def\DeclareTextAccent#1#2#3{)
65 \DeclareTextCommand#1{#2}{\add@accent{#3}}}

66 \@onlypreamble\DeclareTextAccent

(End definition for \DeclareTextAccent. This function is documented on page ?77.)

To save space this code is shared between all text accents that are set using the \accent
primitive. The argument is pre-set in a box so that any font loading that is needed is
already done within the box. This is needed because font-loading involves grouping and
that would prevent the accent mechanism from working so that the accent would not
be positioned over the argument. Declarations that change the font should be allowed
(only low-level ones are at present) inside the argument of an accent command, but not
size changes, as they involve \setbox operations which also inhibit the mechanism of the
\accent primitive.

Note that the whole process is within a group. For a detailed discussion of this
reimplementation and its deficiencies, see pr/3160.

o7 \def\add@accent#1#2{\hmode@bgroup

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 214

\hmode@bgroup

\DeclareTextCompositeCommand
\DeclareTextComposite
\@text@composite
\@text@composite@x
\@stripQargs

Turn off the group in \UseTextSymbol in case this is used inside the argument of
\add®@accent.

68 \let\hmode@start@before@group\@firstofone

69 \setbox\@tempboxa\hbox{#2/,
When presetting the argument in a box we record its \spacefactor for later use after
the accent got typeset. This way something like \ ‘A gets the spacefactor of A (i.e., 999)
rather than the default value of 1000.

70 \global\mathchardef\accent@spacefactor\spacefactorl}y,
The accent primitive doesn’t allow things \begingroup to interfere between accent
and base character. Therefore we need to avoid that (they are some hidden inside
\maybe@load@fontshape). As we don’t have to load the fontshape in this case (as that
happened in the box above if necessary, we simply disable that part of the code tempo-
raily. We also ignore \ignorespaces which has the same issue and may show up as part
of \normalfont if that is used.

71 \let\maybe@load@fontshape\relax

7 \let\ignorespaces\relax

73 \accent#1 #2\egroup\spacefactor\accent@spacefactor}

Default definition for \accent@spacefactor prevents a horrible death of the above

macro inside an unprotected \edef.

72 \let\accent@spacefactor\relax

(End definition for \add@accent. This function is documented on page ?7.)

75 \def \hmode@bgroup{\leavevmode\bgroup}

(End definition for \hmode@bgroup. This function is documented on page 77.)

Another amusing game to play with \expandafter, \csname, and \string. When you
say \DeclareTextCompositeCommand{\foo}{T1}{a}{bar}, we look to see if the expan-
sion of \T1\foo begins with \@text@composite, and if it doesn’t, we redefine \T1\foo
to be:

#1 -> \Qtext@composite \T1\foo #1\@empty \Q@text@composite {...}

where . . . is the previous definition of \T1\foo. Finally, we define \\T1\foo-a to expand
to bar.

76 (/2ekernel)
77 (latexrelease)\IncludeInRelease{2017/04/156}{\DeclareTextCompositeCommand}
s (latexrelease) {test for undeclared accent}%

70 (*2ekernel | latexrelease)

50 \def\DeclareTextCompositeCommand#1#2#3#4{J,

st \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
&2 \ifx\reserved@a\relax

83 \DeclareTextCommand#1{#2}{%

84 \@latex@error{\string#1 undeclared in encoding #2}\@ehalJ,

85 \@latex@info{Composite with undeclared \string#l in encoding #2}J
86 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
87 \fi

ss \expandafter\expandafter\expandafter\ifx

20 \expandafter\@car\reserved@a\relax\relax\@nil \@text@composite \else
9 \edef\reserved@b##1{%

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 215

o1 \def \expandafter\noexpand
% \csname#2\string#1\endcsname####1{/,
03 \noexpand\@text@composite

o \expandafter\noexpand\csname#2\string#1\endcsname
%5 ####1\noexpand\@empty\noexpand\@text@composite
% {##1}}Y
o7 \expandafter\reserved@b\expandafter{\reservedQa{##1}}/,
98 \fi
9 \expandafter\def\csname\expandafter\string\csname
100 #2\endcsname\string#1-\string#3\@empty\endcsname{#41}J,
101 }

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}{\DeclareTextCompositeCommand}
(latexrelease {test for undeclared accent}/
(latexrelease)\def\DeclareTextCompositeCommand#1#2#3#4{%
(latexrelease) \expandafter\let\expandafter\reserved@a
(latexrelease \csname#2\string#1\endcsname
(latexrelease) \expandafter\expandafter\expandafter\ifx
(latexrelease) \expandafter\@car\reserved@a\relax\relax\@nil
(latexrelease \@textQcomposite \else
(latexrelease \edef\reserved@b##1{/,
13 (latexrelease \def\expandafter\noexpand

(

(

(

(

(

(

(

(

(

(

(

\noexpand\@text@composite
\expandafter\noexpand\csname#2\string#1\endcsname
####1\noexpand\@empty\noexpand\@text@composite
{##1}33%

\expandafter\reserved@b\expandafter{\reservedQa{##1}}/,
\fi

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease \expandafter\def\csname\expandafter\string\csname
latexrelease #2\endcsname\string#1-\string#3\Q@empty\endcsname{#4}}
latexrelease) \EndIncludeInRelease

*2ekernel)

)
)
)
)
)
)
)
)
)
)
latexrelease) \csname#2\string#1\endcsname##t##1{}
:)
116 >
117 >
118 >
119 >
120 >
121 >
122 >
123 >

124

1

)

s \@onlypreamble\DeclareTextCompositeCommand

This all works because:
\@text@composite \T1\foo A\@empty \@text@composite {...}

expands to \\T1\foo-A if \\T1\foo-A has been defined, and {. ..} otherwise.

Note that \@text@composite grabs the first token of the argument and puts
just that in the csname. This is so that \’{\textit{e}} will work—it checks
whether \\T1\’-\textit is defined (which presumably it isn’t) and so expands to
{\accent 1 \textit{el}}.

This trick won’t always work, for example \’{{\itshape e}} will expand to (with
spaces added for clarity):

\csname \string \T1\’ - \string {\itshape e} \Qempty \endcsname

which will die pretty horribly. Unfortunately there’s not much can be done about this if
we're going to use \csname lookups as a fast way of accessing composites.

This has an unfortunate ‘misfeature’ though, which is that in the T1 encoding,
\’{aa} produces 4. This is not the expected behaviour, and should perhaps be fixed if
the fix doesn’t affect performance too badly.

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 216

\UseTextAccent
\UseTextSymbol
\Q@use@text@encoding

Finally, it’s worth noting that the \@empty is used in \@text@composite so that
accents will work even when the argument is empty. If you say \’{} then this looks up
\\T1\’-\@empty, which ought to be \relax, and so all is well. If we didn’t include the
\Q@empty, then \’{} would expand to:

\csname \string \T1\’ - \string \endcsname

so the \endcsname would be \string’ed and the whole of the rest of the document would
be put inside the \csname. This would not be good.

126 \def\@text@composite#1#2#3\Q@text@composited{),

127 \expandafter\Q@text@composite®x

128 \csname\string#1-\string#2\endcsname}

Originally the \@text@composite@x macro had two arguments and if #1 was not
\relax it was executed, otherwise #2 was executed. All this happened within the
\ifx code so that neither #1 nor #2 could have picked up any additional arguments
form the input stream. This has now being changed using the typical \@firstoftwo /
\@secondoftwo coding. This way the final expansion will happen without any \else or
\fi intervening in the case that we need to get a further token from the input stream.
120 \def\@text@composite@x#1{/

130 \ifx#1\relax

131 \expandafter\@secondoftwo

132 \else

133 \expandafter\@firstoftwo

134 \fi

135 #1}

The command \DeclareTextComposite uses \DeclareTextCompositeCommand to de-
clare a command which expands out to a single glyph.

136 \catcode\z@=11\relax

137 \def\DeclareTextComposite#1#2#3#4{/,
138 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}1}7

139 \bgroup
140 \lccode\z@#4Y,
141 \lowercase{%
142 \egroup

143 \reserved@a ~~@}}
112 \catcode\z@=15\relax

15 \@onlypreamble\DeclareTextComposite

(End definition for \DeclareTextCompositeCommand and others. These functions are documented on
page 77.)
16 (/2ekernel)
(*2ekernel | latexrelease)
s (latexrelease)\IncludeInRelease{2019/10/01}%
(latexrelease) {\UseTextAccent}{Make commands robust}),

147

1

=

149

These fragile commands access glyphs from different encodings. They use grotty low-
level calls to the font selection scheme for speed, and in order to make sure that
\UseTextSymbol doesn’t do anything which you’re not allowed to do between an \accent
and its glyph.

For a detailed discussion of this reimplementation and its deficiencies, see pr/3160.

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 217

\hmode@start@before@group

150 \DeclareRobustCommand*\UseTextAccent [3]1{/

151 \hmode@start@before@group

152 {%

Turn off the group in \UseTextSymbol in case this is used inside the arguments of
\UseTextAccent.

153 \let\hmode@start@before@group\@firstofone
154 \let\@curr@enc\cf@encoding

155 \Quse@text@encoding{#11}/,

156 #2{\QuseOtext@encoding\Q@curr@enc#31}Y

157 1}

155 \DeclareRobustCommand*\UseTextSymbol [2]{/

159 \hmode@start@before@group

160 {%

161 \def\@wrong@font@char{\MessageBreak
162 for \noexpand\symbol ‘\string#2’}/,
163 \@use@text@encoding{#1}/,

164 #2%

165 }%

166 }

167 (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\UseTextAccent}{Make commands robustl}/,
latexrelease

)
)
)
latexrelease) \kernel@make@fragile\UseTextAccent
)
)
)

1

68

169

170

71
172
latexrelease)\kernel@make@fragile\UseTextSymbol
latexrelease

latexrelease)\EndIncludeInRelease

*2ekernel)

173

74

(
(
(
(
(
(
(
(
75 <
6
Switch to a different text encoding without any grouping for use in \UseTextAccent
or \UseTextSymbol (and for \oldstylenums).

177 \def\@use@text@encoding#1{/,
178 \edef\f@encoding{#1}%

179 \xdef\font@name{’,

180 \csname\curr@fontshape/\f@size\endcsname}’
181 \pickup@font

162 \font@name

183 \@@enc@update}

(End definition for \UseTextAccent, \UseTextSymbol, and \@use@text@encoding. These functions are
documented on page ?77.)

The \hmode@start@before@group starts hmode and should be immediately followed by
an explicit {...}. Its purpose is to ensure that hmode is started before this group is
opened. Inside \add@accent and \UseTextAccent it is redefined to remove this group
so that it doesn’t conflict with the \accent primitive.

For a detailed discussion see pr/3160.

12« \let\hmode@start@before@group\leavevmode

(End definition for \hmode@start@before@group. This function is documented on page 77.)

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 218

\DeclareTextSymbolDefault
\DeclareTextAccentDefault

\UndeclareTextCommand

Some syntactic sugar. Again, these should probably be optimized for speed.

155 \def\DeclareTextSymbolDefault#1#2{/
186 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}}

187 \def\DeclareTextAccentDefault#1#2{/,
188 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}}

159 \@onlypreamble\DeclareTextSymbolDefault
100 \@onlypreamble\DeclareTextAccentDefault

(End definition for \DeclareTextSymbolDefault and \DeclareTextAccentDefault. These functions are
documented on page 77.)

This command safely removes an encoding specific declaration for a given encoding. It
is helpful if one intends to use the default definition always and therefore wants to get
rid of a declaration for some specific encoding.

101 \def\UndeclareTextCommand#1#2{Y

If there is no declaration for the current encoding do nothing. (This makes a hash table
entry but without e TEX we can’t do anything about that).

12 \expandafter\ifx\csname#2\string#1\endcsname\relax
103 \else

Else: throw away that declaration.

104 \global\expandafter\let\csname#2\string#1\endcsname

105 \@undefined

But this is unfortunately not enough, we have to take a look at the top-level definition
of the encoding specific command which for a command \foo would look similar to
\T1-cmd \foo \T1\foo (three tokens).

Of course, instead of T1 one could see a different encoding name; which one depends
the encoding for which \foo was declared last.

Now assume we have just removed the declaration for \foo in T1 and the top-level of
\foo expands to the above. Then we better change that pretty fast otherwise we do get
an “undefined csname error” when we try to typeset \foo within T1 instead of getting the
default definition for \foo. And what is the best way to change that top-level definition?
Well, the only “encoding” we know for sure will still be around is the default encoding
denoted by 7.

Thus in case the last token of the top-level expansion is now undefined we change the
declaration to look like \7-cmd \foo \?\foo which is done by the following (readable?)
code:

196 \expandafter\expandafter\expandafter

197 \ifx\expandafter\@thirdofthree#1\Qundefined

108 \expandafter\gdef\expandafter#i\expandafter

199 {\csname ?-cmd\expandafter\endcsname\expandafter
200 #1\csname?\string#1\endcsnamel}y,

201 \fi

200 \fi

203 }

200 \@onlypreamble\UndeclareTextCommand

(End definition for \UndeclareTextCommand. This function is documented on page 77.)

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 219

\patterns
\@@patterns
\hyphenation
\@@hyphenation

\a

1.4.2 Hyphenation

We redefine \patterns and \hyphenation to allow the use of commands declared with
\DeclareText* to be used inside them.

205 %h\let\@@patterns\patterns

206 %\let\@@hyphenation\hyphenation

207 %\def\patterns{%

208 % \bgroup

200 % \let\protect\@empty
20 % \let\@typeset@protect\Q@empty
21 \let\@changed@x\@changed0x@mouth

212 % \afterassignment\egroup
213 % \@Q@patterns

21 hY

215 % \def\hyphenation{%

26 % \bgroup

217 h \let\protect\Qempty
218 \let\@typeset@protect\Q@empty
219 % \let\@changed@x\@changed@x@mouth

20 % \afterassignment\egroup
221 % \@@hyphenation
222 %}

(End definition for \patterns and others. These functions are documented on page 77.)

1.4.3 Miscellania

The \a command is used to access the accent commands even when they have been rede-

fined (for example by the tabbing environment). Its internal name is \@tabacckludge.
The \string within the \csname guards against something like ’> being active at

the point of use.

223 \def\@tabacckludge#1{\expandafter\Q@changed@cmd

224 \csname\string#1\endcsname\relax}

225 \let\a=\@tabacckludge

(End definition for \a. This function is documented on page ?7.)

1.4.4 Default encodings

We define the default encodings for most commands to be either OT1, OML or OMS.
These defaults are in the kernel and therefore fonts with these encodings must be available
unless these defaults are redefined elsewhere. Recall that the standard kernel loads the
encoding files for these encodings, and also that for the T1 encoding.

The naming conventions in the kernel are not what we would use if we were starting
from scratch. .. Those defined by DEK (like \ae and \ss) or by the TgX Users Group
Technical Working Group on multi-lingual typesetting (like \th and \ng) have short
names. Those which were added to the kernel in 1993 and early 1994 are named after
their Adobe glyph names (like \guillemotleft and \quotedblbase). Unfortunately,
this naming scheme won’t work for all glyphs, since some names (like \space) are already
used, and some (like \endash) are very likely to be defined by users. So we’re now
using the naming scheme of \text followed by the Adobe name, (like \textendash and
\textsterling). Except that some glyphs don’t have Adobe names, so we'’re using the
names used by fontinst for those (like \textcompwordmark). Sigh.

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 220

226

239

Some accents from OT1:

\DeclareTextAccentDefault{\"}{0T1}
\DeclareTextAccentDefault{\’}{0T1}

s \DeclareTextAccentDefault{\.}{0T1}

\DeclareTextAccentDefault{\=}{0T1}
\DeclareTextAccentDefault{\H}{0T1}
\DeclareTextAccentDefault{\"}{0T1}
\DeclareTextAccentDefault{\‘}{0T1}
\DeclareTextAccentDefault{\b}{0T1}
\DeclareTextAccentDefault{\c}{0T1}
\DeclareTextAccentDefault{\d}{0T1}
\DeclareTextAccentDefault{\r}{0T1}
\DeclareTextAccentDefault{\u}{0T1}

; \DeclareTextAccentDefault{\v}{0T1}

\DeclareTextAccentDefault{\~}{0T1}

Some symbols from OT1:

240

241

242

244

245

265

266

%\DeclareTextSymbolDefault{\AA}{0T1}
\DeclareTextSymbolDefault{\AE}{0T1}
\DeclareTextSymbolDefault{\L}{0T1}

s \DeclareTextSymbolDefault{\OE}{0T1}

\DeclareTextSymbolDefault{\0}{0T1}
%\DeclareTextSymbolDefault{\aa}{0T1}
\DeclareTextSymbolDefault{\ae}{0T1}
\DeclareTextSymbolDefault{\i}{0T1}

¢ \DeclareTextSymbolDefault{\j}{0T1}

\DeclareTextSymbolDefault{\ij}{0T1}
\DeclareTextSymbolDefault{\IJ}{0T1}

\DeclareTextSymbolDefault{\1}{0T1}
\DeclareTextSymbolDefault{\oe}{0T1}
\DeclareTextSymbolDefault{\o}{0T1}

252 \DeclareTextSymbolDefault{\ss}{0T1}

\DeclareTextSymbolDefault{\textdollar}{0T1}
\DeclareTextSymbolDefault{\textemdash}{0T1}
\DeclareTextSymbolDefault{\textendash}{0T1}

; \DeclareTextSymbolDefault{\textexclamdown}{0T1}

%\DeclareTextSymbolDefault{\texthyphenchar}{0T1}

) %\DeclareTextSymbolDefault{\texthyphen}{0T1}

\DeclareTextSymbolDefault{\textquestiondown}{0T1}
\DeclareTextSymbolDefault{\textquotedblleft}{0T1}

23 \DeclareTextSymbolDefault{\textquotedblright}{0T1}

\DeclareTextSymbolDefault{\textquoteleft}{0T1}
\DeclareTextSymbolDefault{\textquoteright}{0T1}
\DeclareTextSymbolDefault{\textsterling}{0T1}

Some symbols from OMS:

)

67

268

269

[N

70
271
279

272

273

\DeclareTextSymbolDefault{\textasteriskcentered}{0MS}
\DeclareTextSymbolDefault{\textbackslash}{0OMS}
\DeclareTextSymbolDefault{\textbar}{0MS}
\DeclareTextSymbolDefault{\textbardbl}{0MS}
\DeclareTextSymbolDefault{\textbraceleft}{0MS}
\DeclareTextSymbolDefault{\textbraceright}{0MS}
\DeclareTextSymbolDefault{\textbullet}{0OMS}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 221

272 \DeclareTextSymbolDefault{\textdaggerdbl}{0MS}

275 \DeclareTextSymbolDefault{\textdagger}{0OMS}

276 \DeclareTextSymbolDefault{\textparagraph}{0MS}

277 \DeclareTextSymbolDefault{\textperiodcentered}{0MS}
27 \DeclareTextSymbolDefault{\textsection}{0OMS}

270 \DeclareTextAccentDefault{\textcircled}{OMS}

Some symbols from OML:
50 \DeclareTextSymbolDefault{\textless}{OML}

251 \DeclareTextSymbolDefault{\textgreater}{0OML}
232 \DeclareTextAccentDefault{\t}{OML}

Some defaults we can fake.
The interface for defining \copyright changed, it used to use \expandafter to add
braces at the appropriate points.

23 \DeclareTextCommandDefault{\textcopyright}{\textcircled{c}}
234 4 \expandafter\def\expandafter
285 \copyright\expandafter{\expandafter{\copyright}}

236 \DeclareTextCommandDefault{\textasciicircum}{\"{}}
257 \DeclareTextCommandDefault{\textasciitilde}{\~{}}
235 \DeclareTextCommandDefault{\textunderscore}{/,

20 \leavevmode \kern.O6em\vbox{\hrule\@width.3em}}

There is no good reason anymore to fake \textcompwordmark.

200 % \DeclareTextCommandDefault{\textcompwordmark}{\leavevmode\kern\z@}
201 \DeclareTextSymbolDefault{\textcompwordmark}{T1}

202 \DeclareTextCommandDefault{\textvisiblespace}{/,
203 \mbox{\kern.06em\vrule \@height.3ex}},

204 \vbox{\hrule \@width.3em}}

205 \hbox{\vrule \@height.3ex}}

Using \fontdimen3 in the next definition is some sort of a kludge (since it is the
interword stretch) but it makes the ellipsis come out right in mono-spaced fonts too (since
there it is zero).

205 \DeclareTextCommandDefault{\textellipsis}{%
207 .\kern\fontdimen3\font

208 .\kern\fontdimen3\font

209 .\kern\fontdimen3\font}

s00 %\DeclareTextCommandDefault{\textregistered}{\textcircled{\scshape r}}
;00 \DeclareTextCommandDefault{\textregistered}{\textcircled{%

302 \check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}
s0: \DeclareTextCommandDefault{\texttrademark}{TM}

304+ \DeclareTextCommandDefault{\SS}{SS}

305 \DeclareTextCommandDefault{\textordfeminine}{al}
306 \DeclareTextCommandDefault{\textordmasculine}{o}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 222

1.4.5 Math material

Some commands can be used in both text and math mode:
507 \DeclareRobustCommand{\$}{\ifmmode\mathdollar\else\textdollar\fi}

We use \protected not \DeclareRobustCommand so that \bigl\{ etc. works inside
\protected@edef.

s0s \protected\def\{{\ifmmode\lbrace\else\textbraceleft\fi}
;00 \protected\def\}{\ifmmode\rbrace\else\textbraceright\fi}

s10 \DeclareRobustCommand{\P}{\ifmmode\mathparagraph\else\textparagraph\fi}
511 \DeclareRobustCommand{\S}{\ifmmode\mathsection\else\textsection\fi}

s12 \DeclareRobustCommand{\dag}{\ifmmode{\dagger}\else\textdagger\fi}

513 \DeclareRobustCommand{\ddag}{\ifmmode{\ddagger}\else\textdaggerdbl\fi}

For historical reasons \copyright needs {} around the definition in maths.

512 \DeclareRobustCommand{_}{%

315 \ifmmode\nfss@text{\textunderscore}\else\textunderscore\fi}
s16 \DeclareRobustCommand{\copyright}{/

317 \ifmmode{\nfss@text{\textcopyright}}\else\textcopyright\fil}
;31e \DeclareRobustCommand{\pounds}{%

319 \ifmmode\mathsterling\else\textsterling\fi}

120 \DeclareRobustCommand{\dots}{%
31 \ifmmode\mathellipsis\else\textellipsis\fi}

122 \let\ldots\dots

Default definition of the commabelow accent.

23 (/2ekernel)

224 (latexrelease)\IncludeInRelease{2015/10/01}{\textcommabelow}{comma accent}/,
25 (*2ekernel | latexrelease)

326 \DeclareTextCommandDefault\textcommabelow[1]

227 {\hmode@bgroup\ooalign{\null#i\crcr\hidewidth\raise-.31ex

328 \hbox{\check@mathfonts\fontsize\ssf@size\zQ

329 \math@fontsfalse\selectfont,}\hidewidth}\egroup}

latexrelease) \EndIncludeInRelease

/2ekernel | latexrelease)
latexrelease)\IncludeInRelease{0000/00/00}{\textcommabelow}{comma accent}
latexrelease)\let\textcommabelow\@undefined

latexrelease) \expandafter

latexrelease) \let\csname\string\T1\string\c-G\endcsname\@undefined
latexrelease) \expandafter

latexrelease) \let\csname\string\T1\string\c-K\endcsname\@undefined
latexrelease)\expandafter

latexrelease) \let\csname\string\T1\string\c-k\endcsname\@undefined
latexrelease) \expandafter

latexrelease) \let\csname\string\T1\string\c-L\endcsname\@undefined
latexrelease) \expandafter

latexrelease) \let\csname\string\T1\string\c-1l\endcsname\@undefined
latexrelease)\expandafter

latexrelease) \let\csname\string\T1\string\c-N\endcsname\@undefined
latexrelease) \expandafter

latexrelease) \let\csname\string\T1\string\c-n\endcsname\@undefined
latexrelease) \expandafter

latexrelease)

345

346

347

348

o~ o~~~ o~~~ o~ o~~~ o~~~ o~~~ o~

\let\csname\string\T1\string\c-R\endcsname\Qundefined

349

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 223

50 (latexrelease)\expandafter
51 (latexrelease) \let\csname\string\T1\string\c-r\endcsname\@undefined
s52 (latexrelease)\EndIncludeInRelease

&

Default definition of the commaabove accent(E.G.).

53 (latexrelease)\IncludeInRelease{2016/02/01}{\textcommaabove}{comma abovel}%
354 (*2ekernel | latexrelease)

55 \DeclareTextCommandDefault\textcommaabove [1]{%

356 \hmode@bgroup

\ooalign{%

358 \hidewidth

359 \raise.7ex\hbox{%

360 \check@mathfonts\fontsize\ssf@size\z0@\math@fontsfalse\selectfont ‘%
361 }%

&

o)
S

362 \hidewidth\crcr
363 \null#i\crcr

364 Y%

%5 \egroup

366 F

latexrelease) \EndIncludeInRelease

/2ekernel | latexrelease)
latexrelease)\IncludeInRelease{0000/00/00}{\textcommaabove}{comma abovel}
latexrelease)\let\textcommaabove\@undefined

(
(
(
(
;71 (latexrelease
(
(
(
(

)

)\expandafter
7~ (latexrelease) \let\csname\string\O0T1\string\c-g\endcsname\@undefined
s (latexrelease)\expandafter
;72 (latexrelease) \let\csname\string\T1\string\c-g\endcsname\@undefined
s75 (latexrelease)\EndIncludeInRelease

1.5 Definitions for the OT1 encoding

The definitions for the ‘TEX text’ (OT1) encoding.
Declare the encoding.

o (*OT1)

s77 \DeclareFontEncoding{OT1}{}{}

Declare the accents.

375 \DeclareTextAccent{\"}{0T1}{127}
379 \DeclareTextAccent{\’}{0T1}{19}
30 \DeclareTextAccent{\.}{0T1}{95}
331 \DeclareTextAccent{\=}{0T1}{22}
32 \DeclareTextAccent{\~}{0T1}{94}
333 \DeclareTextAccent{\‘}{0T1}{18}
332 \DeclareTextAccent{\~}{0T1}{126}
335 \DeclareTextAccent{\H}{0T1}{125}
156 \DeclareTextAccent{\u}{0T1}{21}
337 \DeclareTextAccent{\v}{0T1}{20}
338 \DeclareTextAccent{\r}{0T1}{23}

Some accents have to be built by hand: Note that \ooalign and \o@lign must be inside
a group. In these definitions we no longer use the helper function \sh@ft from plain.tex
since that now has two incompatible definitions.

330 \DeclareTextCommand{\b}{0T1}[1]
390 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-3ex}/,

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 224

301 \vbox to.2ex{\hbox{\char22}\vss}\hidewidth}\egroup}
300 \DeclareTextCommand{\c}{0T1}[1]
303 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent24 #1

304 \else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}

305 \DeclareTextCommand{\d}{0T1}[1]

396 {\hmode@bgroup

307 \o@lign{\relax#1i\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}

Declare the text symbols.

;08 \DeclareTextSymbol{\AE}{0T1}{29}
300 \DeclareTextSymbol{\OE}{0T1}{30}
200 \DeclareTextSymbol{\O}{0OT1}{31}
201 \DeclareTextSymbol{\ae}{0T1}{263}
202 \DeclareTextSymbol{\i}{0T1}{163}
203 \DeclareTextSymbol{\j}{0T1}{17}
204 \DeclareTextSymbol{\oe}{0T1}{27}
205 \DeclareTextSymbol{\o}{0T1}{28}
206 \DeclareTextSymbol{\ss}{0T1}{25}
207 \DeclareTextSymbol{\textemdash}{0T1}{124}
205 \DeclareTextSymbol{\textendash}{0T1}{123}

Using the ligatures helps with OT1 fonts that have \textexclamdown and \textquestiondown
in unusual positions.

200 %\DeclareTextSymbol{\textexclamdown}{0T1}{60}

210 %\DeclareTextSymbol{\textquestiondown}{0T1}{62}
211 \DeclareTextCommand{\textexclamdown}{OT1}{! ‘}

21> \DeclareTextCommand{\textquestiondown}{0T1}{?‘}
213 %\DeclareTextSymbol{\texthyphenchar}{0T1}{‘\-}
214 %\DeclareTextSymbol{\texthyphen}{0T1}{‘\-}

215 \DeclareTextSymbol{\textquotedblleft}{0T1}{92}
216 \DeclareTextSymbol{\textquotedblright}{0T1}{‘\"}
217 \DeclareTextSymbol{\textquoteleft}{OT1}{‘\‘}

215 \DeclareTextSymbol{\textquoteright}{0T1}{‘\’}

Some symbols which are faked from others:

219 % \DeclareTextCommand{\aa}{0T1}

a20 % {{\accent23a}}

121 \DeclareTextCommand{\L}{0T1}

422 {\leavevmode\setbox\z@\hbox{L}\hbext@\wd\z@{\hss\@xxxii L}}

123 \DeclareTextCommand{\1}{0T1}

424 {\hmode@bgroup\@xxxii 1l\egroup}

25 % \DeclareTextCommand{\AA}{OT1}

a6 % {\leavevmode\setbox\z@\hbox{h}\dimen@\ht\z@\advance\dimen@-1ex},
27 % \rlap{\raise.67\dimen@\hbox{\char23}}A}

In the OT1 encoding A has a hand-crafted definition, so we have here the first recorded
explicit use of \DeclareTextCompositeCommand.

25 \DeclareTextCompositeCommand{\r}{0T1}{A}

429 {\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z0@\advance\dimen@-1ex}

430 \rlap{\raise.67\dimen@\hbox{\char23}}A}

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the
0T1 encoded fonts. Therefor we fake it for the 0T1 encoding.

231 \DeclareTextCommand{\ij}{0T1}{%

222 \nobreak\hskip\z@skip i\kern-0.02em j\nobreak\hskip\z@skip}

233 \DeclareTextCommand{\IJ}{0OT1}{%

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 225

232 \nobreak\hskip\z@skip I\kern-0.02em J\nobreak\hskip\z@skip}
In the OT1 encoding, £ and $ share a slot.

235 \DeclareTextCommand{\textdollar}{0T1}{\hmode@bgroup
436 \ifdim \fontdimen\@ne\font >\z@

437 \slshape
438 \else

439 \upshape
440 \fi

aa1 \char ‘\$\egroup}
22 \DeclareTextCommand{\textsterling}{0T1}{\hmode@bgroup

443 \ifdim \fontdimen\@ne\font >\z®@
444 \itshape

445 \else

446 \fontshape{ui}\selectfont

447 \fi

448 \char‘\$\egroup}

Here we are adding some more composite commands to the 0T1 encoding. This
makes the use of certain accents with i compatible with their use with the T1 encoding;
this enables them to become true TEX internal representations. However, it will make
these accents work a little less fast since a check will always be made for the existence of
a composite.

210 \DeclareTextComposite{\.}}HOT1Hi} {\i}

250 \DeclareTextComposite{\.}{OT1H{\i}{\i}

11 \DeclareTextCompositeCommand{\ ‘}{0T1}{i}{\@tabacckludge‘\i}
252 \DeclareTextCompositeCommand{\’}{0T1}{i}{\@tabacckludge’\i}
253 \DeclareTextCompositeCommand{\“}{OT1}{i}{\"\i}

15« \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}

T1 encoding is given more extensive set of overloads for \c But here we just adjust
\c{g}.
255 \ifx\textcommaabove\@undefined\else
256 \DeclareTextCompositeCommand{\c}{0T1}{g}{\textcommaabove{g}t}
457 \fi

458 </OT1>

1.6 Definitions for the T1 encoding

The definitions for the ‘Extended TEX text’ (T1) encoding.
Declare the encoding.

459 <*T1>
260 \DeclareFontEncoding{T1}{}{}

Declare the accents.

161 \DeclareTextAccent{\‘}{T1}{0}
12 \DeclareTextAccent{\’}{T1}{1}
163 \DeclareTextAccent{\"}{T1}{2}
464 \DeclareTextAccent{\~}{T1}{3}
165 \DeclareTextAccent{\"}{T1}{4}
166 \DeclareTextAccent{\H}{T1}{5}
17 \DeclareTextAccent{\r}{T1}{6}
168 \DeclareTextAccent{\v}{T1}{7}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 226

10 \DeclareTextAccent{\u}{T1}{8}
170 \DeclareTextAccent{\=}{T1}{9}
471 \DeclareTextAccent{\.}{T1}{10}

Some accents have to be built by hand. Note that \ooalign and \o@lign must be inside
a group. In these definitions we no longer use the helper function \sh@ft from
plain.tex since that now has two incompatible definitions.

272 \DeclareTextCommand{\b}{T1}[1]

473 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-3ex}/
474 \vbox to.2ex{\hbox{\char9}\vss}\hidewidth}\egroup}

275 \DeclareTextCommand{\c}{T1}[1]

476 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent1l #1,
a7 \else{\ooalign{\unhbox\z@\crcr

478 \hidewidth\charii\hidewidth}}\fi}

479 \DeclareTextCommand{\d}{T1}[1]

480 {\hmode@bgroup

481 \o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}
22 \DeclareTextCommand{\k}{T1}[1]

483 {\hmode@bgroup\ooalign{\null#i\crcr\hidewidth\chari2}\egroup}
s« \DeclareTextCommand{\textogonekcentered}{T1}[1]

485 {\hmode@bgroup\ooalign{’

486 \null#1\crcr\hidewidth\chari2\hidewidthl}\egroup}

Some symbols are constructed.
Slot 24 contains a small circle intended for construction of these two glyphs.

«s7 \DeclareTextCommand{\textperthousand}{T1}

488 {\%\char 24 } % space or ‘relax as delimiter?
250 \DeclareTextCommand{\textpertenthousand}{T1}

490 {\%\char 24\char 24 } 7, space or ‘relax as delimiter?

For Maltese, \Hwithstroke and \hwithstroke are needed.
101 \DeclareTextCommand{\Hwithstroke}{T1}

492 %

493 \hmode@bgroup

494 \vphantom{H}%

495 \SbOX\Z@{H}%

496 \ooalign{%

497 H\cr

498 \hidewidth

499 \vrule

500 height \dimexpr 0.7\ht\z@+0.lex\relax
501 depth -0.7\ht\z@
502 width 0.8\wd\z@
503 \hidewidth\cr

504 Y

505 \egroup

506 }

507 \DeclareTextCommand{\hwithstroke}{T1}
508 {%

509 \hmode®@bgroup

510 \vphantom{h}/,

511 \sbox\z@{h}%

512 \ooalign{¥

513 h\cr

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 227

\kern0.075\wd\z@
\vrule
height \dimexpr 0.7\ht\z@+0.lex\relax
depth -0.7\ht\z@
width 0.4\wd\z@
\hidewidth\cr
Yh
\egroup
}

Declare the text symbols.

5 %\DeclareTextSymbol{\AA}{T1}{197}

\DeclareTextSymbol{\AE}{T1}{198}

s \DeclareTextSymbol{\DH}{T1}{208}

\DeclareTextSymbol{\DJ}{T1}{208}
\DeclareTextSymbol{\L}{T1}{138}

s2s \DeclareTextSymbol{\NG}{T1}{141}

\DeclareTextSymbol{\OE}{T1}{215}
\DeclareTextSymbol{\0}{T1}{2163}
\DeclareTextSymbol{\SS}{T1}{223}

> \DeclareTextSymbol{\TH}{T1}{222}

%\DeclareTextSymbol{\aa}{T1}{229}
\DeclareTextSymbol{\ae}{T1}{230}

5 \DeclareTextSymbol{\dh}{T1}{240}
536 \DeclareTextSymbol{\dj}{T1}{158}

\DeclareTextSymbol{\guillemetleft}{T1}{19}

s \DeclareTextSymbol{\guillemetright}{T1}{20}

% old Adobe names
\DeclareTextSymbol{\guillemotleft}{T1}{19}
\DeclareTextSymbol{\guillemotright}{T1}{20}

\DeclareTextSymbol{\guilsinglleft}{T1}{14}
\DeclareTextSymbol{\guilsinglright}{T1}{15}
\DeclareTextSymbol{\i}{T1}{25}

5 \DeclareTextSymbol{\j}{T1}{26}

\DeclareTextSymbol{\ij}{T1}{188}
\DeclareTextSymbol{\IJ}{T1}{156}
\DeclareTextSymbol{\1}{T1}{170}
\DeclareTextSymbol{\ng}{T1}{173}
\DeclareTextSymbol{\oe}{T1}{247}
\DeclareTextSymbol{\o}{T1}{248}
\DeclareTextSymbol{\quotedblbase}{T1}{18}

s \DeclareTextSymbol{\quotesinglbase}{T1}{13}
ss« \DeclareTextSymbol{\ss}{T1}{255}

\DeclareTextSymbol{\textasciicircum}{T1}{‘\"}
\DeclareTextSymbol{\textasciitilde}{T1}{‘\~}

7 \DeclareTextSymbol{\textbackslash}{T1}{‘\\}
555 \DeclareTextSymbol{\textbar}{T1}{‘\ |}

\DeclareTextSymbol{\textbraceleft}H{T1}{‘\{}

sco \DeclareTextSymbol{\textbraceright}{T1}{‘\}}

\DeclareTextSymbol{\textcompwordmark}{T1}{23}

> \DeclareTextSymbol{\textdollar}{T1}{‘\$}

\DeclareTextSymbol{\textemdash}{T1}{22}
\DeclareTextSymbol{\textendash}{T1}{21}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

228

s6s \DeclareTextSymbol{\textexclamdown}{T1}{189}
s66 \DeclareTextSymbol{\textgreater}{T1}{‘\>}

s67 % \DeclareTextSymbol{\texthyphenchar}{T1}{127}
ses % \DeclareTextSymbol{\texthyphen}{T1}{‘\-}

se0 \DeclareTextSymbol{\textless}{T1}{‘\<}

s70 \DeclareTextSymbol{\textquestiondown}{T1}{190}
s71 \DeclareTextSymbol{\textquotedblleft}{T1}{163}
s \DeclareTextSymbol{\textquotedblright}{T1}{173}
s73 \DeclareTextSymbol{\textquotedbl}{T1}{‘\"}

s+ \DeclareTextSymbol{\textquoteleft}{T1}{‘\‘}

575 \DeclareTextSymbol{\textquoteright}{T1}{‘\’}
s76 \DeclareTextSymbol{\textsection}{T1}{159}

s77 \DeclareTextSymbol{\textsterling}{T1}{191}

575 \DeclareTextSymbol{\textunderscore}{T1}{95}

s79 \DeclareTextSymbol{\textvisiblespace}{T1}{32}
s30 \DeclareTextSymbol{\th}{T1}{254}

Declare the composites.

ss1 \DeclareTextComposite{\.}{T1Hi}{\i}
se2 \DeclareTextComposite{\.HT1}H\i}{‘\i}

"80 = 128

533 \DeclareTextComposite{\u}t{T1}{A}{128}
ses \DeclareTextComposite{\k}{T1}{A}{129}
s35 \DeclareTextComposite{\’}{T1}{C}{130}
ss6 \DeclareTextComposite{\v}{T1}{C}{131}
se7 \DeclareTextComposite{\v}{T1}{D}{132}
sss \DeclareTextComposite{\v}{T1}{E}{133}
539 \DeclareTextComposite{\k}{T1}{E}{134}
s00 \DeclareTextComposite{\u}{T1}{G}{135}

"88 = 136

501 \DeclareTextComposite{\’}{T1}{L}{136}
s> \DeclareTextComposite{\v}{T1}{L}{137}
503 \DeclareTextComposite{\’}{T1}{N}{139}
504 \DeclareTextComposite{\v}{T1}{N}{140}
sos \DeclareTextComposite{\H}{T1}{0}{142}
s0s \DeclareTextComposite{\’}{T1}{R}{143}

"90 = 144

so7 \DeclareTextComposite{\v}{T1}{R}{144}
s0s \DeclareTextComposite{\’}{T1}{S}{145}
5009 \DeclareTextComposite{\v}{T1}{S}{146}
\DeclareTextComposite{\c}{T1}{S}{147}
s \DeclareTextComposite{\v}{T1}{T}{148}
s> \DeclareTextComposite{\c}HT1}{T}{149}
603 \DeclareTextComposite{\H}{T1}{U}{150}
s0s+ \DeclareTextComposite{\r}{T1}{U}{151}

"98 = 152

605 \DeclareTextComposite{\"}{T1}{Y}{152}
s0s \DeclareTextComposite{\’}{T1}{Z}{153}
s07 \DeclareTextComposite{\v}{T1}{Z}{154}
o5 \DeclareTextComposite{\.}{T1}{Z}{155}
600 \DeclareTextComposite{\.}}HT1}{I}{157}

60C

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 229

"AO = 160

610 \DeclareTextComposite{\u}{T1}{a}{160}
611 \DeclareTextComposite{\k}{T1}{a}{161}
612 \DeclareTextComposite{\’}{T1}{c}{162}
613 \DeclareTextComposite{\v}{T1}{c}{163}
614 \DeclareTextComposite{\v}{T1}{d}{164}
615 \DeclareTextComposite{\v}{T1}{e}{165}
616 \DeclareTextComposite{\k}{T1}{e}{166}
617 \DeclareTextComposite{\u}{T1}{g}{167}

"A8 = 168

e15 \DeclareTextComposite{\’}{T1}{1}{168}
619 \DeclareTextComposite{\v}{T1}{1}{169}
o0 \DeclareTextComposite{\’}{T1}{n}{171}
o1 \DeclareTextComposite{\v}{T1}{n}{172}
622 \DeclareTextComposite{\H}{T1}{o}{174}
623 \DeclareTextComposite{\’}{T1}{r}{175}

"BO = 176

o2« \DeclareTextComposite{\v}{T1}{r}{176}
625 \DeclareTextComposite{\’}{T1}{s}{177}
o6 \DeclareTextComposite{\v}{T1}{s}{178}
527 \DeclareTextComposite{\c}HT1}{s}{179}
02 \DeclareTextComposite{\v}{T1}{t}{180}
020 \DeclareTextComposite{\c}H{T1}{t}{181}
630 \DeclareTextComposite{\H}{T1}{u}{182}
631 \DeclareTextComposite{\r}{T1}{u}{183}

"B8 = 184

622 \DeclareTextComposite{\"}{T1}{y}{184}
633 \DeclareTextComposite{\’}{T1}{z}{185}
632 \DeclareTextComposite{\v}{T1}{z}{186}
635 \DeclareTextComposite{\.}{T1}{z}{187}

"CO = 192

63 \DeclareTextComposite{\ ‘}{T1}{A}{192}
637 \DeclareTextComposite{\’}{T1}{A}{193}
63z \DeclareTextComposite{\"}{T1}{A}{194}
630 \DeclareTextComposite{\~}{T1}{A}{195}
610 \DeclareTextComposite{\"}{T1}{A}{196}
621 \DeclareTextComposite{\r}{T1}{A}{197}
6> \DeclareTextComposite{\c}H{T1}{C}{199}

"C8 = 200

613 \DeclareTextComposite{\ ‘}{T1}{E}{200}
644 \DeclareTextComposite{\’}{T1}{E}{201}
615 \DeclareTextComposite{\"}{T1}{E}{202}
s16 \DeclareTextComposite{\"}{T1}{E}{203}
67 \DeclareTextComposite{\ ‘}{T1}{I}{204}
615 \DeclareTextComposite{\’}{T1}{I}{205}
610 \DeclareTextComposite{\"}{T1}{I}{206}
es0 \DeclareTextComposite{\"}{T1}{I}{207}

"DO = 208

651 \DeclareTextComposite{\~}{T1}{N}{209}
65> \DeclareTextComposite{\‘}{T1}{0}{210}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 230

653 \DeclareTextComposite{\’}{T1}{0}{211}
652 \DeclareTextComposite{\"}{T1}{0}{212}
655 \DeclareTextComposite{\~}{T1}{0}{213}
es6 \DeclareTextComposite{\"}{T1}{0}{214}

"D8 = 216

es7 \DeclareTextComposite{\ ‘}H{T1}{U}{217}
ess \DeclareTextComposite{\’}{T1}{U}{218}
650 \DeclareTextComposite{\"}{T1}{U}{219}
o0 \DeclareTextComposite{\"}{T1}{U}{220}
661 \DeclareTextComposite{\’}H{T1}{Y}{221}

"EO = 224

6> \DeclareTextComposite{\ ‘}{T1}{a}{224}
663 \DeclareTextComposite{\’}{T1}{a}{225}
66+ \DeclareTextComposite{\"}{T1}{a}{226}
o5 \DeclareTextComposite{\~}{T1}{a}{227}
666 \DeclareTextComposite{\"}{T1}{a}{228}
67 \DeclareTextComposite{\r}{T1}{a}{229}
o5 \DeclareTextComposite{\cH{T1}{c}{231}

"E8 = 232

60 \DeclareTextComposite{\ ‘}{T1}{e}{232}
670 \DeclareTextComposite{\’}{T1}{e}{233}
671 \DeclareTextComposite{\"}{T1}{e}{234}
672 \DeclareTextComposite{\"}{T1}{e}{235}
673 \DeclareTextComposite{\ ‘}{T1}{i}{236}
67+ \DeclareTextComposite{\ ‘}{T1}{\1}{236}
675 \DeclareTextComposite{\’}{T1}{i}{237}
o6 \DeclareTextComposite{\’H{T1}{\i}{237}
677 \DeclareTextComposite{\"}{T1}{i}{238}
o7z \DeclareTextComposite{\"}{T1}{\1}{238}
679 \DeclareTextComposite{\"}{T1}{i}{239}
60 \DeclareTextComposite{\"}HT1}{\1}{239}

"FO = 240

651 \DeclareTextComposite{\~}{T1}{n}{241}
62 \DeclareTextComposite{\ ‘}{T1}{o}{242}
633 \DeclareTextComposite{\’}{T1}{o}{243}
632 \DeclareTextComposite{\ " }{T1}{o}{244}
655 \DeclareTextComposite{\~}{T1}{o}{245}
66 \DeclareTextComposite{\"}{T1}{o}{246}

"F8 = 248

637 \DeclareTextComposite{\ ‘}{T1}{u}{249}
6ss \DeclareTextComposite{\’}{T1}{u}{250}
630 \DeclareTextComposite{\"H{T1}{u}{251}
60 \DeclareTextComposite{\"}T1}{u}{252}
601 \DeclareTextComposite{\’}{T1}{y}{253}

62 \DeclareTextCompositeCommand{\k}{T1}{o}{\textogonekcentered{o}}
0: \DeclareTextCompositeCommand{\k}{T1}{0}{\textogonekcentered{0}}

s00 \ifx\textcommaabove\@undefined\else

05 \DeclareTextCompositeCommand{\c}{T1}{g}{\textcommaabove{g}t}
o0 \fi

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 231

607 \ifx\textcommabelow\@undefined\else

o0 \DeclareTextCompositeCommand{\c}T1}{G}{\textcommabelow{G}}
59 \DeclareTextCompositeCommand{\c}H{T1}HK}{\textcommabelow{K}}
700 \DeclareTextCompositeCommand{\c}HT1}{k}{\textcommabelow{k}}
701 \DeclareTextCompositeCommand{\c}{T1}{L}{\textcommabelow{L}}
702 \DeclareTextCompositeCommand{\c}{T1}{1}{\textcommabelow{1}}
703 \DeclareTextCompositeCommand{\c}HT1}{N}{\textcommabelow{N}}
704 \DeclareTextCompositeCommand{\c}{T1}{n}{\textcommabelow{n}}
705 \DeclareTextCompositeCommand{\c}{T1}{R}{\textcommabelow{R}}
706 \DeclareTextCompositeCommand{\c}HT1}{r}{\textcommabelow{r}}
707 \fi

s {/T1)

1.7 Definitions for the OMS encoding

The definitions for the ‘TEX math symbol’ (OMS) encoding. Even though this is meant
to be a math font, it includes some of the standard IMTEX text symbols.

Declare the encoding.
709 <*OMS>
70 \DeclareFontEncoding{OMS}{}{}
Declare the symbols. Note that slot 13 has in places been named \Orb: please root
out and destroy this impolity wherever you find it!

711 \DeclareTextSymbol{\textasteriskcentered}{OMS}{3} 7 "03

712 \DeclareTextSymbol{\textbackslash}{0MS}{110} % "6E
713 \DeclareTextSymbol{\textbar}{0MS}{106} % "6A
712 \DeclareTextSymbol{\textbardbl}{0OMS}{107} % "6B
715 \DeclareTextSymbol{\textbraceleft}{0MS}{102} % "66
716 \DeclareTextSymbol{\textbraceright}{0MS}{103} % "67
717 \DeclareTextSymbol{\textbullet}{0OMS}{15} % "OF
71s \DeclareTextSymbol{\textdaggerdbl}{0MS}{122} % "TA
719 \DeclareTextSymbol{\textdagger}{0MS}{121} % "79
720 \DeclareTextSymbol{\textparagraph}{OMS}{123} % "7B
71 \DeclareTextSymbol{\textperiodcentered}{0OMS}{1} % "01
722 \DeclareTextSymbol{\textsection}{0OMS}{120} % "78
73 \DeclareTextSymbol{\textbigcircle}{0OMS}{13} % "0D

724 \DeclareTextCommand{\textcircled}{0MS}[1]{\hmode@bgroup
725 \ooalign{%

726 \hfil \raise .07ex\hbox {\upshape#1}\hfil \crcr
727 \char 13 % "OD

728 Y%

79 \egroup}

0 (/OMS)

1.8 Definitions for the OML encoding

The definitions for the ‘TEX math italic’ (OML) encoding. Even though this is meant to
be a math font, it includes some of the standard ITEX text symbols.
Declare the encoding.
1 (*OML)
732 \DeclareFontEncoding{OML}{}{}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 232

Declare the symbols.

733 \DeclareTextSymbol{\textless}{OML}{ ‘\<}

732 \DeclareTextSymbol{\textgreater}{OML}{ ‘\>}
735 \DeclareTextAccent{\t}{OML}{127} % "7F

726 (/OML)

1.9 Definitions for the OT4 encoding

These definitions are for the Polish extension to the ‘TEX text’ (OT1) encoding. This
encoding was created by B. Jackowski and M. Ryc¢ko for use with the Polish version of
Computer Modern and Computer Concrete. In positions 0-127 it is identical to OT1
but it contains some additional characters in the upper half. The IXTEX support was
developed by Mariusz Olko.

The PL fonts that use it are available as follows:
Metafont sources ftp://ftp.gust.org.pl/TeX/language/polish/pl-mf.zip;

Font files ftp://ftp.gust.org.pl/TeX/language/polish/pl-tfm.zip.

Declare the encoding.
737 <*OT4>
735 \DeclareFontEncoding{0T4}{}{}
730 \DeclareFontSubstitution{0T4}{cmr}{m}{n}

Declare the accents.

720 \DeclareTextAccent{\"}{0T4}{127}
721 \DeclareTextAccent{\’}{0T4}{19}
72 \DeclareTextAccent{\.}{0T4}{95}
73 \DeclareTextAccent{\=}{0T4}{22}
722 \DeclareTextAccent{\"}{0T4}{94}
725 \DeclareTextAccent{\ ‘}{0T4}{18}
76 \DeclareTextAccent{\~}{0T4}{126}
227 \DeclareTextAccent{\H}{0T4}{125}
78 \DeclareTextAccent{\u}{0T4}{21}
70 \DeclareTextAccent{\v}{0T4}{20}
750 \DeclareTextAccent{\r}{0T4}{23}

The ogonek accent is available only under a e A & E. But we have to provide some
definition for \k. Some other accents have to be built by hand as in OT1:

751 \DeclareTextCommand{\k}{0T4} [1]1{%

752 \TextSymbolUnavailable{\k{#1}}#1}

In these definitions we no longer use the helper function \sh@ft from plain.tex since that
now has two incompatible definitions.

753 \DeclareTextCommand{\b}{0T4} [1]
754 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-3ex1}/,

755 \vbox to.2ex{\hbox{\char22}\vss}\hidewidth}\egroup}

756 \DeclareTextCommand{\c}{0T4}[1]

757 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent24 #1Y%

758 \else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}

50 \DeclareTextCommand{\d}{0T4} [1]
760 {\hmode@bgroup
761 \o@lign{\relax#1i\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 233

Declare the text symbols.

762

\DeclareTextSymbol{\AE}{0T4}{29}

5 \DeclareTextSymbol{\OE}{0T4}{30}
76¢ \DeclareTextSymbol{\0}{0T4}{31}

\DeclareTextSymbol{\L}{0T4}{138}
\DeclareTextSymbol{\ae}{0T4}{26}

\DeclareTextSymbol{\guillemetleft}{0T4}{174}

766 \DeclareTextSymbol{\guillemetright}{0T4}{175}

% old Adobe names
\DeclareTextSymbol{\guillemotleft}{0T4}{174}
\DeclareTextSymbol{\guillemotright}{0T4}{175%}

\DeclareTextSymbol{\i}{0T4}{163}

5 \DeclareTextSymbol{\j}{0T4}{17}

\DeclareTextSymbol{\1}{0T4}{170}
\DeclareTextSymbol{\o}{0T4}{283}
\DeclareTextSymbol{\oe}{0T4}{27}

' \DeclareTextSymbol{\quotedblbase}{0T4}{255}
s \DeclareTextSymbol{\ss}{0T4}{25}

\DeclareTextSymbol{\textemdash}{0T4}{124}
\DeclareTextSymbol{\textendash}{0T4}{123}
\DeclareTextSymbol{\textexclamdown}{0T4}{60}
%\DeclareTextSymbol{\texthyphenchar}{0T4}{ ‘\-}
%\DeclareTextSymbol{\texthyphen}{0T4}{‘\-}
\DeclareTextSymbol{\textquestiondown}{0T4}{62}
\DeclareTextSymbol{\textquotedblleft}{0T4}{92}
\DeclareTextSymbol{\textquotedblright}{0T4}{‘\"}
\DeclareTextSymbol{\textquoteleft}{0T4}{‘\‘}

ss \DeclareTextSymbol{\textquoteright}{0T4}{‘\’}

Definition for A as in OT1:

789
790
791
In
792
793
794
795
796
797
798
799
800

801

804

805

\DeclareTextCompositeCommand{\r}{0T4}{A}

{\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z@\advance\dimen@-1ex},

\rlap{\raise.67\dimen@\hbox{\char23}}A}
the OT4 encoding, £ and $ share a slot.

\DeclareTextCommand{\textdollar}{0T4}{\hmode@bgroup
\ifdim \fontdimen\@ne\font >\z@
\slshape
\else
\upshape
\fi
\char ‘\$\egroup?}

\DeclareTextCommand{\textsterling}{0T4}{\hmode@bgroup

\ifdim \fontdimen\@ne\font >\z@
\itshape
\else
\fontshape{ui}\selectfont
\fi
\char ‘\$\egroup}

Declare the composites.

806

807

808

\DeclareTextComposite{\k}{0T4}{A}{129}
\DeclareTextComposite{\’}{0T4}{C}{130}
\DeclareTextComposite{\k}{0T4}{E}{134}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

234

500 \DeclareTextComposite{\’}{0T4}{N}{139}
s10 \DeclareTextComposite{\’}{0T4}{S}{1453}
si1 \DeclareTextComposite{\’}{0T4}{Z2}{153}
si2 \DeclareTextComposite{\.}{0T4}{Z}{1553}
s13 \DeclareTextComposite{\k}{0T4}{a}{161}
s14 \DeclareTextComposite{\’}{0T4}{c}{162}
s15 \DeclareTextComposite{\k}{0T4}{e}{1663}
s16 \DeclareTextComposite{\’}{0T4}{n}{171}
s17 \DeclareTextComposite{\’}{0T4}{s}{177}
s15 \DeclareTextComposite{\’}{0T4}{z}{185%}
s19 \DeclareTextComposite{\.}{0T4}{z}{1873}
20 \DeclareTextComposite{\’}{0T4}{0}{211}
221 \DeclareTextComposite{\’}{0T4}{0}{243}
g2 (/OT4)

1.10 Definitions for the TS1 encoding

823 <*TS].>
222 \DeclareFontEncoding{TS1}{}{}
35 \DeclareFontSubstitution{TS1}{cmr}{m}{n}

Some accents have to be built by hand. Note that \ooalign and \o@lign must be inside
a group.

226 \DeclareTextCommand{\capitalcedilla}{TS1}[1]

827 {\hmode@bgroup

828 \ooalign{\null#i\crcr\hidewidth\chari1l\hidewidth}\egroup}

220 \DeclareTextCommand{\capitalogonek}{TS1}[1]

830 {\hmode@bgroup

831 \ooalign{\null#i\crcr\hidewidth\chari2\hidewidth}\egroup}

Accents for capital letters.

These commands can be used by the end user either directly or through definitions
of the type
\DeclareTextCompositeCommand{\’H{T1}{X}{\capitalacute X}

None of the latter definitions are provided by default, since they are probably rarely used.
"00=0

s3> \DeclareTextAccent{\capitalgrave}{TS1}{0}

s33 \DeclareTextAccent{\capitalacute}{TS1}{1}

e3¢« \DeclareTextAccent{\capitalcircumflex}{TS1}{2}

¢35 \DeclareTextAccent{\capitaltilde}{TS1}{3}

ssc \DeclareTextAccent{\capitaldieresis}HTS1}{4}

37 \DeclareTextAccent{\capitalhungarumlaut}{TS1}{5}

¢35 \DeclareTextAccent{\capitalring}{TS1}{6}

\DeclareTextAccent{\capitalcaron}{TS1}{7}

"08 =8
220 \DeclareTextAccent{\capitalbreve}{TS1}{8}

g1 \DeclareTextAccent{\capitalmacron}{TS1}{9}
s> \DeclareTextAccent{\capitaldotaccent}{TS1}{10}

Tie accents.
The tie accent was borrowed from the cmmi font. The tc fonts now provide four tie
accents, the first two are done in the classical way with assymetric glyphs hanging out of

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 235

their boxes; the new ties are centered in their boxes like all other accents. They need a
name: please tell us if you know what to call them.

n

223 \DeclareTextAccent{\t}{TS1}{263}

sas \DeclareTextAccent{\capitaltie}{TS1}{27}

25 \DeclareTextAccent{\newtie}{TS1}{28}

226 \DeclareTextAccent{\capitalnewtie}{TS1}{29}

Compund word marks.
The text companion fonts contain two compound word marks of different heights,
one has cap_height, the other asc_height.

s2a7 \DeclareTextSymbol{\textcapitalcompwordmark}{TS1}{23}
25 \DeclareTextSymbol{\textascendercompwordmark}{TS1}{31}

The text companion symbols.
220 \DeclareTextSymbol{\textquotestraightbase}{TS1}{13}
"10 = 16

ss0 \DeclareTextSymbol{\textquotestraightdblbase}{TS1}{18}
ss1 \DeclareTextSymbol{\texttwelveudash}{TS1}{21}
s> \DeclareTextSymbol{\textthreequartersemdash}{TS1}{22}

"18 =24
ss3 \DeclareTextSymbol{\textleftarrow}{TS1}{24}
s« \DeclareTextSymbol{\textrightarrow}{TS1}{25}
"20 = 32

ss5 \DeclareTextSymbol{\textblank}{TS1}{32}
56 \DeclareTextSymbol{\textdollar}{TS1}{36}
es7 \DeclareTextSymbol{\textquotesingle}{TS1}{39}

"28 = 40
55 \DeclareTextSymbol{\textasteriskcentered}{TS1}{42}

Note that '054 is a comma and ’056 is a full stop: these make numbers using oldstyle
digits easier to input.

ss0 \DeclareTextSymbol{\textdblhyphen}{TS1}{45}
s0 \DeclareTextSymbol{\textfractionsolidus}{TS1}{47}

Oldstyle digits.

"30 = 48
s1 \DeclareTextSymbol{\textzerooldstyle}{TS1}{48%}
s> \DeclareTextSymbol{\textoneoldstyle}{TS1}{49}
sss \DeclareTextSymbol{\texttwooldstyle}{TS1}{50}
s« \DeclareTextSymbol{\textthreeoldstyle}{TS1}{51}
#5s \DeclareTextSymbol{\textfouroldstyle}{TS1}{52}
sss \DeclareTextSymbol{\textfiveoldstyle}{TS1}{53}
s7 \DeclareTextSymbol{\textsixoldstyle}{TS1}{54}
ss \DeclareTextSymbol{\textsevenoldstyle}{TS1}{55}

"38 = 56

a0 \DeclareTextSymbol{\texteightoldstyle}{TS1}{56}
e70 \DeclareTextSymbol{\textnineoldstyle}{TS1}{57}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 236

More text companion symbols.

s71 \DeclareTextSymbol{\textlangle}{TS1}{60}
72 \DeclareTextSymbol{\textminus}{TS1}{61}
¢73 \DeclareTextSymbol{\textrangle}{TS1}{62}
"48 = T2
s72 \DeclareTextSymbol{\textmho}{TS1}{77}
The big circle is here to define the command \textcircled. Formerly it was taken
from the cmsy font.

¢75 \DeclareTextSymbol{\textbigcircle}{TS1}{79}
s7c \DeclareTextCommand{\textcircled}{TS1}[1]{\hmode@bgroup

877 \ooalign{%

878 \hfil \raise .07ex\hbox {\upshape#1}\hfil \crcr
879 \char 79 % 117 = "4F

880 %

g3 \egroup}

More text companion symbols.

"50 = 80
ss2 \DeclareTextSymbol{\textohm}{TS1}{87}
"5h8 = 88

e3¢ \DeclareTextSymbol{\textrbrackdbl}{TS1}{93}
35 \DeclareTextSymbol{\textuparrow}{TS1}{94}

sss \DeclareTextSymbol{\textdownarrow}{TS1}{95}
"60 = 96

ss7 \DeclareTextSymbol{\textasciigrave}{TS1}{96}
sss \DeclareTextSymbol{\textborn}{TS1}{98}

s30 \DeclareTextSymbol{\textdivorced}{TS1}{99}
200 \DeclareTextSymbol{\textdied}{TS1}{100}

"68 = 104

201 \DeclareTextSymbol{\textleaf }{TS1}{108}
202 \DeclareTextSymbol{\textmarried}{TS1}{109}
s0s \DeclareTextSymbol{\textmusicalnote}{TS1}{110}

"78 = 120
204 \DeclareTextSymbol{\texttildelow}{TS1}{1263}
This glyph, \textdblhyphenchar is hanging, like the hyphenchar of the ec fonts.
s0s \DeclareTextSymbol{\textdblhyphenchar}{TS1}{127}
"80 = 128

206 \DeclareTextSymbol{\textasciibreve}{TS1}{128%}
207 \DeclareTextSymbol{\textasciicaron}{TS1}{129}

This next glyph is not the same as \textquotedbl.

sos \DeclareTextSymbol{\textacutedbl}{TS1}{130}

200 \DeclareTextSymbol{\textgravedbl}{TS1}{131}

90 \DeclareTextSymbol{\textdagger}{TS1}{132}

1 \DeclareTextSymbol{\textdaggerdbl}{TS1}{133}
o2 \DeclareTextSymbol{\textbardbl}{TS1}{134}

903 \DeclareTextSymbol{\textperthousand}{TS1}{135}

el

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 237

"88 = 136

o2 \DeclareTextSymbol{\textbullet}{TS1}{136}

905 \DeclareTextSymbol{\textcelsius}{TS1}{137}

206 \DeclareTextSymbol{\textdollaroldstyle}{TS1}{138}
o7 \DeclareTextSymbol{\textcentoldstyle}{TS1}{139}
90s \DeclareTextSymbol{\textflorin}{TS1}{140}

o0 \DeclareTextSymbol{\textcolonmonetary}{TS1}{141}
o0 \DeclareTextSymbol{\textwon}{TS1}{142}

911 \DeclareTextSymbol{\textnaira}{TS1}{143}

"90 = 144

o2 \DeclareTextSymbol{\textguarani}{TS1}{144}

913 \DeclareTextSymbol{\textpeso}{TS1}{145}

o4 \DeclareTextSymbol{\textlira}{TS1}{146}

015 \DeclareTextSymbol{\textrecipe}{TS1}{147}

916 \DeclareTextSymbol{\textinterrobang}{TS1}{148}

017 \DeclareTextSymbol{\textinterrobangdown}{TS1}{149}
015 \DeclareTextSymbol{\textdong}{TS1}{150}

919 \DeclareTextSymbol{\texttrademark}{TS1}{151}

"98 = 152

020 \DeclareTextSymbol{\textpertenthousand}{TS1}{152}
921 \DeclareTextSymbol{\textpilcrow}{TS1}{153}

922 \DeclareTextSymbol{\textbaht}{TS1}{154}

223 \DeclareTextSymbol{\textnumero}{TS1}{155}

This next name may change. For the following sign we know only a german name, which
is abziiglich. The meaning is something like “commercial minus”. An ASCII ersatz is ./.
(dot slash dot). The temporary English name is \textdiscount.

92« \DeclareTextSymbol{\textdiscount}{TS1}{156}
925 \DeclareTextSymbol{\textestimated}{TS1}{157}
926 \DeclareTextSymbol{\textopenbullet}{TS1}{158}
027 \DeclareTextSymbol{\textservicemark}{TS1}{159}

"A0 = 160

925 \DeclareTextSymbol{\textlquill}{TS1}{160}

020 \DeclareTextSymbol{\textrquill}{TS1}{161}

930 \DeclareTextSymbol{\textcent}{TS1}{162}

931 \DeclareTextSymbol{\textsterling}{TS1}{163}
o2 \DeclareTextSymbol{\textcurrency}{TS1}{164}
933 \DeclareTextSymbol{\textyen}{TS1}{165}

932 \DeclareTextSymbol{\textbrokenbar}{TS1}{1663}
035 \DeclareTextSymbol{\textsection}{TS1}{167}

"A8 = 168

936 \DeclareTextSymbol{\textasciidieresis}{TS1}{168}
037 \DeclareTextSymbol{\textcopyright}{TS1}{169}

935 \DeclareTextSymbol{\textordfeminine}{TS1}{170}
039 \DeclareTextSymbol{\textcopyleft}{TS1}{171}

o0 \DeclareTextSymbol{\textlnot}{TS1}{172}

The meaning of the circled-P is “sound recording copyright”.

911 \DeclareTextSymbol{\textcircledP}{TS1}{173}
922 \DeclareTextSymbol{\textregistered}{TS1}{174}
023 \DeclareTextSymbol{\textasciimacron}{TS1}{175}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 238

"BO = 176

o \DeclareTextSymbol{\textdegree}{TS1}{176}

915 \DeclareTextSymbol{\textpm}{TS1}{177}

916 \DeclareTextSymbol{\texttwosuperior}{TS1}{178}

0.7 \DeclareTextSymbol{\textthreesuperior}{TS1}{179}
915 \DeclareTextSymbol{\textasciiacute}{TS1}{180}

020 \DeclareTextSymbol{\textmu}{TS1}{181} % micro sign
os0 \DeclareTextSymbol{\textparagraph}{TS1}{182}

951 \DeclareTextSymbol{\textperiodcentered}{TS1}{183}
"B8 = 184

o2 \DeclareTextSymbol{\textreferencemark}{TS1}{184}
953 \DeclareTextSymbol{\textonesuperior}{TS1}{185}

054 \DeclareTextSymbol{\textordmasculine}{TS1}{186}
055 \DeclareTextSymbol{\textsurd}{TS1}{187}

956 \DeclareTextSymbol{\textonequarter}{TS1}{188}

057 \DeclareTextSymbol{\textonehalf}{TS1}{189}

o5z \DeclareTextSymbol{\textthreequarters}{TS1}{190}
950 \DeclareTextSymbol{\texteuro}{TS1}{191}

"EO0 = 208
o0 \DeclareTextSymbol{\texttimes}{TS1}{214}
"FO = 240

91 \DeclareTextSymbol{\textdiv}{TS1}{246}
o2 (/TS1)

1.11 Definitions for the TU encoding

The TU encoding was originally introduced in the contributed package fontspec as a
Unicode encoding for XeTeX and LuaTeX.

Normally for these engines, the input consists of Unicode characters encoded in
UTF-8. There is therefore little need to use the traditional (ASCII) encoding-specific
commands

However, sometimes (e.g. for backwards compatibility) it can be useful to access
these Unicode characters via such ASCII-based markup. The commands provided here
Cover the characters in the T1 and TS1 encodings, but specified in Unicode position.
Almost all the command names have been mechanically extracted form the inputenc
UTF-8 support, which is essentially doing a reverse mapping from UTF-8 data to INTEX
LICR commands.

A few additional names for character which were supported in the original fontspec
version of this file have also been added, even though they are not currently in the default
inputenc UTF-8 declarations.

963 <*TU>
In the base interface the Unicode encoding is always known as TU But we parameterise

the encoding name to allow for modelling differences in Unicode support by different
fonts.

oss \providecommand\UnicodeEncodingName{TU}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 239

As the Unicode encoding, TU, is only currently available with XeTeX or LuaTeX, we
detect these engines first, and make adjustments for the differing font loading syntax.
For other engines, we issue a warning then abort this file, switching back to T'1 encoding.

965

966

967

968

969

970

971

\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname XeTeXrevision\endcsname\relax

\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname directlua\endcsname\relax

Not LuaTeX or XeTeX, abort with a warning.

\PackageWarningNoLine{fontenc}
{\UnicodeEncodingName\space
encoding is only available with XeTeX and LuaTeX.\MessageBreak
Defaulting to T1 encoding}
\def\encodingdefault{T1}
\expandafter\expandafter\expandafter\endinput

\else
LuaTeX. For LuaTgX 1.10+, define a Lua function to disable any handing by the

font code. Otherwise we reload the font without TeX ligatures.

984

986

987

988

989

990

991

992

993

\def\UnicodeFontTeXLigatures{+tlig;}
\ifnum\luatexversion<110

\def\reserved@a#1{J
\def\@remove@tlig##1{\@remove@tlig@##1\@nil#1\@nil\relax}
\def\Q@remove@tlig@##1#1{\Qremove@tlig@O##11}}

\edef\reserved@b{\detokenize{+tlig;}}

\expandafter\reserved@a\expandafter{\reserved@b}

\def\Q@remove@tlig@O#1\@nil#2\relax{#1}

\def\remove@tlig#1{J
\begingroup
\font\remove@tlig
\expandafter\@remove@tlig\expandafter{\fontname\fontl}y,
\remove@tlig
\char#1\relax
\endgroup

}

\else
\newluafunction\@remove@t1lig@@QQ

Now we can define the function. Mostly we just have to insert a protected glyph node,
which is a glyph node with subtype 256. But we have to keep track of the current mode
to avoid inserting the glyph into a vlist.

994

995

996

997

998

999

1000

1001

1002

1003

1004

\now@and@everyjob{\directlua{
local rawchar_func = token.create’Q@remove@tlig@Q@Q@Q’ .index
local forcehmode = tex.forcehmode
local put_next = token.put_next
local glyph_id = node.id’glyph’
local rawchar_token = token.new(rawchar_func, token.command_id’lua_call’)
lua.get_functions_table() [rawchar_func] = function()
local mode = tex.nest.top.mode
if mode == 1 or mode == -1 then
put_next (rawchar_token)
return forcehmode (true)

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 240

1005 end

1006 local n = node.new(glyph_id, 256)
1007 n.font = font.current()
1008 n.char = token.scan_int()
1009 return node.write(n)
1010 end
1011 token.set_lua(’Q@remove@tlig@@Q@’, rawchar_func, ’global’, ’protected’)
1012 }}
Now \remove@tlig can be implemented almost as in XeTeX.
1013 \def\remove@tlig#1{\@remove@tlig@0@#1\relax}
1014 \fi
1015 \fi
016 \else
XeTeX

w017 \def\UnicodeFontTeXLigatures{mapping=tex-text;}
iz \def\remove@tlig#1{\XeTeXglyph\numexpr\XeTeXcharglyph#1\relax}
1010 \fi

1020 \def\UnicodeFontFile#1#2{" [#1]:#2"}
1021 \def\UnicodeFontName#1#2{"#1:#2"}

Declare the encoding
1022 \DeclareFontEncoding\UnicodeEncodingName{}{}

Declare accent command to use a postpended combining character rather than the
TeX \accent primitive
1023 \def\add@unicode@accent#1#2{%
1024 \if\relax\detokenize{#2}\relax™~"aO\else#2\fi
1025 \char#1l\relax}

1026 \def\DeclareUnicodeAccent#1#2#3{%
1027 \DeclareTextCommand{#1}{#2}{\add@unicode@accent{#3}}/
10208 F

Wrapper around \DeclareTextCompositeCommand that uses the declared composite
if it exists in the current font or falls back to the default definition for the TU accent if
not.

1020 {

1030 \catcode\z@=11\relax

1031 \gdef\DeclareUnicodeComposite#1#2#3{/,

1032 \def\reservedQa##1##2{%

1033 \DeclareTextCompositeCommand#1\UnicodeEncodingName{#2}{/

1034 \iffontchar\font#3 ##2J,

1035 \else ##1\fi}}%

1036 \expandafter\expandafter\expandafter\extract@default@composite
1037 \csname\UnicodeEncodingName\string#1\endcsname{#2}\@nil

1038 \bgroup

1039 \lccode\z@#3 7,

1040 \lowercase{\egroup

1041 \expandafter\reserved@a\expandafter{\reserved@}{~"@}}1}/

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 241

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1088

1089

1090

1091

1092

1093

1094

\def\extract@default@composite#1{/,
\ifx\@text@composite#1Y

\expandafter\extract@default@composite®a

\else

\expandafter\extract@default@composite@b\expandafter#1y,

\fi}

\def\extract@default@composite@a#1\Q@text@composite#2\@nil{y

\def\reserved@{#2}}

\def\extract@default@composite@b#1#2\Cnil{}

\def\reserved@b{#1#2}}

\DeclareTextCommand\textquotesingle \UnicodeEncodingName{’

\DeclareTextCommand\textasciigrave

\DeclareTextCommand\textquotedbl

\DeclareTextSymbol{\textdollar}
\DeclareTextSymbol{\textless}
\DeclareTextSymbol{\textgreater}
\DeclareTextSymbol{\textbackslash}
\DeclareTextSymbol{\textasciicircum}
\DeclareTextSymbol{\textunderscore}
\DeclareTextSymbol{\textbraceleft}
\DeclareTextSymbol{\textbar}
\DeclareTextSymbol{\textbraceright}
\DeclareTextSymbol{\textasciitilde}
\DeclareTextSymbol{\textexclamdown}
\DeclareTextSymbol{\textcent}
\DeclareTextSymbol{\textsterling}

» \DeclareTextSymbol{\textcurrency}

\DeclareTextSymbol{\textyen}
\DeclareTextSymbol{\textbrokenbar}
\DeclareTextSymbol{\textsection}

s \DeclareTextSymbol{\textasciidieresis}

\DeclareTextSymbol{\textcopyright}

76 \DeclareTextSymbol{\textordfeminine}

\DeclareTextSymbol{\guillemetleft}
% old Adobe name
\DeclareTextSymbol{\guillemotleft}

\DeclareTextSymbol{\textlnot}

3 \DeclareTextSymbol{\textregistered}

\DeclareTextSymbol{\textasciimacron}
\DeclareTextSymbol{\textdegree}
\DeclareTextSymbol{\textpm}

7 \DeclareTextSymbol{\texttwosuperior}

\DeclareTextSymbol{\textthreesuperior}
\DeclareTextSymbol{\textasciiacute}
\DeclareTextSymbol{\textmu}
\DeclareTextSymbol{\textparagraph}
\DeclareTextSymbol{\textperiodcentered}
\DeclareTextSymbol{\textonesuperior}
\DeclareTextSymbol{\textordmasculine}

\remove@tlig{"0027}}

\UnicodeEncodingName{%

\remove@tlig{"0060}}

\UnicodeEncodingName{%

\remove@tlig{"0022}}

\UnicodeEncodingName{"0024}
\UnicodeEncodingName{"003C}
\UnicodeEncodingName{"003E}
\UnicodeEncodingName{"005C}
\UnicodeEncodingName{"005E}
\UnicodeEncodingName{"005F}
\UnicodeEncodingName{"007B}
\UnicodeEncodingName{"007C}
\UnicodeEncodingName{"007D}
\UnicodeEncodingName{"007E}
\UnicodeEncodingName{"00A1}
\UnicodeEncodingName{"00A2}
\UnicodeEncodingName{"00A3}
\UnicodeEncodingName{"00A4}
\UnicodeEncodingName{"00A5}
\UnicodeEncodingName{"00A6}
\UnicodeEncodingName{"00A7}
\UnicodeEncodingName{"00A8}
\UnicodeEncodingName{"00A9}
\UnicodeEncodingName{"00AA}

\UnicodeEncodingName{"00AB}

\UnicodeEncodingName{"00AB}

\UnicodeEncodingName{"00AC}
\UnicodeEncodingName{"00AE}
\UnicodeEncodingName{"00AF}
\UnicodeEncodingName{"00BO}
\UnicodeEncodingName{"00B1}
\UnicodeEncodingName{"00B2}
\UnicodeEncodingName{"00B3}
\UnicodeEncodingName{"00B4}
\UnicodeEncodingName{"00B5}
\UnicodeEncodingName{"00B6}
\UnicodeEncodingName{"00B7}
\UnicodeEncodingName{"00B9}
\UnicodeEncodingName{"00BA}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

242

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

\DeclareTextSymbol{\guillemetright}
% old Adobe name
\DeclareTextSymbol{\guillemotright}

\DeclareTextSymbol{\textonequarter}
\DeclareTextSymbol{\textonehalf}
\DeclareTextSymbol{\textthreequarters}
\DeclareTextSymbol{\textquestiondown}
\DeclareTextSymbol{\AE}
\DeclareTextSymbol{\DH}
\DeclareTextSymbol{\texttimes}
\DeclareTextSymbol{\0}
\DeclareTextSymbol{\TH}
\DeclareTextSymbol{\ss}
\DeclareTextSymbol{\ae}
\DeclareTextSymbol{\dh}
\DeclareTextSymbol{\textdiv}
\DeclareTextSymbol{\o}
\DeclareTextSymbol{\th}
\DeclareTextSymbol{\DJ}
\DeclareTextSymbol{\dj}
\DeclareTextSymbol{\i}
\DeclareTextSymbol{\IJ}
\DeclareTextSymbol{\ij}
\DeclareTextSymbol{\L}
\DeclareTextSymbol{\1}
\DeclareTextSymbol{\NG}
\DeclareTextSymbol{\ng}
\DeclareTextSymbol{\0E}

s \DeclareTextSymbol{\oe}
22 \DeclareTextSymbol{\textflorin}

\DeclareTextSymbol{\j}
\DeclareTextSymbol{\textasciicaron}
\DeclareTextSymbol{\textasciibreve}
\DeclareTextSymbol{\textacutedbl}
\DeclareTextSymbol{\textgravedbl}
\DeclareTextSymbol{\texttildelow}
\DeclareTextSymbol{\textbaht}
\DeclareTextSymbol{\SS}
\DeclareTextSymbol{\textcompwordmark}
\DeclareTextSymbol{\textendash}
\DeclareTextSymbol{\textemdash}
\DeclareTextSymbol{\textbardbl}
\DeclareTextSymbol{\textquoteleft}
\DeclareTextSymbol{\textquoteright}
\DeclareTextSymbol{\quotesinglbase}
\DeclareTextSymbol{\textquotedblleft}
\DeclareTextSymbol{\textquotedblright}
\DeclareTextSymbol{\quotedblbase}
\DeclareTextSymbol{\textdagger}
\DeclareTextSymbol{\textdaggerdbl}
\DeclareTextSymbol{\textbullet}
\DeclareTextSymbol{\textellipsis}
\DeclareTextSymbol{\textperthousand}

\DeclareTextSymbol{\textpertenthousand}

\UnicodeEncodingName{"00BB}

\UnicodeEncodingName{"00BB}

\UnicodeEncodingName{"00BC}
\UnicodeEncodingName{"00BD}
\UnicodeEncodingName{"00OBE}
\UnicodeEncodingName{"0OBF}
\UnicodeEncodingName{"00C6}
\UnicodeEncodingName{"00DO}
\UnicodeEncodingName{"00D7}
\UnicodeEncodingName{"00D8}
\UnicodeEncodingName{"OODE}
\UnicodeEncodingName{"OODF}
\UnicodeEncodingName{"0OE6}
\UnicodeEncodingName{"0OFO}
\UnicodeEncodingName{"00F7}
\UnicodeEncodingName{"00F8}
\UnicodeEncodingName{"OOFE}
\UnicodeEncodingName{"0110}
\UnicodeEncodingName{"0111}
\UnicodeEncodingName{"0131}
\UnicodeEncodingName{"0132}
\UnicodeEncodingName{"0133}
\UnicodeEncodingName{"0141}
\UnicodeEncodingName{"0142}
\UnicodeEncodingName{"014A}
\UnicodeEncodingName{"014B}
\UnicodeEncodingName{"0152}
\UnicodeEncodingName{"0153}
\UnicodeEncodingName{"0192}
\UnicodeEncodingName{"0237}
\UnicodeEncodingName{"02C7}
\UnicodeEncodingName{"02D8}
\UnicodeEncodingName{"02DD}
\UnicodeEncodingName{"02F5}
\UnicodeEncodingName{"02F7}
\UnicodeEncodingName{"OE3F}
\UnicodeEncodingName{"1E9E}
\UnicodeEncodingName{"200C}
\UnicodeEncodingName{"2013}
\UnicodeEncodingName{"2014}
\UnicodeEncodingName{"2016}
\UnicodeEncodingName{"2018}
\UnicodeEncodingName{"2019}
\UnicodeEncodingName{"201A}
\UnicodeEncodingName{"201C}
\UnicodeEncodingName{"201D}
\UnicodeEncodingName{"201E}
\UnicodeEncodingName{"2020}
\UnicodeEncodingName{"2021}
\UnicodeEncodingName{"2022}
\UnicodeEncodingName{"2026}
\UnicodeEncodingName{"2030}
\UnicodeEncodingName{"2031}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

243

1149

1150

115

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1186

1187

1188

1189

1190

119

1192

1193

1194

1195

1196

1197

1198

1199

\DeclareTextSymbol{\guilsinglleft}
\DeclareTextSymbol{\guilsinglright}

\DeclareTextSymbol{\textreferencemark}

\DeclareTextSymbol{\textinterrobang}

\DeclareTextSymbol{\textfractionsolidus}
+ \DeclareTextSymbol{\textlquill}

\DeclareTextSymbol{\textrquill}
\DeclareTextSymbol{\textdiscount}

\DeclareTextSymbol{\textcolonmonetary?}
¢ \DeclareTextSymbol{\textlira}

\DeclareTextSymbol{\textnaira}
\DeclareTextSymbol{\textwon}
\DeclareTextSymbol{\textdong}
\DeclareTextSymbol{\texteuro}
\DeclareTextSymbol{\textpeso}
\DeclareTextSymbol{\textcelsius}
\DeclareTextSymbol{\textnumero}
\DeclareTextSymbol{\textcircledP}
\DeclareTextSymbol{\textrecipe}
\DeclareTextSymbol{\textservicemark}
\DeclareTextSymbol{\texttrademark}
\DeclareTextSymbol{\textohm}
\DeclareTextSymbol{\textmho}
\DeclareTextSymbol{\textestimated}
\DeclareTextSymbol{\textleftarrow}
\DeclareTextSymbol{\textuparrow}
\DeclareTextSymbol{\textrightarrow}
\DeclareTextSymbol{\textdownarrow}
\DeclareTextSymbol{\textminus}

\DeclareTextSymbol{\Hwithstroke}
\DeclareTextSymbol{\hwithstroke}

\UnicodeEncodingName{"2039}
\UnicodeEncodingName{"203A}
\UnicodeEncodingName{"203B}
\UnicodeEncodingName{"203D}
\UnicodeEncodingName{"2044}
\UnicodeEncodingName{"2045}
\UnicodeEncodingName{"20463}
\UnicodeEncodingName{"2052}
\UnicodeEncodingName{"20A1}
\UnicodeEncodingName{"20A4}
\UnicodeEncodingName{"20A6}
\UnicodeEncodingName{"20A9}
\UnicodeEncodingName{"20AB}
\UnicodeEncodingName{"20AC}
\UnicodeEncodingName{"20B1}
\UnicodeEncodingName{"2103}
\UnicodeEncodingName{"2116}
\UnicodeEncodingName{"2117}
\UnicodeEncodingName{"211E}
\UnicodeEncodingName{"2120}
\UnicodeEncodingName{"2122}
\UnicodeEncodingName{"2126}
\UnicodeEncodingName{"2127}
\UnicodeEncodingName{"212E}
\UnicodeEncodingName{"2190}
\UnicodeEncodingName{"2191}
\UnicodeEncodingName{"2192}
\UnicodeEncodingName{"2193}
\UnicodeEncodingName{"2212}

\UnicodeEncodingName{"0126}
\UnicodeEncodingName{"0127}

Not all fonts have U+42217 but using U4+002A requires some adjustment.

\DeclareTextCommand{\textasteriskcentered}\UnicodeEncodingName{7

\iffontchar\font"2217 \char"2217 \else

\begingroup
\fontsize

{\the\dimexpri.2\dimexpr\f@size pt\relax}’

{\f@baselineskipl}/,
\selectfont

\raisebox{-0.6ex} [\dimexpr\height-0.6ex] [Opt]{*}/

\endgroup
\fi
}

\DeclareTextSymbol{\textsurd}
\DeclareTextSymbol{\textlangle}
\DeclareTextSymbol{\textrangle}
\DeclareTextSymbol{\textblank}
\DeclareTextSymbol{\textvisiblespace}
\DeclareTextSymbol{\textopenbullet}
\DeclareTextSymbol{\textbigcircle}
\DeclareTextSymbol{\textmusicalnote}

\UnicodeEncodingName{"221A}
\UnicodeEncodingName{"2329}
\UnicodeEncodingName{"232A}
\UnicodeEncodingName{"2422}
\UnicodeEncodingName{"2423}
\UnicodeEncodingName{"25E6}
\UnicodeEncodingName{"25EF}
\UnicodeEncodingName{"266A}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

1200 \DeclareTextSymbol{\textmarried}
101 \DeclareTextSymbol{\textdivorced}

\UnicodeEncodingName{"26AD}
\UnicodeEncodingName{"26AE}

1202 \DeclareTextSymbol{\textinterrobangdown} \UnicodeEncodingName{"2E18}

Accents must be declared before the composites that use them.

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

3 \DeclareUnicodeAccent{\‘}
» \DeclareUnicodeAccent{\’}

\DeclareUnicodeAccent{\"}
\DeclareUnicodeAccent{\~}

7 \DeclareUnicodeAccent{\=}
; \DeclareUnicodeAccent{\u}
o \DeclareUnicodeAccent{\.}

\DeclareUnicodeAccent{\"}
\DeclareUnicodeAccent{\r}
\DeclareUnicodeAccent{\H}

s \DeclareUnicodeAccent{\v}
1+ \DeclareUnicodeAccent{\b}

\DeclareUnicodeAccent{\d}
\DeclareUnicodeAccent{\c}
\DeclareUnicodeAccent{\k}

\DeclareTextCommand\textcommabelow

\UnicodeEncodingName{"0300}
\UnicodeEncodingName{"0301}
\UnicodeEncodingName{"0302}
\UnicodeEncodingName{"0303}
\UnicodeEncodingName{"0304}
\UnicodeEncodingName{"03063}
\UnicodeEncodingName{"0307}
\UnicodeEncodingName{"0308}
\UnicodeEncodingName{"030A}
\UnicodeEncodingName{"030B}
\UnicodeEncodingName{"030C}
\UnicodeEncodingName{"0332}
\UnicodeEncodingName{"0323}
\UnicodeEncodingName{"0327}
\UnicodeEncodingName{"0328}
\UnicodeEncodingName [1]

{\hmode@bgroup\ooalign{\null#i\crcr\hidewidth\raise-.31ex
\hbox{\check@mathfonts\fontsize\ssf@size\z0@
\math@fontsfalse\selectfont, }\hidewidth}\egroup}

\DeclareUnicodeComposite{\~}
\DeclareUnicodeComposite{\~}

22 \DeclareUnicodeComposite{\‘}
s \DeclareUnicodeComposite{\’}

\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\~}

s \DeclareUnicodeComposite{\"}

\DeclareUnicodeComposite{\r}
\DeclareUnicodeComposite{\c}
\DeclareUnicodeComposite{\‘}

> \DeclareUnicodeComposite{\’}

\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\‘}

236 \DeclareUnicodeComposite{\’}

\DeclareUnicodeComposite{\~}

55 \DeclareUnicodeComposite{\"}

\DeclareUnicodeComposite{\~}
\DeclareUnicodeComposite{\‘}
\DeclareUnicodeComposite{\’}
\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\~}
\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\‘}
\DeclareUnicodeComposite{\’}
\DeclareUnicodeComposite{\~}
\DeclareUnicodeComposite{\"}
\DeclareUnicodeComposite{\’}
\DeclareUnicodeComposite{\‘}
\DeclareUnicodeComposite{\’}

{}{"005E}
{}{"007E}

{A}{"00C0}
{a}{"o0C1}
{A}{"00C2}
{A}{"00C3}
{a}{"o0cC4}
{A}{"00C5}
{C}{"o00C7}
{E}{"o0C8}
{E}{"00C9}
{E}{"00CA}
{E}{"00CB}
{1}{"o00cCC}
{1}{"00CD}
{1}{"00CE}
{1}{"00CF}
{N}{"00D1}
{0}{"o0oD2}
{0}{"00D3}
{0}{"00D4}
{0}{"o0oD5}
{0}{"o0D6}
{U}{"00D9}
{U}{"ooDA}
{U}{"00DB}
{U}{"00DC}
{Y}{"ooDD}
{a}{"00E0O}
{a}{"00E1}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s

245

1252 \DeclareUnicodeComposite{\~} {a}{"00E2}

1253 \DeclareUnicodeComposite{\~} {a}{"00E3}
1252 \DeclareUnicodeComposite{\"} {a}{"00E4}
1255 \DeclareUnicodeComposite{\r} {a}{"00E5}
1256 \DeclareUnicodeComposite{\c} {c}{"00ET}
1257 \DeclareUnicodeComposite{\‘} {e}{"00E8}
1255 \DeclareUnicodeComposite{\’} {e}{"00E9}
1250 \DeclareUnicodeComposite{\~} {e}{"00CEA}
1260 \DeclareUnicodeComposite{\"} {e}{"00EB}
1261 \DeclareUnicodeComposite{\‘} \i {"OOEC}
1262 \DeclareUnicodeComposite{\‘} {i}{"00EC}
1263 \DeclareUnicodeComposite{\’} \i {"OOED}
126 \DeclareUnicodeComposite{\’} {i}{"00ED}
1265 \DeclareUnicodeComposite{\~} \i {"OOEE}
1266 \DeclareUnicodeComposite{\"} {i}{"00EE}
1267 \DeclareUnicodeComposite{\"} \i {"OOEF}
1265 \DeclareUnicodeComposite{\"} {i}{"0CEF}
1260 \DeclareUnicodeComposite{\~} {n}{"00F1}
1270 \DeclareUnicodeComposite{\‘} {o}{"00F2}
1271 \DeclareUnicodeComposite{\’} {o}{"00F3}
1272 \DeclareUnicodeComposite{\"} {o}{"00F4}
1273 \DeclareUnicodeComposite{\~} {o}{"00F5%}
1274 \DeclareUnicodeComposite{\"} {o}{"00F6}
1275 \DeclareUnicodeComposite{\‘} {u}{"00F9}
1276 \DeclareUnicodeComposite{\’} {u}{"00FA}
1277 \DeclareUnicodeComposite{\~} {u}{"00FB}
1275 \DeclareUnicodeComposite{\"} {u}{"00FC}
1279 \DeclareUnicodeComposite{\’} {y}{"00FD}
1250 \DeclareUnicodeComposite{\"} {y}{"00FF}
121 \DeclareUnicodeComposite{\=} {A}{"0100}
12e2 \DeclareUnicodeComposite{\=} {a}{"0101}
1253 \DeclareUnicodeComposite{\u} {A}¥{"0102}
128« \DeclareUnicodeComposite{\u} {a}{"0103}
12e5 \DeclareUnicodeComposite{\k} {A}X{"0104}
1256 \DeclareUnicodeComposite{\k} {a}{"0105}
1257 \DeclareUnicodeComposite{\’} {Cc}{"0106}
12535 \DeclareUnicodeComposite{\’} {c}H{"o0107}
1250 \DeclareUnicodeComposite{\~} {C}{"0108}
1200 \DeclareUnicodeComposite{\"} {c}{"0109}
1201 \DeclareUnicodeComposite{\.} {C{"010A}
1292 \DeclareUnicodeComposite{\.} {c}{"010B}
1203 \DeclareUnicodeComposite{\v} {c}{"010C}
120+ \DeclareUnicodeComposite{\v} {c}{"o010D}
1205 \DeclareUnicodeComposite{\v} {D}{"010E}
1206 \DeclareUnicodeComposite{\v} {a}{"010F}
1207 \DeclareUnicodeComposite{\=} {EX{"0112}
1205 \DeclareUnicodeComposite{\=} {e}{"0113}
1200 \DeclareUnicodeComposite{\u} {E}{"0114}
1300 \DeclareUnicodeComposite{\u} {e}{"0115}
1300 \DeclareUnicodeComposite{\.} {E¥{"0116}
1302 \DeclareUnicodeComposite{\.} {e}{"0117}
1303 \DeclareUnicodeComposite{\k} {E¥{"0118}
130+ \DeclareUnicodeComposite{\k} {e}{"0119}
130 \DeclareUnicodeComposite{\v} {EX{"011A}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 246

1306 \DeclareUnicodeComposite{\v} {e}{"011B}

1307 \DeclareUnicodeComposite{\~} {G¥{"o11C}
1305 \DeclareUnicodeComposite{\~} {g}r{"011D}
1300 \DeclareUnicodeComposite{\u} {G}{"011E}
1310 \DeclareUnicodeComposite{\u} {g}+{"011F}
1311 \DeclareUnicodeComposite{\.} {G}¥{"0120}
1312 \DeclareUnicodeComposite{\.} {gr{"0121}
1313 \DeclareUnicodeComposite{\c} {G}{"0122}
1314 \DeclareUnicodeComposite{\c} {g}{"0123}
1315 \DeclareUnicodeComposite{\~} {H}{"0124%}
1316 \DeclareUnicodeComposite{\~} {h}{"0125}
1317 \DeclareUnicodeComposite{\~} {I}{"0128}
1315 \DeclareUnicodeComposite{\~} \i {"0129}
1319 \DeclareUnicodeComposite{\~} {i}{"0129}
1320 \DeclareUnicodeComposite{\=} {I}{"012A}
1321 \DeclareUnicodeComposite{\=} \i {"012B}
132 \DeclareUnicodeComposite{\=} {i}{"012B}
13223 \DeclareUnicodeComposite{\u} {IX{"012C}
132 \DeclareUnicodeComposite{\u} \i {"012D}
1325 \DeclareUnicodeComposite{\u} {i}{"o012D}
1226 \DeclareUnicodeComposite{\k} {I}{"012E}
1327 \DeclareUnicodeComposite{\k} \i {"012F}
1323 \DeclareUnicodeComposite{\k} {i¥{"012F}
1220 \DeclareUnicodeComposite{\.} {1}¥{"0130}
1330 \DeclareUnicodeComposite{\~} {J3{"0134%}
1331 \DeclareUnicodeComposite{\~} \j {"0135}
1322 \DeclareUnicodeComposite{\~} {jH{"o0135}
1333 \DeclareUnicodeComposite{\c} {K}¥{"0136}
1335 \DeclareUnicodeComposite{\c} {k}{"0137}
1335 \DeclareUnicodeComposite{\’} {L}¥{"0139}
133 \DeclareUnicodeComposite{\’} {13{"013A}
1337 \DeclareUnicodeComposite{\c} {L}{"013B}
133 \DeclareUnicodeComposite{\c} {1}¥{"013C}
1330 \DeclareUnicodeComposite{\v} {L}{"013D}
1310 \DeclareUnicodeComposite{\v} {1}{"013E}
1341 \DeclareUnicodeComposite{\’} {N}{"0143}
1322 \DeclareUnicodeComposite{\’} {n}{"0144}
133 \DeclareUnicodeComposite{\c} {N}{"0145}
1344 \DeclareUnicodeComposite{\c} {n}{"0146}
1355 \DeclareUnicodeComposite{\v} {N}{"0147}
136 \DeclareUnicodeComposite{\v} {n}{"0148}
1327 \DeclareUnicodeComposite{\=} {0}{"014C}
1325 \DeclareUnicodeComposite{\=} {o}{"014D}
139 \DeclareUnicodeComposite{\u} {0}{"014E}
1350 \DeclareUnicodeComposite{\u} {o}{"014F}
1351 \DeclareUnicodeComposite{\H} {0}{"0150}
132 \DeclareUnicodeComposite{\H} {o}{"0151}
1353 \DeclareUnicodeComposite{\’} {R}{"0154}
1352 \DeclareUnicodeComposite{\’} {r}{"0155}
1355 \DeclareUnicodeComposite{\c} {R}{"0156}
1356 \DeclareUnicodeComposite{\c} {r}{"0157}
1357 \DeclareUnicodeComposite{\v} {R}{"0158}
1355 \DeclareUnicodeComposite{\v} {r}{"0159}
135 \DeclareUnicodeComposite{\’} {S}{"015A%}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 247

1350 \DeclareUnicodeComposite{\’} {s}{"015B}

1361 \DeclareUnicodeComposite{\~} {s}{"015C}
132 \DeclareUnicodeComposite{\~} {s}¥{"015D}
1363 \DeclareUnicodeComposite{\c} {S}{"015E}
1364 \DeclareUnicodeComposite{\c} {s}{"015F}
1365 \DeclareUnicodeComposite{\v} {s¥{"0160}
1366 \DeclareUnicodeComposite{\v} {s}{"0161}
1367 \DeclareUnicodeComposite{\c} {TH{"0162}
1365 \DeclareUnicodeComposite{\c} {t}{"0163}
1300 \DeclareUnicodeComposite{\v} {T}{"0164}
1370 \DeclareUnicodeComposite{\v} {t}{"o165}
1571 \DeclareUnicodeComposite{\~} {u}{"0168}
1372 \DeclareUnicodeComposite{\~} {u}{"0169%}
1373 \DeclareUnicodeComposite{\=} {ur{"016A}
1371 \DeclareUnicodeComposite{\=} {u}{"016B}
1375 \DeclareUnicodeComposite{\u} {U}{"016C}
1376 \DeclareUnicodeComposite{\u} {u}{"016D}
1377 \DeclareUnicodeComposite{\r} {U}{"016E}
1373 \DeclareUnicodeComposite{\r} {u}{"016F}
1379 \DeclareUnicodeComposite{\H} {u{"0170}
133 \DeclareUnicodeComposite{\H} {u}{"0171}
1381 \DeclareUnicodeComposite{\k} {U}{"0172}
1332 \DeclareUnicodeComposite{\k} {ur{"0173%}
1333 \DeclareUnicodeComposite{\"} {W}{"0174}
1322 \DeclareUnicodeComposite{\~} {w}{"0175}
1355 \DeclareUnicodeComposite{\~} {Y+{"o176}
138 \DeclareUnicodeComposite{\~} {yH"o177}
1357 \DeclareUnicodeComposite{\"} {Y+{"0178}
135 \DeclareUnicodeComposite{\’} {z}¥{"0179}
133 \DeclareUnicodeComposite{\’} {z}{"017A}
1300 \DeclareUnicodeComposite{\.} {Z3{"017B}
1301 \DeclareUnicodeComposite{\.} {z}{"017C}
1302 \DeclareUnicodeComposite{\v} {z}¥{"017D}
1303 \DeclareUnicodeComposite{\v} {z}{"017E}
1304 \DeclareUnicodeComposite{\v} {A}¥{"o1CD}
1305 \DeclareUnicodeComposite{\v} {a}{"01CE}
1306 \DeclareUnicodeComposite{\v} {1}{"01CF}
1307 \DeclareUnicodeComposite{\v} \i {"01DO}
1306 \DeclareUnicodeComposite{\v} {i¥{"01DO}
1300 \DeclareUnicodeComposite{\v} {0}{"01D1}
1200 \DeclareUnicodeComposite{\v} {o}{"01D2}
101 \DeclareUnicodeComposite{\v} {u{"01D3}
102 \DeclareUnicodeComposite{\v} {u}{"01D4}
1203 \DeclareUnicodeComposite{\=} \AE{"01E2}
104 \DeclareUnicodeComposite{\=} \ae{"01E3}
105 \DeclareUnicodeComposite{\v} {G}{"01E6}
1200 \DeclareUnicodeComposite{\v} {g}{"01ET}
107 \DeclareUnicodeComposite{\v} {K}{"01E8}
105 \DeclareUnicodeComposite{\v} {k}{"01E9}
1200 \DeclareUnicodeComposite{\k} {0}{"01EA}
110 \DeclareUnicodeComposite{\k} {o}{"01EB}
111 \DeclareUnicodeComposite{\v} \j {"01F0}
1212 \DeclareUnicodeComposite{\v} {j3{"01F0}
1213 \DeclareUnicodeComposite{\’} {G}{"01F4}

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 248

1212 \DeclareUnicodeComposite{\’} {g}r{"01F5}
1215 \DeclareUnicodeComposite{\textcommabelow}{S}{"0218}
1216 \DeclareUnicodeComposite{\textcommabelow}{s}{"0219}
1217 \DeclareUnicodeComposite{\textcommabelow}{T}{"021A}
1215 \DeclareUnicodeComposite{\textcommabelow}{t}{"021B}

1419 \DeclareUnicodeComposite{\=3} {Y¥{"0232}
1220 \DeclareUnicodeComposite{\=} {y+{"0233}
1221 \DeclareUnicodeComposite{\.} {B}{"1E02}
1222 \DeclareUnicodeComposite{\.} {b}{"1E03}
1223 \DeclareUnicodeComposite{\d} {B}{"1E04}
1224 \DeclareUnicodeComposite{\d} {b}{"1E05}
125 \DeclareUnicodeComposite{\d} {D}{"1EOC}
1226 \DeclareUnicodeComposite{\d} {d}{"1E0D}
1227 \DeclareUnicodeComposite{\=} {G}H{"1E20}
128 \DeclareUnicodeComposite{\=} {gH{"1E21}
1220 \DeclareUnicodeComposite{\d} {H}{"1E24}
1230 \DeclareUnicodeComposite{\d} {h}{"1E25}
1431 \DeclareUnicodeComposite{\d} {K}{"1E32}
1232 \DeclareUnicodeComposite{\d} {k}{"1E33}
1233 \DeclareUnicodeComposite{\d} {L}{"1E36}
1131 \DeclareUnicodeComposite{\d} {1}{"1E37}
1235 \DeclareUnicodeComposite{\d} {M}{"1E42}
136 \DeclareUnicodeComposite{\d} {m}{"1E43}
1437 \DeclareUnicodeComposite{\d} {N}{"1E46}
1433 \DeclareUnicodeComposite{\d} {n}{"1E47}
1230 \DeclareUnicodeComposite{\d} {R}{"1E5A}
1440 \DeclareUnicodeComposite{\d} {r}{"1E5B}
141 \DeclareUnicodeComposite{\d} {sH{"1E62}
122 \DeclareUnicodeComposite{\d} {s}{"1E63}
1443 \DeclareUnicodeComposite{\d} {T}{"1E6C}
122 \DeclareUnicodeComposite{\d} {t}{"1E6D}
1245 \DeclareUnicodeComposite{\d} {VH{"1E7E}
1445 \DeclareUnicodeComposite{\d} {v{"1E7F}
147 \DeclareUnicodeComposite{\d} {w}{"1E88}
1245 \DeclareUnicodeComposite{\d} {w}{"1E89}
1449 \DeclareUnicodeComposite{\d} {z}{"1E92}
1150 \DeclareUnicodeComposite{\d} {z}{"1E93}
1251 \DeclareUnicodeComposite{\d} {A}{"1EAO}
152 \DeclareUnicodeComposite{\d} {a}{"1EA1}
153 \DeclareUnicodeComposite{\d} {E}{"1EB8}
1255 \DeclareUnicodeComposite{\d} {e}{"1EB9}
1455 \DeclareUnicodeComposite{\d} {I}{"1ECA}
156 \DeclareUnicodeComposite{\d} {i}{"1ECB}
1257 \DeclareUnicodeComposite{\d} {0}¥{"1ECC}
155 \DeclareUnicodeComposite{\d} {o}{"1ECD}
150 \DeclareUnicodeComposite{\d} {U}{"1EE4}
1260 \DeclareUnicodeComposite{\d} {u}{"1EES5}
161 \DeclareUnicodeComposite{\d} {Y}{"1EF4}
us2 \DeclareUnicodeComposite{\d} {yH{"1EF5}
1463 (/TU)

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 249

2 Package files

This file now also contains some packages that provide access to the more specialised
encodings.

2.1 The fontenc package

This package allows authors to specify which encodings they will use. For each encoding
F0OO, the package looks to see if the encoding FOO has already been declared. If it has
not, the file fooenc.def is loaded. The default encoding is set to be FOO.

In addition the package at the moment contains extra code to extend the \@uclclist
(list of upper/lower case pairs) for encodings that involve cyrillic characters. THIS IS A
TEMPORARY SOLUTION and will not stay this way forever (or so we hope) but right
now we are missing a proper interface for this and didn’t wanted to rush it.

ues (*package)

Here we define a macro that extends the \@uclclist if needed and afterwards turns
itself in a noop.

165 \def\update@uclc@with@cyrillic{}

1266 \expandafter\def\expandafter\Quclclist\expandafter

1467 {\@uclclist

uss \cyra\CYRA\cyrabhch\CYRABHCH\cyrabhchdsc\CYRABHCHDSC\cyrabhdze
1260 \CYRABHDZE\cyrabhha\CYRABHHA\cyrae\CYRAE\cyrb\CYRB\cyrbyus

170 \CYRBYUS\cyrc\CYRC\cyrch\CYRCH\cyrchldsc\CYRCHLDSC\cyrchrdsc
171 \CYRCHRDSC\cyrchvcrs\CYRCHVCRS\cyrd\CYRD\cyrdelta\CYRDELTA

1272 \cyrdje\CYRDJE\cyrdze\CYRDZE\cyrdzhe\CYRDZHE\cyre\CYRE\cyreps
1473 \CYREPS\cyrerev\CYREREV\cyrery\CYRERY\cyrf\CYRF\cyrfita

174 \CYRFITA\cyrg\CYRG\cyrgdsc\CYRGDSC\cyrgdschcrs\CYRGDSCHCRS

1275 \cyrghcrs\CYRGHCRS\ cyrghk\CYRGHK\cyrgup\CYRGUP\cyrh\CYRH

176 \cyrhdsc\CYRHDSC\cyrhhcrs\CYRHHCRS\cyrhhk\CYRHHK\cyrhrdsn

w77 \CYRHRDSN\cyri\CYRI\cyrie\CYRIE\cyrii\CYRII\cyrishrt\CYRISHRT
1275 \cyrishrtdsc\CYRISHRTDSC\cyrizh\CYRIZH\cyrje\CYRJE\cyrk\CYRK
1479 \cyrkbeak\CYRKBEAK\cyrkdsc\CYRKDSC\cyrkhcrs\CYRKHCRS\cyrkhk
1s0 \CYRKHK\cyrkvcrs\CYRKVCRS\cyr1\CYRL\cyrldsc\CYRLDSC\cyrlhk

1251 \CYRLHK\cyrlje\CYRLJE\cyrm\CYRM\cyrmdsc\CYRMDSC\cyrmhk\CYRMHK
us2 \cyrn\CYRN\cyrndsc\CYRNDSC\cyrng\CYRNG\cyrnhk\CYRNHK\cyrnje
1283 \CYRNJE\cyrnlhk\CYRNLHK\cyro\CYRO\cyrot1d\CYROTLD\cyrp\CYRP
1284 \cyrphk\CYRPHK\cyrq\CYRQ\cyrr\CYRR\cyrrdsc\CYRRDSC\cyrrhk

uss \CYRRHK\cyrrtick\CYRRTICK\cyrs\CYRS\cyrsacrs\CYRSACRS

uss \cyrschwa\CYRSCHWA\cyrsdsc\CYRSDSC\cyrsemisftsn\CYRSEMISFTSN
us7 \cyrsftsn\CYRSFTSN\cyrsh\CYRSH\cyrshch\CYRSHCH\cyrshha\CYRSHHA
s \cyrt\CYRT\cyrtdsc\CYRTDSC\cyrtetse\CYRTETSE\cyrtshe\CYRTSHE
s \cyru\CYRU\cyrushrt\CYRUSHRT\cyrv\CYRV\cyrw\CYRW\cyry\CYRY

1o \cyrya\CYRYA\cyryat\CYRYAT\cyryhcrs\CYRYHCRS\cyryi\CYRYI\cyryo
o1 \CYRYO\cyryu\CYRYU\cyrz\CYRZ\cyrzdsc\CYRZDSC\cyrzh\CYRZH

192 \cyrzhdsc\CYRZHDSC}/

1493 \let\update@uclc@with@cyrillic\relax

1404 }

Here we process each option:

1205 \DeclareOption*{%
1496 \let\encodingdefault\CurrentOption

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 250

From 2020/02/02 release onward we only load the encoding files if they haven’t be loaded
already. To check this we look if \T@encoding is already defined. If not we load (indicated
by setting the switch @tempswa to true and we always load if we run in an older format
(or rather in a rollback situation).

1497 \@tempswafalse

1498 \@ifl@t@r\fmtversion{2020/02/02}%

1499 {\expandafter\ifx\csname T@\CurrentOption\endcsname\relax
1500 \@tempswatrue\fil}y

1501 {\@tempswatruel}y,

Load if necessary:

1502 \if@tempswa

1503 \edef\reserved@f{’

1504 \lowercase{\def\noexpand\reserved@f{\CurrentOption enc.def}}}/
1505 \reserved@f

1506 \InputIfFileExists\reserved@f

1507 {}{\PackageError{fontencl}/,

1508 {Encoding file ‘\reserved@f’ not found.’

1500 \MessageBreak

1510 You might have misspelt the name of the encodingl,
1511 {Necessary code for this encoding was not

1512 loaded. \MessageBreak

1513 Thus calling the encoding later on will

1514 produce further error messages.}}/

1515 \let\reserved@f\relax

In case the current encoding is one of a list of known cyrillic ones we extend the
\Quclclist:

1516 \expandafter\in@\expandafter{\CurrentOption}
1517 {T2A,T2B,T2C,X2,LCY,0T2}%
1518 \ifin®@

But only if it hasn’t already been extended. This might happen if there are sev-
eral calls to fontenc loading one of the above encodings. If we don’t do this check the
\@uclclist gets unnecessarily big, slowing down the processing at runtime.

1519 \expandafter\in@\expandafter\cyra\expandafter
1520 {\Quclclist}y,

1521 \ifin®@

1522 \else

1523 \update@uclc@with@cyrillic

1524 \fi

1525 \fi

1526 \fi

1507 }

1528 \ProcessOptions*

We select the new font encoding default (i.e., the last encoding specified in the option
list. But this encoding may not work with the current \f@shape, e.g., LY1 is not defined
for cmr and therefore packages switching to LY1 usually also change \rmdefault. But
that only applies at \begin{document} so we get a spurious warning if we use what
ETEX previously used:

1520 %\fontencoding\encodingdefault\selectfont

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 251

So instead we do this here:
1530 \usefont\encodingdefault\familydefault\seriesdefault\shapedefault

To save some space we get rid of the macro extending the \@uclclist (might have
happened already).
1531 \let\update@uclc@Quith@cyrillic\relax

Finally we pretend that the fontenc package wasn’t read in. This allows for using
it several times, e.g., in a class file and in the preamble (at the cost of not getting any
version info). That kind of hackery shows that using a general purpose package just for
loading an encoding is not the right kind of interface for setting up encodings — it will
get replaced at some point in the future.

1532 \let\@elt\relax
\xdef\@fontenc@load@list{\@fontenc@load@list
153 \@elt{\csname opt@fontenc.sty\endcsname}}

1533

1535 \globall\expandafter\let\csname ver@fontenc.sty\endcsname\relax
1535 \global\expandafter\let\csname opt@fontenc.sty\endcsname\relax
1557 \global\let\@if1l@ter@@\Q@ifl@ter

153s \def\Q@ifl@ter#1#2#3#4#5{\global\let\Q@ifl@ter\@ifl@tere@}

153 (/package)

File o: 1toutenc.dtx Date: 2020/08/10 Version v2.0s 252

File p
Itcounts.dtx

1 Counters and Lengths

Commands for defining and using counters. This file defines:

\newcounter To define a new counter.
\setcounter To set the value of counters.
\addtocounter Increase the counter #1 by the number #2.
\stepcounter Increase a counter by one.
\refstepcounter Increase a counter by one, also setting the value used by \label.
\value For accessing the value of the counter as a TEX number (as opposed to \the(counter)
which expands to the printed representation of (counter))
\arabic \arabic{(counter)}: 1,2, 3, ...
\roman \roman{(counter)}: i, ii, iii, ...
\Roman \Roman{(counter)}: I, I, III, ...
\alph \alph{(counter)}: a, b, c, ...
\Alph \Alph{(counter)}: A, B, C, ...
\fnsymbol \fnsymbol{({countery}: *, t, I, ...
\counterwithin \counterwithin{(counter)}{{within-counter)}: Resets (counter) whenever (within-counter)

is stepped. Also redefines \the(counter) command to produce \the(within-counter) . \arabic{({counter))
Star form omits redefining the print representation.
\counterwithout \counterwithout{(counter)}{{within-counter)}: Removes (counter) from the reset
list of (within-counter). Also redefines \the(counter) command to produce \arabic{(counter)}.
Star form omits redefining the print representation.

1 (*2ekernel)

1.1 Environment Counter Macros

An environment foo has an associated counter defined by the following control sequences:

\c@foo Contains the counter’s numerical value. It is defined by
\newcount\foocounter.

\thefoo Macro that expands to the printed value of \foocounter. For
example, if sections are numbered within chapters, and section
headings look like
Section II-3. The Nature of Counters
then \thesection might be defined by:

\def\thesection
{\@Roman{\c@chapter}-\Qarabic{\c@section}}

\p@foo Macro that expands to a printed ‘reference prefix’ of counter foo.

Any \ref to a value created by counter foo will produce the ex-
pansion of \p@foo\thefoo when the \1label command is executed.
See file 1txref .dtx for an extension of this mechanism.
\cl@foo List of counters to be reset when foo stepped. Has format
\@elt{countera}\@elt{counterb}\@elt{counterc}.
NOTE:
\thefoo and \p@foo must be defined in such a way that \edef\bar{\thefool} or
\edef\bar{\p@foo} defines \bar so that it will evaluate to the counter value at the

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 253

\setcounter

\addtocounter

\newcounter

\value

\@newctr

time of the \edef, even after \foocounter and any other counters have been changed.
This will happen if you use the standard commands \@arabic, \@Roman, etc.

The following commands are used to define and modify counters.

\refstepcounter{(foo)}
Same as \stepcounter, but it also defines \@currentreference so that a subsequent
\label{(bar)} command causes \ref{(bar)} to generate the current value of counter
{foo).

\@definecounter{(foo)}
Initializes counter {(foo)} (with empty reset list), defines \p@foo and \thefoo to be null.
Also adds (foo) to \c1@@ckpt — the reset list of a dummy counter @ckpt used for taking
checkpoints for the \include system.

\@addtoreset{(foo)}{(bar)} : Adds counter (foo) to the list of counters \cl@bar to
be reset when counter (bar) is stepped.

\@removefromreset{(foo)}{(bar)} : Removes counter (foo) to the list of counters
\cl@bar to be reset when counter (bar) is stepped.

\setcounter{(foo)}{(val)} : Globally sets \foocounter equal to (val).

> \def\setcounter#1#2{J,
\@ifundefined{c@#1}/,
4 {\@nocounterr{#1}}%
5 {\global\csname c@#1\endcsname#2\relax}}

(End definition for \setcounter. This function is documented on page ?7.)

\addtocounter{(foo)}{(val)} Globally increments \foocounter by (val).

s \def\addtocounter#1#2{J,

7 \@ifundefined{c@#1}/,

8 {\@nocounterr{#1}}%

9 {\global\advance\csname c@#1\endcsname #2\relaxl}}

(End definition for \addtocounter. This function is documented on page 77.)

\newcounter{(newctr)} [(oldctr)] Defines (newctr) to be a counter, which is reset when
counter (oldctr) is stepped. If (newctr) already defined produces ‘c@newctr already defined’
€error.

10 \def\newcounter#1{%

11 \expandafter\@ifdefinable \csname c@#1\endcsname
12 {\@definecounter{#1}}Y%

13 \@ifnextchar [{\@newctr{#1}}{}}

(End definition for \newcounter. This function is documented on page 77.)

\value{(ctr)} produces the value of counter (ctr), for use with a \setcounter or
\addtocounter command.

12 \def\value#1{\csname c@#1\endcsname}

(End definition for \value. This function is documented on page 77.)

15 \def\@newctr#1 [#2]{%
16 \@ifundefined{c@#2}{\@nocounterr{#2}}{\Qaddtoreset{#1}{#2}}}

(End definition for \@newctr. This function is documented on page 77.)

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 254

\stepcounter \stepcounterfoo Globally increments counter \c@F00 and resets all subsidiary counters.

17 \def\stepcounter#1{/,

s \addtocounter{#1}\@ne

o \begingroup

20 \let\@elt\@stpelt

21 \csname cl@#1\endcsname
> \endgroup}

N

(End definition for \stepcounter. This function is documented on page 77.)

\@stpelt Rather than resetting the “within” counter to zero we set it to —1 and then run
\stepcounter that moves it to 0 and also initiates resetting the next level down.

25 (/2ekernel)
2 (latexrelease)\IncludeInRelease{2015/01/01}{\@stpelt}
25 (latexrelease) {Reset nested counters}’%

s (*2ekernel | latexrelease)

7 \def\@stpelt#1{\global\csname c@#1\endcsname \m@ne\stepcounter{#1}}%

s (latexrelease) \EndIncludeInRelease

(/2ekernel | latexrelease)

(latexrelease)\IncludeInRelease{0000/00/00}{\@stpelt}

1 (latexrelease) {Reset nested counters}ii
(latexrelease)\def\@stpelt#1{\global\csname c@#1\endcsname \z@}}

s (latexrelease)\EndIncludeInRelease

+ (*2ekernel)

N

N

N

9

w

0

w

2

w

w

(End definition for \@stpelt. This function is documented on page ?77.)

\cl@@ckpt
;5 \def\cl@@ckpt{\@elt{page}}

(End definition for \cl@@ckpt. This function is documented on page ?7.)

\@definecounter

;6 \def\@definecounter#1l{\expandafter\newcount\csname c@#1\endcsname
37 \setcounter{#1}\z@

38 \global\expandafter\let\csname cl@#1\endcsname\@empty

39 \@addtoreset{#1}{@ckptl}/

40 \global\expandafter\let\csname p@#1\endcsname\Qempty

4 \expandafter

2 \gdef\csname the#1l\expandafter\endcsname\expandafter

a3 {\expandafter\Q@arabic\csname c@#1\endcsname}}

(End definition for \@definecounter. This function is documented on page 77.)

\@addtoreset
2 \def\Q@addtoreset#1#2{\expandafter\Qcons\csname cl@#2\endcsname {{#1}}}

(End definition for \@addtoreset. This function is documented on page 77.)

15 (/2ekernel)

\@removefromreset

1 (latexrelease)\IncludeInRelease{2018-04-01}
17 (latexrelease) {\@removefromreset}{Add interfacesl}/
s (*2ekernel | latexrelease)

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 255

19 \def\@removefromreset#1#2{},

Even through this is internal and the programmer should know what he/she is doing we
test here if counter #2 is defined. If not, the execution would run into a tight loop.

50 \@ifundefined{c@#2}\relax

51 {\begingroup

52 \expandafter\let\csname c@#1\endcsname\@removefromreset

53 \def\Qelt##1{/,

54 \expandafter\ifx\csname c@##1\endcsname\@removefromreset
55 \else

56 \noexpand\@elt{##11}/,

57 \fi}%

58 \expandafter\xdef\csname cl@#2\endcsname

59 {\csname cl@#2\endcsnamelV,

60 \endgroupl}}

(End definition for \@removefromreset. This function is documented on page ?77?.)

\@ifbothcounters Test if arg #1 and #2 are counters and if so execute #3.

51 \def\@ifbothcounters#1#2#3{/
62 \@ifundefined{c@#1}{\@nocounterr{#1}}J

63 {% else counter is defined

64 \@ifundefined{c@#2}{\@nocounterr{#2}}/

65 {% else both counter and within are defined
66 #3331}

(End definition for \@ifbothcounters. This function is documented on page 77.)

\counterwithout

o7 \def\counterwithout {\@ifstar\counterwithout@s\counterwithout@x}

s \def\counterwithout@s#1#2{},

6o \@ifbothcounters{#1}{#2}{\@removefromreset{#1}{#2}}}

70 \def\counterwithout@x#1#2{},

71 \@ifbothcounters{#1}{#2}/

7 {\@removefromreset{#1}{#2}%

73 \expandafter

74 \gdef\csname the#l\expandafter\endcsname\expandafter

75 {\expandafter

76 \@arabic\csname c@#1\endcsnamel}}}

(End definition for \counterwithout. This function is documented on page 77.)
\counterwithin

\def\counterwithin{\@ifstar\counterwithin@s\counterwithin@x}

75 \def\counterwithin@s#1#2{J
79 \@ifbothcounters{#1}{#2}{\Qaddtoreset{#1}{#2}}}

~
N}

g0 \def\counterwithin@x#1#2{%
81 \@ifbothcounters{#1}{#2}/

82 {\@addtoreset{#1}{#2}%

83 \expandafter

84 \gdef\csname the#1l\expandafter\endcsname\expandafter
85 {\csname the#2\expandafter\endcsname\expandafter
86 .\expandafter

87 \@arabic\csname c@#1\endcsname}}}

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 256

\arabic

\roman

\Roman

\alph

\Alph

\fnsymbol

\@arabic

(End definition for \counterwithin. This function is documented on page 77.)

ss (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000-00-00}

{\@removefromreset}{Add interfaces}/,

89

(

o)

(latexrelease)

(latexrelease)\let \@removefromreset \undefined
(latexrelease)\let \@ifbothcounters \undefined
(latexrelease)\let \counterwithout \undefined
(latexrelease)\let \counterwithout®@s \undefined
()
()
()
()
()
(

91

©

2

)3

4

5

©

latexrelease)\let \counterwithout@x \undefined
latexrelease)\1let \counterwithin \undefined
latexrelease)\let \counterwithin@s \undefined
latexrelease)\let \counterwithin@x \undefined
latexrelease) \EndIncludeInRelease

*2ekernel)

)6

7

©

8

9
100

101

Numbering commands for definitions of \theCOUNTER and \list arguments.
All commands can now be used in text and math mode.

Representation of(counter) as arabic numerals. Changed 29 Apr 86 to make it print the
obvious thing it COUNTER not positive.

102 \def\arabic#1{\expandafter\Q@arabic\csname c@#1\endcsname}

(End definition for \arabic. This function is documented on page 77.)

Representation of (counter) as lower-case Roman numerals.

103 \def\roman#1{\expandafter\Q@roman\csname c@#1\endcsname}

(End definition for \roman. This function is documented on page 77.)

Representation of (counter) as upper-case Roman numerals.

104 \def\Roman#1{\expandafter\ORoman\csname c@#1\endcsname}

(End definition for \Roman. This function is documented on page 77.)

Representation of (counter) as a lower-case letter: 1 = a, 2 = b, etc.
105 \def\alph#1{\expandafter\@alph\csname c@#1\endcsname}

(End definition for \alph. This function is documented on page 77?.)

Representation of (counter) as an upper-case letter: 1 = A, 2 = B, etc.
106 \def\Alph#1{\expandafter\@Alph\csname c@#1\endcsname}

(End definition for \Alph. This function is documented on page 77?.)

Representation of (COUNTER) as a footnote symbol: 1 = %, 2 = {, etc.
107 \def\fnsymbol#1i{\expandafter\@fnsymbol\csname c@#1\endcsname}

(End definition for \fnsymbol. This function is documented on page ?77.)

\@arabic\FOOcounter Representation of \FOOcounter as arabic numerals.
s \def\Q@arabic#1{\number #1} %% changed 29 Apr 86

(End definition for \@arabic. This function is documented on page 77.)

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 257

\@roman

\@Roman

\@slowromancap

\@alph

\@Alph

\@fnsymbol

\@roman\FOOcounter Representation of \FOOcounter as lower-case Roman numerals.

100 \def\@roman#1{\romannumeral #1}

(End definition for \@roman. This function is documented on page 77?.)

\@Roman\FOOcounter Representation of \FOOcounter as upper-case Roman numerals.
110 \def\@Roman#1{\expandafter\@slowromancap\romannumeral #1@}

(End definition for \@Roman. This function is documented on page 77.)

Fully expandable macro to change a roman number to uppercase.
111 \def\@slowromancap#1{\ifx @#1), then terminate

112 \else

113 \if i#1I\else\if v#1V\else\if x#1X\else\if 1#1L\else\if

114 c#1C\else\if d#1D\else \if m#1M\else#1\fi\fi\fi\fi\fi\fi\fi
115 \expandafter\@slowromancap

116 \fi

17 ¥

(End definition for \@slowromancap. This function is documented on page 77.)

\@alph\FOOcounter Representation of \FOOcounter as a lower-case letter: 1 = a, 2 =
b, etc.

118 \def\@alph#l{%

119 \ifcase#l\or a\or b\or c\or d\or e\or flor g\or h\or ilor j\or

120 k\or 1\or m\or n\or olor p\or g\or r\or s\or t\or ulor v\or w\or x\or

121 y\or z\else\@ctrerr\fi}

(End definition for \@alph. This function is documented on page ?7.)

\@Alph\FOOcounter Representation of \FOOcounter as an upper-case letter: 1 = A, 2
= B, etc.

122 \def\@Alph#l{%

123 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or

124 K\or L\or M\or N\or 0\or P\or Q\or R\or S\or T\or Ulor V\or W\or X\or

125 Y\or Z\else\@ctrerr\fi}

(End definition for \@Alph. This function is documented on page 77.)

Typesetting old fashioned footnote symbols. This can be done both in text or math mode
now.

This macro is another example of an ever recurring problem in TEX: Determining
if something is text-mode or math-mode. It is imperative for the decision between text
and math to be delayed until the actual typesetting is done as the code in question may
go through an \edef or \write where an \ifmmode test would be executed prematurely.
Hence in the implementation below, \@fnsymbol is not robust in itself but the parts
doing the actual typesetting are.

In the case of \@fnsymbol we make use of the robust command \TextOrMath which
takes two arguments and typesets the first if in text-mode and the second if in math-
mode. Note that in order for this command to make the correct decision, it must insert
a \relax token if run under regular TEX, which ruins any kerning between the preceding
characters and whatever awaits typesetting. If you use eTEX as engine for BTEX (as
recommended) this unfortunate side effect is not present.

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 258

\TextOrMath

(/2ekernel)

127 (latexrelease)\IncludeInRelease{2015/01/01}{\@fnsymbol}{Use \TexOrMathl}},
(*2ekernel | latexrelease)

129 \def\@fnsymbol#1{/,

130 \ifcase#1\or \TextOrMath\textasteriskcentered *\or

131 \TextOrMath \textdagger \dagger\or

132 \TextOrMath \textdaggerdbl \ddagger \or

133 \TextOrMath \textsection \mathsection\or

134 \TextOrMath \textparagraph \mathparagraph\or

135 \TextOrMath \textbardbl \|\or

136 \TextOrMath {\textasteriskcentered\textasteriskcentered}{**}\or

137 \TextOrMath {\textdagger\textdagger}{\dagger\dagger}\or

138 \TextOrMath {\textdaggerdbl\textdaggerdbl}{\ddagger\ddagger}\else
139 \@ctrerr \fi

110 Y

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}{\@fnsymbol}{Use \TexOrMath}’%
latexrelease)\def\@fnsymbol#1{\ensuremath{’,

latexrelease \ifcase#1\or *\or \dagger\or \ddagger\or \mathsection\or
latexrelease \mathparagraph\or \|\or **\or \dagger\dagger
latexrelease \or \ddagger\ddagger \else\@ctrerr\fil}}}

latexrelease) \EndIncludeInRelease

110 (*2ekernel)

141

142

143

144

145

146

147

o~ o~~~ o~~~
— — — ~—r

148

(End definition for \@fnsymbol. This function is documented on page ?7.)

When using regular TEX, we make this command robust so that it always selects the
correct branch in an \ifmmode switch with the usual disadvantage of ruining kerning.
For the application we use it for here that shouldn’t matter. The alternative would be to
mimic \IeC from inputenc but then it wil have the disadvantage of choosing the wrong
branch if appearing at the beginning of an alignment cell. However, users of eTEX will
be pleasantly surprised to get the best of both worlds and no bad side effects.

First some code for checking if we are running eTEX but making sure not to perma-
nently turn \protected into \relax.
150 (/2ekernel)
151 (latexrelease)\IncludeInRelease{2015/01/01}{\TextOrMath}{\TextOrMath}%
152 (*2ekernel | latexrelease)
153 \begingroup\expandafter\expandafter\expandafter\endgroup
152 \expandafter\ifx\csname protected\endcsname\relax
In case of ordinary TEX we define \TextOrMath as a robust command but make sure it
always grabs its arguments. If we didn’t do this it might very well gobble spaces in the
input stream.

155 \DeclareRobustCommand\Text0rMath{%

156 \ifmmode \expandafter\@secondoftwo

157 \else \expandafter\@firstoftwo \fi}

155 \protected@edef\TextOrMath#1#2{\TextOrMath{#1}{#2}}
150 \else

For eTEX the situation is similar. The robust macro is a hidden one so that we again
avoid problems of gobbling spaces in the input.

0 \protected\expandafter\def\csname TextOrMath\space\endcsname{’
161 \ifmmode \expandafter\@secondoftwo

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11 259

162 \else \expandafter\@firstoftwo \fi}

165 \edef\TextOrMath#1#2{/,

16+ \expandafter\noexpand\csname TextOrMath\space\endcsname

165 {#1}{#2}}

16 \fi

(/2ekernel | latexrelease)

165 (latexrelease)\EndIncludeInRelease

1o (latexrelease)\IncludeInRelease{0000/00/00}{\TextOrMath}{\TextOrMath}%
(latexrelease)\1let\TextOrMath\Qundefined

i1 (latexrelease)\EndIncludeInRelease

172 (*2ekernel)

167

1

3

0

(End definition for \TextOrMath. This function is documented on page ?7.)

173 (/2ekernel)

File p: 1tcounts.dtx Date: 2018/04/22 Version v1.11

260

File q
Itlength.dtx

1 Lengths
\newlength Declare #1 to be a new length command.
\setlength Set the length command, #1, to the value #2.
\addtolength Increase the value of the length command, #1, by the value #2.
\settowidth Set the length, #1 to the width of a box containing #2.
\settoheight Set the length, #1 to the height of a box containing #2.
\settodepth Set the length, #1 to the depth of a box containing #2.
1 (*2ekernel)
> \message{lengths,}
\newlength
s \def\newlength#1{\Q@ifdefinable#1{\newskip#1}}
(End definition for \newlength. This function is documented on page ?7.)
\setlength
+ (/2ekernel)
s (latexrelease)\IncludeInRelease{2015/01/01}Y
o (latexrelease) {\setlength}{Using \setlength with \dimenO}/,
7 (*2ekernel | latexrelease)

¢ \def\setlength#1#2{#1 #2\relax}

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\setlength}{Using \setlength with \dimenOl}},
latexrelease)\def\setlength#1#2{#1#2\relax}

11 (latexrelease)\EndIncludeInRelease

s (*2ekernel)

10

11

5

13

(
(
(
(
(
(

(End definition for \setlength. This function is documented on page ?7.)

\addtolength \relax added 24 Mar 86
16 \def\addtolength#1#2{\advance#1 #2\relax}

(End definition for \addtolength. This function is documented on page 77.)

\settoheight The obvious analogs of \settowidth.
\settodepth ;; \def\@settodim#1#2#3{\setbox\@tempboxa\hbox{{#3}}#2#1\0tempboxa
\settowidth

Clear the memory afterwards (which might be a lot).
\@settodim

18 \setbox\@tempboxa\box\voidb@x}

o \DeclareRobustCommand\settoheight{\@settodim\ht}
20 \DeclareRobustCommand\settodepth {\@settodim\dp}
21 \DeclareRobustCommand\settowidth {\@settodim\wd}

)

(End definition for \settoheight and others. These functions are documented on page 77.)

File q: 1tlength.dtx Date: 2019/08/27 Version v1.1d 261

\@settopoint This macro takes the contents of the skip register that is supplied as its argument and
removes the fractional part to make it a whole number of points. This can be used in
class files to avoid values like 345.4666666pt when calulating a dimension.

» \def\@settopoint#1{\divide#1\p@\multiply#1\p@}
23 {/2ekernel)

(End definition for \@settopoint. This function is documented on page 77.)

File q: 1tlength.dtx Date: 2019/08/27 Version v1.1d 262

\@nomath

\no®@alphabet@error

\new@mathgroup
\mathgroup

File r
Itfssbas.dtx

This file contains the main implementation of the ‘low level’ font selection commands.
See other parts of the ITEX distribution, or The ERTEX Companion for higher level
documentation of the XTEX ‘New’ Font Selection Scheme.

Warning: The macro documentation is still basically the documentation
from the first NFSS release and therefore in some cases probably not com-
pletely accurate.

1 Preliminary macros

We define a number of macros that will be used later.

\@nomath is used by most macros that will have no effect in math mode. It issues a
warning message.

1 (*2ekernel)

> \def\@nomath#1{\relax\ifmmode

3 \@font@warning{Command \noexpand#linvalid in math mode}\fi}

(End definition for \@nomath. This function is documented on page ?77.)

The macro \no@alphabet@error is called whenever the user requests a math alphabet
that is not available in the current version. In math mode an error message is produced
otherwise the command keeps silent. The argument is the name of the control sequence
that identifies the math alphabet. The \relax at the beginning is necessary to prevent
TEX from scanning too far in certain situations.

+ \gdef\no@alphabet@error#i{\relax \ifmmode

5 \@latex@error{Math\space alphabet\space identifier\space

6 \noexpand#1lis\space undefined\space in\space math\space

7 version\space ‘\math@version’}

8 {Your\space requested\space math\space alphabet\space

9 is\space undefined\space in\space the\space current\space

10 math\space version. " JCheck\space the\space spelling\space
1 or\space use\space the\space \noexpand\SetMathAlphabet\space
12 command. }

13 \fi}

(End definition for \no@alphabet@error. This function is documented on page ?77.)

We also give a new name to \newfam and \fam to avoid verbal confusion (see the intro-
duction).”

12 %\def\new@mathgroup{\alloc@8\mathgroup\chardef\sixt@@n}

15 \let\mathgroup\fam

16 %\let\newfam\new@mathgroup

17 \@onlypreamble\new@mathgroup

(End definition for \new@mathgroup and \mathgroup. These functions are documented on page 77.)

9For the same reason it seems advisable to \let\fam and \newfam equal to \relax, but this is com-
mented out to retain compatibility to existing style files.

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 263

\DeclareFontShape

\DeclareFontShape®@

2 Macros for setting up the tables

The macro \DeclareFontShape takes 6 arguments:
1z \def\DeclareFontShape{\begingroup
First we restore the catcodes of all characters used in the syntax.

19 \nfss@catcodes

We use \expandafter \endgroup to restore catcode in case something goes wrong with
the argument parsing (suggested by Tim Van Zandt)

20 \expandafter\endgroup
21 \DeclareFontShape@}

(End definition for \DeclareFontShape. This function is documented on page ?77?.)

/2ekernel)

*2ekernel | latexrelease)

(latexrelease) \ IncludeInRelease{2020/02/02})

25 (latexrelease) {\DeclareFontShape@}{Maybe drop one m}}
\def\DeclareFontShapeQ@#1#2#3#4#5#6{7,

27 \expandafter\ifx\csname #1+#2\endcsname\relax

28 \@latex@error{Font family ‘#1+#2’ unknownl}\@eha

29 \else

(
(

If the series value is incorrectly specified with an extra “m”, e.g., “mc” instead of just
“c”, drop the surplus “m” but keep the “m” if it is by its own. In that case also issue a
warning that the declaration needs correction.

For this we compare the given value #3 with one where we may have dropped an “m”.
If nothing has changes, fine. Otherwise there was a wrong value which is now corrected
in \reservedb so we use that and also issue a warning.

30 \edef\reserved@a{#3}%
31 \series@maybe@drop@one@m\reserved@a\reserved@b
32 \ifx\reserved@a\reserved@b\else

\@latex@warning{Font shape declaration has incorrect series
34 value ‘#3’.\MessageBreak It should not contain an ‘m’!

35 Please correct it.\MessageBreak Foundl}%

36 \fi

37 \expandafter

38 \xdef\csname#1/#2/\reserved@b/#4\endcsname

39 {\expandafter\noexpand\csname #5\endcsnamely,

w0 %

Most of the time #6 is empty so using \let to \@empty saves on space compared to using
\def. That’s really one of the old space saving techniques and probably not necessary
these days.

“ \def\reserved@a{#6}%

a2 \global

43 \expandafter\let\csname#5\expandafter\endcsname

44 \ifx\reserved®@a\Qempty

45 \@empty

46 \else

47 \reserved@a
48 \fi

49 \fi

0}

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 264

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}Y%

(latexrelease) {\DeclareFontShape@}{Maybe drop one m}%
(latexrelease)

(latexrelease) \def\DeclareFontShape@#1#2#3#4#5#6{),

(latexrelease) \expandafter\ifx\csname #1+#2\endcsname\relax

(latexrelease) \@latex@error{Font family ‘#1+#2’ unknownl}\@eha
(latexrelease) \else

(latexrelease) \expandafter

(latexrelease) \xdef\csname#1/#2/#3/#4\endcsname{\expandafter\noexpand
> (latexrelease) \csname #5\endcsname},
(latexrelease) \def\reservedQa{#6}%
()
()
()
()
()
()
()
()
()
()

1

o

5

o

3

4

.

5

@

6

7

o

8

a

9

o

0

o

1

o

3
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease \fi

latexrelease) }
latexrelease)\EndIncludeInRelease
7 (*2ekernel)

\global
\expandafter\let\csname#5\expandafter\endcsname
\ifx\reserved@a\@empty
\Q@empty
\else
\reserved@a
\fi

o

4

5

o

6

o

7

8

o

9

0

~

71

2

3

~

(End definition for \DeclareFontShape@. This function is documented on page ?77.)

\DeclareFixedFont Define a direct font switch that avoids all overhead.

7 \def\DeclareFixedFont#1#2#3#4#5#6{,
76 \begingroup

77 \math@fontsfalse

78 \every@math@size{}/

79 \fontsize{#6}\z0@

80 \usefont{#2}{#3}{#4}{#5}%

81 \global\expandafter\let\expandafter#1\the\font
82 \endgroup
83 }

(End definition for \DeclareFixedFont. This function is documented on page ?77?.)

\do@subst@correction
e \def\do@subst@correction{’
85 \xdef\subst@correction{%
86 \font@name
87 \global\expandafter\font
88 \csname \curr@fontshape/\f@size\endcsname
89 \noexpand\fontname\font
9 \relaxl}’

Calling \subst@correction after the current group means calling it after we have loaded
the substitution font which is done inside a group.

91 \aftergroup\subst@correction

o ¥

(End definition for \do@subst@correction. This function is documented on page 77.)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 265

\DeclareFontFamily

\cdp@list

\cdp@elt

\DeclareFontEncoding

s \def\DeclareFontFamily#1#2#3{J,

If we want fast checking for the encoding scheme we can just check for \T@.. being
defined.

o % \@tempswafalse

o5 % \def\reserved@b{#11},

o % \def\cdpQelt##1##2##3##4{\def\reserved@c{##1}/,

o7 h \ifx\reserved@b\reserved@c \@tempswatrue\fil}y,
95 % \cdp@list

9 % \ifQ@tempswa

100 \@ifundefined{To#11}Y,

101 %
102 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha
103 }%
104 %

Now we have to define the macro \(#1)+(#2) to contain #3. But since most of the time
#3 will be empty we use \let in a tricky way rather than a simple \def since this will
save internal memory. We store the argument #3 in a temporary macro \reserved@a.

105 \def\reserved@a{#3}/,

We compare \reserved®@a with \@empty If these two are the same we \let the ‘extra’
macro equal to \@empty which is not the same a doing a \let to \reserved@a — the
latter would blow one extra memory location rather then reusing the one from \@empty.

106 \global

107 \expandafter\let\csname #1+#2\expandafter\endcsname
108 \ifx \reserved@a\@empty

109 \@empty

110 \else \reserved@a

111 \fi

112 Y

113 }

(End definition for \DeclareFontFamily. This function is documented on page ?7.)

We initialize the code page list to be empty.

114 \let\cdp@list\Q@empty
115 \@onlypreamble\cdp@list

(End definition for \cdp@list. This function is documented on page ?77.)

116 \let\cdp@elt\relax
117 \@onlypreamble\cdp@elt

(End definition for \cdp@elt. This function is documented on page 77.)

115 \def\DeclareFontEncoding{%

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 266

First we start with ignoring all blanks and newlines since every surplus space in the
second or third argument will come out in a weird place in the document.

119 \begingroup

120 \nfss@catcodes

121 \expandafter\endgroup

122 \DeclareFontEncoding@}

123 \@onlypreamble\DeclareFontEncoding

124 \def\DeclareFontEncoding@#1#2#3{7,
125 \expandafter
126 \ifx\csname T@#1\endcsname\relax

127 \def\cdp@elt{\noexpand\cdp@elt}y,

128 \xdef\cdp@list{\cdp@list\cdp@elt{#1}/,

129 {\default@family}{\default@series}y,
130 {\default@shapel}}/

To support encoding dependent commands (like accents) we initialise the command
\(encoding)-cmd to be \@changed@cmd. (See ltoutenc.dtx for details.)

131 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
12 \else

133 \@font@info{Redeclaring font encoding #11}/

134 \fi

135 \global\@namedef{TO#1}{#21}/,
136 \global\@namedef{MO#1}{\default@M#3}%

Keep a record of the last encoding being declared:

137 \xdef\LastDeclaredEncoding{#1}/
138 }
130 \@onlypreamble\DeclareFontEncoding@

(End definition for \DeclareFontEncoding. This function is documented on page ?7.)

\LastDeclaredEncoding The last encoding being declared by \DeclareFontEncoding.
1o \def\LastDeclaredEncoding{}

(End definition for \LastDeclaredEncoding. This function is documented on page 77.)

\DeclareFontSubstitution

11 \def\DeclareFontSubstitution#1#2#3#4{Y
12 \expandafter

123 \ifx\csname T@#1\endcsname\relax

144 \@latex@error{Encoding scheme ‘#1’ unknownl}\@eha
145 \else

146 \begingroup

We loop through the \cdp@list and rebuild it anew in \toks@ thereby replacing
the defaults for the encoding in question with the new defaults. It is important to
store the encoding to test against expanded in \reserved®@a since it might just be
\LastDeclaredEncoding that is passed as #1.

147 \edef\reserved@a{#1}/,

148 \toks@{}%

149 \def\cdpQ@elt##1##2##3##4{),

150 \def\reserved@b{##11}/,

151 \ifx\reserved@a\reserved@b

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 267

\DeclareFontEncodingDefaults

\default@T
\default@M

\DeclarePreloadSizes

Here we use the new defaults but we use ##1 (i.e., the encoding name already stored
previously) since we know that it is expanded.

152 \addto@hook\toks@{\cdp@elt{##1}{#2}{#3}{#4}}%
153 \else

If \reserved@a and \reserved@b differ then we simply copy from the old list to the new.

154 \addto@hook\toks@{\cdp@elt{##1}{##2} {##3}{##4}}
155 \fil}J

156 \cdp@list

157 \xdef\cdp@list{\the\toks@}/,
158 \endgroup

159 \global

160 \@namedef {D@#1}{%

161 \def\default@family{#2}/,
162 \def\default@series{#3}%
163 \def\default@shape{#41}%
164 Yk

165 \fi

166 }

167 \@onlypreamble\DeclareFontSubstitution

(End definition for \DeclareFontSubstitution. This function is documented on page 77.)

16 \def\DeclareFontEncodingDefaults#1#2{%

1o \ifx\relax#1l\else

170 \ifx\default@T\Qempty\else

171 \@font@info{Overwriting encoding scheme text defaults}’,
172 \fi

173 \gdef\default@T{#1}/,

174 \fi

175 \ifx\relax#2\else

176 \ifx\default@M\@empty\else

177 \@font@info{Overwriting encoding scheme math defaults}’,
178 \fi

179 \gdef\default@M{#2}7,

180 \fi

181 F
122 \@onlypreamble\DeclareFontEncodingDefaults

(End definition for \DeclareFontEncodingDefaults. This function is documented on page ?7.)

183 \let\default@T\Q@empty
134 \let\default@M\@empty

(End definition for \default@T and \default@M. These functions are documented on page ?7.)

155 \def\DeclarePreloadSizes#1#2#3#4#5{,

s \@ifundefined{T@#11}},

187 {\@latex@error{Encoding scheme ‘#1’ unknownl}\@ehaly,
188 {%

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 268

\ifmath@fonts

Don’t know at the moment what this group here does!

189 \begingroup

We define a macro \reserved@f'’ that grabs the next size and loads the corresponding
font. This is done by delimiting \reserved@f’s only argument by the token , (comma).
190 \def\reserved@f##1,{%

The end of the list will be detected when there are no more elements, i.e. when
\reserved@f’s argument is empty. The trick used here is explained in Appendix D
of the TEXbook: if the argument is empty the \if will select the first clause and \let
\reserved@f equal to \relax. (We use the > character here since it cannot appear in
font file names.)

191 \if>##1>Y%
192 \let\reserved@f\relax
193 \else

Otherwise, we define \font@name appropriately and call \pickup@font to do the work.
Note that the requested \curr@fontshape combination must have been defined, or you
will get an error. The definition of \font@name is carried out globally to be consistent
with the rest of the code in this file.

104 \xdef\font@name{\csname#1/#2/#3/#4/##1\endcsnamel}’,

105 \pickup@font

Now we forget the name of the font just loaded. More precisely, we set the corresponding
control sequence to \relax. This means that later on, when the font is first used, the
macro \define@newfont is called again to execute the ‘extra’ macro for this font.

196 \global\expandafter\let\font@name\relax

197 \fi

Finally we call \reserved@f again to process the next size. If \reserved@f was \let
equal to \relax this will end the macro.

198 \reserved@f}y,

We finish with reinserting the list of sizes after the \reserved@f macro and appending
an empty element so that the end of the list is recognized properly.

199 \reserved@f#5,,%
200 \endgroup

201 }%

202 }

203 \@onlypreamble\DeclarePreloadSizes

(End definition for \DeclarePreloadSizes. This function is documented on page 77.)

We need a switch to decide if we have to switch math fonts. For this purpose we provide
\ifmath@fonts that can be set to true or false by the \S@. .. macros depending on if
math fonts are provided for this size or not. The default is of course to switch all fonts.

200 \newif\ifmath@fonts \math@fontstrue

(End definition for \ifmath@fonts. This function is documented on page 77.)

10We cannot use \@tempa since it is needed in \pickup@font.

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 269

\DeclareMathSizes \DeclareMathSizes takes the text size, math text size, math script size, and math
\DeclareMathSizes* scriptscript size as arguments and defines the right \S@... macro.

205 \def\DeclareMathSizes{%

206 \@ifstar{\@DeclareMathSizes\math@fontsfalsel}),
207 {\@eclareMathSizes{}}}

206 \@onlypreamble\DeclareMathSizes

(End definition for \DeclareMathSizes and \DeclareMathSizes*. These functions are documented on
page ?7.)

\@DeclareMathSizes This modification by Michael J. Downes on comp.text.tex on 2002/10/17 allows the user
to have settings such as
\DeclareMathSizes{9.5dd}{9.5dd}{7.4dd}{6.6dd}.

200 (/2ekernel)
210 (latexrelease)\IncludeInRelease{2015/01/01}{\@DeclareMathSizes}},
211 (latexrelease) {Arbitrary units in \DeclareMathSizesl}},

212 (*2ekernel | latexrelease)

213 \def\@DeclareMathSizes #1#2#3#4#5{/,

214 \@defaultunits\dimen@ #2pt\relax\@nnil
215 \if $#3$%

216 \expandafter\let\csname S@\strip@pt\dimen@\endcsname\math@fontsfalse
217 \else

218 \@defaultunits\dimen@ii #3pt\relax\@nnil

219 \@defaultunits\@tempdima #4pt\relax\@nnil

220 \@defaultunits\@tempdimb #5pt\relax\@nnil

221 \toks@{#1}%

222 \expandafter\xdef\csname S@\strip@pt\dimen@\endcsname{’,
223 \gdef\noexpand\tf@size{\strip@pt\dimen@iil}y

224 \gdef\noexpand\sf@size{\strip@pt\@tempdimaly,

225 \gdef\noexpand\ssf@size{\strip@pt\@tempdimbl}y,

226 \the\toks@

227 Y

228 \fi

20 }h

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}{\@eclareMathSizes}%
(latexrelease) {Arbitrary units in \DeclareMathSizesl}}
(latexrelease)\def\@DeclareMathSizes#1#2#3#4#5{/,
(latexrelease) \@defaultunits\dimen@#2pt\relax\@nnil
(latexrelease) \if$#3$7
(latexrelease) \expandafter \let
(latexrelease) \csname S@\strip@pt\dimen@\endcsname
230 (latexrelease) \math@fontsfalse
20 (latexrelease) \else
21 (latexrelease) \expandafter \gdef
(latexrelease) \csname S@\strip@pt\dimen@\endcsname
()
()
()
()
()
()
(

latexrelease {\gdef\tf0@size{#3}\gdef\sf@size{#41}/,

242

243

24 (latexrelease \gdef\ssf@size{#5}%
s (latexrelease #1%
26 {latexrelease Y

247

latexrelease \fi}%
latexrelease)\EndIncludeInRelease
*2ekernel)

R

248

249

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 270

\fontencoding
\f@encoding

\@@enc@update

250

\@onlypreamble\@DeclareMathSizes

(End definition for \@DeclareMathSizes. This function is documented on page ?7.)

3

Selecting a new font

3.1 Macros for the user

As we said in the introduction a font is described by four parameters. We first define
macros to specify the wanted family, series, or shape. These are simply recorded in
internal macros \f@family, \f@series, and \f@shape, resp. We use \edef’s so that the
arguments can also be macros.

251

255

256

\DeclareRobustCommand\fontencoding[1]{%
\expandafter\ifx\csname T@#1\endcsname\relax
\@latex@error{Encoding scheme ‘#1’ unknownl}\Q@eha
\else
\edef\f@encoding{#1}%
\ifx\cf@encoding\f@encoding

If the new encoding is the same as the old encoding we have nothing to do. However, in
case we had a sequence of several encoding changes without a \selectfont in-between
we can save processing by making sure that \enc@update is \relax.

257

258

\let\enc@update\relax
\else

If current and new encoding differ we define the macro \enc@update to contain all updates
necessary at \selectfont time.

259

260

261

262

\let\enc@update\@@enc@update
\fi
\fi
}

(End definition for \fontencoding and \f@encoding. These functions are documented on page 77.)

263

\def\@@enc@update{Y,

When \@@enc@update is executed \f@encoding holds the encoding name for the new
encoding and \cf@encoding the name of the last active encoding.

264

265

266

267

We start by setting the init command for encoding dependent macros to \@changed@cmd.
\expandafter
\let
\csname\cf@encoding -cmd\endcsname
\@changed@cmd

Then we turn the one for the new encoding to \@current@cmd (see ltoutenc.dtx for
further explanations).

268

269

270

271

\expandafter

\let
\csname\f@encoding-cmd\endcsname
\@current@cmd

We execute the default settings \default®@T, followed by the one for the new encoding.

\default@T
\csname T@\f@encoding\endcsname

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 271

Finally we change the default substitution values, disable \enc@update and make
\f@encoding officially the current encoding.

274 \csname D@\f@encoding\endcsname
275 \let\enc@update\relax

276 \let\cf@encoding\f@encoding

277 }

(End definition for \@eenc@update. This function is documented on page 77.)

\enc@update The default action in \selectfont is to do nothing.
275 \let\enc@update\relax

(End definition for \enc@update. This function is documented on page 77.)

\fontfamily
\f@family ., \DeclareRobustCommand\fontfamily[1]{\edef\f@family{#1}}
\fz?;ser?es There are now defined later (and differently).
series
\fontshape " %\DeclareRobustCommand\fontseries[1]{\edef\f@series{#1}}
P 21 % \DeclareRobustCommand\fontshape [1]{\edef\f@shape{#1}}
\f@shape

(End definition for \fontfamily and others. These functions are documented on page 77?.)

\usefont Some handy abbreviation if you want to get some particular font in the current size. If

also the size should change one has to issue a \fontsize command first.
\fontencoding needs to do some setup work so we call that, but instead of calling

\fontfamily, \fontseries and \fontshape it earlier versions of this code did, we now
set \f@family, etc. directly. If we would call \fontseries or \fontshape as it was done
in the past, they would now interact with the existing series and shape which is not
desired if we intend to use an explicit font shape!
22 \DeclareRobustCommand\usefont [4]{\fontencoding{#1}/
283 \edef\fe@family{#2}%
284 \edef\f@series{#3}/
285 \edef\f@shape{#4}\selectfont
286 \ignorespaces}

(End definition for \usefont. This function is documented on page ?77.)

\linespread Thecommand \linespread changes the current \baselinestretch by calling \set@fontsize.
The values for \f@size and \f@baselineskip will be left unchanged.

257 \DeclareRobustCommand\linespread[1]
288 {\set@fontsize{#1}\f@size\f@baselineskip}

(End definition for \linespread. This function is documented on page ?7.)

\fontsize We also define a macro that allows to specify a size. In this case, however, we also
need the value of \baselineskip. As the first argument to \set@fontsize we pass the
current value of \baselinestretch. This will either match the internal value (in which
case nothing changes, or it will be an updated value due to a user change of that macro
using \renewcommand. If we would pass the internal \f@linespread such a change would
be effectively overwritten by a size change.

230 \DeclareRobustCommand\fontsize [2]
200 {\set@fontsize\baselinestretch{#1}{#2}}

(End definition for \fontsize. This function is documented on page ?77.)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 272

\f@linespread

\cf@encoding

\@defaultunits

\strip@pt
\rem@pt

\mathversion
\math@version

This macro holds the current internal value for \baselinestretch.
201 \let\f@family\@empty

202 \let\f@series\Qempty

203 \let\f@shape\Qempty

200 \let\f@size\Q@empty

05 \let\f@baselineskip\@empty

206 \let\f@linespread\Qempty

(End definition for \f@linespread. This function is documented on page 77.)

207 \let\f@encoding\Qempty
208 \let\cf@encoding\@empty

(End definition for \cf@encoding. This function is documented on page 77.)

The function \@defaultunits when wrapped around a dimen or skip assignment supplies
default units. Usage:

\@defaultunits\dimen@=#1pt\relax\@nnil

Note: the \relax is *important®. Other units can be substituted for the ‘pt’ if
desired.

We use \remove@to@nnil as an auxiliary macros for \@defaultunits. It just has
to gobble the supplied default unit ‘pt’ or whatever, if it wasn’t used in the assignment.

200 \def\@defaultunits{\afterassignment\remove@to@nnill}

(End definition for \@defaultunits. This function is documented on page 77.)

This macro strips the characters pt produced by using \the on a dimen register.
500 \begingroup

;1 \catcode ‘P=12

s \catcode‘T=12

303 \lowercase{

304 \def\x{\def\rem@pt##1 . ##2PT{##1\ifnum##2>\z0. ##2\fi}}}

;05 \expandafter\endgroup\x

506 \def\strip@pt{\expandafter\rem@pt\the}

(End definition for \strip@pt and \rem@pt. These functions are documented on page 77.)

\mathversion takes the math version name as argument, defines \math@version appro-
priately and switches to the font selected forcing a call to \glb@settings if the version
is known to the system.

307 \DeclareRobustCommand\mathversion[1]

308 {\@nomath\mathversion

300 \expandafter\ifx\csname mv@#1\endcsname\relax

310 \@latex@error{Math version ‘#1’ is not defined}\@eha\else
311 \edef\math@version{#1}/

We need to force a math font setup both now and at the point where we return to
the previous math version. Forcing a math font setup can simply be done by setting
\glb@currsize to an invalid value since this will trigger the setup when the formula
starts.

312 \gdef\glb@currsize{}%

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 273

\frozen@everymath
\frozen@everydisplay

\everymath

\everydisplay

\frozen@everymath

\frozen@everydisplay

\curr@math@size

When the scope of the current \mathversion ends we need to restore the old setup.
However this time we need to force it directly at least if we are inside math, otherwise
we could wait. Another way to enhance this code here is todo the setting only if the
version really has changed after all. This might be interesting in case of amstext and
boldsymbol.

313 \aftergroup\glb@settings
314 \fl}

(End definition for \mathversion and \math@version. These functions are documented on page 77.)

If TEX would support a hook just before the end of a formula (opposite of \everymath
so to speak) the implementation of the algorithm would be much simpler because in that
case we would set up the correct math fonts at this point without having to worry about
incorrect settings due to nesting. The same would be true if in WTEX the use of $ (as the
primitive TEX command) would be impossible and instead only a higher-level interface
would be available. Note that this does not mean that a $ couldn’t be the short-hand
for starting and stopping that higher-level interface, it only means that the direct TEX
function must be hidden.

Anyway, since we don’t have this and won’t have it in I#TEX 2¢ we need to implement
it in a somewhat slower way.

We test for the current math font setup on entry of a formula, i.e., on the hooks
\everymath and \everydisplay. But since these hooks may contain user data we provide
ourselves with an internal version of these hooks which stays frozen.

New internal names for \everymath and \everydisplay.

;315 \let\frozen@everymath\everymath
516 \let\frozen®@everydisplay\everydisplay

(End definition for \frozen@everymath and \frozen®everydisplay. These functions are documented on
page ?7.)

Now we provide now user hooks that will be called in the frozen internals.

;17 \newtoks\everymath
;15 \newtoks\everydisplay

(End definition for \everymath and \everydisplay. These functions are documented on page 77.)

Now we define the behaviour of the frozen hooks: first check the math setup then call
the user hook.

510 \frozen@everymath = {\check@mathfonts
320 \the\everymath}

(End definition for \frozen@everymath. This function is documented on page 77.)

Ditto for the display hook.

221 \frozen@everydisplay = {\check@mathfonts
322 \the\everydisplay}

(End definition for \frozen@everydisplay. This function is documented on page ?7.)

This holds locally the current math size.
323 \let\curr@math@size\@empty

(End definition for \curr@math@size. This function is documented on page 77.)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 274

\pickup@font

\split@name

\curr@fontshape

\define@newfont

3.2 Macros for loading fonts

The macro \pickup@font which is used in \selectfont is very simple: if the font name
is undefined (i.e. not known yet) it calls \define@newfont to load it.

224 \def\pickup@font{y

325 \expandafter \ifx \font@name \relax
326 \define@newfont
327 \fi}

(End definition for \pickup@font. This function is documented on page 77.)

\pickup@font assumes that \font@name is set but it is sometimes called when
\f@family, \f@series, \f@shape, or \f@size may have the wrong settings (see, e.g., the
definition of \getanddefine@fonts). Therefore we need a macro to extract font family,
series, shape, and size from the font name. To this end we define \split@name which
takes the font name as a list of characters of \catcode 12 (without the backslash at the
beginning) delimited by the special control sequence \@nil. This is not very complicated:
we first ensure that / has the right \catcode

228 {\catcode‘\/=12

and define \split@name so that it will define our private \f@encoding, \f@family,
\f@series, \f@shape, and \f@size macros.

220 \gdef\split@name#1/#2/#3/#4/#5\@nil{\def\f@encoding{#1}},

0 \def\fefamily{#2}%

331 \def\f@series{#3}%

332 \def\f@shape{#4}/,

. \def\f@size{#5}}}

]

(End definition for \split@name. This function is documented on page ?7.)

Abbreviation which may get removed again for speed.
53 \def\curr@fontshape{\f@encoding/\f@family/\f@series/\f@shape}

(End definition for \curr@fontshape. This function is documented on page 77.)

Now we can tackle the problem of defining a new font.
335 \def\define@newfont{%

We have already mentioned that the token list that \split@name will get as argument
must not start with a backslash. To reach this goal we will set the \escapechar to —1
so that the \string primitive will not generate an escape character. To keep this change
local we open a group. We use \begingroup for this purpose since \define@newfont
might be called in math mode, and an empty \bgroup...\egroup would add an empty
Ord atom to the math list and thus affect the spacing.

Also locally redefine \typeout so that ‘No file ...fd’ Warnings become Font Info
message just sent to the log file.
336 \begingroup
337 \let\typeout\@font@info
338 \escapechar\m@ne
Then we extract encoding scheme, family, series, shape, and size from the font name.
Note the four \expandafter’s so that \font@name is expanded first, then \string, and
finally \split@name.
339 \expandafter\expandafter\expandafter
340 \split@name\expandafter\string\font@name\Onil

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 275

\nfss@catcodes

If the \curr@fontshape combination is not available, (i.e. undefined) we call the macro
\wrong@fontshape to take care of this case. Otherwise \extract@font will load the
external font for us.

341 \expandafter\ifx

2 \csname\curr@fontshape\endcsname \relax
343 \try@load@fontshape % try always

a0 % \fi

345 \expandafter\ifx

346 \csname\curr@fontshape\endcsname \relax
347 \wrong@fontshape\else

To allow substitution we call the curr@fontshape macro which usually will expand to
\relax but may hold code for substitution (see \subst@fontshape definition).

38 \csname\curr@fontshape\endcsname
349 \extract@font\fi

We are nearly finished and must only restore the \escapechar by closing the group.

550 \endgroup}

351 \def\try@load@fontshape{’,

352 \expandafter

353 \ifx\csname \f@encoding+\f@family\endcsname\relax
354 \@font@info{Trying to load font information for
355 \f@encoding+\f@family}’

We predefine this combination to be \@empty which means that next time we don’t
try again unnecessary in case we don’t find a .fd file. If the file contains a
\DeclareFontFamily command than this setting will be overwritten.

356 \global\expandafter\let

357 \csname\f@encoding+\f@family\endcsname\Qempty

Set the catcodes used in the syntax, but do it only once (this will be restored at the end
of the font loading group).

358 \nfss@catcodes

359 \let\nfss@catcodes\relax

For increased portability make the external filename monocase, but look for the (old
style) mixed case filename if the first attempt fails.

On any monocase system this means that the file is looked for twice which takes up
time and string space, but at least for this release Check for both names to give people
time to re-install their private fd files with lowercase names.

360 \edef\reserved@a{’

361 \lowercase{,

362 \noexpand\InputIfFileExists{\f@encoding\f@family.fd}}}’
363 \reserved@a\relax

364 {\@input@{\f@encoding\f@family.£fd}}%

365 \fi}

(End definition for \define@newfont. This function is documented on page 77.)

This macro should contain the standard \catcode assignments to all characters which
are used in the commands found in an .f£d file and which might have special \catcodes
in the middle of a document. If necessary, this list can be extended in a package file
using a suitable number of \expandafter, i.e.,

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 276

\LoadFontDefinitionFile

\expandafter\def\expandafter\nfss@catcodes
\expandafter{\nfss@catcodes <additional settings>}

Note, that this macro might get executed several times since it is also called by
\DeclareFontShape, thus it probably should not be misused as a general purpose hook.
366 \def\nfss@catcodes{)

We start by making @ a letter and ignoring all blanks and newlines.

367 \makeatletter

368 \catcode‘\ 9%

369 \catcode‘\""I9%

370 \catcode ‘\""M9Y

Then we set up \, {, }, # and % in case an . fd file is loaded during a verbatim environment.

371 \catcode ‘\\\z@
372 \catcode ‘\{\@ne
373 \catcode ‘\}\tw@
374 \catcode ‘ \#6%

375 \catcode‘\"7%

376 \catcode ‘\%14%

The we make sure that the important syntax parts have the right \catcode.
377 \@makeother\<Y

378 \@makeother\>%

379 \@makeother*J,

380 \@makeother\.Y
381 \@makeother\-
382 \@makeother\ /%
383 \@makeother\ [’
384 \@makeother\]%
385 \@makeother\ ‘Y
386 \@makeother\’Y
387 \@makeother\"%
388 }

(End definition for \nfss@catcodes. This function is documented on page 77.)

Load and .fd files for some encoding and family (if it exists).

389 (/2ekerneD

.0 (*2ekernel | latexrelease)

01 (latexrelease) \IncludeInRelease{2020/02/02},

500 (latexrelease) {\LoadFontDefinitionFile}{Loading .fd files})
305 \def\LoadFontDefinitionFile#1#2{%

34 \begingroup

395 \edef\f@encoding{#1}%
396 \edef\f@family{#Q}%
397 \try@load@fontshape
s8 \endgroup

300 F

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

10> (latexrelease)\IncludeInRelease{0000/00/003}%

(latexrelease) {\LoadFontDefinitionFile}{Loading .fd files}
(latexrelease)

400

4

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 277

\DeclareFontFamilySubstitution

a5 (latexrelease)\let\LoadFontDefinitionFile\@undefined
106 (latexrelease)\EndIncludeInRelease
a7 (*2ekernel)

(End definition for \LoadFontDefinitionFile. This function is documented on page 77.)

The idea for this macro is stolen from the substitutefont package by Gilinter Milde,
with some modifications and a new name.

Its purpose is to provide characters in a special encoding tht are not available in the
current font family to be taken from a different family that is visually compatible (or not
if you choose badly). For example, you can match the GFS Didot Greek characters with
TEX Gyre Pagella (Palatino) by specifying

\DeclareFontFamilySubstitution{LGR}{qpl}{udidot}

This way if you ask for the LGR encoding in for the gpl family you get the characters
from the udidot family substituted.

We need to ensure that the macro is defined with \nfss@catcodes in force (not
quite sure why at the moment to be honest).

s (/2ekernel)

o (*2ekernel | latexrelease)

10 (latexrelease) \IncludeInRelease{2020/02/02})

a1 (latexrelease) {\DeclareFontFamilySubstitution}{Provide family substituation})
> \begingroup

213 \nfss@catcodes

214 \gdef\DeclareFontFamilySubstitution#1#2#3{J,

4

S

4

We only provide a set of silent substitutions. The package also (re)declared the family,
but this is incorrect in my eyes and it is better to handle that differently.

Of course the families may still need loading at this point and so we arange for this.
Otherwise we might run into trouble because the necessary \DeclareFontFamily has not
been seen.

415 \LoadFontDefinitionFile{#1}{#2}Y%
416 \LoadFontDefinitionFile{#1}{#3}}

417 \DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}%
418 \DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}/

419 \DeclareFontShape{#1}H#2}{m}{sc}{<->ssub * #3/m/sc}{}
420 \DeclareFontShape{#1}{#2}{m}{s1}{<->ssub * #3/m/s1}{}

These days a few more shapes might be around, so we declare those too. If they don’t
exist then after the first substitution normal fallbacks will happen.

421 \DeclareFontShape{#1}{#2}{m}{sw}{<->ssub * #3/m/sw}{}%
a2 \DeclareFontShape{#1}{#2}{m}{scit}{<->ssub * #3/m/scit}{}/,
423 \DeclareFontShape{#1}{#2}{m}{scsl}{<->ssub * #3/m/scs1l}{}%

Same game with b and bx, for other weights you are on your own:

a2 \DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/b/it}{}%

425 \DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/b/n}{}/

426 \DeclareFontShape{#1}H#2}{b}{scit}{<->ssub * #3/b/scit}{}/
427 \DeclareFontShape{#1}{#2}{b}{scsl}{<->ssub * #3/b/scsl}{}%
428 \DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/b/sc}{}%

429 \DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/b/s1}{}%

430 \DeclareFontShape{#1}{#2}{b}{sw}{<->ssub * #3/b/sw}{}%

431 \DeclareFontShape{#1}{#2}{bx}{it}{<->ssub * #3/bx/it}{}}

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 278

432 \DeclareFontShape{#1}{#2}{bx}{n}{<->ssub * #3/bx/n}{}%

433 \DeclareFontShape{#1}#2}{bx}{scit}{<->ssub * #3/bx/scit}{}%

434 \DeclareFontShape{#1}{#2}{bx}{scs1l}{<->ssub * #3/bx/scs1l}{}/,

435 \DeclareFontShape{#1}H{#2}{bx}{sc}{<->ssub * #3/bx/sc}{}%

436 \DeclareFontShape{#1}{#2}{bx}{s1}{<->ssub * #3/bx/s1}{}/

437 \DeclareFontShape{#1}{#2}{bx}{sw}{<->ssub * #3/bx/sw}{}/

438 }

239 \endgroup

o (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\DeclareFontFamilySubstitution}{Provide family substituation}%

latexrelease)
)
)

44
latexrelease)\let\DeclareFontFamilySubstitution\@undefined
s (latexrelease)\EndIncludeInRelease

w7 (*2ekernel)

445

o~~~ o~~~

(End definition for \DeclareFontFamilySubstitution. This function is documented on page ?7.)

\DeclareErrorFont Declare the last resort shape! We assume that in this fontshape there is a 10pt font but
it doesn’t really matter. We only loose one macro name if the assumption is false. But
at least the font should be there!
ws (/2ekernel)
w9 (*2ekernel | latexrelease)

10 (latexrelease)\IncludeInRelease{2019/10/01}},

1 (latexrelease) {\DeclareErrorFont}{No side effects please}}
452 \def\DeclareErrorFont#1#2#3#4#5{/,

453 \xdef\error@fontshape{%

454 \noexpand\expandafter\noexpand\split@name\noexpand\string

455 \expandafter\noexpand\csname#1/#2/#3/#4/#5\endcsname

456 \noexpand\@nil}

Initialize all those internal variables which may or may not have values in the first seconds
of NFSS’ bootstraping process. Later on such values will be updated when an encoding
is selected, etc.

We definitely don’t want to set \f@encoding; we can set all the others since if they
are left “blank” any selection would grap “error default values” as well. However, this
probably should go also—and now it did.

a7t \gdef\f@encoding{#1}Y

458 \gdef\default@family{#2}
459 \gdef\default@series{#3}%
460 \gdef\default@shape{#41}/,
461 F

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\DeclareErrorFont}{No side effects pleasel/,
(latexrelease)

o7 (latexrelease)\def\DeclareErrorFont#1#2#3#4#5{%
(latexrelease) \xdef\error@fontshape{’
()
()
()
()

465

466

468
latexrelease
latexrelease
latexrelease
latexrelease

460 \noexpand\expandafter\noexpand\split@name\noexpand\string
\expandafter\noexpand\csname#1/#2/#3/#4/#5\endcsname
\noexpand\@nill}y

\gdef\default@family{#2}%

70

471

]

>

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 279

\wrong@fontshape

latexrelease
latexrelease

73 \gdef\default@series{#3}/
\gdef\default@shape{#4}
latexrelease \global\let\f@family\default@family
latexrelease \globalllet\f@series\default@series

()
()
(etoraers)
77 (latexrelease) \globalllet\f@shape\default@shape
()
()
()
()
(

474
475

476

IS

latexrelease \gdef\f@size{#5}/,
latexrelease \gdef\f@baselineskip{#5pt}/
latexrelease
latexrelease
*2ekernel)

4

3

8

479

480

~ Y

481 EndIncludeInRelease
482
253 \@onlypreamble\DeclareErrorFont

(End definition for \DeclareErrorFont. This function is documented on page 77.)

Before we come to the macro \extract@font we have to take care of unknown
\curr@fontshape combinations. The general strategy is to issue a warning and to try
a default shape, then a default series, and finally a default family. If this last one also
fails TEX will go into an infinite loop. But if the defaults are set incorrectly one deserves
nothing else!

sea (/2ekernel)

a5 (latexrelease)\IncludeInRelease{2015/01/01}{\wrong@fontshapel}’,

s (latexrelease) {Font substituation in preamble}}

w7 (*2ekernel | latexrelease)

255 \def \wrong@fontshape{’

489 \csname D@\f@encoding\endcsname ¥ install defaults if in math

We remember the wanted \curr@fontshape combination which we will need in a moment.

490 \edef\reserved@a{\csname\curr@fontshape\endcsnamely,
201 \ifx\last@fontshape\reserved@a

492 \errmessage{Corrupted NFSS tablesl}’

493 \error@fontshape

494 \else

Then we warn the user about the mess and set the shape to its default.
495 \let\f@shape\default@shape
If the combination is not known, try the default series.

496 \expandafter\ifx\csname\curr@fontshape\endcsname\relax
407 \let\f@series\default@series

If this is still undefined, try the default family. Otherwise give up. We never try to
change the encoding scheme!

498 \expandafter
499 \ifx\csname\curr@fontshape\endcsname\relax
500 \let\f@family\default@family

If we change the font family and we are in the preamble then the corresponding .£fd file
may not been loaded yet. Therefore we try this now. Otherwise equating the requested
font shape with the finally selected fontshape below will fail and can result in “NFSS
tables corruped”. After begin document that will not happen as all .£d files involved in
substituation are loaded at \begin{document}.

501 \begingroup

502 \try@load@fontshape
503 \endgroup

504 \fi \fi

505 \fi

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 280

At this point a valid \curr@fontshape combination must have been found. We inform
the user about this fact.

The \expandafter\string here stops TEX adding the space that it usually puts
after command names in messages. The similar construction with \@undefined just
produces ‘undefined’, but saves a few tokens.

\@urong@font@char is locally redefined in \UseTextSymbol from its normal (empty)
definition, to report the symbol generating the font switch.

506 \@font@warning{Font shape ‘\expandafter\string\reserved®@a’

507 \expandafter\@gobble\string\Oundefined\MessageBreak
508 using ‘\curr@fontshape’ instead\@wrong@font@char}y,

509 \globalllet\last@fontshape\reserved@a

We change \@defaultsubs to produce a warning at the end of the document. The macro
\@defaultsubs is initially \relax but gets changed here if some default font substitution
happens. It is then executed in \enddocument.

510 \gdef\@defaultsubs{’
511 \@font@warning{Some font shapes were not available, defaults
512 substituted.\@gobbletwo}}’

If we substitute a \curr@fontshape combination by the default one we don’t want the
warning to be printed out whenever this (unknown) combination is used. Therefore we
globally \1let the macro corresponding to the wanted combination equal to its substitu-
tion. This requires the use of four \expandafter’s since \csname...\endcsname has to
be expanded before \reserved@a (i.e. the requested combination), and this must happen
before the \let is executed.

513 \global\expandafter\expandafter\expandafter\let
514 \expandafter\reserveda
515 \csname\curr@fontshape\endcsname

Now we can redefine \font@name accordingly. This must be done globally since it might
occur in the group opened by \define@newfont. If we would this definition were local the
closing \endgroup there would restore the old meaning of \font@name and then switch
to the wrong font at the end of \selectfont although the correct font was loaded.

516 \xdef\font@name{’
517 \csname\curr@fontshape/\f@size\endcsname}y,

The last thing this macro does is to call \pickup@font again to load the font if it is not
defined yet. At this point this code will loop endlessly if the defaults are not well defined.
518 \pickup@font}

si0 (/2ekernel | latexrelease)
s20 (latexrelease)\EndIncludeInRelease

521 (latexrelease)\IncludeInRelease{0000/00/00}{\wrong@fontshapel}’,

522 (latexrelease) {Font substituation in preamble}}

523 (latexrelease)\def \wrong@fontshape{%

s21 (latexrelease) \csname D@\f@encoding\endcsname

525 (latexrelease) \edef\reserved@a{\csname\curr@fontshape\endcsname}’
s26 (latexrelease) \ifx\last@fontshape\reserved@a

527 (latexrelease) \errmessage{Corrupted NFSS tablesl}

525 (latexrelease) \error@fontshape

s20 (latexrelease) \else

s30 (latexrelease) \let\f@shape\default@shape

531 (latexrelease) \expandafter\ifx\csname\curr@fontshape\endcsname\relax
s22 (latexrelease) \let\f@series\default@series

533 (latexrelease) \expandafter

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 281

\ifx\csname\curr@fontshape\endcsname\relax
\let\f@family\default@family
\fi \fi

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
513 {latexrelease

(
(
(
(
(
(
(
(
(
(
s (latexrelease
(
(
(
(
(
(
(
(
(

534

536
\fi
\@font@warning{Font shape
‘\expandafter\string\reserved@a’
\expandafter\@gobble\string\@undefined
\MessageBreak
using ‘\curr@fontshape’ instead\@wrong@font@char}y,
\global\let\last@fontshape\reserved@a
\gdef\@defaultsubs{/
\@font@warning{Some font shapes were not available,
defaults substituted.\@gobbletwol}}%
\global\expandafter\expandafter\expandafter\let
\expandafter\reserved@a
\csname\curr@fontshape\endcsname

‘,
@©
23

8

539

540

541

g

@

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

545

LSSL L S LS L LS L L S, L SR LS L LSRN SN S L

ss0 (latexrelease \xdef\font@name{y,

ss1 (latexrelease \csname\curr@fontshape/\f@size\endcsname}’
s52 (latexrelease \pickup@font}

s53 (latexrelease)\EndIncludeInRelease

ssa (*2ekernel)

(End definition for \wrong@fontshape. This function is documented on page 77.)

\@wrong@font@char Normally empty but redefined in \UseTextSymbol so that the Font shape undefined
message can refer to the symbol causing the problem.

555 \let\@wrong@font@char\Q@empty

(End definition for \@wrong@font@char. This function is documented on page 77.)

\@@defaultsubs See above.
\@defaultsubs . \let\@defaultsubs\relax

(End definition for \@edefaultsubs and \@defaultsubs. These functions are documented on page 77.)

\strip@prefix In \extract@font we will need a way to recover the replacement text of a macro. This is
done by the primitive \meaning together with the macro \strip@prefix (for the details
see appendix D of the TEXbook, p. 382).

ss7 \def\strip@prefix#1>{}

(End definition for \strip@refix. This function is documented on page 77.)

4 Assigning math fonts to versions

\install@mathalphabet This is just another name for \gdef but we can redefine it if necessary later on.
sss \let\install@mathalphabet\gdef

(End definition for \install@mathalphabet. This function is documented on page 77.)

\math@fonts
s50 \let\math@fonts\Q@empty

(End definition for \math@fonts. This function is documented on page ?7.)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 282

\select@group \select@group has four arguments: the new (math alphabet identifier) (a con-
trol sequence), the (math group number), the extra macro for math mode and the
\curr@fontshape definition macro name. We first check if we are in math mode.

se0 %h\def\select@group#1#2#3{\relax\ifmmode

We do these things locally using \begingroup instead of \bgroup to avoid the appearance
of an empty Ord atom on the math list.

s61 % \begingroup
We set the math fonts for the family in question by calling \getanddefine@fonts in the
correct environment.

562 \escapechar\m@ne
563 \getanddefine@fonts{\csname c@mv@\math@version\endcsnamel}#3,

We globally select the math fonts. . .
s64 \globaldefs\@ne \math@fonts

. and close the group to restore \globaldefs and \escapechar.
s65 % \endgroup

As long as no size or version change occurs the (math alphabet identifier) should simply
switch to the installed math group instead of calling \select@group unnecessarily. So
we globally redefine the first argument (the new (math alphabet identifier)) to expand
into a \mathgroup switch and then select this alphabet. Note that this redefinition will
be overwritten by the next call to a version macro. The original code for the end of
\select@group was

\gdef#1{#3\mathgroup #2}#1\fi}

i.e. first redefining the (math alphabet identifier) and then calling the new definition to
switch to the wanted (math group). Now we define the (math alphabet identifier) as a
call to the \use@mathgroup command.

se6 %o \xdef#1{\noexpand\use@mathgroup\noexpand#2,

567 T {\number\csname c@mv@\math@version\endcsnamel}}/,

But this is not sufficient, as we learned the hard way. The problem here is that the
loading of the fonts that comprise the alphabet identifier #1, as well as the necessary
math font assignments is deferred until it is used. This is OK so far, but if the fonts are
switched within the current formula (which may happen if a sub-formula is a box that
contains a math version switch) the font assignments for #1 are not restored unless #1
is used again. This is disastrous since TeX sees the wrong fonts at the end of the math
formula, when it converts the math list into a horizontal list.

This is taken into account as follows: When a math alphabet identifier is used for
the first time in a certain version it modifies the corresponding macro \mv@{wversion)
so that it calls \getanddefine@fonts directly in future as well. We use the macro
\extract@alph@from@version to do this. It takes the math alphabet identifer #1 and
the math version macro as arguments.

568 \expandafter\extract@alph@from@version

560 \csname mv@\math@version\expandafter\endcsname

570 \expandafter{\number\csname c@mv@\math@version\endcsnamel},
571 % #1%

512 \stepcounter{mv@\math@versionl}y,

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 283

\extract@alph@from@version

Finally, it is not possible to simply call the new definition since we have an argument
(the third argument of \use@mathgroup or more exactly the argument of \math@egroup
if the margid option is in force) which would swallow our closing \fi. So we use the
\expandafter technique to remove the \fi before the \use@mathgroup is expanded.

573 %h\expandafter #1\fi}

(End definition for \select@group. This function is documented on page 77.)

We proceed to the definition of the macro \extract@alph@from@version. As stated
above, it takes a math alphabet identifier and a math version macro (e.g. \mv@normal)
as its arguments.

s7 \def\extract@alph@from@version#1#2#3{%

To extract and replace the definition of math alphabet identifier #3 in macro #1 we have
to recall how this definition looks like: Somewhere in the replacement text of #1 there is
the sequence
\install@mathalphabet(math alphabet identifier) #3{/

(Definitions for)#3}
Hence, the first thing we do is to extract the tokens preceding this definitions, the def-
inition itself, and the tokens following it. To this end we define one auxiliary macro
\reserved@a.
575 \def\reserved@a##1\install@mathalphabet#3##2##3\0@nil{Y,

When \reserved@a is expanded, it will have the tokens preceding the definition in ques-
tion in its first argument (##1), the following tokens in its third argument (##3), and the
replacement text for the math alphabet identifier #3 in its second argument. (##2). This
is then recorded for later use in a temporary macro \reserved@b.

576 \def\reserved@b{##2}

Additionally, we define a macro \reserved@c to reconstruct the definitions for the math
version in question from the tokens that will remain unchanged (##1 and ##3) and the
yet to build new definitions for the math alphabet identifier #3.

577 \def\reservedQc####1{\gdef#1{## 1####1##3}}1},
Then we execute our auxiliary macro.
578 \expandafter\reserved@a#1\@nil

OK, so now we have to build the new definition for #3. To do so, we first extract the
interesting parts out of the old one. The old definition looks like:
\select@group(math alphabet identifier)
(math group number)(math extra part)
(curr@fontshape definition)

So we define a new temporary macro \reserved@a that extracts these parts.

579 \def\reserved@a\select@group#3#i#1##2\0nil{},

This macro can now directly rebuild the math version definition by calling \reserved@c:
580 \reserved@c{’

581 \getanddefine@fonts{#2}##2J,

582 \install@mathalphabet#3{%

583 \relax\ifmmode \else \non®@alpherr#3\fi

584 \use@mathgroup##1{#2}1}1}/

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 284

\math@bgroup
\mathQegroup

\calculate@math@sizes

\defaultscriptratio
\defaultscriptscriptratio

\noaccents@

In addtion it defines the alphabet the way it should be used from now on.

585 \gdef#3{\relax\ifmmode \else \non@alpherr#3\fi

586 \use@mathgroup##1{#2}}1}/,

Finally, we only have to call this macro \reserved@a on the old definitions recorded in
\reserved®@b:

587 \expandafter\reserved@a\reserved@b\@nil

588 }
(End definition for \extract@alph@from@version. This function is documented on page 77?.)

Here are the default definitions for \math@bgroup and \math@egroup. We use \bgroup
instead of \begingroup to avoid ‘leaking out’ of style changes. This has the side effect
of always producing mathord atoms.

se0 \let\math@bgroup\bgroup
so0 \def\math@egroup#1{#1\egroup}

(End definition for \math@bgroup and \math@egroup. These functions are documented on page 77.)

Here is the default definition for \calculate@math@sizes a more elaborate interface is
under testing in mthscale.sty.

g

so1 \gdef\calculate@math@sizes{}

50 \@font@info{Calculating\space math\space sizes\space for\space
593 size\space <\f@size>}}

s+ \dimen@\f@size \p@

505 \Q@tempdimb \defaultscriptratio \dimen@

so6 \dimen@ \defaultscriptscriptratio \dimen@

507 \expandafter\xdef\csname S@\f@size\endcsname{’,
598 \gdef\noexpand\tf@size{\f0@sizel}},

599 \gdef\noexpand\sf@size{\strip@pt\@tempdimb}/,
600 \gdef\noexpand\ssf@size{\strip@pt\dimen®@l}y,
601 \noexpand\math@fontstruel}}

(End definition for \calculate@math@sizes. This function is documented on page 77.)

The default ratio for math sizes is:

1 to \defaultscriptratio to \defaultscriptscriptratio.
By default this is 1 to .7 to .5.

6> \def\defaultscriptratio{.7}

603 \def\defaultscriptscriptratio{.5}

(End definition for \defaultscriptratio and \defaultscriptscriptratio. These functions are docu-
mented on page ?77.)

If we don’t have a definition for \noaccents@ we provide a dummy.

60+ \ifx\noaccents@\Qundefined
605 \let\noaccents@\@empty
606 \fi

(End definition for \noaccents@. This function is documented on page 77.)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 285

\showhyphens

The \showhyphens command must be redefined since the version in plain.tex uses
\tenrm. We have also made some further adjustments for its use in IXTEX.

o7 {/2ekernel)

o0s (latexrelease)\IncludeInRelease{2017/01/01}{\showhyphens}/,

oo (latexrelease) {XeTeX support for \showhyphens}/

o0 (*2ekernel | latexrelease)

611 \ifx\XeTeXcharclass\@undefined

Version for engines other than XeTgX.
612 \DeclareRobustCommand\showhyphens [1]{%

o3 \setboxO\vbox{Y

614 \color@begingroup

615 \everypar{}%

616 \parfillskip\z@skip\hsize\maxdimen
617 \normalfont

618 \pretolerance\m@ne\tolerance\m@ne\hbadness\z@\showboxdepth\z@\ #17
619 \color@endgroup}}

520 \else

XeTEX version. When using system fonts XeTgX reports consecutive runs of charac-
ters as a single item in box logging, which means the standard \showhyphens does not
work. This version typesets the text into a narrow box to force hyphenation and then
reconstructs a horizontal list with explicit hyphens to generate the display. Note that
the lmr OpenType font is forced, this works even if the characters are not in the font as
hyphenation is attempted due to the width of the space and hyphen character. It may
generate spurious Missing Character warnings in the log, these are however suppressed
from the terminal output by ensuring that \tracingonline is locally zero.

521 \DeclareRobustCommand\showhyphens [1]{%

o> \setboxO\vbox{Y

623 \usefont{TU{1mr}{m}{n}%
624 \hsize 1sp %

625 \hbadness\@M

626 \hfuzz\maxdimen

627 \tracingonline\z@

628 \everypar={}%

629 \leftskip\z@skip

630 \rightskip\z@skip

631 \parfillskip\z@skip
632 \hyphenpenalty=-\QM
633 \pretolerance\m@ne
634 \interlinepenalty\z@
635 \clubpenalty\z@

636 \widowpenalty\z@

637 \brokenpenalty1127 %
638 \setbox\z@\hbox{}/
639 \noindent

640 \hskip\z@skip

641 #1Y%

642 \par

Note here we stop the loop if made no progress, non-removable items may mean that we
can not process the whole list (which would be testable as \lastnodetype=-1).

643 \loop
644 \@tempswafalse

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 286

\addto@hook

\@vpt

\@vipt

645 \ifnum\lastnodetype=11\unskip\@tempswatrue\fi

646 \ifnum\lastnodetype=12\unkern\Q@tempswatrue\fi
647 \ifnum\lastnodetype=13 Y%

648 \count®@\lastpenalty

649 \unpenalty\@tempswatrue

650 \fi

651 \ifnum\lastnodetype=\0@ne

652 \setbox\tw@\lastbox\@tempswatrue

653 \setbox0\hbox{\unhbox\tw@\unskip\unskip\unpenalty
654 \ifnum\count@=1127 \else\ \fi
655 \unhbox0},

656 \count@\z@

657 \fi

658 \if@tempswa

650 \repeat

660 \hbadness\z@

661 \hsize\maxdimen

662 \showboxdepth\z@

663 \tolerance\m@ne

664 \hyphenpenalty\z@
665 \noindent\unhbox\z@
666 }}

667 \fi

s (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}{\showhyphens}
latexrelease {XeTeX support for \showhyphens}y,

latexrelease) \gdef \showhyphens#1{/,

669

670

671

672

o3 (latexrelease) \setboxO\vbox{%
o74 (latexrelease \color@begingroup
\everypar{}%
o6 (latexrelease \parfillskip\z@skip\hsize\maxdimen
o7 (latexrelease \normalfont

latexrelease
latexrelease
latexrelease
latexrelease
ez (*2ekernel)

\pretolerance\m@ne\tolerance\m@ne

\hbadness\z0@\showboxdepth\z@\ #1,

\color@endgroupl}}
\EndIncludeInRelease

(
(
(
(
(
(
(
o5 (latexrelease
(
(
(
(
(
(

e e L L

(End definition for \showhyphens. This function is documented on page 77.)

We need a macro to add tokens to a hook.
633 \long\def\addto@hook#1#2{#1\expandafter{\the#1#2}}

(End definition for \addto@hook. This function is documented on page ?7.)

ez \def\@vpt{5}

(End definition for \@vpt. This function is documented on page 77?.)

65 \def\@vipt{6}

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 287

(End definition for \@vipt. This function is documented on page 77.)

\@viipt
o6 \def\@viipt{7}
(End definition for \eviipt. This function is documented on page 77.)
\@viiipt
687 \def\@Viiipt{S}
(End definition for \eviiipt. This function is documented on page 77.)
\@ixpt
ess \def\@ixpt{9}
(End definition for \@ixpt. This function is documented on page ?7.)
\@xpt
6o \def\@xpt{10}
(End definition for \@xpt. This function is documented on page 77.)
\@xipt
e0 \def\@xipt{10.95}
(End definition for \@xipt. This function is documented on page 77.)
\@xiipt
eor \def\@xiipt{12}
(End definition for \@xiipt. This function is documented on page 77?.)
\@xivpt
62 \def\@xivpt{14.4}
(End definition for \@xivpt. This function is documented on page 77?.)
\@xviipt
603 \def\@xviipt{17.28}
(End definition for \@xviipt. This function is documented on page ?77.)
\@xxpt
60+ \def\@xxpt{20.74}
(End definition for \@xxpt. This function is documented on page 77.)
\@xxvpt

eos \def\@xxvpt{24.88%}

(End definition for \@xxvpt. This function is documented on page 77?.)

oo (/2ekernel)

File r: 1tfssbas.dtx Date: 2020/02/27 Version v3.2g 288

\DeclareFontSeriesChangeRule

File s
Itfssaxes.dtx

This file contains the implementation for handling extra axes splitting the series and the
values into sub-categories. selection commands. See other parts of the IXTEX distribution,
or The BTEX Companion for higher level documentation of the INTEX Font Selection
Scheme.
Everything in the this file got introduced 2020/02/02, so we do a single rollback (for

now).

1 (*2ekernel)

> (/2ekernel)
s (*2ekernel | latexrelease)

(latexrelease) \ IncludeInRelease{2020/02/02}}

(

5 (latexrelease) {\DeclareFontSeriesChangeRule}{Series change rules}),

1 Changing the font series

In the original NFSS implementation the series was a single attribute stored in \f@series
and so one always had to specify both weight and width together. This means it
was impossible to typeset, a paragraph in a condensed font and inside have a few
words in bold weight (but still condensed) without doing this manually by requesting
\fontseries{bc}\selectfont.

The new implementation now works differently by looking both at the current value
of \f@series and the requested new series and out of that combination selects a resulting
series value. Thus, if the current series is ¢ and we ask for b we now get bc.

This is done by consulting a simple lookup table. This table is configurable (though
most likely that flexibility will seldom of ever be needed) Adding or changing entries in
this table are done with \DeclareFontSeriesChangeRule.

1.1 The series lookup table

The \DeclareFontSeriesChangeRule defines entries in a simple database (implemented
as a set of commands) that define mappings between from an existing series and requested
new series and maps that to a result series (and additionally offers an alternative if the
desired one is not existing):

#1 current \f@series
#2 requested new series
#3 result (if that exist for the given font family

#4 alternative result (if #3 does not exist)

If an .fd file has its own substitution rules then #3 exist and thus #4 is not applied.

If there is no matching database entry or if neither the result nor the alternate
result exist in the font family the requested new series is used (which then may trigger
substitutions later on.

o \def\DeclareFontSeriesChangeRule#1#2#3#4{/,
7 \@namedef{series@#10#2}{{#3}{#4}}}

(End definition for \DeclareFontSeriesChangeRule. This function is documented on page ?7.)

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 289

1.2 Mapping rules for series changes

The rules set up use explicit series values not \ . .default indirections; my current feeling
is that this is in fact better.

With 9 weights and 9 width classes this table is getting a bit large in the end (324

entries) but on the other hand it doesn’t change and accessing speed and it is fast this

way.
We could alternatively split the axis and maintain weight and width separately,

but that would take more processing time and would not allow for setting up explicit
exceptions nicely (not sure that this would ever get used though).

Design considerations for mapping entries:

We make m to reset both weight and width (as this is how it always worked). To
reset just the width ?m is provided and to reset just the weight m?.

We do support “mwidth” and “weightm”, e.g., mec to mean “go to medium weight
and extra-condensed width”. At the end of the process we automatically drop any
leftover m in the series name (unless it is just a single m).

If there is no table entry then the target series is used unconditionally. This means
that any request to set both weight and width (e.g. bx or ulc) needs no table
entries. For that reason there are no entries which have a weight+width as request
(i.e., second argument).

In particular this is also true for cases involving m, e.g., bm (bold medium width)
which automatially gets reduced result in b or mc (medium weight condensed) which
becomes c as a result.

Only a few entries have “alterative” values and perhaps most of them should get
dropped. Or maybe not ... needs some thought perhaps.

The idea is that you don’t want the normal substitution to kick in because that
would reset the shape first and it may be better to stay with b when a change to
c is requested and bc doesn’t exist, than to go to first change the shape to n and
then find that bc/n doesn’t exist either and thus ending up wth m/n.

Also: while I did set up all nine standard weight values from ul to ub I only bothered
to provide entries for ec, sc, ¢ and x, because other levels of compression/expansion
are not in any real fonts that I know.

Could and perhaps should be eventually extended to cover the whole set.

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

{bcH{bI{bc}{}
{bcHcHbcH}
{bcr{eb}I{ebcH}
{bc}{ect{bec} {bc}
{bcHel}{elcH?}
{bcH1H1cH?
{bcr{sb}I{sbcH{}
{bc}{sc}H{bsc} {bc}
{bcH{s1H{slcH
{bcr{ubI{ubcH?}
{bcHul {ulcH?}
{bcHxHbxH?¥

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

290

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

' \DeclareFontSeriesChangeRule
; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

53 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

2 \DeclareFontSeriesChangeRule

~

IS
>

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

so \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
+ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

{bxHbHbx}H}

{bx}{c} {bc} {bx} %<---—--
{bx}{eb}{ebx}{}

{bx}{ec} {bec} {bx} ¥<-—----
{bx}{el}{elx}{}

{bxH1H1x}{}

{bx}{sb} {sbx} {}

{bx}{sc} A{bsc} {bx} Y<-———--
{bxH{s1}{s1lx} {}
{bx}{ub}{ubx}{}
{bx}{ulF{ulx}{}

{oxHxHbx}H?}

{b}{bx} {bx} {b} %<-——--
{b}{c} {bc} {b} %<-—---
{b}X{ec} {bec} {b} Y<-----
{b}{sb} {sb} {b} ¥%<-——--
{b}{sc} {bsc} {b} V<-———-—-
{b*{x} A{bx} A{b} ¥U<-———--

{cHbx} {bx} {b} J<——--—-
{cHoIbc}H}

{c}{eb}{ebc}H{}

{cHel}{elcH?}

{cHIH1cH}

{c}H{sb}I{sbc}H{}

{cHs1HslcH?}

{cHubHubcH?}

{cHulHulcH?}

{cHxHxHnm} h<

{ebcHbI{bc}H{}
{ebcHcHebcH}
{ebc}{eb}{ebc}H}
{ebc}{ec}{ebec}{ebc}
{ebcHel}{elcH?}
{ebcH1 {1cH{}
{ebcH{sb}{sbc}H{}
{ebc}{sc}{ebsc}{ebc}
{ebcHs1{slcH?}
{ebcHub}{ubc}H}
{ebcHul}{ulcH}
{ebcHxHebx {3}

{ecHbx} {bx} {b}
{ecH{b}I{becH?}
{ec}{eb}{ebec}{}
{ect{el}{elec}H}
{ecH1H1lecH?}
{ecH{sb}{sbec}{}
{ecH{s1}{slec}H}
{ecH{ub}{ubecH?
{ecH{ul}{ulecH?
{ecHxHxHHm} yAS

{scHbx} {bx} {b} Y<-———-
{scHb}{bscH?}

th<-----

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

291

\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
+ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

) \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

ss \DeclareFontSeriesChangeRule

99

100

101

102

10!

104

105

106

107

108

109

110

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule
+ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

{sc}{eb}{ebsc}H?}
{sc}{el}{elsc}H}
{scH1H1scH?}
{scH{sb}I{sbscH?}
{scI{s1}{slsc}H}
{sc}Hub}{ubsc}{}
{scH{ul}{ulscH?}
{scHzxHxI{m}

{ebx}{b}{bx}{}
{ebx}{c}{ebc}H{}
{ebx}{eb}{ebx}{}
{ebx}{ec}t{ebec}{}
{ebx}Hel}{elx}{}
{ebx{1H{1x}{}
{ebx}{sb}{sbx}{}
{ebx}{sc}{ebsc}{}
{ebx}{s1}{s1x}{}
{ebx}Hub}{ubx}{}
{ebxHult{ulx}H{}
{ebx}{x}{ebx}{}

{eb}{c}{ebc}{}
{eb}{ec}H{ebecH{}
{eb}{sc}H{ebscH?}
{eb}{x}{ebx}{}

{elc}H{b}{bc}{}
{elcHcHelcH?
{elc}H{eb}{ebc}H}
{elc}{ect{elec}{}
{elcHel}{elcH?
{elcH1M{1cH}
{elcH{sb}{sbcH}
{elc}H{sct{elsc}{}
{elcHs1lt{slcH}?}
{elcHub}{ubcH?}
{elcHul}{ulcH?}
{elcHx {elx}}

{elx}{b}{bx}{}
{elxHcHelcH?}
{elx}{eb}{ebx}{}
{elx}{ect{elec}{}
{elxHel}{elx}H}
{elx}{13{1x}{}
{elx}{sb}{sbx}{}
{elx}{scH{elsc}{}
{elx}H{s1}{s1lx}H}
{elx}H ub}{ubx}{}
{elxHult{ulx}H}
{elxHxHelx {3

{el}{cHelcH?}
{el}{ecH{elecH?}
{el}{sc}H{elscH}
{el}{x}Helx}{}

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

292

159

160

161

162

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

5 \DeclareFontSeriesChangeRule
+ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

53 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s7 \DeclareFontSeriesChangeRule
; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
72 \DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

{1cHbHbcH?>
{1cH{cH1lcH?
{1c}{eb}{ebc}H}
{1cH{ecH1lecH?
{1cH{elH{elcH}
{lcH1H1cH?}
{1cH{sbH{sbcH{}
{1cH{scH1lscH?
{lcHs1l {slcH}
{1cH{ubH ubcH?
{lcHul M ulcH?}
{1cHxH1x}}

{1x}HbHbx}{}
{1xHcH1lcH?}
{1x}{eb}{ebx}{}
{1x}{ecH1lecH}
{1x}{el}{elx}{}
{Ix}1H1x3{}
{1x}{sb}{sbx}{}
{1xH{scH1lscH}
{1x3{s1H{s1x}{}
{1x}{ubH{ubx}{}
{1xHulHulx}H}
{IxHxH1xM}

{1}{bx} {bx} {b} %<-
{13{v} {v} {bx} %<
{1}{c}

{1}{ec} {lect {1}

{1}{sb} {sb} {b} % 7

{1}{sc}
{13{x}

{m}{bx} {bx} {b} %

{1sc} {1}

{nHo}r {b} {bx} ¥<-
{oHcr {c} {m} U<--
{m}{ec} {ec} {m} Y<
{1y {1} {m} V<--

{m}{sb} {sb} {b} %<--
{m}{sc} {sc} A{m} U<
oz} {x} {m} V<--

{sbc}H{b}{bc}H{}
{sbcHcHsbcH{}
{sbc}{eb}{ebc}H}
{sbc}{ec}{sbec}{sbc}
{sbcHel}{elcH?}
{sbcH1 {1cH{}
{sbc}H{sb}{sbc}H{}
{sbc}{sc}{sbsc}{sbc}
{sbcHs1l{slcH?}
{sbcHub}{ubc}H{}
{sbcHul}{ulcH?}
{sbcHxIHsbx}{}

{sbx}{b}{bx}{}

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

{1c} {1} % 7

{1x} {1} % *

mm———

293

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

N

\DeclareFontSeriesChangeRule

» \DeclareFontSeriesChangeRule
; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
s« \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule
s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

»» \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule
s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

{sbxHcHsbcH?
{sbx}{eb}{ebx}{}
{sbx}{ec}{sbec}{}
{sbx}{el}{elx}{}
{sbx}H1H{1x}{}
{sbx}{sb}{sbx}{}
{sbx}{sct{sbsc}{}
{sbxHs1}{s1lx}{}
{sbx}{ub}{ubx}{}
{sbxHult{ulx}{}
{sbxHxHsbx}{}

{sb}{c} {sbc} {bc} %? %<———--

{sb}{ec} A{sbec} {sbc} %7 %<
{sb}{sc} {sbsc} {sbc} %7 %<

{sb}{x} {sbx} {bx} %? %<——---

{slcHb}{bc}H{}
{slcHcHslcH?
{slc}{eb}{ebc}{}
{slc}{ec}{slec}{}
{slc}Hel}{elcH?}
{slcH1}{1c}H{}
{slcH{sb}{sbc}{}
{slc}{sct{slsc}{}
{slcHsl}{slcH?}
{slcH ub}{ubcH{}
{slcHul}{ulcH?}
{slcHxHs1xH{}

{s1x}{p}{bx}{}
{slxHcHsslcH?}
{s1lx}{eb}{ebx}{}
{slx}{ect{slec}{}
{slx}el}{elx}{}
{s1x}H1H{1x}{}
{s1x}{sb}{sbx}{}
{slx}{scH{slsc}{}
{s1x}{s1}{s1x}{}
{s1x}{ub}{ubx}{}
{slxHult{ulx}{}
{s1xH{xH{s1x}H{}

{s1}{c}H{slc}H{}
{s1}{ec}H{slec}H}
{s1}{scH{slscH?}
{s13{x}{s1x}{}

{ubcH{b}{bcH{}
{ubcHcHubcH?
{ubc}{eb}{ebc}H{}
{ubcH{ecHubecH?}
{ubcHel}{elcH?}
{ubcH1 {1cH}
{ubc}H{sb}{sbcH?}
{ubcH{sct{ubsc}{}
{ubcHs1lt{slcH?}

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

294

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

;7 \DeclareFontSeriesChangeRule
st \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

223 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

53 \DeclareFontSeriesChangeRule
252 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

57 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule
s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

73 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

75 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

75 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

{ubc}{ub}{ubc}{}
{ubcHul}{ulcH?}
{ubcHxI{ubx}{}

{ubx}{b}{bx}{}
{ubx}{cHubcH?}
{ubx}{eb}{ebx}{}
{ubx}{ec}{ubec}{}
{ubx}{el}{elx}{}
{ubx}{1}{1x}{}
{ubx}{sb}{sbx}{}
{ubx}{sc}{ubscH}
{ubxH{s1}{s1lx}{}
{ubxHub}{ubx}{}
{ubx}{ul}{ulx}{}
{ubxHxHubx {3}

{ub}{cHubcH?}
{ub}{ecH ubecH?
{ub}{scH{ubsc}H?}
{ubHHxFHubx}{}

{ulcHbI{bc}H{}
{ulcHcHulcH?>
{ulc}{eb}{ebc}H}
{ulc}{ec}H{ulec}{ulc}
{ulcHel}{elcH?}
{ulcH1 {1cH{}
{ulcHsb}{sbc}H}
{ulcH{scHulscH{ulc}
{ulcHs1t{slcH?}
{ulcHub}{ubc}H}
{ulcHul}{ulcH?}
{ulcHxHulxH{3>

{ulx}{b}{bx}{}
{ulxHcHulcH?
{ulx}{eb}{ebx}{}
{ulx}HecHulecH
{ulx}Hel}{elx}{}
{ulx 1 {1x}{}
{ulx}{sb}{sbx}{}
{ulx}{scH{ulscH{}
{ulxHs1}{s1lx}H}
{ulx}Hub}{ubx}{}
{ulxHult{ulx}H{}
{ulxHxHulx}{}

{ul}{cHulcH?}
{ul}{ecHulecH?}
{ul}{scHulscH?}
{ulH{xHulx}{}

{xHo {bx}{}
{xHcHcH?
{x}{eb}Hebx}{}
{xHecHecH?
{x}{el}{elx}{}

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

295

280

281

283

284

285

290

291

293

294

295

296

297

299

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

222 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

{xHIH1xM}
{x}{sb}Hsbx}{}
{x}{scHscH?}
{xHs1Hs1xH{}
{xHubHubx}{}
{xHulHulx}{}

Special rules for 1m etc. aren’t needed because if the target 1m is request it will used
if there is no rule and that id then reduced to 1 automatically. Same for mc and friends.
Only ?m and m? need rules.
So here are the special rules for m?:

\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule
s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

¢ \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
s« \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

;13 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

> \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule

{bcHm?H{cH?
{becHm?}{ecH
{bscHm?}{scH{}
{bxHm?H{x}{}
{oHm?Hm}{}
{cHm?HcH}
{ebcHm?H{cH?
{ebecH{m?}HecH?
{ebscH{m?H{scH?}
{ebxHm?HxI{}
{eb}Hm? {m}{}
{ecHm?}{ecH?}
{elcHm?H{cH?}
{elecHm?H ecH?
{elscH{m?H{scH?}
{elxH{m?H{x}{}
{elHm? {m}{}
{1cHm?I{cH3
{lecHm?}{ec}H}
{1scHm?}{scH3
{xH{m?H{xH3
{1Ho?HmH{}
{oHm? Hm}{}
{sbcHm?HcH?}
{sbecHm?}ecH}
{sbscHm?HscH?}
{sbxHm?Hx}}
{sbHm?H{m}{}
{scHm?}{scH}
{slcHm?HcH?}
{slecHm?}{ec}{}
{slscHm?H{scH?}
{s1xHm?HxH}
{s1Hm?H{m}{}
{ubcHm?HcH?}
{ubecH{m?}H{ecH?
{ubscHm? {sc}H?}
{ubxHm?HxH{}
{ubH{m?}{ub}{}
{ulcHm?HcH
{ulecHm?H ecH?
{ulscH{m?H{scH?}
{ulxH{m?HxH?}

296

331

o

333

334

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

{ulHm? {m}{}
{xHm?HxH}

And there the special rules for 7m:

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

;52 \DeclareFontSeriesChangeRule

339

362

365

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule
.2 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

553 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

7 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

s \DeclareFontSeriesChangeRule
7 \DeclareFontSeriesChangeRule
; \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

373 \DeclareFontSeriesChangeRule
72 \DeclareFontSeriesChangeRule
s \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule

77 \DeclareFontSeriesChangeRule

\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule
\DeclareFontSeriesChangeRule

{ocH{?m}{b}{}
{becHm}Hb}{}
{oscH{7m}{b}I{}
{bscH{7m}H{v}{}
{bx}{7m}{b}{}
{b}{7mH{o}{}
{cH7mMHmM{}
{ebcH{?m}{eb}{}
{ebecH{?m}{eb}{}
{ebscH{?m}{eb}{}
{ebscH{?m}{eb}{}
{ebx}H{?m}{eb}{}
{eb}{?m}{eb}{}
{ecH?mMHmM{}
{elcHm}{el}{}
{elecH{?m}{el}{}
{elscH{?m}{el}{}
{elscH{?mM{el}{}
{elx}{?m}{el}{}
{el1}{7m}{el}{}
{lcH7mH{1}{}
{lecH{?m}{13{}
{IscH?mH1}{}
{1scH{7m}{1}{}
{xF{mF{13H{}
{1 {mH{213{3
{oH{7mM{m}{}
{sbcH?m}{sb}{}
{sbecH 7m}{sb}{}
{sbscH{?m}{sb}H{}
{sbscI{?m}{sb}{}
{sbx}{7m}{sb}{}
{sb}{?m}{sb}{}
{scH7mI{m}{}
{scH ?m}{m}{}
{slcH™m}{s1}{}
{slecH{?mH{s1}{}
{slscH7m}{s1}{}
{slscH{?mH{s1}{}
{slxH?m}{s1}{}
{s1H{?m}{s1}{}
{ubcH{ ?m}{ub}{}
{ubecH{?mI{ub}{}
{ubscH?m}{ubH{}
{ubscH7m}H{ub}{}
{ubxH?m}{ub}{}
{ubH{?m}{m}{}
{ulcH?m}{ul}{}
{ulecH{?mH{ul}{}
{ulscH?mM{ulH{}
{ulscH7mMHul}{}

297

\if@forced@series

\fontseriesforce

\fontseries

\merge@font@series

\merge@font@series@

322 \DeclareFontSeriesChangeRule {ulx}{?m}{ul}{}
;53 \DeclareFontSeriesChangeRule {ul}{?m}{ul}{}
ses \DeclareFontSeriesChangeRule {x}{?m}{m}{}

1.3 Changing to a new series

If the series gets forced we need to know that fact later on.

335 \newif\if@forced@series

(End definition for \if@forced@series. This function is documented on page 77.)

To change unconditionally to a new series you can use \fontseriesforce. Of course, if
the series doesn’t exist for the current family substitution still happens, but there is not
dependency on the current series.

336 \DeclareRobustCommand\fontseriesforce[1]{\@forced@seriestrue\edef\f@series{#1}}

(End definition for \fontseriesforce. This function is documented on page 77?.)

The \fontseries command takes one argument which is the requested new font series.
In the orginal implementation it simply saved the expanded value in \f@series. Now
we do a bit more processing and look up the final value in the font series data base. This
is done by \merge@font@series.

;57 \DeclareRobustCommand\fontseries[1]{\@forced@seriesfalse\merge@fontOseries{#1}}

(End definition for \fontseries. This function is documented on page 77.)

We look up the data base value by expanding the right command twice. If no such
value exist then the result will be \relax otherwise it will be the two brace groups: the
desired result and the alternate result. The first case means that the third argument to
\merge@font@series will be empty.

355 \def \merge@font@series#1{%

;30 \expandafter\expandafter\expandafter
s0 \merge@font@series@

301 \csname series@\f@series @#1\endcsname
392 {#13}7%

393 \@nil

304 F

(End definition for \merge@font@series. This function is documented on page ?77.)

This now defines the new \f@series:
s05 \def\merge@font@series@#1#2#3\0nil{}

If the third argument is empty there is no database entry for the combination and the
second argument holds the new series so we return that.
Originally the test was simply \ifx!#3! but that actually dies if #3 starts with a
conditional and in the definition of \AmSfont that is actually the case.
206 h\ifcat\expandafter X\detokenize{#1}X%
507 \def\reserved@a{#3}/,
s8 \ifx\reserved@a\@empty
399 \set@target@series{#2}/,
400 \else

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 298

\maybe@load@fontshape

\set@target@series

Otherwise we check if the desired result for the series (#1) exists for the font family
and the current shape. As the .fd is perhaps not loaded yet, we first have to do that,
otherwise the test would fail even if the face is actually available.

401 \maybe@load@fontshape
402 \edef\reserved@a{\f@encoding /\f@family /#1/\f@shapel}/,
403 \ifcsname \reserved@a \endcsname

If the desired result is available then we use that. However, we do need some post-
processing because we need to drop surplus ms due to the way naming convention was
designed in the '90s (sigh).

404 \set@target@series{#1}/,
If not, then we try the alternate result (#2).
405 \else

406 \ifcsname \f@encoding /\f@family /#2/\f@shape \endcsname

If the alternate result exist we use that and also issue a warning (or rather a log entry)
that we didn’t managed to change to the desired font.

407 \set@target@series{#2}%

408 \@font@shape@subst@warning

If that doesn’t exist either, then we use the requested series unmodified (again with a
warning).

409 \else

410 \set@target@series{#31}

411 \@font@shape@subst@warning
412 \fi

413 \fi

414 \fi

415 }

It is possible that the previous font and the new one are actually identical (and the font
was not found because it still needs loading) in which case a warning would look rather
odd. So we make a quick check for that (which is the reason why we defined \@reserveda
above.

216 \def\@font@shape@subst@warning{’

a7 \edef\reserved@b{\curr@fontshapely,

418 \ifx\reserved@a\reserved@ \else

419 \@font@warning{Font shape ‘\reserved@a’ undefined\MessageBreak
420 using ‘\reserved@b’ insteadl},

41 \fi

a2 }

(End definition for \merge@font@series@. This function is documented on page 77.)

A small helper that we use a couple of times: try loading a fontshape (in a group because
\try@load@fontshape normalizes catcodes).

23 \def\maybe@load@fontshape{\begingroup\try@load@fontshape\endgroup}

(End definition for \maybe@load@fontshape. This function is documented on page 77.)

Finally the code for normalizing the \f@series value.

The combined series value determined by the mapping may still contain an m that
we have to remove (as the .fd files use ¢ not mc to denote a medium weight condensed
series, etc.). We do this in all branches above because a user might have written

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 299

\series@maybe@drop@one@m

\series@drop@one@m

eclareFontSeriesChangeRule {m}{sc}{msc}{mc}

instead of using sc and c as needed in the .fd file.
24 \def\set@target@series#1{},

We need to \edef the argument first in case it starts with a conditional. Then we check
(and perhaps drop) an “m” from the value andassign the result to \f@series.

425 \edef\fOseries{#1}/

426 \series@maybe@drop@one@m\f@series\f@series

a7 }

(End definition for \set@target@series. This function is documented on page ?7.)

If the series value is in NFSS notation then it should not contain any “m” unless it is
just an “m” by it own. So we need to drop surplus “m”s. But we better don’t do this for
full names, such as “semibold” as used by autoinst, for example. So we test against
the possible explicit values that should drop an “m”. After that we assign the result to
#2 for further use.

28 \def\series@maybe@dropQone@m#1{%

20 \expandafter\series@maybe@drop@one@m@x\expandafter{#1}}

430

231 \def\series@maybe@dropQone@m@x#1#2{},

The code below is an inline version of the \in@ macro without the group, so that it works
in \accent.

432 \def\in@o##1,#1,{}/
233 \series@check@toks\expandafter{\in@@

434 ,ulm,elm,1lm,slm,mm,sbm,bm,ebm,ubm,muc,mec,mc,msc,msx,mx,mex,mux,{}{},#1,}%
135 \edef\in@@{\the\series@check@toksl}
236 \1ifx\in@@\Q@empty

The default definition for \bfdefault etc is actually b\@empty so that we can detect if
the user has changed the default. However that means a) the above test will definitely
fail (maybe something to change) and b) we better use \edef on the next line to get rid
of it as otherwise the test against #2 (e.g. \bfdef@ult) will fail in other places.

437 \edef#2{#1}),

438 \else

439 \edef#2{\expandafter\series@drop@one@m #1m\series@dropQone@ml},
440 \fi

41}

As a precaution we use a private toks register not \toks@ as that is no longer hidden
inside the group.

1> \newtoks\series@check@toks

(End definition for \series@maybe@drop@one@m. This function is documented on page 77.)

Drop up to two ms but keep one if that makes the series value empty. Actually, with the
current implementation we know that there is at least one in the series value itself and
we added one after it, so all we have to do is now returning #1#2 and dropping the rest.
23 \def\series@drop@one@m#im#2m#3\series@dropQone@m{%

as % \ifx\relax#1#2\relax m\else#1#2\fi

445 #1#2%

a6

(End definition for \series@drop@one@m. This function is documented on page ?77.)

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 300

\DeclareFontShapeChangeRule

\ulcshape
\textulc
\ulcdefault

\swshape
\textsw
\swdefault

\sscshape
\textssc
\sscdefault

2 Changing the shape

Shapes are also split in two axes (though it could be more if that is desirable), essentially
building in an “sc” axis).

The database for shapes is done in exactly the same way, only that it is much smaller
and we usually have no alternative shape (or rather it is empty thus not used).

27 \def\DeclareFontShapeChangeRule #1#2#3#4{J
23 \@namedef{shape@#10@#2}{{#3}{#4}}}

(End definition for \DeclareFontShapeChangeRule. This function is documented on page 77.)

There is kind of the same problem with returning back from sc to normal. It sort
of needs its own letter. In fontspec this was solved by the first time \upshape changes
it or s1 back (so only sc remains) and second time it changes then sc back to normal.
Maybe that’s not a bad way to handle it, but decided for a slightly different approach:
n always returns to “normal”, ie resets everything and up changes italic or slanted to
upright and ulc undoes small caps.

So we now offer \normalshape (using \shapedefault which is normally the same
as calling both \ulcshape and \upshape, only more efficient.

To request going back to upper/lowercase we need a new command. It uses ulc as shape
name but this shape is virtual, i.e., it doesn’t exist as a real shape, it is only used as part
of the database table entries and thus only appears in the second argument there (but
not in the first).

229 \DeclareRobustCommand\ulcshape

450 {\not@math@alphabet\ulcshape\relax
451 \fontshape\ulcdefault\selectfont}
252 \let\ulcdefault\@undefined % for rollback

153 \newcommand\ulcdefault{ulc}

(End definition for \ulcshape, \textulc, and \ulcdefault. These functions are documented on page
7))

New command to select a swash shape. The standard rules put this in the same category
as italics or slanted, i.e., if you ask for it then italics are undone. One could provide more
complicated rules so that it + sw becomes swit but given that there are only very few
fonts that have swash letters that level of flexibility (these days) would be just resulting
in a lot of combinations that do not exist.

252 \DeclareRobustCommand\swshape

455 {\not@math@alphabet\swshape\relax
456 \fontshape\swdefault\selectfont}
257 \let\swdefault\@undefined % for rollback

155 \newcommand\swdefault{sw}

(End definition for \swshape, \textsw, and \swdefault. These functions are documented on page 77.)

New command to select spaced small capitals. This is only here because fontaxes offered
it. There isn’t a single free font that supports it. However, some commercial ones do, so
we offer it so that at some point fontaxes could be retired.

So far there aren’t any rules for it—probably there should be some putting it in the
same category as sc.
250 \DeclareRobustCommand\sscshape
460 {\not@math@alphabet\sscshape\relax

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 301

461 \fontshape\sscdefault\selectfont}
12 \let\sscdefault\@undefined % for rollback
163 \newcommand\sscdefault{ssc}

(End definition for \sscshape, \textssc, and \sscdefault. These functions are documented on page
?7.)

2.1 Mapping rules for shape combinations

Many of the entries are commented out as we will get that result without any entry.

w64 %h\DeclareFontShapeChangeRule {n}{n} {n} {3}
w5 \DeclareFontShapeChangeRule {n}{it} {it} {sl1}
26 \DeclareFontShapeChangeRule {n}{sl} {s1} {it}
267 %h\DeclareFontShapeChangeRule {n}{sw} {sw} {3}
w5 %h\DeclareFontShapeChangeRule {n}{sc} {sc} {3}
20 \DeclareFontShapeChangeRule {n}{ulc} {n} {}

270 \DeclareFontShapeChangeRule {n}{up} {n} {

a1 %\DeclareFontShapeChangeRule {it}{n} {n} {
a2 %\DeclareFontShapeChangeRule {it}{it} {it} {
.73 \DeclareFontShapeChangeRule {it}{sl} {sl} {it}
a7 % \DeclareFontShapeChangeRule {it}{sw} {sw} {

If neither scit nor scsl exist then sc will be used as a fallback albeit with a log entry,
so except for the latter there will be no change for CM or Latin Modern fonts.

275 \DeclareFontShapeChangeRule {it}{sc} {scit} {scsl}

276 \DeclareFontShapeChangeRule {it}{ulc} {it} {r

277 \DeclareFontShapeChangeRule {it}{up} {n} {

a5 h\DeclareFontShapeChangeRule {sl}{n} {n} >

279 \DeclareFontShapeChangeRule {sl}{it} {it} {s1}
250 %\DeclareFontShapeChangeRule {sl}{sl} {sl1} {}

21 %h\DeclareFontShapeChangeRule {sl}{sw} {sw} >

22 \DeclareFontShapeChangeRule {sl}{sc} {scsl} {scit}
233 \DeclareFontShapeChangeRule {sl}{ulc} {sl} {

24 \DeclareFontShapeChangeRule {sl}{up} {n} 8

255 %\DeclareFontShapeChangeRule {sc}{n} {n} {

s \DeclareFontShapeChangeRule {sc}{it} {scit} {scsl}
27 \DeclareFontShapeChangeRule {sc}{sl} {scsl} {scit}
25 \DeclareFontShapeChangeRule {sc}{sw} {scsw} {sw}
s J\DeclareFontShapeChangeRule {sc}{sc} {sc} {r

20 \DeclareFontShapeChangeRule {sc}{ulc} {n} 8

The next rule might be a bit surprising and rightly so. Correct would be that sc is
not affected by up, i.e., remains sc as showed in the commented out rule. However, for
nearly three decades commands such as sc or \textup changed small caps back to the
“normal” shape. So for backward compatibility we keep hat behavior.

As a result you are currently typesetting in scit or scsl using \upshape twice will
return you to the normal shape too, the first will change to sc and the second (because
of the rule below) change that to n. This is the way fontspec implemented its version on
this interface, so this rule means we are also compatible with the way fontspec behaved.
Still it remains an odditywhic I would rather liked to have avoided.

201 %\DeclareFontShapeChangeRule {sc}{up} {sc} >
2> \DeclareFontShapeChangeRule {sc}{up} {n} a8

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 302

\fontshape

\fontshapeforce

\merge®@f ont@shape

493

494

495

498

499

%\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

' \DeclareFontShapeChangeRule

\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

{scit}{n} {n}
{scit}{it} A{scit}
{scit}{s1l} A{scsl}
{scit}{sw} A{scsw}
{scit}{sc} {scit}
{scit} ulc} {it}
{scit}{up} {sc}

{

{

{scit}

{sc} % or scit?
{

{

{z

The previous rule assumes that if scit exists then it exists as well. If not, the mechanism
will save ulc in \f@series which most certainly doesn’t exist. So when a font is later
selected that would result in a substitution (so no harm done really). Alternatively, we
could in this case use n as aternative, which may be a bit faster, but such a setup would
so weird in the first place that this isn’t worth the effort.

be

%\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

> \DeclareFontShapeChangeRule

\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

s \DeclareFontShapeChangeRule
s \DeclareFontShapeChangeRule

%\DeclareFontShapeChangeRule

s0s \DeclareFontShapeChangeRule

\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

%\DeclareFontShapeChangeRule
%\DeclareFontShapeChangeRule
%\DeclareFontShapeChangeRule

7 %\DeclareFontShapeChangeRule
515 \DeclareFontShapeChangeRule {sw}{sc} {scsw} {3}
{3
{3+

\DeclareFontShapeChangeRule
\DeclareFontShapeChangeRule

{scs1}{n} {n}
{scsl}{it} A{scit}
{scsl}{sl} {scsl}
{scsl}{sw} {scsw}
{scsl}{sc} A{scsl}
{scs1}{ulc} {s1}
{scs1l}{up} {sc}

{scsw}{n} {n}
{scsw}{it} A{scit}
{scsw}{sl} {scsl}
{scsw}{sw} {scsw}
{scsw}{sc} {scsw}
{scsw}{ulc} {sw}
{scsw}{up} {sc}

{sw}{n} {n}

{swi{it} {it}
{sw}{s1} {s1}
{swi{sw} {sw}

{sw}{ulc} {sw}
{sw}{up} {n}

2.2 Changing to a new shape

e

{scsl}

{

{sc} % or scsl?
{z

{

{

e
{scsw}
{3+
{

{
{3+
{

{3
{3
{3
{3

Again the \fontshape now has to do a lookup to get to its new value in \f@shape. The
method is exactly the same as in \fontseries.

s21 \DeclareRobustCommand\fontshape [1] {\merge@font@shape{#1}}

(End definition for \fontshape. This function is documented on page ?7.)

The unconditional version:
522 \DeclareRobustCommand\fontshapeforce[1]{\edef\f@shape{#1}}

(End definition for \fontshapeforce. This function is documented on page 77.)

Look up the database entry (if existing) and act accordingly.

523

524

525

526

\def\merge@font@shape#1{’
\expandafter\expandafter\e
\merge@f ont@shape®@

\csname shape@\f@shape @

xpandafter

#1\endcsname

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 303

\merge@font@shape@

\normalshape

\reinstall@nfss@defs

527 {#1}%
528 \@nil
520 }

(End definition for \merge@font@shape. This function is documented on page 77.)

Same game now, except that we look at shapes not series values and we can set the shape
without the complication of dropping “m”s from the name as we had to for the series.
s3 \def\merge@font@shape@#1#2#3\@nil{%

531 \def\reserved@a{#3}/,

522 \ifx\reserved@a\Qempty

533 \edef\f@shape{#2}%

s \else

535 \maybe@load@fontshape

536 \edef\reserved@a{\f@encoding /\f@family /\f@series/#11}J,
537 \ifcsname \reserved®@a\endcsname

538 \edef\f@shape{#1}%

539 \else

540 \ifcsname \f@encoding /\f@family /\f@series/#2\endcsname
541 \edef\f@shape{#21}

542 \@font@shape@subst@warning

543 \else

544 \edef\f@shape{#3}%

545 \@font@shape@subst@warning

546 \fi

547 \fi

548 \fi

549 }

(End definition for \merge@font@shape@. This function is documented on page ?77.)

\normalshape resets both sub-axes if the default rules are used.

ss0 \protected\def\normalshape
551 {\not@math@alphabet\normalshape\relax
552 \fontshape\shapedefault\selectfont}’

(End definition for \normalshape. This function is documented on page 77.)

3 Make sure we win ...

This code implements one aspect of what the package fontaxes provide. So its redefinitions
for the various shape commands, such as \itshape should no longer happen. We therefore
force the standard definitions at \AtBeginDocument (later when this is defined. Once
fontaxes is no longer doing such redefinitions that could be taken out again.

We use a separate macro so that we can easily disable this (in case of rollback).

I use \protected here not \DeclareRobustCommand to avoid extra status lines.

s53 \def\reinstall@nfss@defs{’
55 \protected\def\upshape

555 {\not@math@alphabet\upshape\relax
556 \fontshape\updefault\selectfontl}’
ss7 - \protected\def\slshape

558 {\not@math@alphabet\slshape\relax

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 304

559 \fontshape\sldefault\selectfontl}’
s0 \protected\def\scshape

561 {\not@math@alphabet\scshape\relax
562 \fontshape\scdefault\selectfontl}
563 \protected\def\itshape

564 {\not@math@alphabet\itshape\mathit
565 \fontshape\itdefault\selectfontl}’
se6 \protected\def\ulcshape

567 {\not@math@alphabet\ulcshape\relax
568 \fontshape{ulc}\selectfontl}’

se0 \protected\def\swshape

570 {\not@math@alphabet\swshape\relax
571 \fontshape\swdefault\selectfontl}’
s \protected\def\sscshape

573 {\not@math@alphabet\sscshape\relax
574 \fontshape\sscdefault\selectfont},
575 F

(End definition for \reinstall@nfss@defs. This function is documented on page 77.)
Supporting rollback . ..

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) ~ {\DeclareFontSeriesChangeRule}{Series change rules}/,
(latexrelease)
(latexrelease)\DeclareRobustCommand\fontseries[1]{\edef\f@series{#1}}
(latexrelease)\DeclareRobustCommand\fontshape [1]{\edef\f@shape{#1}}
(latexrelease)\let\fontseriesforce\Qundefined
(latexrelease)\let\fontshapeforce\Qundefined
(latexrelease)
(latexrelease)\let\DeclareFontSeriesChangeRule\@undefined
(latexrelease)\let\merge@f ont@series\Qundefined
(latexrelease)\let\merge@font@series@\Qundefined
(latexrelease)\let\@f ont@shape@subst@warning\Q@undefined
so0 (latexrelease)\let\maybe@load@fontshape\Qundefined
(latexrelease)\let\set@target@series\Qundefined
()
()
()
()
()
()
()
()
()
()
()
()
)

@
B

6

o
3

7

578

@
3

9

80

o

581

582

585

589

latexrelease)\let\series@maybe@drop@one@m\Q@undefined
latexrelease)\let\series@drop@one@m\Q@undefined
latexrelease)\let\DeclareFontShapeChangeRule\@undefined
latexrelease)\let\merge@font@shape\Qundefined
latexrelease)\let\merge@font@shape@\Qundefined
latexrelease)\let\normalshape\@undefined
latexrelease)\let\ulcshape\@undefined
latexrelease)\let\ulcdefault\@undefined
latexrelease)\let\swshape\Qundefined
latexrelease)\let\swdefault\Qundefined
latexrelease)\let\sscshape\@undefined
latexrelease)\let\sscdefault\Qundefined

o0s (latexrelease)\let\normalshape\@undefined

593

600
601
602

603

This is always called in \document so don’t make it undefined.

s (latexrelease)

oo (latexrelease)\let\reinstall@nfss@defs\relax
o7 (latexrelease)\EndIncludeInRelease
(*2ekernel)

6

S

608

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 305

This initializes the 2020/02/02 extensions to NFSS after any changes in the preamble.
oo {/2ekernel)
*2ekernel | latexrelease)
(latexrelease) \ IncludeInRelease{2020/10/01})
s12 (latexrelease) {\reinstall@nfss@defs}{NFSS series init}}
\g@addto®@macro\Q@kernel@after@begindocument@before
614 {\reinstall@nfss@defs\init@series@setup}
5 (/2ekernel | latexrelease)
o6 (latexrelease)\EndIncludeInRelease

The initialization was introduced in 2020/02/02 but

latexrelease)\IncludeInRelease{2020/02/02}7

latexrelease {\reinstall@nfss@defs}{NFSS series init}}
latexrelease) \AtBeginDocument{\reinstall@nfss@defs\init@series@setup}
latexrelease) \EndIncludeInRelease

(
610 <
611

613

6.

6

7

618

619

6!

]

0

\IncludeInRelease{0000/00/00}%
{\reinstall@nfss@defs}{NFSS series init}},
\EndIncludeInRelease

latexrelease
latexrelease
*2ekernel)
/2ekernel)

622

O

3

e — ——r — ~——

6!

624

(
(
(
(
1 (latexrelease
(
(
(
(

5

6!

]

File s: 1tfssaxes.dtx Date: 2020/08/21 Version v1.0g 306

File t
Itfsstrc.dtx

1 Introduction

This package contains the code for tracing font loading and font changes. It basically
overlays some of the low-level functions of NFSS with additional code used for tracing.
The package accepts the following options:

errorshow Write all information about font changes etc. only to the transcript file unless
an error happens. This means that information about font substitution will not be
shown on the terminal.

warningshow Show all NFSS warnings on the terminal. This setting corresponds to
the default behaviour of NFSS if the tracefnt package is not loaded!

infoshow Show all NFSS warning and all NFSS info messages (that are normally only
written to the transcript file) also on the terminal. This is the default if the
tracefnt package is loaded.

debugshow In addition to infoshow show also changing of math fonts as far as possible
(this option can produce a large amount of output.

loading Show the name of external fonts when they are loaded. This option shows only
“newly” loaded fonts not those already preloaded in the format or the class file
before the tracefnt package became active.

pausing Turn all font warnings into errors so that BTEX will stop.

2 A driver for this document

The next bit of code contains the documentation driver file for TEX, i.e., the file that will
produce the documentation you are currently reading. It will be extracted from this file
by the DOCSTRIP program.
When this file is processed directly by IXTEX this will produce the documentation as
well.
1 (*driver)
> \documentclass{ltxdoc}

s %\OnlyDescription % comment out for implementation details

7 \begin{document}

8 \DocInput{ltfsstrc.dtx}
o \end{document}

o (/driver)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 307

\tracingfonts

3 The Implementation

Warning: Read the macro documentation with a grain of salt. It is still
basically the documentation from the first NFSS release and therefore in
some cases probably not completely accurate.

If we are making a package file it is a good idea to test whether we are running under
2e. This code is actually placed at the very beginning of this file for easier maintenance,
thus commented out here.

1 (*package)

12 %\NeedsTeXFormat{LaTeX2e}

13 %h\ProvidesPackage{tracefnt}[?7/77/77 v?7.77

1w h Standard LaTeX package (font tracing)]
15 (/package)

The debug module makes use of commands contained in a special package file named
trace.sty.'!

16 (+debug) \input trace.sty

4 Handling Options

Here is the definition of the integer register for the font trace. As a default in a package
file we use 1 to give error messages if fonts are substituted. If this code is used for
debugging or tracing reasons in the format file (i.e. in fam.dtx) we use 0 as the default.
But if no font trace is used we build a definition that will produce a warning message.
17 (*2ekernel)

15 \def\tracingfonts{/

v \@font@warning{Command \noexpand\tracingfonts

20 not provided.\MessageBreak

21 Use the ‘tracefnt’ package.\MessageBreak Command found:l}%

2 \count@}

23 (/2ekernel)

The \count@ in the line above will remove the number after \tracingfonts. Note that
this definition will be overwritten be the next line if one of these modules are included.
20 (*package, trace, debug)
25 \newcount\tracingfonts
2 \tracingfonts=0
27 (/package, trace, debug)

(End definition for \tracingfonts. This function is documented on page 77.)

The option errorshow turns off all warnings so that only real errors are shown.
warningshow corresponds to the NFSS default (when tracefnt is not loaded). infoshow
is the default for this package here; and debugshow, loading, and pausing extend the
amount of information even further.

26 (*package)

20 \DeclareOption{errorshow}{%

30 \def\@font@info#1{},

31 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\spacel,
32 {LaTeX Font Info: \space\space\space#1}}/,

1 This package is not in distribution at the moment (and probably doesn’t any longer work). Think
of this part of the code as being historical artefacts.

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 308

33 \def\@font@warning#1{J

34 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\spacel,
35 {LaTeX Font Warning: #1}}/
36 }

57 \DeclareOption{warningshow}{/
38 \def\@font@info#1{/,
39 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\spacel},

40 {LaTeX Font Info: \space\space\space#1}}/,

41 \def\@font@warning#1{J

2 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel}’,
43 {LaTeX Font Warning: #1}}/

44 }

25 \DeclareOption{infoshow}{%
46 \def\@font@info#1{/,

47 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel}’
48 {LaTeX Font Info: \space\space\space#1}}/,
49 \def\@font@warning#1{J

50 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel}’,
51 {LaTeX Font Warning: #1}}/

52 }

53 \DeclareOption{loading}{%

54 \tracingfonts\tw@

55 }

5o \DeclareOption{debugshow}{%

57 \ExecuteOptions{infoshowl}y

58 \tracingfonts\throe

59 }

o \DeclareOption{pausing}{%

61 \def\@font@warning#1{J

62 \GenericError

63 {(Font) \@spaces\@spaces\@spaces\space\space}’

64 {LaTeX Font Warning: #1}%

65 {See the LaTeX Companion for details.}),

66 {I’11 stop for every LaTeX Font Warning because
67 you requested\MessageBreak the ‘pausing’ option
68 to the tracefnt package.}}’

69 ¥

We make infoshow the default, which in turn defines \font@warning and \font@info.

70 \ExecuteOptions{infoshow}
71 \ProcessOptions
> (/package)
We also need a default definition inside the kernel:

3 (*2ekernel)

72 \def\@font@info#1{Y

75 \GenericInfo{(Font) \@spaces\@spaces\@spaces\space\space}’

76 {LaTeX Font Info: \space\space\space#1}}/,

77 \def\@font@warning#1{J,

78 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel}},
79 {LaTeX Font Warning: #1}}/

80 (/2ekerne|)

~

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 309

\extract@font

\get@external@font

5 Macros common to fam.tex and tracefnt.sty

In the first versions of tracefnt.dtx some macros of fam.dtx'? were redefined to in-
cluded the extra tracing information. Now these macros are all defined in this file (i.e.
removed from fam.dtx) and different production versions can be obtained simply by
specifying a different set of modules to include when generating 1tfss.dtx.

5.1 General font loading

This macro organizes the font loading. It first calls \get@external@font which will re-
turn in \external@font the name of the external font file (the .tfm) as it was determined
by the NFSS tables.

s1 (*2ekernel | package)
> \def\extract@font{%
83 \get@external@font

o

Then the external font is loaded and assigned to the font identifier stored inside
\font@name (for this reason we need \expandafter).

84 \global\expandafter\font\font@name\external@font\relax

When tracing we typeout the internal and external font name.

s (*trace)

86 \ifnum \tracingfonts >\@ne

87 \@font@info{External font ‘\external@font’

88 loaded as\MessageBreak \font@name}\fi
s0 (/trace)

0

Finally we call the corresponding “loading action” macros to finish things. First the font
is locally selected to allow the use of \font inside the loading action macros.

90 \font@name \relax

The next two lines execute the “loading actions” for the family and then for the individual
font shape.

o1 \csname \f@encoding+\f@family\endcsname

% \csname\curr@fontshape\endcsname
03 \relax
0 }

s {/2ekernel | package)

The \relax at the end needs to be explained. This is inserted to prevent TEX from
scanning too far when it is executing the replacement text of the loading code macros.

(End definition for \extract@font. This function is documented on page 77.)

This function tries to find an external font name. It will place the name into the
macro \external@font. If no font is found it will return the one that was defined
via \DeclareErrorFont.

o (*2ekernel)

o7 \def\get@external@font{’,

We don’t know the external font name at the beginning.

%8 \let\external@font\@empty

99 \edef\font@info{\expandafter\expandafter\expandafter\string
100 \csname \curr@fontshape \endcsname}

101 \try@size@range

12This file is currently not distributed in documented form. Its code is part of 1tfss.dtx.

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 310

\selectfont

If this failed, we’ll try to substitute another size of the same font. This is done by the
\try@size@substitution macro. It “knows about” \do@extract@font, \font@name,
\f@size, and so on.

102 \ifx\external@font\@empty

103 \try@size@substitution

104 \ifx\external@font\Q@empty

105 \@latex@error{Font \expandafter \string\font@name\space
106 not found}\@eha

107 \error@fontshape

108 \get@external@font

109 \fi\fi

10 F

11 (/2ekernel)

(End definition for \get@external@font. This function is documented on page ?7.)

The macro \selectfont is called whenever a font change must take place.

12 (*2ekernel | package)

113 \DeclareRobustCommand\selectfont

114 {%

When debug is specified we actually want something like ‘undebug’ The font selection
is now stable so that using \tracingall on some other macros will show us a lot of un-
wanted information about font loading. Therefore we disable tracing during font loading
as long as \tracingfonts is less than 4.

us (+debug) \pushtracing

116 (+debug) \ifnum\tracingfonts<4 \tracingoff

117 (+debug) \else \tracingon\p@selectfont \fi

If \baselinestretch was redefined by the user it will not longer match its internal
counterpart \f@linespread. If so we call \set@fontsize to prepare \size@update.

118 \ifx\f@linespread\baselinestretch \else
119 \set@fontsize\baselinestretch\f@size\f@baselineskip \fi

Then we generate the internal name of the font by concatenating family, series, shape,
and current size, with slashes as delimiters between them. This is much more readable
than standard ETEX’s \twfbf, etc. We define \font@name globally, as always. The
reason for this is explained later on.

120 \xdef\font@name{’
121 \csname\curr@fontshape/\f@size\endcsname}y,

We call the macro \pickup@font which will load the font if necessary.

122 \pickup@font

Then we select the font.

123 \font@name

If \tracingfonts is greater than 2 we also show the font switch. We do this before
\glb@settings is called since this macro might redefine \font@name.

124 (*trace)
5 \ifnum \tracingfonts>\tw@
126 \@font@info{Switching to \font@name}\fi

(/trace)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 311

\set@fontsize

Finally we call \size@update. This macro is normally empty but will contain actions
(like setting the \baselineskip) that have to be carried out when the font size, the base
\baselineskip or the \baselinestretch have changed.

128 \size@update

A similar function is called to handle anything related to encoding updates. This one is
changed from \relax by \fontencoding.

129 \enc@update

Just before ending this macro we have to pop the tracing stack if it was pushed before.
130 (+debug) \poptracing

131 }

(End definition for \selectfont. This function is documented on page ?7.)

The macro \set@fontsize does the actual work. First it assigns new values to \f@size,
\f@baselineskip and \f@linespread.

132 \def\set@fontsize#1#2#3{/,

133 \@defaultunits\Q@tempdimb#2pt\relax\Onnil
134 \edef\f0@size{\strip@pt\@tempdimbl}y,
135 \@defaultunits\@tempskipa#3pt\relax\@nnil

136 \edef\f@baselineskip{\the\Q@tempskipal
137 \edef\f@linespread{#1}/

For backward compatibility and for later testing within \selectfont the internal value
of \f@linespread is passed back to \baselinestretch.

138 \let\baselinestretch\f@linespread

Additional processing will happen within \selectfont. For this reason the macro
\size@update (which will be called in \selectfont) will be defined to be:

139 \def\sizeQupdate{%

First calculate the new \baselineskip and also store it in normalbaselineskip

140 \baselineskip\f@baselineskip\relax
141 \baselineskip\f@linespread\baselineskip
142 \normalbaselineskip\baselineskip

then to set up a new \strutbox

143 \setbox\strutbox\hbox{%

144 \vrule\@height.7\baselineskip
145 \@depth.3\baselineskip

146 \@width\z@}Y%

We end with a bit of tracing information.

7 (*trace)

148 \ifnum \tracingfonts>\tw@

149 \ifx\f@linespread\@empty

150 \let\reserved@a\@empty

151 \else

152 \def\reserved@a{\f@linespread x}},
153 \fi

154 \@font@info{Changing size to \f@size/\reserved@a
155 \f@baselineskip}y

156 \aftergroup\type@restoreinfo \fi

157 (/trace)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 312

\sizeQ@update

\type@restoreinfo

\glb@settings
\glb@currsize

When all this is processed \size@update redefines itself to \relax so that in later calls
of \selectfont no extra code will be executed.

158 \let\size@update\relaxl}/,
159 }

Instead of defining this macro internally we might speed things up by placing the code
into a separate macro and use \let!

(End definition for \set@fontsize. This function is documented on page 77.)

Normally this macro does nothing; it will be redefined by \set@fontsize to initiate an
update.

160 \let\size@update\relax

(End definition for \size@update. This function is documented on page 77.)

This macro produces some info when a font size and/or baseline change will get restored.

161 (*trace)
162 \def\type@restoreinfo{},
163 \ifx\f@linespread\@empty

164 \let\reserved@a\@empty

165 \else

166 \def\reserved@a{\f@linespread x}J,
167 \fi

168 \@font@info{Restoring size to

160 \f@size/\reserved@a\f@baselineskip}}
170 (/trace)

(End definition for \type@restoreinfo. This function is documented on page 77.)

The macro \glb@settings globally selects all math fonts for the current size if necessary.
171 \def\glb@settings{/

When \glb@settings gains control a size change was requested and all previous font
assignments need to be replaced. Therefore the old values of the fonts are no longer
needed. For every math group the new assignments are appended to \math@fonts. But
this happens only if the math@fonts switch is set to true. However, we always set up the
correct math sizes for script and scriptscript fonts since they may be needed even if we
don’t set up the whole math machinery.

Here we set the math size, script size and scriptscript size. If the S@... macro is not
defined we have to first calculate the three sizes.

172 \expandafter\ifx\csname S@\f@size\endcsname\relax
173 \calculate@math@sizes
174 \fi

The effect of this is that \calculate@math@sizes may or may not define the Sa...
macro. In the first case the next time the same size is requested this macro is used,
otherwise \calculate@math@sizes is called again. This also sets the math@fonts switch.
If it is true we must switch the math fonts.

175 \csname S@\f@size\endcsname

176 \ifmath@fonts

177 (*trace)

178 \ifnum \tracingfonts>\tw@

179 \@font@info{Setting up math fonts for

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 313

\baselinestretch

\every@math@size

180 \f@size/\f@baselineskip}\fi

151 (/trace)

Inside a group we execute the macro for the current math version. This sets \math@fonts
to a list of \textfont... assignments. \getanddefine@fonts (which may be called at
this point) needs the \escapechar parameter to be set to —1.

182 \begingroup
183 \escapechar\m@ne
184 \csname mv@\math@version \endcsname

Then we set \globaldefs to 1 so that all following changes are done globally. The math
font assignments recorded in \math@fonts are executed and \glb@currsize is set equal
to \f@size. This signals that the fonts for math in this size are set up.

185 \globaldefs\@ne

186 \math@fonts

187 \let \glb@currsize \f@size
188 \endgroup

Finally we execute any code that is supposed to happen whenever the math font setup
changes. This register will be executed in local mode which means that everything that
is supposed to have any effect should be done globally inside. We can’t execute it within
\globaldefs\@ne as we don’t know what ends up inside this register, e.g., it might
contain calculations which use some local registers to calculate the final (global) value.
189 \the\every@math@size

Otherwise we announce that the math fonts are not set up for this size.

o (*trace)

191 \else

102 \ifnum \tracingfonts>\tw@

103 \@font@info{No math setup for

194 \f@size/\f@baselineskip}\fi
195 {/trace)

196 \fi

197 }
195 (/2ekernel | package)

(End definition for \glb@settings and \glb@currsize. These functions are documented on page 7?.)

In \selectfont we used \baselinestretch as a factor when assigning a value to
\baselineskip. We use 1 as a default (i.e. no stretch).

190 (*2ekernel)

200 \def\baselinestretch{1}

(End definition for \baselinestretch. This function is documented on page 77.)

We must still define the hook \every@math@size we used in \glb@settings. We initial-
ize it to nothing. It is important to remember that everything that goes into this hook
should to global updates, local changes will have weird effects.

201 \newtoks\every@math@size
202 \every@math@size={}
205 {/2ekernel)

(End definition for \every@math@size. This function is documented on page 77?.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 314

5.2 Math fonts setup

5.2.1 Outline of algorithm for math font sizes

TEX uses the math fonts that are current when the end of a formula is reached. If we
don’t want to keep font setups local to every formula (which would result in an enormous
overhead, we have to be careful not to end up with the wrong setup in case formulas are
nested, e.g., we need to be able to handle

$ a=b+c \mbox{ \small for all b and $c\in Z$}$

Here the inner formulae b and c\in Z are typeset in \small but we have to return to
\normalsize before we reach the closing $ of the outer formula.
This is handled in the following way:

1. At any point in the document the global variable \gbl@currsize contains the point
size for which the math fonts currently are set up.

2. Whenever we start a formula we compare its value with the local variable \f@size
that describes the current text font size.

3. If both are the same we assume that we can use the current math font setup without
adjustment.

4. If they differ we call \gbl@settings which changes the math font setup and updates
\gbl@currsize.

(a) If we are recursively inside another formula (\if@inmath) we ensure that
\gbl@settings is executed again in the outer formula, so that the old setup
is automatically restored.

(b) Otherwise, we set the switch @inmath locally to true so that all nested for-
mulae will be able to detect that they are nested in some outer formula.

The above algorithm has the following features:

o For sizes which are not containing any formula no math setup is done. Compared
to the original algorithm of NFSS this results in the following savings:

— No unnecessary loading of math fonts for sizes that are not used to typeset
any math formulae (explicit or implicit ones).

— No time overhead due to unnecessary changes of the math font setup on en-
trance and exit of the text font size.

o Math font setup changes for top-level formulae will survive (there is no restoration
after the formula) thus any following formula in the same size will be directly
typesetable. Compared to original implementation in NFSS2 the new algorithm
has the overhead of one test per formula to see if the current math setup is valid
(in the original algorithm the setup was always valid, thus no test was necessary).

e In nested formulae the math font setup is restored in the outer formula by a series
of \aftergroup commands and checks. Compared to the original algorithm this
involves additional checks (2 x (non-math levels) per inner formula).

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 315

5.2.2 Code for math font size setting

\check@mathfonts In the \check@mathfonts macros we implement the steps 2 to 4 except that instead of
a switch the macro \init@restore@glb@settings is used.
200 (*2ekernel | package)
205 \def\check@mathfonts{%
206 \ifx \glbQ@currsize \f@size
207 (*trace)
208 \ifnum \tracingfonts>\threo@

209 \@font@info{*** MATH: no change \f@size\space

210 curr/global (\curr@math@size/\glb@currsize)}\fi
211 (/trace)

22 \else

213 (*trace)

214 \ifnum \tracingfonts>\threo@
215 \@font@info{*** MATH: setting up \f@size\space
216 curr/global (\curr@math@size/\glb@currsize)}\fi

217 (/trace)

218 \glb@settings

219 \init@restore@glb@settings
220 \fi

21 \let\curr@math@size\f@size

22 \def\init@restore@glbOsettings{\aftergroup\restglb@settings}/,
223 }

(End definition for \check@mathfonts. This function is documented on page 77.)

\init@restore@glb@settings This macros does by default nothing but get redefined inside \check@mathfonts to ini-
tiate fontsize restoring in nested formulas.

224 (-trace)\let\init@restore@glb@settings\relax

225 (*trace)

226 \def\init@restore@glb@settings{}

227 \ifnum \tracingfonts>\three

228 \@font@info{*** MATH: no resetting (not in
229 nested math)}\fi

230 }

231 (/trace)

(End definition for \init@restore@glb@settings. This function is documented on page 77?.)

\restglb@settings This macro will be executed the first time after the current formula.

23> \def\restglb@settings{/

233 (*trace)

234 \ifnum \tracingfonts>\threoe@

235 \@font@info{*** MATH: restoring}\fi
236 {/trace)

237 \begingroup

238 \let\f@size\curr@math@size

239 \ifx\glb@currsize \f@size

210 (*trace)

241 \ifnum \tracingfonts>\threo

202 \@font@info{*** MATH: ... already okay (\f@size)}\fi
215 (/trace)

244 \else

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 316

\use@mathgroup

25 (*trace)

246 \ifnum \tracingfonts>\threo

247 \@font@info{*** MATH: ... to \f@sizel}\fi
25 {/trace)

249 \glb@settings

250 \fi

251 \endgroup

252 F

(End definition for \restglb@settings. This function is documented on page 77?.)

5.2.3 Other code for math

The \use@mathgroup macro should be used in user macros to select a math group.
Depending on whether or not the margid option is in force it has two or three arguments.
For this reason it should be called as the last macro.

First we test if we are inside math mode since we don’t want to apply a useless
definition.

253 \def\use@mathgroup#1#2{\relax\ifmmode

254 (*trace)

255 \ifnum \tracingfonts>\tw@

256 \count@#2\relax

257 \@font@info{Using \noexpand\mathgroup
258 (\the\count@) #2}\fi

259 (/trace)

If so we first call the ‘=" macro (i.e. argument three) to set up special things for the
selected math group. Then we call \mathgroup to select the group given by argument
two and finally we place #1 (i.e. the argument of the (math alphabet identifier) at the end.
This part of the code is surrounded by two commands which behave like \begingroup
and \endgroup if we want (math alphabet identifier)s but will expand into \@empty if we
want simply switches to a new math group. Since argument number 2 may be a digit
instead of a control sequence we add a \relax. Otherwise something like \mit{1} would
switch to math group 11 (and back) instead of printing an oldstyle 1.

260 \math@bgroup

261 \expandafter\ifx\csname MO\f@encoding\endcsname#1\else
262 #1\fi

263 \mathgroup#2\relax

Before we reinsert the swallowed token (arg. three) into the input stream, in the case
that the (math alphabet identifier) isn’t called in math mode, we remove the \fi with the
\expandafter trick. This is necessary if the token is actually an macro with arguments.
In such a case the \fi will be misinterpreted as the first argument which would be
disastrous.

264 \expandafter\math@egroup\fil}y,

The surrounding macros equal \begingroup and \endgroup. But using internal names
makes it possible to overwrite their meaning in certain cases. This is for example used
in AMS-TEX macros for placing accents.

(End definition for \use@mathgroup. This function is documented on page 77.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 317

\math@egroup If the margid option is in force (which can be tested by looking at the definition of
\math@bgroup we change the \math@egroup command a bit to display the current {math
group number) after it closes the scope of (math alphabet) with \endgroup.

205 (*trace)
266 \ifx\math@bgroup\bgroup

267 \def\math@egroup#1{#1\egroup

268 \ifnum \tracingfonts>\tw@

269 \@font@info{Restoring \noexpand\mathgroup

270 (\ifnum\mathgroup=\m@ne default\else \the\mathgroup \fi)J,
271 F\fi}

272 \fi

273 (/trace)

(End definition for \math@egroup. This function is documented on page 77.)

\getanddefine@fonts \getanddefine@fonts has two arguments: the (math group number) and the fam-
ily/series/shape name as a control sequence.

272 \def\getanddefine@fonts#1#2{J
First we turn of tracing when \tracingfonts is less than 4.

25 (+debug) \pushtracing

27 (+debug) \ifnum\tracingfonts<4 \tracingoff

277 (+debug) \else \tracingon\getanddefine@fonts \fi
(

=

278 *trace)

27o \ifnum \tracingfonts>\tw@

20 \count@#1\relax

281 \@font@info{\noexpand\mathgroup (\the\count@) #1 :=\MessageBreak
282 \string#2 \tf@size/\sf@size/\ssf@size}\fi

263 (/trace)

We append the current \tf@size to #2 to obtain the font name.'®> Again, font@name is
defined globally, for the reasons explained in the description of \wrong@fontshape.

2s¢ \xdef\font@name{\csname \string#2/\tf@size\endcsnamel}j,

Then we call \pickup@font to load it if necessary. We remember the internal name as
\textfont@name.

265 \pickup@font \let\textfontOname\font@name

Same game for \scriptfont and \scriptscriptfont:

256 \xdef\font@name{\csname \string#2/\sf@size\endcsnamel}j,
257 \pickup@font \let\scriptfont@name\font@name

26 \xdef\font@name{\csname \string#2/\ssf@size\endcsnamely,
50 \pickup@font

Then we append the new \textfont... assignments to the \math@fonts.
200 \edef\math@fonts{\math@fonts

201 \textfont#1\textfont@name
292 \scriptfont#1\scriptfont@name
203 \scriptscriptfont#1\font@name}y,

130ne might ask why this expansion does not generate a macro name that starts with an additional \
character. The solution is that \escapechar is set to —1 before \getanddefine®@fonts is called.

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 318

\ifnot@nil

\remove@to@nnil
\remove@angles
\remove@star

\extract@sizefn

\try@simple@size

Just before ending this macro we have to pop the tracing stack if it was pushed before.
20s (+debug) \poptracing

295 }

206 (/2ekernel | package)

(End definition for \getanddefine@fonts. This function is documented on page 77.)

6 Scaled font extraction

We begin with a simple auxiliary macro. It checks whether its argument is the token
\@nil. If so, it expands to \@gobble which discards the following argument, otherwise
it expands to \@firstofone which reproduces it argument.

207 (*2ekernel)

205 \def\ifnot@nil#1{\def\reserved@a{#1}/,

200 \ifx\reserved@a\@nnil \expandafter\@gobble

s0 \else \expandafter\@firstofone\fil}

(End definition for \ifnot@nil. This function is documented on page ?7.)

Three other auxiliary macros will be needed in the following: \remove@to@nnil gobbles
up everything up to, and including, the next \@nnil token, and \remove®@angles and
\remove@star do the same for the character > and *, respectively, instead of \@nnil.
500 \def\remove@to@nnil#1\@nnil{}

502 \def\remove@angles#1>{\set@simple@size@args}
503 \def\remove@star#i*{#1}

(End definition for \remove@to@nnil, \remove@angles, and \remove@star. These functions are docu-
mented on page 77.)

This macro takes a size specification and parses it into size function and the optional and
mandatory arguments.

;0 \def\extract@sizefn#1*#2\@nil{%

305 \1f>#2>\set@size@funct@args#1\@nil

306 \let\sizefn@info\@empty

;07 \else\expandafter\set@size@funct@args\remove@star#2\0nil

308 \def\sizefn@info{#1}\fi

309 }

(End definition for \extract@sizefn. This function is documented on page 77.)

This function tries to extract the given size (specified by \f@size) for the requested font
shape. The font information must already be present in \font@info. The central macro
that does the real work is \extract@fontinfo. We will first give a simple example how
this macro works, and describe it in full generality later.

Assume that the requested parameters are: encoding scheme ‘OT1’) family ‘cm’,
series ‘sansserif’; shape ‘normal’, and size ‘12. The corresponding font definitions
have already been extracted from the macro \0T1/cm/sansserif/normal and stored
in font@info. (Otherwise \extract@fontinfo doesn’t get called.) This information
consists of a token list made of characters of category code 12 of the form

<10*>cmss10<12*x>cmss12<17*>cmss17

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 319

For reasonable packages one usually needs more sizes but this is sufficient to get the
flavour. We will define a macro \extract@fontinfo to find the external font name
(‘cmss12’) for us:

\def\extract@fontinfo#1<12*x#2>#3<#4\@nnil{’
\set@simple@size@args#3<#4\0nnil
\execute@size@function{#2}}

so that when it gets called via
\extract@fontinfo<10*>cmss10<12*>cmss12<17*>cmss17\0@nnil

#1 will contain all characters before <12*>, #2 will be empty, #3 will be exactly cmss12,
and #3 will be 17>cmss17. The expansion is therefore

\set@simple@size@args cmss12<17*>cmss17\0nnil
\execute@size@function{}

This means: the default (empty) size function will be executed, with its optional argument
set to empty and its mandatory argument set to cmss12 by \set@simple@sizeQargs.
As we discussed earlier, the effect of the default size function is to load the given external
font (cmss12) at the specified size (12)—which is exactly what was intended.

But this is only part of the whole story. It may be that the size requested does not
occur in the token list \font@info. And the simple definition of \extract@fontinfo we
gave above does not allow to specify give more than one size specification in front of the
external font name.

Let’s address these two problems separately. The first one is solved with the following
trick: We define \extract@fontinfo as follows:

\def\extract@fontinfo#1<12*x#2>#3<#4\@nnil{’
\ifnot@nil{#3}},
{\set@simple@size@args#3<#4\@nnil
\execute@size@function{#2}Y

Y
How does this work? We call \extract@fontinfo via
\expandafter\extract@fontinfo\font@info<12*>\@nil<\@nnil

i.e. by appending <12+#>\@nil<\@nnil. If the size (‘12’ in this case) appears in
\font@info everything works as explained above, the only difference being that argu-
ment #4 of \extract@fontinfo additionally gets the tokens <12*>\@nil<\@nnil. How-
ever, if the size is not found everything up to the final <12%> is in argument #1, #3
gets \@nil, and #2 and #4 are empty. The macro \ifnot@nil will discard the calls
to \set@simple@size@args and execute@size@function, and hence \font@info will
continue to be equal to \@empty. This means that no simple size specification matching
the requested size could be found.

The second problem (more than one simple size specification for one external font
name) will be addressed in \set@simple@size®@args below.

The macros are hidden inside other control sequences so that we have to build
\extract@fontinfo in several steps.

So here’s the actual definition of \extract@font in \try@simple@size.
510 % % this could be replaced by \try@size@range making the subst slower!
;11 \def\try@simple@size{,

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 320

\set@simple@size@args

\extract@rangefontinfo

\reserved@a is made an abbreviation for the head of the definition of the macro
\extract@fontinfo.

312 \def\reserved@a{\def\extract@fontinfo####11}Y,

Now we can define \extract@fontinfo. Here we handle a small but convenient variation:
in case of the default (empty) size function it is allowed to omit the * character.

313 \expandafter\reserved@a\expandafter<\f@size>##2<##3\0nnil{},

314 \ifnot@nil{##2}%

315 {\set@simple@sizeQargs##2<##3\@nnil

316 \execute@size@function\sizefn@info

317 130

Now we call \extract@fontinfo. Note the <\@nil tokens at the end.
318 \expandafter\expandafter

319 \expandafter\extract@fontinfo\expandafter\font@info

320 \expandafter<\f@size>\@nil<\@nnil
321 }

(End definition for \try@simple@size. This function is documented on page 77.)

As promised above, the macro \set@simple@size®@args will handle the case of several
size specifications in a row. If another size specification follows, the very first token of
its argument list is the character <. By starting the definition as follows,

32 \def\set@simple@size@args#1<{},

parameter #1 is empty in this case, and contains the size function’s arguments otherwise.
We distinguish these two cases (Note that the character < cannot appear in #1) by calling
\remove®@angles for empty #1 and \extract@sizefn otherwise. In the latter case we
have to take care of the remaining character tokens and discard them. This is done by
\remove®@to@nnil. Note also the use of Kabelschacht’s method.

323 \if<#1<Y,

324 \expandafter\remove@angles
325 \else

326 \extract@sizefn#1*\@nil

327 \expandafter\remove@to@nnil
328 \f 1}

(End definition for \set@simple@size®@args. This function is documented on page 77.)

Now, we are through with the case of a simple size, except for calling the size function.
This will be handled later, as it is the same mechanism for all types of size specification.
We will now proceed to macors for extraction of size range specification.

\extract@rangefontinfo goes through a font shape definition in the input until it recog-
nizes the tokens <\@nil->. It looks for font ranges with font size functions. It’s operation
is rather simple: it discards everything up to the next size specification and passes this
on to \is@range for inspection. The specification (parameter #2 is inserted again, in
case it is needed later.

320 \def\extract@rangefontinfo#1<#2>{J
330 \is@range#2—>\@ni1#2>}

(End definition for \extract@rangefontinfo. This function is documented on page ?7.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 321

\is@range

\check@range

\is@range is again a sort of dispatcher macro: if the size specification it is looking at is
not a range specification it discards it and calls \extract@rangefontinfo to continue the
search. Otherwise it calls \check@range to check the requested size against the specified
range.

From the way \is@range is called inside \extract@rangefontinfo we see that #2
is the character > if the size specification found is a simple one (as it does not contain a
- character. This is checked easily enough and \extract@rangefontinfo called again.
Note that the extra tokens inserted after the \@nil in the call to \is@range appear at
the beginning of the first argument to \extract@rangefontinfo and are hence ignored.
;31 \def\is@range#1-#2\0nil{%
332 \if>#2\expandafter\check@single\else

\expandafter\check@range\fi}

(End definition for \is@range. This function is documented on page ?77.)

\check@range takes lower bound as parameter #1, upper bound as #2, size function as
#3 and the size function’s arguments as #4. If #3 is the special token \@nil \font@info
is exhausted and we can stop searching.

33 \def\check@range#1-#2>#3<#4\0nnil{}

335 \ifnotOnil{#3}{Y%

If #3 wasn’t \@nil we have a range. We start by assuming that we have to recurse. Note
that we have to reinsert an < as it was already removed by scanning.

336 \def\reserved@f{\extract@rangefontinfo<#4\@nnill}y,

We have to make sure that both boundaries are present, if not we have to set them. Here
we check the upper bound. If \upper@bound is zero after the assignment we set it to
\maxdimen (upper open range). We need to use a (dimen) register for the scan since we
may have a decimal number as the boundary.

337 \upper@ound0#2\p@

338 \ifdim\upper@ound=\z@ \upper@bound\maxdimen\fi

Now we check the upper boundary against \f@size. If it is larger or equal than \f@size
this range is no good and we have to recurse.

339 \ifdim \f@size \p@<\upper@bound

Otherwise we have to check the lower bound. This time it is not necessary to scan the
boundary value into a register because if it is empty we get zero as desired. We could
even omit the 0 which would result in 1pt as default lower boundary. If \f@size is
smaller than the boundary we have to recurse.

340 \lower@boundO#1\p@
341 \ifdim \f@size \p@<\lower@bound
342 \else

If both tests are passed we can try executing the size function.

343 \set@simple@size@args#3<#4\@nnil

344 \execute@size@function\sizefn@info

If the function was successful it should have left an external font name in \external@font.
We use this to see if we can stop scanning. Otherwise we recurse.

345 \ifx\external@font\Q@empty
346 \else

347 \let\reserved@f\Qempty
348 \fi

349 \fi

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 322

\lower@bound
\upper@bound

\check@single

\set@size@funct@args
\set@size@funct@args@

350 \fi
351 \reserved@f}}

(End definition for \check@range. This function is documented on page 77.)

We use two dimen registers \lower@bound and \upper@bound to store the lower and
upper endpoints of the range we found.
352 \newdimen\lower@bound

553 \newdimen\upper@bound

(End definition for \lower@bound and \upper@bound. These functions are documented on page 77.)

\check@single takes the size as parameter #1, size function as #2 and the size function’s
arguments as #3. We can assume that there is always something in the pipeline since the
very last entry is a faked range (see above).

352 \def\check@single#1>#2<#3\0nnil{}

We start by assuming that we have to recurse. Note that we have to reinsert an < as it
was already removed by scanning.

355 \def\reserved@f{\extract@rangefontinfo<#3\@nnill}j,

Now we check the size against \f@size. If it is not equal \f@size it is no good and we
have to recurse.

356 \ifdim \f@size \p@=#1\p@

Otherwise if this test is passed we can try executing the size function.

357 \set@simple@size@args#2<#3\@nnil

358 \execute@size@function\sizefn@info

If the function was successful it should have left an external font name in \external@font.
We use this to see if we can stop scanning. Otherwise we recurse.

359 \ifx\external@font\Q@empty
360 \else

361 \let\reserved@f\Qempty
362 \fi

363 \fi

364 \reserved@f}

(End definition for \check@single. This function is documented on page 77.)

This macro sets the optional and mandatory arguments for a size function. If the optional
argument is not present it is set to the empty token list. The mandatory argument is
delimited by the token \@nil.

365 \def\set@size@funct@args{\Q@ifnextchar [}
s6 \set@size@funct@args@{\set@size@funct@args@[]}}

37 \def\set@size@functQargs@[#1]#2\0Onil{Y
ss \def\mandatory@arg{#2}%

s0 \def\optional®@arg{#1}}

370 (/2ekerne|)

(End definition for \set@size@funct@args and \set@size@funct@args@. These functions are docu-
mented on page 77.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 323

\DeclareSizeFunction

\execute@size@function

\try@size@range

\try@size@substitution

This function defines a new size function hiding the internal from the designer. The body
of the size function may use \optional@arg and \mandatory®@arg denoting the optional
and mandatory argument that may follow the size specification <. ..>.

7 (*2ekernel)
372 \def\DeclareSizeFunction#1#2{\O@namedef{s@fct@#1}{#2}}

573 \@onlypreamble\DeclareSizeFunction
7 {/2ekernel)

(End definition for \DeclareSizeFunction. This function is documented on page ?7.)

This macro is very simple. The only point worth noting is that calling an undefined size
function will do nothing (actually execute a \relax).

s (*2ekernel | package)
376 \def\execute@size@function#1{}

s (*trace)

378 \@ifundefined{s@fct@#1}),

379 {\errmessage{Undefined font size function #1}}
380 \s@fct@})

381 {\csname s@fct@#1\endcsnamel}

382 (/trace)

se3 {-trace) \csname s@fct@#1\endcsname

384

ss5 (/2ekernel | package)

(End definition for \execute@size@function. This function is documented on page ?7.)

This macro tries to find a suitable range for requested size (specified by \f@size) in
\font@info. All the relevant action is done in \extract@rangefontinfo. All that needs
to be done is to stuff in the token list in \font@info so that \extract@rangefontinfo
can inspect it. Note the <-*\@nil>< token at the end to stop scanning.

356 (*2ekernel)

se7 \def\try@size@range{%
388 \expandafter\extract@rangefontinfo\font@info <-*>\@nil<\@nnil

(End definition for \try@size@range. This function is documented on page 77.)

This is the last thing that can be tried. If the desired \f@size is found neither among
the simple size specifications nor in one of the ranges the whole list of size specifications
is searched for a nearby simple size.

300 \gdef\try@size@substitution{%

First we do some initializations. \@tempdimb will hold the difference between the wanted
size and the best solution found so far, so we initialise it with \maxdimen. The macro
\best@size will hold the best size found, nothing found is indicated by the empty value.

301 \O@tempdimb \maxdimen
;2 \let \best@size \Q@empty

Now we loop over the specification
303 \expandafter \try@simples \font@info <\number\@M>\@nil<\@nnil
394 }

(End definition for \try@size@substitution. This function is documented on page ?7.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 324

\font@submax
\fontsubfuzz

\try@simples

\tryis@simple

The macro \font@submax records the maximal deviation from the desired size encoun-
tered so far. Its value is used in a warning message at \end{document}. The macro
\fontsubfuzz contains the amount that will not cause terminal warnings (warnings still
go into the transcript file).

305 \def\font@submax{Opt}

;06 \def\fontsubfuzz{.4pt}

so7 {/2ekernel)

s08 (+package)\def\fontsubfuzz{Opt}

8

(End definition for \font@submax and \fontsubfuzz. These functions are documented on page 77.)

\try@simples goes through a font shape definition in the input until it recognizes the
tokens <*\@nil><. It looks for simple sizes to determine the two closest sizes. It is
assumed that simple sizes are in increasing order.

300 (*2ekernel)

200 \gdef\try@simples#1<#2>{J,

a1 \tryif@simple#2->\tryif@simple}

(End definition for \try@simples. This function is documented on page 77.)

\tryis@simple is similar to \is@range. If it sees a simple size, it checks it against the
value of \f@size and sets \lower@font@size or \higher@font@size. In the latter case,
it stops the iteration. By adding <\number\@M> at the end of the line we always have an
end point. This is a hack which probably should be corrected.

First it checks whether it is finished already, then whether the size specification in
question is a simple one.
202 \gdef\tryif@simple#1-#2\tryif@simple{’,
Most common case for \reserved@f first:
203 \let \reserved@f \try@simples
404 \if>#2%
If so, it compares it to the value of \f@size. This is done using a dimen register since
there may be fractional numbers.
405 \dimen®@ #1\p@
406 \ifdim \dimen@<\@M\p@
If \dimen@ is \@M\p@ we have reached the end of the fontspec (hopefully) otherwise we
compare the value with \f@size and compute in \@tempdimc the absolute value of the
difference between the two values.

407 \ifdim \f@size\p@<\dimen®@

408 \@tempdimc \dimen®

409 \advance\@tempdimc -\f@size\p@
410 \else

411 \@tempdimc \f@size\p@

412 \advance\@tempdimc -\dimen@

413 \fi

The result is then compared with the smallest difference we have encountered, if the new
value (in \@tempdimc is smaller) we have found a size which is a better approximation
so we make it the \best@size and adjust \@tempdimb.

414 \ifdim \@tempdimc<\@tempdimb
415 \@tempdimb \@tempdimc

416 \def \best@size{#1}}

417 \fi

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 325

\subst@size

\s@fct@

When we have reached the end of the fontspec we substitute the best size found (if any).
We code this inline to save macro space; in the past this was done by a macro called
\subst@size.

418 \else

This macro substitutes the size recorded in \best@size for the unavailable size \f@size.
\font@submax records the maximum difference between desired size and selected size in
the whole run.

4

o % %\subst@size %% coded inline
20 % %\def\subst@size{%
21 \ifx \external@font\Q@empty

422 \ifx \best@size\Qempty

423 \else

424 \ifdim \@tempdimb>\font@submax \relax

425 \xdef \font@submax {\the\@tempdimbl}y

426 \fi

427 \let \f@user@size \f@size

428 \let \f@size \best@size

429 \ifdim \@tempdimb>\fontsubfuzz\relax

430 \@font@warning{Font\space shape\space

431 ‘\curr@fontshape’\space in\space size\space
432 <\f@user@size>\space not\space available\MessageBreak
433 size\space <\f@size>\space substituted}},
434 \fi

435 \try@simple@size

436 \do@subst@correction

437 \fi

s \fi

w0 % kYt

This brings us back into the main part of \tryif@simple. Finally we get rid of any
rubbish left over on the input stack.

440 \let \reserved@f \remove@to@nnil
441 \fi
442 \fi

If it’s a range iterate also.

13 \reserved@f}

(End definition for \tryis@simple and \subst@size. These functions are documented on page 77.)

6.1 Sizefunctions

In the following we define some useful size functions.

This is the default size function. Mandatory argument is an external font name, optional
argument a scale factor. The font is scaled to \f@size if no optional argument is present,
and to \f@size multiplied by the optional argument otherwise.

24 \DeclareSizeFunction{}{\empty@sfcnt\@font@warning}
215 \DeclareSizeFunction{s}{\empty@sfcnt\@font@info}

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 326

\s@fct@gen
\s@fct@sgen

\s@fct@genb
\s@fct@sgenb

\genb@x
\genbQy

\s@fct@sub

26 \def\empty@sfcnt#1{%

447 \@tempdimb \f@size\p@

aa8 \ifx\optional@arg\@empty

449 \else

450 \@tempdimb \optional@arg\@tempdimb

451 #1{Font\space shape\space ‘\curr@fontshape’\space

452 will\space be\MessageBreak

453 scaled\space to\space size\space \the\@tempdimbl}y,

454 \fi

455 \edef\external@font{\mandatoryQarg\space at\the\@tempdimb}}

(End definition for \s@fct@. This function is documented on page 77.)

This size function generates the external name from the mandatory argument and the
requested user size, and thus can be used for external names where the size is encoded
in the font name. The optional argument a scale factor. The font is scaled to \f@size
if no optional argument is present, and to \f@size multiplied by the optional argument
otherwise.

156 \DeclareSizeFunction{gen}{\gen@sfcnt\@font@warning}

257 \DeclareSizeFunction{sgen}{\gen@sfcnt\@font@infol}

.5 \def\gen@sfcnt{y
450 \edef\mandatoryQarg{\mandatoryQ@arg\f@sizel},
460 \empty@sfcnt}

(End definition for \s@fct@gen and \s@fct@sgen. These functions are documented on page 77.)

This size function is similar to gen, but for fonts where the size is encoded in the font
name in centipoints, as in the DC fonts version 1.2. The font is scaled to \f@size if
no optional argument is present, and to \f@size multiplied by the optional argument
otherwise.

s1 \DeclareSizeFunction{genb}{\genb@sfcnt\@font@warning}

22 \DeclareSizeFunction{sgenb}{\genb@sfcnt\@font@info}

263 \def\genb@sfcnt{}

464 \edef\mandatory@arg{\mandatory@arg\expandafter\genb@x\f@size. .\0Q}%

465 \empty@sfcnt}

(End definition for \s@fct@genb and \s@fct@sgenb. These functions are documented on page 77.)

The auxiliary macros \genb@x and \genb@y are used to convert the \f@size into centi-
points.

w6 \def\genb@x#1.#2.#3\00{\two@digits{#1}\genb@y#200\@Q}
w67 \def \genbQy#1#2#3\00{#1#2}

(End definition for \genb@x and \genb@y. These functions are documented on page 77.)

This size function handles font substitution. The mandatory argument is a fam-
ily /series/shape combination, the optional argument (if present) is ignored. The font
encoding scheme cannot be changed. Therefore, the first thing we do is to prepend the
encoding scheme.

ss \DeclareSizeFunction{sub}{\sub@sfcnt\@font@warning}

260 \DeclareSizeFunction{ssub}{\sub@sfcnt\@font@info}

270 \def\sub@sfcnt#1{/,
471 \edef\mandatory@arg{\f@encoding/\mandatory@arg}y,

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 327

\@font@aliasinfo

Next action is split the arg into its individual components and allow for a late font shape
load.

e \begingroup

473 \expandafter\split@Oname\mandatory@arg/\@nil
474 \try@load@fontshape

475 \endgroup

Then we record the current \f@size since it may get clobbered.
476 \let\f@user@size\f@size

Then we check whether this new combination is defined and give an error message if not.
In this case we also switch to \error@fontshape.

477 \expandafter

478 \ifx\csname\mandatory@arg\endcsname\relax

479 \errmessage{No\space declaration\space for\space
480 shape\space \mandatory@arg}y

481 \error@fontshape

482 \else

Otherwise we warn the user about the substitution taking place.

483 #1{Font\space shape\space ‘\curr@fontshape’\space in\space

484 size\space <\f@size>\space not\space available\MessageBreak
485 Font\space shape\space ‘\mandatory@arg’\space tried\space
486 insteadl}’

487 \expandafter\split@name\mandatory@arg/\@nil

488 \fi

Then we restart the font specification scan by calling \get@external@font.

489 \edef\f@size{\fQuser@sizel},
490 \get@external@font

Finally \do@subst@correction is called to get the font name right.

401 \do@subst@correction

102 }

(End definition for \s@fct@sub. This function is documented on page ?7.)

Sometimes a substitution is only done to map a long font name to a standard shape or
series, e.g.,

DeclareFontShape{T1}{Roboto-LF}{b}{it}{<-> alias * Roboto-LF/bold/it}{}

Using the ssub function in that case will give a strange (and incorrect) warning. As an
alternative we therefore offer the size function alias. It will still add some info into the
.log file, but no longer complains that the font shape is not available. It is implemented
by grabbing the default warning text and replacing it with a new one.

s (/2ekernel)

a1 (*2ekernel | latexrelease)

w05 (latexrelease) \IncludeInRelease{2020/02/02})

106 (latexrelease) {\@font@aliasinfo}{alias size function})
27 \DeclareSizeFunction{alias}{\sub@sfcnt\@font@aliasinfo}

208 \def\@font@aliasinfo#1{%

29 \@font@info{Font\space shape\space ‘\curr@fontshape’\space

500 aliased\space to\MessageBreak ‘\mandatory®@arg’}’

501 }

(/2ekernel | latexrelease)

4

©

L,
S

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 328

\s@f ct@subf

\s@fct@fixed

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\@font@aliasinfo}{alias size function}
soo (latexrelease)\let\s@fct@alias\@undefined
()
()
()

503

504

o

5

latexrelease)\let\@font@aliasinfo\@undefined
latexrelease

s00 {latexrelease)\EndIncludeInRelease

o (*2ekernel)

o

07

508

5

(End definition for \@font@aliasinfo. This function is documented on page 77.)

The subf size function allows substitution of another font. The mandatory argument
is the external name of the font to be substituted, the optional argument a size scaling
factor like in the default size function. The main difference to the default size function
is the warning message.

s1 \DeclareSizeFunction{subf}{\subf@sfcnt\@font@warning}

512 \DeclareSizeFunction{ssubf}{\subf@sfcnt\@font@infol}

5135 \def\subf@sfcnt#1{%

514 #1{Font\space shape\space ‘\curr@fontshape’\space in\space
515 size\space \f@size\space not\space available\MessageBreak
516 external\space font\space ‘\mandatory@arg’\space usedl}’

517 \empty@sfcnt#1%

518 }

(End definition for \s@fct@subf. This function is documented on page 77.)

The fixed size function is for using a font at a different size than requested. A warning
message is printed, and the external font to be used is taken from the mandatory argu-
ment. If an optional argument is present it is used as the ‘at’ size for the font. Otherwise
the font is loaded at its design size.

s10 \DeclareSizeFunction{fixed}{\fixed@sfcnt\@font@warning}
s20 \DeclareSizeFunction{sfixed}{\fixed@sfcnt\@font@info}

so1 \def\fixed@sfcnt#1{/,
52 \ifx\optional@arg\@empty

523 \let\external@font\mandatoryQarg

s \else

525 \edef\external@font{\mandatory@arg\space at\optional@arg ptl}%
526 \fi

so7 #1{External\space font\space ‘\external@font’\space loaded\space
528 for\space size\MessageBreak

529 <\f@size>}V

530 F

531 (/2ekernel)

(End definition for \s@fct@fixed. This function is documented on page 77.)

File t: 1tfsstrc.dtx Date: 2020/02/03 Version v3.01 329

File u
ltfsscmp.dtx

This file contains the implementation of commands giving compatibility with the original
‘NFSS1’ release of the Font Selection Scheme.

Warning: The macro documentation is still basically the documentation
from the first NFSS release and therefore in some cases probably not com-
pletely accurate.

Version 1 of NFSS is obsolete now for about 20 years (and was “current” only for a
short intermediate time) so with the 2015 release these internal interface commands are
removed from the kernel and made available via latexrelease package so that backward
compatibility remains ensured for very old documents.

1 (*latexrelease)
\IncludeInRelease{2015/01/01}{\new@fontshapel’
3 {NFSS versionl commands}
4 \let\new@fontshape\@undefined
\let\warn@rel@i\@undefined

s \let\scan@fontshape\Qundefined
\let\scan@@fontshape\Qundefined
\let\subst@fontshape\@undefined
\let\extra@def\Qundefined

10 \let\default@mextra\@undefined

11 \let\preload@sizes\@undefined

12 \let\err@rel@i\@undefined

15 \let\newmathalphabet\Qundefined

14 \let\newmathalphabet@\@undefined

15 \let\newmathalphabet@@@\Qundefined
16 \let\if@no@font@opt\Qundefined

17 \let\@no@font@optfalse\Q@undefined

15 \let\define@mathalphabet\Qundefined
19 \let\define@mathgroup\Q@undefined

20 \let\addtoversion\@undefined

1 \EndIncludeInRelease

N

o

~

©

In older releases we provide the original definitions.

\IncludeInRelease{0000/00/00}{\new@fontshapel}’
{NFSS versionl commands}

)
]

N}

\new@fontshape The interface is now \DeclareFontShape.

22 \gdef\new@f ontshape#1#2#3#4{J,

25 \warn@rel@i\new@f ontshape\DeclareFontShape

2 \expandafter\scan@f ontshape\@gobble#4<\@nil><<,
27 \DeclareFontShape U{#1}{#2}{#3}\reserved@f}/,

s \@onlypreamble\new@fontshape

(End definition for \new@fontshape. This function is documented on page 77.)

\warn@rel@i The warning message used above.

20 \gdef\warn@rel@i#1#2{/,
30 \@font@warning{*** NFSS release 1 command

File u: 1tfsscmp.dtx Date: 2015/06/23 Version v3.0f 330

31 \noexpand#1found\MessageBreak

32 %% Update by using release 2 command
33 \string#2.\MessageBreak

34 *x*%x Recovery is probably possiblel}’

5 }h

s \@onlypreamble\warn@rel@i

(End definition for \warn@rel@i. This function is documented on page ?7.)

\scan@fontshape This will scan the old font shape definition syntax.

;7 \gdef\scan@f ontshape{%

ss \let\reserved@f\Qempty

39 \let\reserved@e\Qempty % holds last info
20 \scan@@fontshape

a Y

2 \@onlypreamble\scan@fontshape

(End definition for \scan@fontshape. This function is documented on page 77.)

\scan@@fontshape

+3 \gdef\scan@@fontshape#1>#2#3<{Y%
4 \ifx\@nil#1Y

IS

a5 \edef\reserved@f{\reserved@f\reserved@el},

% \else

a7 \def\reserved@b{#11}/ nick names

a8 \def\reserved@c{#3}/

49 \in@{ at}{#3}/

50 \ifin@

51 \in@{pt}{#3}), not a proof but a good chance
52 \ifin®@
We grap also everything after pt and discard it if people have forgotten to place a percent
sign there.

53 \def\reservedQa##1 at##2pt##3\@nil{y,

54 \def\reserved@b{##2}Y,

55 \def\reserved@c{##1}%

56 ivA

57 \reserved@a#3\@nil

58 \fi

59 \fi

60 \ifnum 0<O#2

61 \edef\reserved@d{subf*\reserved@cl}y,

62 \ifcase #2\or

63 \or

64 \else

65 \errmessage{*** What’s this? NFSS release 07 #**x*}J,
66 \fi

67 \else

68 \edef\reserved@d{#2\reserved@cl},

69 \fi

70 \ifx\reserved@d\reserved@e
71 \edef\reserved@f{\reserved@f<\reserved@b>}y,

72 \else
73 \edef\reserved@f{\reserved@f\reserved@e<\reserved@b>}jadd old info
74 \let\reserved@e\reserved@d

File u: 1tfsscmp.dtx Date: 2015/06/23 Version v3.0f 331

\subst@fontshape

\extra@def

\default@mextra

\preload@sizes

\err@rel@i

~
o

\fi
\expandafter\scan@@fontshape
\fi

o

~
Ni

s Yh
79 \@onlypreamble\scan@@fontshape

(End definition for \scan@@fontshape. This function is documented on page 77.)

This is now also handled by the extend syntax of \DeclareFontShape.

20 \gdef\subst@fontshape#1#2#3#4#5#6{,

81 \warn@rel@i\subst@fontshape\DeclareFontShape

82 \DeclareFontShape{Ut{#1}H{#2}{#3}{<->sub*#4/#5/#6}{}}/
&3 \@onlypreamble\subst@fontshape

(End definition for \subst@fontshape. This function is documented on page 77.)

This was replaced by \DeclareFontFamily.

s \gdef\extra@def#1#2#3{%

85 \warn@rel@i\extra@def\DeclareFontFamily
86 \DeclareFontFamily{U}{#1}{1}/,

&7 T

s \@onlypreamble\extra@def

(End definition for \extra@def. This function is documented on page ?7.)

The new name is \DeclareFontEncodingDefaults but in this case we don’t feel com-
fortable with this either.

20 \gdef\default@mextra{l
o0 \warn@rel@i\default@mextra\DeclareFontEncodingDefaults

We pick up the argument to \default@mextra implicitly as the second argument of
\DeclareFontEncodingDefaults.

ot \DeclareFontEncodingDefaults\relax
o Yh
93 \Q@onlypreamble\default@mextra

(End definition for \default@mextra. This function is documented on page 77.)

The new interface is \DeclarePreloadSizes.
\gdef\preload@sizes{/,

©
R

95 \warn@rel@i\preload@sizes\DeclarePreloadSizes
% \DeclarePreloadSizes U}
97 Y%

¢ \@onlypreamble\preload@sizes

(End definition for \preload@sizes. This function is documented on page 77.)

This macro is used in cases where emulation with NFSS2 features is not really possible.

o0 \gdef\err@rel@i#1#2{J
wo \@latex@error{#** NFSS release 1 command \noexpand#1found/,

101 ~~Jx*x Recovery not possible. Use \string#2}/,
102 {The new release of NFSS doesn’t support the

103 \noexpand#1command~~Jany longer.

104 Please upgrade your file to the syntax of NFSS
105 release 27" Jusing the \noexpand#2command.}%

File u: 1tfsscmp.dtx Date: 2015/06/23 Version v3.0f 332

\newmathalphabet
\newmathalphabet@@
\newmathalphabet@@@

\if@no@font@opt
\@no@font@optfalse

\define@mathalphabet

\define@mathgroup

Let’s die.
106 \batchmode\input.\relax

107 }%
12 \@Qonlypreamble\err@rel@i

(End definition for \err@rel@i. This function is documented on page ?7.)

\newmathalphabet is the old form.
100 \gdef\newmathalphabet{’,

10 \if@no@font@opt

111 \@latex@error{*** NFSS release 1 command

112 \noexpand\newmathalphabet found/
113 ~~J \space**x Automatic recovery not possible.}
114 ~~J \spacex** TYPE H for Help}

115 3}

116 {Please look at the file usrguide.tex for hints on
117 how to resolve this problem.l}

118 \else

119 \warn@rel@i\newmathalphabet\DeclareMathAlphabet
120 \fi

21 \@ifstar\newmathalphabet@@@

122 \newmathalphabet@@}/,

125 \gdef\newmathalphabet@@#1{\DeclareMathAlphabet#1{UF}I{}{}}%
124 \gdef\newmathalphabetQQ@#1#2#3#4{Y

125 \DeclareMathAlphabet{#1}{UF{#2}{#3}{#41}/

126 \@onlypreamble\newmathalphabet

7 \@onlypreamble\newmathalphabet@@

126 \@onlypreamble\newmathalphabet@@@

N}

(End definition for \newmathalphabet, \newmathalphabet@@, and \newmathalphabet@@@. These func-
tions are documented on page 77.)

129 \global\let\if@no@font@opt\iftrue
130 \gdef\@no@font@optfalse{\let\if@no@font@opt\iffalse}%

(End definition for \if@no@font@opt and \@no@fontCoptfalse. These functions are documented on page
?7.)

This is a case where dying is best.

131 \gdef\define@mathalphabet{/

132 \err@rel@i\define@mathalphabet\DeclareMathAlphabet
133 }%

132 \@onlypreamble\define@mathalphabet

(End definition for \define@mathalphabet. This function is documented on page ?7.)

And here is another one

135 \gdef\define@mathgroupi{’

136 \err@rel@i\define@mathgroup\DeclareSymbolFont
137 }%

133 \@onlypreamble\define@mathgroup

(End definition for \define@mathgroup. This function is documented on page 77?.)

File u: 1tfsscmp.dtx Date: 2015/06/23 Version v3.0f 333

\addtoversion \addtoversion is the old form.

130 \def\addtoversion#1#2{J,

1o \warn@rel@i\addtoversion\SetMathAlphabet
121 \SetMathAlphabet#2{#1}{U}}/,

12 \@onlypreamble\addtoversion

(End definition for \addtoversion. This function is documented on page 77.)
Finishing off this huge \IncludeInRelease argument:

123 \EndIncludeInRelease

s (/latexrelease)

File u: 1tfsscmp.dtx Date: 2015/06/23 Version v3.0f 334

\in@
\ifin®@

File v

Itfssdcl.dtx

This file contains the main implementation of the font selection scheme commands. See
other parts of the IXTEX distribution, or The BTgX Companion for higher level docu-
mentation of these commands.

Warning: The macro documentation is still basically the documentation
from the first NFSS release and therefore in some cases probably not com-
pletely accurate.

1 Interface Commands

\@in is a utility macro with two arguments. It determines whether its first argument
occurs in its second and sets the switch \ifin@ accordingly. The first argument may not
contain braces nor # (more precisely, tokens of category code 1, 2, or 6).

1 (*2ekernel)

> \def\inQ#1#27,

{4

\begingroup

\def\ineo##1#1{}/,
\toks@\expandafter{\in@@#2{}{}#11}/,

7 \edef\in@@{\the\toks@}}

8 \expandafter\endgroup

9 \ifx\in@@\Q@empty

10 \in@false

11 \else

12 \in@true

13 \fi

1}

15 \newif\ifin®@

o o &> w

(End definition for \in@ and \ifin@. These functions are documented on page 77.)

Before the \begin{document} command several (math versions) and (math alphabet
identifiers) may be declared. In principle, there should be exactly one family/series/shape
combination be declared for each version/alphabet pair. But we want to allow for defaults
as well for automagical filling of holes.

While building the tables for math alphabet identifiers and math versions we keep
several lists:

o the list of all math versions, \version@list, each entry prefixed by the control
sequence \version@elt, i.e. this list has the following form

\version@elt(version;)\version@elt(versiony). ..
\version@elt(version,)

o the list of all math alphabet identifiers. Here every entry has the form:

\group@elt({math group number)
{{{default family)}{{default series)}{(default shape)}}.

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 335

e Each defined math alphabet identifier holds a list containing Information about the
versions for which it is defined. This list has a more complicated structure: it looks
as follows:

\set@alpha(the alphabet identifier itself)
\reserved@c(math version){font info)

\@nil
where (font info) is either \reserved@e (if the combination is not defined yet) or

{{{family) Y{ (series)}{ (shape)}}

\version@list We initialize the version list to be empty.

\version@elt

\new@mathversion

16 \let\version@list=\Qempty
17 \@onlypreamble\version@list

(End definition for \version@list. This function is documented on page 77.)

18 \let\version@elt\relax
19 \@onlypreamble\version@elt

(End definition for \version@elt. This function is documented on page 77.)

The macro \new@mathversion is called with the version control sequence as its argument.
20 %\def\new@mathversion#1{Y%
The first thing this macro does is to check if the version identifier is already present in
\version@list. We enclose \version@list in braces since it might be empty (if no
version is defined yet). But this means that we need a suitable number of \expandafter
primitives.
1 % \expandafter\in@\expandafter#1\expandafter{\version@list},
» % \ifin@
If so it prints an error message. The \next macro is used to get rid of the four characters
\mv@ that would otherwise appear at the begin of the version name in the error message.

23 \@latex@error{Math version
2 h ‘\expandafter\@gobblefour\string#1l’
5 % already defined}\@eha

Otherwise we have a new version, and we can proceed with entering it into the tables.
We add it to \version@list. This is very easy: we define \version@elt (which is
the delimiter in \version@list) to protect itself and the following token from being
expanded and simply redefine \version@list.

% % \else

27 h \global\expandafter\newcount\csname c@\expandafter

% h \@gobble\string#1\endcsname

A \global\csname c@\expandafter

0 h \@gobble\string#1\endcsname\@ne
ETy A \def\version@elt{\noexpand\version@elt\noexpand}/,

2 h \edef\version@list{\version@list\version@elt#1}}

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 336

\alpha@list

\alpha®elt

\newgroup

\stepcounter

Then we prepare to enter the new version into all math alphabet identifier lists. Remem-
ber that these lists use \reserved@c as delimiter, and that there appears the control
sequence \reserved@e that must not be expanded. Therefore we take suitable precau-
tions.

EEy A \def\reserved@c{\noexpand\reserved@c\noexpand}/,
5 h \let\reserved@e\relax

We will now go through the \alpha®@list to process every (math alphabet identifier) in
turn. Since this list has \group@elt as a delimiter we define this control sequence. It
has three arguments as every entry consists of three items (as explained above).

5 % \def\groupQelt##1##2##3{%

The first of these arguments is the (math alphabet identifier). We redefine it by appending
the information about the new version at the end of the list contained in it. However,
there is one subtlety: the definitions for \reserved@c and \reserved@e made above
prevent the main part of the list from being expanded. But we still have to take care
of the header and the trailer. To do this we remove the trailer by means of the macro
\remove®@nil which also protect the header from being expanded. Its definition is given
below. Now we can prepare to add the new version.

6 h \edef##1{\expandafter\remove@nil##1Y
a7 h \reserved@c

A #1%

39 % \reserved@e

w0 h \noexpand\@nil}}},

Finally we call \alpha@list which will now execute the macro \group@elt once for
every defined (math alphabet identifier). And that’s all for now.

a % \alpha@list
o % \fi}

(End definition for \new@mathversion. This function is documented on page 77.)

As we explained above every entry in \alpha@list has the form
\alpha@elt

(alphabet identifier)(internal group number)(default font assignments). ..
We initialize it to \@empty.

23 \let\alpha@list\@empty
2 \Qonlypreamble\alpha@list

(End definition for \alpha@list. This function is documented on page ?7.)

25 \let\alpha@elt\relax
s \Qonlypreamble\alpha@elt

(End definition for \alpha@elt. This function is documented on page 77.)

Start the group (fam) allocation at 0. (Doesn’t belong here.)
27 \count18=-1

(End definition for \newgroup. This function is documented on page ?77.)

(End definition for \stepcounter. This function is documented on page 77.)

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 337

\select@group We surround \select@group with braces so that functions using it can be used directly
after _ or ~. However, if we use oldstyle syntax where the math alphabet doesn’t have
arguments (ie if \math@bgroup is not \bgroup) we need to get rid of the extra group.

1 (/2ekernel)

s (latexrelease)\IncludeInRelease{2015/01/01}

so (latexrelease) {\select@group}{\select@groupl}’

s1 (*2ekernel | latexrelease)

s> \def\select@group#1#2#3#4{J,

53 \ifx\math@bgroup\bgroup\else\relax\expandafter\@firstofone\fi
54 {%

55 \ifmmode

56 \ifnum\csname c@mv@\math@version\endcsname<\e@mathgroup@top

57 \begingroup

58 \escapechar\m@ne

59 \getanddefine@fonts{\csname c@mv@\math@version\endcsnamel}#3}
60 \globaldefs\@ne \math@fonts

61 \endgroup

62 \init@restore@version

63 \xdef#1{\noexpand\use@mathgroup\noexpand#2/,

64 {\number\csname c@mv@\math@version\endcsnamel}}/

65 \global\advance\csname c@mv@\math@version\endcsname\@ne

66 \else

67 \let#1\relax

68 \@latex@error{Too many math alphabets used in

69 version \math@version}/

70 \@eha

71 \fi

72 \else \expandafter\non@alpherr\fi

s #1{#4}),

u Yh

7}

76 (/2ekernel | latexrelease)

77 (latexrelease)\EndIncludeInRelease

7 (latexrelease)\IncludeInRelease{0000/00/00%}

7o (latexrelease) {\select@group}{\selectOgroupl}’

so (latexrelease)\def\select@group#1#2#3#4{},

s1 (latexrelease) \ifx\math@bgroup\bgroup\else\relax\expandafter\@firstofone\fi
s> (latexrelease) {%

s (latexrelease) \ifmmode

es (latexrelease) \ifnum\csname c@mv@\math@version\endcsname<\sixt@On
ss (latexrelease) \begingroup

s (latexrelease) \escapechar\m@ne

&7 (latexrelease) \getanddefine@fonts

ss (latexrelease) {\csname c@mv@\math@version\endcsnamel}#3Y%

so (latexrelease) \globaldefs\@ne \math@fonts

o (latexrelease) \endgroup

o (latexrelease) \init@restore@version

o (latexrelease) \xdef#1{\noexpand\use@mathgroup\noexpand#2},

o5 (latexrelease) {\number\csname c@mv@\math@version\endcsname}}/,
o (latexrelease) \global\advance\csname c@mv@\math@version\endcsname\@ne
os (latexrelease) \else

o (latexrelease) \let#1\relax

o7 (latexrelease) \@latex@error{Too many math alphabets used in

o (latexrelease) version \math@version}%

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 338

o0 (latexrelease) \@eha

wo (latexrelease) \fi

01 (latexrelease) \else \expandafter\non@alpherr\fi
102 (latexrelease) #1{#4}Y

103 (latexrelease) }%

104 (latexrelease)}

105 (latexrelease)\EndIncludeInRelease

w06 (*2ekernel)

107 \@onlypreamble\restore@mathversion

(End definition for \select@group. This function is documented on page 77.)

\init@restore@version

10s \def\init@restore@version{’

109 \global\let\init@restore@version\relax

110 \xdef\restore@mathversion

111 {\expandafter\noexpand\csname mv@\math@version\endcsname
112 \global\csname c@mv@\math@version\endcsname

113 \number\csname c@mv@\math@version\endcsname\relax}y,

114 \aftergroup\dorestore@version

115 }

116 \@Qonlypreamble\init@restore@version

(End definition for \init@restore@version. This function is documented on page ?77.)

\non@alpherr
117 \gdef\non@alpherr#i{\Q@latex@error{y,
The command here will have a space at the end of its name, so we make sure not to
insert an extra one.
118 \string#lallowed only in math mode}\@ehd}
(End definition for \non@alpherr. This function is documented on page 77.)
\dorestore@version

119 \def\dorestore@version
20 {\ifmmode

121 \aftergroup\dorestore@version

122 \else

123 \gdef\init@restore@version{Y

124 \global\let\init@restore@version\relax

125 \xdef\restore@mathversion

126 {\expandafter\noexpand\csname mv@\math@version\endcsname
127 \global\csname c@mv@\math@version\endcsname

128 \number\csname c@mv@\math@version\endcsname\relax}/,
129 \aftergroup\dorestore@version

130 }%

131 \begingroup

132 \let\getanddefine@fonts\@gobbletwo

133 \restore@mathversion

134 \endgroup

135 \fi}%

136 \@onlypreamble\dorestore@version

(End definition for \dorestore@version. This function is documented on page 77.)

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 339

\document@select@group We surround \select@group with braces so that functions using it can be used directly
after _or ~

137 (/2ekernel)

138 (latexrelease)\IncludeInRelease{2020/10/01}

130 (latexrelease) {\document@select@group}{\document@select@groupl}’,
1o (*2ekernel | latexrelease)

121 \def\document@select@group#1#2#3#4{%

142 \ifx\math@bgroup\bgroup\else\relax\expandafter\@firstofone\fi

wus {%

122 \ifmmode

145 \ifnum\csname c@mv@\math@version\endcsname<\e@mathgroup@top
146 \begingroup

147 \escapechar\m@ne

148 \getanddefine@fonts{\csname c@mv@\math@version\endcsnamel}#3},
149 \globaldefs\@ne \math@fonts

150 \endgroup

151 \expandafter\extract@alph@from@version

152 \csname mv@\math@version\expandafter\endcsname

153 \expandafter{\number\csname

154 c@mv@\math@version\endcsname}y,

155 #1%

156 \global\advance\csname c@mv@\math@version\endcsname\@ne
157 \else

158 \let#1\relax

159 \@latex@error{Too many math alphabets used

160 in version \math@version},

161 \@eha

162 \fi

163 \else \expandafter\non@alpherr\fi

If the legacy interface is used, e.g., $\sf -1$ the math alphabet #1 does not take an
argument so we better do not surround #4 with braces, because then we get {\relax}
into the formula and introduce an extra Ord atom. The two different cases can be
distinguished by looking at the current value of \math@bgroup.

164 \expandafter#1\ifx\math@bgroup\bgroup{#4}\else#4\fi

165

166 F

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

(latexrelease)\IncludeInRelease{2015/01/01}

(latexrelease) {\document@select@group}{\document@select@groupl}’

(latexrelease

(latexrelease)\def \document@select@group#1#2#3#4{Y,

(latexrelease) \ifx\math@bgroup\bgroup\else\relax\expandafter\@firstofone\fi

(latexrelease) {%

s (latexrelease) \ifmmode
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
latexrelease) \ifnum\csname c@mv@\math@version\endcsname<\e@mathgroup@top
)
)
)
)
)
)
)

167

168

169

170

171

)

173

174

1

176
latexrelease \begingroup

latexrelease \escapechar\m@ne

latexrelease \getanddefine@fonts{\csname c@mv@\math@version\endcsnamel}#3J,
latexrelease \globaldefs\@ne \math@fonts

latexrelease \endgroup

latexrelease \expandafter\extract@alph@from@version

latexrelease \csname mv@\math@version\expandafter\endcsname

3
N}

78

179

80

181

182

Y

3

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 340

\process@table

\expandafter{\number\csname
c@mv@\math@version\endcsname}y,

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease)}
latexrelease)\
latexrelease
latexrelease)\IncludeInRelease{0000/00/00}

latexrelease) {\document@select@group}{\document@select@groupl’,
latexrelease

latexrelease)\def\document@select@group#1#2#3#4{%

latexrelease) \ifx\math@bgroup\bgroup\else\relax\expandafter\@firstofone\fi
latexrelease) {%

206 {latexrelease) \ifmmode

()
()
()
()
()
()
()
()
()
()
()
()
()
()}
(N
()
()
()
()
()
()
iraeiere)
7 (latexrelease) \ifnum\csname c@mv@\math@version\endcsname<\sixt@@n
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()}
(N

184
185
#1%

\global\advance\csname c@mv@\math@version\endcsname\@ne
\else

\let#1\relax

\@latex@error{Too many math alphabets used

in version \math@version}y,

86

187

1

8

189

190

1

©

1
192 \@eha
\fi

\else \expandafter\non@alpherr\fi
#1{#4},
}

%

193

194

198 EndIncludeInRelease
199
200

01

N

)

02

203

)4

o

205

2

s (latexrelease \begingroup

latexrelease \escapechar\m@ne

latexrelease \getanddefine@fonts

latexrelease {\csname c@mv@\math@version\endcsname}#3Y,
latexrelease \globaldefs\@ne \math@fonts

latexrelease \endgroup

latexrelease \expandafter\extract@alph@from@version

latexrelease \csname mv@\math@version\expandafter\endcsname
latexrelease \expandafter{\number\csname

latexrelease c@mv@\math@version\endcsnamel},
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) }
latexrelease)\
231 (*2ekernel)

209

210

216

#1%
\global\advance\csname c@mv@\math@version\endcsname\@ne
\else
\let#1\relax
\@latex@error{Too many math alphabets used
in version \math@version}y,

219

220

\@eha
\fi
\else \expandafter\non@alpherr\fi
#1{#41},
Yh

227

EndIncludeInRelease

(End definition for \document@select@group. This function is documented on page 77.)

23> \def\process@tabled{},
233 \def\cdpQelt##1##2##3##4{),

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 341

234 \@font@info{Checking defaults for

#H1/HH2/HH3/##4Y,

236 \expandafter

237 \ifx\csname##1/##2/##3/##4\endcsname\relax

Grouping is important for two reasons, first \cdp@elt will get redefined if \Declare. ..
functions are executed within the external .fd file and secondly \try@load@fontshape
changes a lot of catcodes without surrounding itself with a group.

238 \begingroup

239 \def\f@encoding{##1}\def\f@family{##21}/,

240 \try@load@fontshape

241 \endgroup

242 \fi

243 \expandafter

244 \ifx\csname##1/##2/##3/##4\endcsname\relax

245 \@latex@error{This NFSS system isn’t set up properlyl}’
246 {For encoding scheme ##1 the defaults

247 ##2/##3/##4 do not form a valid font shapel’
248 \else

249 \@font@info{... okayl}’

250 \fl}%

251 \cdp@list

Now we make sure that \error@fontshape is okay.

252 \begingroup

253 \escapechar\m@ne

254 \error@fontshape

255 \expandafter\ifx\csname \curr@fontshape\endcsname\relax
256 \begingroup

257 \try@load@fontshape

258 \endgroup

259 \fl

260 \expandafter\ifx\csname \curr@fontshape\endcsname\relax
261 \@latex@error{This NFSS system isn’t set up properlyl}/
262 {The system maintainer forgot to specify a suitable
263 substitution

264 font shape using the \noexpand\DeclareErrorFont

265 command}’,

266 \fi

267 \endgroup

Set \select@group to its meaning used within the document body.
268 \let\select@group\document@select@group

Install the default font attributes as they are currently pointing to error font face. We can
speed up the process by just using \edef, thereby avoiding all kind of extra processing.
Don’t use \reset@font since that would trigger \selectfont.

269 \fontencoding\encodingdefault
270 \edef\f@family{\familydefaultl}y
211 \edef\f@series{\seriesdefault}’,
272 \edef\f@shape{\shapedefaultl}y,

o3 \everyjob{}/
o7a
275 \@onlypreamble\process@table

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 342

\DeclareMathVersion

\newG@mathversion

(End definition for \process@table. This function is documented on page 77.)

276 %h\Qonlypreamble\set@mathradical

277 \def\DeclareMathVersion#1{/
7z \expandafter\new@mathversion\csname mv@#1\endcsname}
270 \@onlypreamble\DeclareMathVersion

(End definition for \DeclareMathVersion. This function is documented on page 77.)

250 \def\new@mathversion#1{%
51 \expandafter\in®@\expandafter#1l\expandafter{\version@list}
282 \ifin@

283 \@font@info{Redeclaring math version

284 ‘\expandafter\Q@gobblefour\string#1l’}}

285 \else

286 \expandafter\newcount\csname c@\expandafter

287 \@gobble\string#1\endcsname
288 \def\version@elt{\noexpand\version®@elt\noexpand}/

289 \edef\version@list{\version@list\version@elt#1}%

290 \fi

\toks@ is used to gather all tokens for the math version. \count@ will be used to count
the math groups we add to this version.

201 \toks@{}%
200 \count@\z@

Now we loop over \group@list to add all math groups defined so far to the version and
at the same time to count them.

203 \def\group@elt##1##2{/

204 \advance\count@\@ne
205 \addto®hook\toks@{\getanddefine@f onts##1##2}7,
296 Y

207 \group@list

We set the counter for this math version to the number of math groups found in
\group@list.

205 \globall\csname c@\expandafter\@gobble\string#1\endcsname\count®

Now we loop over \alpha@list to add all math alphabets known so far. We have to
distinguish the case that an alphabet by default should produce an error in new versions.
299 \def\alphaQelt##1##2##3{/,

300 \ifx##2\no@alphabet@error

301 \toks@\expandafter{\the\toks@\install@mathalphabet##17
302 {\noGalphabet@error##1}}/

303 \else

304 \toks@\expandafter{\the\toks@\install@mathalphabet##17
305 {\select@group##1##2##3}}/

306 \fi

307 Y%

26 \alpha@list

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 343

Finally we define the math version to expand to the contents of \tokse@.

300 \xdef#1{\the\toks@}},
310 }

;11 \@onlypreamble\new@mathversion

(End definition for \new@mathversion. This function is documented on page 77.)

\DeclareSymbolFont

;12 \def\DeclareSymbolFont#1#2#3#4#5{Y

;13 \@tempswafalse

sz \edef\reserved@b{#2}/,

a5 \def\cdpQ@elt##1##2##3##4{\def \reserved0c{##11}/,

316 \ifx\reserved@b\reserved@c \@tempswatrue\fil}j,
317 \cdp@list

;5 \if@tempswa

319 \@ifundefined{sym#1}{/

320 \ifnum\count18<15 %
321 \expandafter\new@mathgroup\csname sym#1l\endcsname
322 \expandafter\new@symbolfont\csname sym#1l\endcsname

323 {#23{#33{#4}3{#5}%

324 \else

325 \@latex@error{Too many symbol fonts declared}\@eha
326 \fi

327 Yh

328 {%

320 \@font@info{Redeclaring symbol font ‘#1’}J,

Update the group list.

330 \def\group@elt##1##2{},

331 \noexpand\group@elt\noexpand##1

332 \expandafter\ifx\csname sym#1\endcsname##17,

333 \expandafter\noexpand\csname#2/#3/#4/#5\endcsname
334 \else

335 \noexpand##2

336 \fil}%

337 \xdef\group@list{\group@list}y

Update the version list.
338 \def\version@elt##1{/,

339 \expandafter

340 \SetSymbolFont@\expandafter##1\csname#2/#3/#4/#5\expandafter
341 \endcsname \csname sym#1\endcsname

342 }%

343 \version@list

344 A

345 \else

346 \@latex@error{Encoding scheme ‘#2’ unknown}\@eha

347 \fi

348 }

320 \@Qonlypreamble\DeclareSymbolFont

(End definition for \DeclareSymbolFont. This function is documented on page ?7.)

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 344

\group@list

\group@elt

\new@symbolfont

\SetSymbolFont

\SetSymbolFont®@

350

351

\let\group@list\Qempty
\@onlypreamble\group@list

(End definition for \group@list. This function is documented on page ?7.)

352

353

\let\group@elt\relax
\@onlypreamble\group@elt

(End definition for \group@elt. This function is documented on page ?7.)

359

360

361

362

363

364

365

366

\def\new@symbolfont#1#2#3#4#5{},
\toks@\expandafter{\group@list}y,
\edef\group@list{\the\toks@\noexpand\group@elt\noexpand#1%
\expandafter\noexpand\csname#2/#3/#4/#5\endcsname},
\def\version@elt##1{\toks@\expandafter{##11}/,
\edef##1{\the\toks@\noexpand\getanddefine@fonts
#1\expandafter\noexpand\csname#2/#3/#4/#5\endcsname}’,
\global\advance\csname c@\expandafter
\Q@gobble\string##1\endcsname\Cne
Yh
\version@list
}
\@onlypreamble\new@symbolfont

(End definition for \new@symbolfont. This function is documented on page 77.)

367

368

369

370

380

381

\def\SetSymbolFont#1#2#3#4#5#6{/,
\@tempswafalse
\edef\reserved@b{#3}%
\def\cdp@elt##1##2##3##4{\def \reserved@c{##1}%
\ifx\reserved@b\reserved@c \Qtempswatrue\fil}’
\cdp@list
\if@tempswa
\expandafter\SetSymbolFont@
\csname mv@#2\expandafter\endcsname\csname#3/#4/#5/#6\expandafter
\endcsname \csname sym#1l\endcsname
\else
\@latex@error{Encoding scheme ‘#3’ unknown}\Qeha
\fi
}
\@onlypreamble\SetSymbolFont

(End definition for \SetSymbolFont. This function is documented on page 77.)

382

383

384

\def\SetSymbolFont@#1#2#3{/,
\expandafter\in@\expandafter#1\expandafter{\version@list}/,
\ifin@

\expandafter\in@\expandafter#3\expandafter{\group@list}y,
\ifin@
\begingroup

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v

345

\get@cdp

\DeclareMathAlphabet

}

\expandafter\get@cdp\string#2\@nil\reservedQ@a

\toks
\def\

¥
\def\

o{}%

install@mathalphabet##1##2{/
\addto@hook\toks@{\install@mathalphabet##1{##2}1}/
YA

getanddefine@f onts##1##2{J,

\ifnum##1=#3%

\el

\fi
#1%
\xde

\addto@hook\toks@{\getanddefine@fonts#3#2}/
\expandafter\get@cdp\string##2\@nil\reserved@b
\ifx\reserved@a\reserved@b\else
\@font@info{Encoding ‘\reserved@b’ has changed
to ‘\reserved@a’ for symbol font\MessageBreak
‘\expandafter\Q@gobblefour\string#3’ in the
math version ‘\expandafter
\@gobblefour\string#1’1}/,
\fi
\@font@info{%
Overwriting symbol font
‘\expandafter\@gobblefour\string#3’ in
version ‘\expandafter
\@gobblefour\string#1’\MessageBreak
\@spaces \expandafter\@gobble\string##2 -->
\expandafter\Qgobble\string#21}7
se
\addto@hook\toks@{\getanddefine@f onts##1##2}/,
Y

f#1{\the\toks@}%

\endgroup

\el

\fi
\else

\@latex@error{Math version ‘\expandafter\@gobblefour\string#l’

\fi

se

\@latex@error{Symbol font ¢\expandafter\@gobblefour\string#3’

is not
define

not defined}\@eha

d}{You probably misspelled the name of the math

version.”~JOr you have to specify an additional package.l}/

25 \@onlypreamble\SetSymbolFont@

(End definition for \SetSymbolFont@. This function is documented on page 77.)

20 \def\get@cdp#1#2/#3\@nil#4{\def#4{#2}}
230 \@onlypreamble\get@cdp

(End definition for \get@cdp. This function is documented on page 77.)

131 \def\DeclareMathAlphabet#1#2#3#4#5{Y

432

433

434

\@tempswafalse
\edef\reserved@b{#2}V
\def\cdpQelt##1##2##3##4{\def \reservedQc{##1}}

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v

346

435 \ifx\reserved@b\reserved@c \Qtempswatrue\fil}y
236 \cdp@list

237 \ifQ@tempswa

438 \expandafter\ifx

439 \csname\expandafter\Q@gobble\string#1\endcsname

440 \relax

441 \new@mathalphabet#1{#2}{#3}{#4}{#5}%

442 \else

Check if it is already a math alphabet.

443 \edef\reserved@a{\noexpand\in@{\string\select@group}’

444 {\expandafter\meaning\csname \expandafter

445 \@gobble\string#1\space\endcsnamel}}’

446 \reserved@a

447 \ifin@

448 \@font@info{Redeclaring math alphabet \string#1}J,

449 \def\version@elt##1{J

450 \expandafter\SetMathAlphabet@\expandafter

451 ##1\csname#2/#3/#4/#5\expandafter\endcsname

452 \csname M@#2\expandafter\endcsname

453 \csname \expandafter\@gobble\string#1l\space\endcsname#1}y,
454 \version@list

455 \else

Check if it is a math alphabet defined via \DeclareSymbolFontAlphabet.
456 \edef\reserved@a{\noexpand\in@{\string\use@mathgroupl},

457 {\expandafter\meaning\csname \expandafter

458 \@gobble\string#1\space\endcsnamel}}/

459 \reserved@a

460 \ifin@

In that case overwriting is simple since there is nothing inserted in the math version
macros.

461 \@font@info{Redeclaring math alphabet \string#1}J,

462 \new@mathalphabet#1{#2}{#3}{#4}{#5}%

Otherwise panic.

463 \else

464 \@latex@error{Command ‘\string#1’ already defined}\@eha
465 \fi

466 \fi

467 \fi

w5 \else

w60 \Q@latex@error{Encoding scheme ‘#2’ unknown}\Qeha

a0 \fi

471 }

42 \@onlypreamble\DeclareMathAlphabet

(End definition for \DeclareMathAlphabet. This function is documented on page ?7.)

\new@mathalphabet
273 \def\new@mathalphabet#1#2#3#4#5{/,
474 \toks@\expandafter{\alpha@list}/,
475 \edef#1{\expandafter\noexpand\csname \expandafter
476 \@gobble\string#1\space\endcsname

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 347

\SetMathAlphabet

477 \if/#5/%

478 \noexpand\no@alphabet@error

479 \noexpand\no®@alphabet@error

480 \else

481 \expandafter\noexpand\csname M@#2\endcsname

482 \expandafter\noexpand\csname#2/#3/#4/#5\endcsname
483 \fi

484 Y

485 \toks2\expandafter{#1}%

486 \edef\alpha@list{\the\toks@\noexpand\alpha@elt\the\toks2}/,
487 \def\version@elt##1{\toks@\expandafter{##11}/,

488 \edef##1{\the\toks@\install@mathalphabet
489 \expandafter\noexpand

490 \csname \expandafter\Qgobble

401 \string#1\space\endcsname

492 {\if/#5/%

493 \noexpand\no@alphabet@error

494 \noexpand#1,

495 \else

496 \noexpand\select@group\the\toks2
497 \fi}}%

498 Yh

499 \version@list

500 \expandafter\edef\csname \expandafter\@gobble

501 \string#1\space\endcsname{\if/#5/

502 \noexpand\no@alphabet@error

503 \noexpand#17

504 \else

505 \noexpand\select@group\the\toks2

506 \f l}%

507 \edef#1{\noexpand\protect

508 \expandafter\noexpand\csname \expandafter

509 \@gobble\string#1\space\endcsname}’,

510 F

511 \@onlypreamble\new@mathalphabet

(End definition for \new@mathalphabet. This function is documented on page ?77?.)

512 \def\SetMathAlphabet#1#2#3#4#5#6{/,

53 \Qtempswafalse

sie. - \edef\reserved@b{#3}/

si5 \def\cdp@elt##1##2##3##4{\def \reserved@c{##1}/,

516 \ifx\reserved@b\reserved@c \Qtempswatrue\fil}y,
517 \Cdp@list

55 \if@tempswa

s.9 \expandafter\SetMathAlphabet®

520 \csname mv@#2\expandafter\endcsname\csname#3/#4/#5/#6\expandafter
521 \endcsname \csname M@#3\expandafter\endcsname

522 \csname \expandafter\@gobble\string#1\space\endcsname#17

53 \else

s« \@latex@error{Encoding scheme ‘#3’ unknown}\@eha

55 \fi

56 F

527 \@onlypreamble\SetMathAlphabet

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 348

(End definition for \SetMathAlphabet. This function is documented on page 77.)

\SetMathAlphabet@

528 \def\SetMathAlphabet@#1#2#3#4#5{%
520 \expandafter\in@\expandafter#1l\expandafter{\version@list}y,

530 \ifin@

531 \expandafter\in@\expandafter#4\expandafter{\alpha@list}/
532 \ifin®@

533 \begingroup

534 \toks@{}/,

535 \def\getanddefine@fonts##1##2{J,

536 \addto@hook\toks@{\getanddefine@f onts##1##2}/,

537 }%

538 \def\reservedQc##1##2##3##4{} % for message below
539 \expandafter\Q@gobble\string##41}/,

540 \def\install@mathalphabet##1##2{J,

541 \ifx##1#4,

542 \addto@hook\toks@

543 {\install@mathalphabet#4{\select@group#4#3#2}1}/
544 \@font@info{Overwriting math alphabet

545 ‘\string#5’ in version ‘\expandafter

546 \@gobblefour\string#1’\MessageBreak

547 \@spaces \reserved@c##2 -->

548 \expandafter\Qgobble\string#21}

549 \else

550 \addto@hook\toks@{\install@mathalphabet##1{##2}1}7
551 \fi

552 Y%

553 #1%,

554 \xdef#1{\the\toks@}J,

555 \endgroup

556 \else

If the math alphabet was defined via \DeclareSymbolFontAlphabet we have remove its
external definition and add it as a normal math alphabet to every version before trying
to change it in one version.

557 \edef\reserved@a{y

558 \noexpand\in@{\string\use@mathgroup}{\meaning#4}}%

550 \reserved@a

560 \ifin®@

561 \def\reserved@b##1\use@mathgroup##2##3{%

562 \def\reserved@b{##3}\def\reserved@c{##2}1}/,

563 \expandafter\reserved@b#4y,

564 \begingroup

565 \def\install@mathalphabet##1##2{,

566 \addto@hook\toks@{\install@mathalphabet##1{##2}1}
567 Y4

568 \def\getanddefine@fonts##1##2{}

569 \addto@hook\toks@{\getanddefine@f onts##1##2}

570 \ifnum##1=\reserved@b

571 \expandafter

572 \addto®@hook\expandafter\toks@

573 \expandafter{\expandafter\install@mathalphabet
574 \expandafter#4\expandafter

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 349

\DeclareMathAccent

575 {\expandafter\select@group\expandafter

576 #4\reserved@c##2}}

577 \fi

578 Y%

579 \def\version@elt##1{}

580 \toks@{}/

581 ##1%

582 \xdef##1{\the\toks@}/,

583 Y%

584 \version@list

585 \endgroup

Put it into the \alpha®@list with default ‘error’

586 \expandafter\gdef\expandafter\alpha@list\expandafter
587 {\alpha@list

588 \alpha®elt #4\noGalphabet@error \no@alphabet@errorl}y,
589 \gdef#4{\no@alphabet@error #5}), fake things :-)
Then call the internal setting routine again:

590 \SetMathAlphabet@{#1}{#2}{#3}#4#5%

501 \else

592 \@latex@error{Command ‘\string#5’ not defined as a
503 math alphabetl}’

594 {Use \noexpand\DeclareMathAlphabet to define it.l}%
505 \fi

506 \fi

597 \else

598 \@latex@error{Math version ‘\expandafter\@gobblefour\string#1’
509 is not

600 defined}{You probably misspelled the name of the math

601 version. " JOr you have to specify an additional package.l}/
602 \fi

603 }

s04 \Q@onlypreamble\SetMathAlphabet@

(End definition for \SetMathAlphabet@. This function is documented on page ?77?.)

Could do with more checks like allowing single number in #4 lowercase in #4 etc

o0s {/2ekernel)

s (*2ekernel | latexrelease)

7 (latexrelease) \IncludeInRelease{2019/10/01}},

o0s (latexrelease) {DeclareMathAccent}{Make math accents robust}),
s00 \def\DeclareMathAccent#1#2#3#4{Y

610 \expandafter\in@\csname sym#3\expandafter\endcsname

611 \expandafter{\group@listl}y,

612 \ifin®@

613 \begingroup

614 \count\z@=#4\relax

615 \count\tw@\count\z@

616 \divide\count\z@\sixt@@n

617 \count@\count\z@

618 \multiply\count@\sixt@@n

619 \advance\count\tw@-\count®@

620 \if\relax\noexpand#1/, is command?

621 \edef\reserved@a{\noexpand\in@

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 350

638

639

640

641

642

643

644

645

646

647

648

649

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

2
3

}
/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%
latexrelease

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

{\expandafter\@gobble\string\mathaccent}
{\expandafter\meaning
\csname\expandafter\@gobble\string#1\space\endcsname}}/,
\reserved@a
\ifin@

\expandafter\let
\csname\expandafter\@gobble\string#1\space\endcsname
\@undefined

\expandafter\set@mathaccent

\csname sym#3\endcsname#1#2
{\hexnumber@{\count\z@}\hexnumber@{\count\twdl}}%
\@font@info{Redeclaring math accent \string#1}J,
\else

\expandafter\ifx

\csname\expandafter\@gobble\string#1l\endcsname

\relax
\expandafter\set@mathaccent

\csname sym#3\endcsname#1#27,
{\hexnumber@{\count\z@}\hexnumber@{\count\twd}}/

\else
\@latex@error{Command ‘\string#1’ already defined}\@eha

\fi

\fi

\else

\@latex@error{Not a command name: ‘\noexpand#1’}\Qeha

\fi
\endgroup

\@latex@error{Symbol font ‘#3’ is not defined}\@eha

{DeclareMathAccent}{Make math accents robustl}}

latexrelease)\def\DeclareMathAccent#1#2#3#4{Y
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

)
)
)
)
)
)
)
)
)
)
latexrelease) \count@\count\z@
)
)
)
)
)
)
)
)
)
)

\expandafter\in@\csname sym#3\expandafter\endcsname
\expandafter{\group@list}y
\ifin@
\begingroup
\count\z@=#4\relax
\count\tw@\count\z@
\divide\count\z@\sixt@Cn

\multiply\count@\sixt@@n
\advance\count\tw@-\count@
\if\relax\noexpand#1), is command?
\edef\reserved@a{\noexpand\in@
{\expandafter\@gobble\string\mathaccent}{\meaning#1}1}7
\reserved@a
\ifin@
\expandafter\set@mathaccent
\csname sym#3\endcsname#1#2Y
{\hexnumber@{\count\z@}\hexnumber@{\count\twe}}/

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 351

\set@mathaccent

\DeclareMathSymbol

latexrelease \@font@info{Redeclaring math accent \string#1}/

676

o7 (latexrelease \else

oz (latexrelease \expandafter\ifx

o0 (latexrelease \csname\expandafter\@gobble\string#1\endcsname
o0 (latexrelease \relax

latexrelease

latexrelease

latexrelease
latexrelease \else

o5 (latexrelease \@latex@error{Command ‘\string#1’ already defined}\@eha

()
()
()
()
()
()
()
()
()
()
o6 (latexrelease) \fi
()
()
()
()
()
()
{)
()
()
{)

\expandafter\set@mathaccent
\csname sym#3\endcsname#1#2
{\hexnumber@{\count\z@}\hexnumber@{\count\twdl}}%

683

684

os7 (latexrelease \fi

ess (latexrelease \else

es0 (latexrelease \@latex@error{Not a command name: ‘\noexpand#1’}\@eha
o0 (latexrelease \fi

co1 (latexrelease \endgroup

e (latexrelease) \else

o3 (latexrelease \@latex@error{Symbol font ‘#3’ is not defined}\@eha

e+ (latexrelease) \fi

latexrelease
696 (latexrelease
w7 (*2ekernel)

695

~ Y

EndIncludeInRelease

03 \@onlypreamble\DeclareMathAccent

(End definition for \DeclareMathAccent. This function is documented on page ?77.)

/2ekernel)
*2ekernel | latexrelease)
(latexrelease) \IncludeInRelease{2019/10/01}}
702 (latexrelease) {\set@mathaccent}{makemath accents robust}}
\def\set@mathaccent#1#2#3#4{/,
04 \xdef#2{\mathaccent"\mathchar@type#3\hexnumber@#1#4\relax}y,
705 \MakeRobust#2J,
706 }
707 \@Qonlypreamble\set@mathaccent
s (/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease) {\set@mathaccent}{makemath accents robust}/,
latexrelease)
latexrelease) \def\set@mathaccent#1#2#3#4{/,
)
)
)

(
(

latexrelease) \xdef#2{\mathaccent"\mathchar@type#3\hexnumber@#1i#4\relax}}
latexrelease

16 (latexrelease)\EndIncludeInRelease

n7 (*2ekernel)

o~ o~~~ o~~~

(End definition for \set@mathaccent. This function is documented on page 77.)

715 \def\DeclareMathSymbol#1#2#3#4{/,

79 \expandafter\in@\csname sym#3\expandafter\endcsname
720 \expandafter{\group@listl}y,

721 \ifin®@

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 352

722 \begingroup

723 \count\z@=#4\relax

724 \count\tw@\count\z@

725 \divide\count\z@\sixt@@n

726 \count@\count\z@

727 \multiply\count@\sixt@@n

728 \advance\count\tw@-\count®@

720 \if\relax\noexpand#1), is command?

Store the command name with a space attached inside \reserved@®@b in case we look at
a robust definition.

730 \edef\reserved@b{\expandafter\noexpand
731 \csname\expandafter\@gobble\string#1\space\endcsnamely,

Test both #1 and #1,, for containing mathchar.

732 \edef\reserved@a

733 {\noexpand\in@{\expandafter\@gobble\string\mathchar}y,

734 {\meaning#1\expandafter\meaning\reserved@b}}/
735 \reserved@a

Drop #1,, in case it was defined before.

736 \global\expandafter\let\reserved@b\Qundefined
737 \ifin®@

738 \expandafter\set@mathsymbol

739 \csname sym#3\endcsname#1#2

740 {\hexnumber@{\count\z@}\hexnumber@{\count\twe}}%
741 \@font@info{Redeclaring math symbol \string#1}J,

742 \else

743 \expandafter\ifx

744 \csname\expandafter\@gobble\string#l\endcsname
745 \relax

746 \expandafter\set@mathsymbol
747 \csname sym#3\endcsname#1#2

748 {\hexnumber@{\count\z@}\hexnumber@{\count\twdl}}/
749 \else

750 \@latex@error{Command ‘\string#1’ already defined}\@eha
751 \fi

752 \fi

753 \else

754 \expandafter\set@mathchar

755 \csname sym#3\endcsname#1#2

756 {\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}%

757 \fi

758 \endgroup

0 \else

760 \@latex@error{Symbol font ‘#3’ is not defined}\@eha

761 \fi

62 }

763 \Qonlypreamble\DeclareMathSymbol

(End definition for \DeclareMathSymbol. This function is documented on page ?77.)

\set@mathchar

760 \def\set@mathchar#1#2#3#4{},
75 \global\mathcode ‘#2="\mathchar@type#3\hexnumber@#1#4\relax}
766 \@Qonlypreamble\set@mathchar

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 353

\set@mathsymbol

\DeclareMathDelimiter

\@xxDeclareMathDelimiter

(End definition for \set@mathchar. This function is documented on page 77.)

767

768

769

\def \set@mathsymbol#1#2#3#4{%
\global\mathchardef#2"\mathchar@type#3\hexnumber@#1#4\relax}
\@onlypreamble\set@mathsymbol

(End definition for \set@mathsymbol. This function is documented on page 77.)

789

%\def\mathsymbol#1#2#3{%

% \Q@tempcnta=#3\relax

% \@tempcntb\@tempcnta

% \divide\@tempcnta\sixt@@n

% \count@\@tempcnta

% \multiply\count@\sixt@@n

% \advance\@tempcntb-\count®@

% \mathchar"\mathchar@type#1\hexnumberQ#2,

5 % \hexnumber@\@tempcnta\hexnumber@\@tempcntb\relax}

yA
%\def\DeclareMathAlphabetCharacter#1#2#3{%
% \DeclareMathSymbol{#1}7{#2}{#3}}

\def\DeclareMathDelimiter#1{J,
\if\relax\noexpand#17
\expandafter\@eclareMathDelimiter
\else
\expandafter\@xxDeclareMathDelimiter
\fi
#1}
\@onlypreamble\DeclareMathDelimiter

(End definition for \DeclareMathDelimiter. This function is documented on page 77.)

This macro checks if the second arg is a “math type” such as \mathopen. The undocu-
mented original code didn’t use math types when the delimiter was a single letter. For
this reason the coding is a bit strange as it tries to support the undocumented syntax for
compatibility reasons.

790

\def\@xxDeclareMathDelimiter#1#2#3#4{/,

7 is the default value returned in the case that \mathchar@type is passed something
unexpected, like a math symbol font name. We locally move \mathalpha out of the way
so if you use that the right branch is taken. This will still fail if an explicit number 7 is
used!

791

792

793

794

\begingroup
\let\mathalpha\mathord
\ifnum7=\mathchar@type{#2}%

\endgroup

If this branch is taken we have old syntax (5 arguments).

\expandafter\@firstofone
\else

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 354

\@eclareMathDelimiter

If this branch is taken \mathchar@type is different from 7 so we assume new syntax. In
this case we also use the arguments to set up the letter as a math symbol for the case
where it is not used as a delimiter.

797

798

Then we arrange that \@xDeclareMathDelimiter only gets #1, #3, #4 ...

\
\

endgroup
DeclareMathSymbol#1{#2}{#3}{#4}/,

expect a math type as argument.

\
\fi
{\e

> \@onlyp

expandafter\@firstoftwo

xDeclareMathDelimiter#1}{#2}{#3}{#4}}
reamble\@xxDeclareMathDelimiter

(End definition for \@xxDeclareMathDelimiter. This function is documented on page 77.)

836

837

838

839

840

\def\@D

eclareMathDelimiter#1#2#3#4#5#6{

\expandafter\in@\csname sym#3\expandafter\endcsname

\e

\ifin

xpandafter{\group@list}y
]

\expandafter\in@\csname sym#5\expandafter\endcsname

\if

\expandafter{\group@list}y,
in@

\begingroup

\count\z@=#4\relax

\count\tw@\count\z@

\divide\count\z@\sixt@en

\count@\count\z@

\multiply\count@\sixt@@n

\advance\count\tw@-\count®@
\edef\reserved@c{\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}/

\count\z@=#6\relax

\count\tw@\count\z@

\divide\count\z@\sixt@@n

\count@\count\z@

\multiply\count@\sixt@@n

\advance\count\tw@-\count®@
\edef\reserved@d{\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}%

\edef\reserved@a{\noexpand\in@
{\expandafter\@gobble\string\delimiter}{\meaning#1}}7
\reserved@a
\ifin@
\expandafter\set@mathdelimiter
\csname sym#3\expandafter\endcsname
\csname sym#5\endcsname#1#2
\reserved@c\reserved@d
\@font@info{Redeclaring math delimiter \string#1}J,
\else
\expandafter\ifx
\csname\expandafter\@gobble\string#1\endcsname
\relax
\expandafter\set@mathdelimiter

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v

as it does not

355

\@xDeclareMathDelimiter

856

\
\el
\
\fi
\else
\e1l

\fi

}

\@onlyp

\csname sym#3\expandafter\endcsname
\csname sym#5\endcsname#1#2Y
\reserved@c\reserved@d
\else
\@latex@error{Command ‘\string#1’ already defined}\@eha
\fi
\fi
endgroup
se
@latex@error{Symbol font ‘#5’ is not defined}\@eha

atex@error{Symbol font ‘#3’ is not defined}\Q@eha

reamble\@DeclareMathDelimiter

(End definition for \@DeclareMathDelimiter. This function is documented on page ?7.)

ss7 \def\@xDeclareMathDelimiter#1#2#3#4#5{J,
\expandafter\in@\csname sym#2\expandafter\endcsname

\e

xpandafter{\group@list}

\ifin@
\expandafter\in@\csname sym#4\expandafter\endcsname

\if

\expandafter{\group@listl}y,
in@

\begingroup

\
\el
\
\fi
\else
\e1

\fi

}

\count\z@=#3\relax

\count\tw@\count\z@

\divide\count\z@\sixt@@n

\count@\count\z@

\multiply\count@\sixt@@n

\advance\count\tw@-\count@
\edef\reserved@c{\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}%

\count\z@=#5\relax

\count\tw@\count\z@

\divide\count\z@\sixt@@n

\count@\count\z@

\multiply\count@\sixt@@n

\advance\count\tw@-\count®@

\edef\reserved@d{\hexnumber@{\count\z@}\hexnumber@{\count\twe}}J,

\expandafter\set@@mathdelimiter
\csname sym#2\expandafter\endcsname\csname sym#4\endcsname#17
\reserved@c\reserved@d

endgroup

se

@latex@error{Symbol font ‘#4’ is not defined}\@eha

atex@error{Symbol font ‘#2’ is not defined}\@eha

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v

356

\set@mathdelimiter

\set@@mathdelimiter

\DeclareMathRadical

201 \Qonlypreamble\@xDeclareMathDelimiter

(End definition for \@xDeclareMathDelimiter. This function is documented on page 77.)

We have to end the definition of a math delimiter like \1floor with a space and not with
\relax as we did before, because otherwise constructs involving \abovewithdelims will
prematurely end (pr/1329)

s02 (/2ekernel)

s0s (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2019/10/01}

05 (latexrelease) {\set@nathdelimiter}{make delimiters robust}y
s06 \def\set@mathdelimiter#1#2#3#4#5#6{%

We use \protected not \MakeRobust so that \bigl\1foor etc. works inside \protected@edef.

g7 \protected

sz \xdef#3{\delimiter"\mathchar@type#4\hexnumber@#1#5%

809 \hexnumber@#2#6 1}

90 % \MakeRobust#3Y

901 }

902 \@onlypreamble\set@mathdelimiter

s (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\set@mathdelimiter}{make delimiters robustl}/
latexrelease

(
(
(
(
s (latexrelease
(
(
(
(

©
=1
>

904
905
906
907
\def\setOmathdelimiter#1#2#3#4#5#6{%
\xdef#3{\delimiter"\mathchar@type#4\hexnumberQ@#1#5Y
\hexnumber@#2#6 }}

latexrelease
latexrelease
latexrelease
912 (latexrelease
o1z (*2ekernel)

909

910

911

—r — — e o i ~—lr —r

\EndIncludeInRelease

(End definition for \set@mathdelimiter. This function is documented on page 77.)

o1 \def\set@@mathdelimiter#1#2#3#4#5{),
o5 \global\delcode ‘#3="\hexnumber@#1#4\hexnumber@#2#5\relax}
016 \@onlypreamble\set@@mathdelimiter

(End definition for \set@@mathdelimiter. This function is documented on page ?7.)

017 \def\DeclareMathRadical#1#2#3#4#5{,

Below is a crude fix to make this macro work if #1 is undefined or \relax. Should be
improved!

o5 \expandafter\ifx

919 \csname\expandafter\@gobble\string#1\endcsname

920 \relax

921 \let#1\radical

922 \fi

923 \edef\reserved@a{\noexpand\in@

924 {\expandafter\@gobble\string\radical}{\meaning#1}}/

925 \reserved@a

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 357

\mathalpha

926 \ifin®@

927 \expandafter\in@\csname sym#2\expandafter\endcsname
928 \expandafter{\group@list}y,

929 \ifin®@

930 \expandafter\in@\csname sym#4\expandafter\endcsname
031 \expandafter{\group@list}/

932 \ifin®@

933 \begingroup

034 \count\z@=#3\relax

935 \count\tw@\count\z@

936 \divide\count\z@\sixt@6n

037 \count@\count\z@

938 \multiply\count@\sixt@@n

939 \advance\count\tw@-\count@

940 \edef\reserved@c{/

941 \hexnumber@{\count\z@}\hexnumber@{\count\tw@}}%
942 \count\z@=#5\relax

043 \count\tw@\count\z@

944 \divide\count\z@\sixt@@n

945 \count@\count\z@

946 \multiply\count@\sixt@@n

947 \advance\count\tw@-\count@

948 \edef\reserved@d{

949 \hexnumber@{\count\z@}\hexnumber@{\count\tw@}}%

Coded inline instead of using \set@mathradical

950 \expandafter\set@mathradical

951 % \csname sym#2\expandafter\endcsname

052 % \csname sym#4\endcsname#1,

953 th \reserved@c\reserved@d

954 \xdef#1{\radical"\expandafter\hexnumber@

955 \csname sym#2\endcsname\reserved@c
956 \expandafter\hexnumber®@

957 \csname sym#4\endcsname\reserved@d
958 \relax}/,

950 \endgroup

960 \else

961 \@latex@error{Symbol font ‘#4’ is not defined}\@eha
962 \fi

963 \else

964 \@latex@error{Symbol font ‘#2’ is not defined}\@eha
965 \fi

966 \else

967 \@latex@error{Command ‘\string#1’ already defined}\@eha
oes \fi

060 }

o0 \@onlypreamble\DeclareMathRadical

(End definition for \DeclareMathRadical. This function is documented on page ?7.)
Definition below was wrong it contained \delimiter !

def\set@mathradical#1#2#3#4#5{},
\xdef#3{\radical"\hexnumber@#1#4\hexnumber@#2#5\relax}}

just a dummy currently

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v

358

971 \let\mathalpha\relax

(End definition for \mathalpha. This function is documented on page ?7.)

\mathchar@type
o2 \def\mathcharQ@type#1{%
o3 \ifodd 2#11 #1\else % is this non-negative number?
074 \ifx#1\mathord O\else
975 \ifx#1\mathop 1\else
976 \ifx#1\mathbin 2\else
077 \ifx#1\mathrel 3\else
o78 \ifx#1\mathopen 4\else
979 \ifx#1\mathclose 5\else
980 \ifx#1\mathpunct 6\else
981 Th % anything else is variable ord
082 \fi
983 \fi
984 \fi
985 \fi
986 \fi
987 \fi
088 \fi
989 \fi}

90 \@onlypreamble\mathchar@type

(End definition for \mathchar@type. This function is documented on page 77.)

\DeclareSymbolFontAlphabet

001 \def\DeclareSymbolFontAlphabet#1#2{J,

992 \expandafter\DeclareSymbolFontAlphabet®

993 \csname \expandafter\@gobble\string#1l\space\endcsname{#2}#1}
902 \@onlypreamble\DeclareSymbolFontAlphabet

(End definition for \DeclareSymbolFontAlphabet. This function is documented on page 77?.)

\DeclareSymbolFontAlphabet®
905 \def\DeclareSymbolFontAlphabet@#1#2#3{%
We use the switch \if@tempswa to decide if we can declare this symbol font alphabet.
996 \@tempswatrue

First check if #2 is known to be a symbol font

907 \expandafter\in@\csname sym#2\expandafter\endcsname

998 \expandafter{\group@list}y,

999 \ifin@

Check if #1 is defined as a math alphabet defined via \DeclareMathAlphabet:
1000 \expandafter\in@\expandafter#l\expandafter{\alpha@list}}

1001 \ifin@

If so remove it from the \alpha@list and from all math version macros.
1002 \@font@info{Redeclaring math alphabet \string#3}/,

1003 \toks@{}

1004 \def\alphaQelt##1##2##3{%

1005 \ifx##1#1\else\addto@hook\toks@{\alphaQelt##1##2##3}\fi}},
1006 \alpha@list

1007 \xdef\alpha@list{\the\toks@}/,

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 359

Now we loop over all versions and remove the math alphabet:

1008 \def\version@elt##1{Y

1009 \begingroup

1010 \toks@{}/

1011 \def\getanddefine@f onts####1####2{),

1012 \addto®@hook\toks@{\getanddefineQf onts####1####2}})
1013 \def\install@mathalphabet####1####2{),

1014 \ifx####1#1\else

1015 \addto@hook\toks@{\install@mathalphabet

1016 ####1 {####23 H\fi}Y

1017 ##19,

1018 \xdef##1{\the\toks@}/,

1019 \endgroup

1020 }%

1021 \version@list

1022 \else

If #3 is not defined as a math alphabet check if it is defined at all:
1023 \expandafter\ifx

1024 \csname\expandafter\Q@gobble\string#1\space\endcsname
1025 \relax

If it is undefined, fine otherwise check if it is a math alphabet defined via \DeclareSymbolFontAlphabet:
1026 \else

1027 \edef\reserved@a{’

1028 \noexpand\in@{\string\use@mathgroup}{\meaning#13}}/
1029 \reserved@a

1030 \ifin@

1031 \@font@info{Redeclaring math alphabet \string#31}/,
1032 \else

Since the command #3 is defined to be something which is not a math alphabet we have
to skip redefining it.

1033 \@tempswafalse

1034 \@latex@error{Command ‘\string#3’ already defined}\@eha
1035 \fi

1036 \fi

1037 \fi

1038 \else

Since the symbol font is not known we better skip defining this alphabet.
1039 \@tempswafalse

1040 \@latex@error{Unknown symbol font ‘#2’}\@eha

1041 \fi

1042 \if@tempswa

When we reach this point we are allowed to define #1 to be a symbol font math alphabet.
This means that we have to set it to

\use@mathgroup (math-settings) \sym(name)

The (math-settings) are the one for the encoding that is used in the font shape where
\sym(name) is pointing to. This means that we have to get it from the information stored
in \group@list. Thus we loop through that list after defining \group®@elt in a suitable
way.

1043 \def\groupQelt##1##2{/,

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 360

1044 \expandafter\ifx\csname sym#2\endcsname##1,

1045 \expandafter\reserved@a\string##2\0@nil

1046 \fl}%

1047 \def\reserved@a##1##2/##3\0nil{},

1048 \def\reserved@a{##2}}%

1049 \group@list

1050 \toks@{\relax\ifmmode \else \non@alpherr#1\fil}J,
1051 \edef#1{\the\toks@

1052 \noexpand\use@mathgroup

1053 \expandafter\noexpand\csname M@\reserved@a\endcsname
1054 \csname sym#2\endcsnamel},

1055 \def#3{\protect#1}J,

1056 \fi

1057 }

1055 \@onlypreamble\DeclareSymbolFontAlphabet@
1s0 (/2ekernel)

(End definition for \DeclareSymbolFontAlphabet@. This function is documented on page ?77.)

File v: 1tfssdcl.dtx Date: 2020/03/19 Version v3.0v 361

File w

Itfssini.dtx

This file contains the top level KTEX interface to the font selection scheme commands.
See other parts of the ITEX distribution, or The ERTEX Companion for higher level
documentation of these commands.

1 NFSS Initialisation

Finally, there are six commands that are to be used in I¥TEX and that we will therefore
protect against expansion at the wrong point: \fontfamily, \fontseries, \fontshape,
\fontsize, \selectfont, and \mathversion.

1 (*2ekernel)

1.1 Providing math versions

ITEX provides two versions. We call them normal and bold, respectively.
> \DeclareMathVersion{normal}
; \DeclareMathVersion{bold}
Now we define the standard font change commands. We don’t allow the use of
\rmfamily etc. in math mode.
(Actually most are now defined further down in the file.)
First the changes to another family:

4 %\DeclareRobustCommand\rmfamily

s h {\not@math@alphabet\rmfamily\mathrm
6 h \fontfamily\rmdefault\selectfont}
7 %\DeclareRobustCommand\sffamily

s h {\not@math@alphabet\sffamily\mathsf
o %h \fontfamily\sfdefault\selectfont}
10 %\DeclareRobustCommand\ttfamily

1 h {\not@math@alphabet\ttfamily\mathtt
2 h \fontfamily\ttdefault\selectfont}

Then the commands changing the series:

13 %\DeclareRobustCommand\bfseries

1 {\not@math@alphabet\bfseries\mathbf
15 % \fontseries\bfdefault\selectfont}
16 %\DeclareRobustCommand\mdseries

17 h {\not@math@alphabet\mdseries\relax
CayA \fontseries\mddefault\selectfont}

19 \DeclareRobustCommand\upshape
20 {\not@math@alphabet\upshape\relax
21 \fontshape\updefault\selectfont}

Then the commands changing the shape:

»» \DeclareRobustCommand\slshape
{\not@math@alphabet\slshape\relax

N}

2 \fontshape\sldefault\selectfont}
s \DeclareRobustCommand\scshape
2 {\not@math@alphabet\scshape\relax

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 362

\DeclareFontSeriesDefault

27 \fontshape\scdefault\selectfont}
s \DeclareRobustCommand\itshape

29 {\not@math@alphabet\itshape\mathit
30 \fontshape\itdefault\selectfont}

2 Custom series settings for main document families

This section was introduced 2020/02/02 and for now we support a full rollback (may
need splitting later).

51 (/2ekernel)

2 (*2ekernel | latexrelease)

33 (latexrelease) \IncludeInRelease{2020/02/02}

3 (latexrelease) {\DeclareFontSeriesDefault}{Custom series}),

One problem with the NFSS approach of handling the series axis turned out to be
that (especially with respect to “boldness”) different font families implemented different
strategies. For example, with Computer Modern fonts you normally only have bx whereas
most PostScript fonts offered only b but not bx. As a result WTEX’s standard setting
for \bfdefault didn’t work with such fonts, but if it got changed to produce b, then
that didn’t work with Computer Modern if the fonts got combined (e.g., using Computer
Modern Typewriter with such fonts).

The solution back then was to provide substitution rules in the font .fd such that if
a bx series got requested the b series got used. While this works in that particular case,
it isn’t a very general solution. For example, if you happen to have a font family that
has several weights you may want to typeset the whole document in a somewhat lighter
or darker font but if you then modify \mddefault to allow for this, then of course your
change only works with that particular family but not with the typewriter or sans serif
family you also want to use.

A better solution was provided by the mweights package by Bob Tennent that offers
defaults on the level of the three main font families in the document: for “rm”, “sf”
and “tt” so that font packages could define defaults for the sans serif document font by
providing \bfseries@sf which then was used when \bfseries got executed and the
current family was the \sffamily.

We now support this concept directly from within ITEX and for use in font packages
(or the document preamble) we offer \DeclareFontSeriesDefault. This declaration
takes three arguments:

document family interface: Can either be rm, sf or tt. This is optional and if not
given the overall default.

document series interface: Can be md or bf.
series value: This is the value that is going to be used with the combination is requested.

For example, \DeclareFontSeriesDefault [rm] {bf}{sb} would use sb (semi-bold)
when \rmfamily \bfseries is asked for.

If used without the optional argument, e.g., \DeclareFontSeriesDefault{bf}{b}
then this is like redefining \bfdefault or \mddefault.

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 363

\DeclareFontSeriesDefault

\mdseries@rm
\mdseries@sf
\mdseries@tt
\bfseries@rm
\bfseries@sf
\bfseries@tt

If some family specify defaults aren’t given, e.g. if there are no declarations for, say,
tt then the format defaults of \mddefault and \bfdefault are assumed. If those are
later changed this is not reflected!'*

The command to declare font series defaults for the “rm”, “sf” or “tt” family.

35 \let\DeclareFontSeriesDefault\@undefined % for rollback
3 \newcommand\DeclareFontSeriesDefault[3] [J{%

37 \def\reserved@a{#11}V

No optional argument: set up general default.

s5 \ifx\reserved@a\Qempty
39 \ifcsname #2series\endcsname % supported are
0 % \[md/bfldefault

Adding \@empty allows us to detect if the default gets redefined with \renewcommand or
\def by the user.

41 \expandafter\def

2 \csname #2default\endcsname{#3\Qemptyl}/,

43 \expandafter\def

44 \csname #2default@previous\endcsname{#3\Qempty}/

45 \else

46 \@latex@error{Wrong syntax for \string\DeclareFontSeriesDefault}/,
a7 {Mandatory first argument must be ’md’ or ’bf’.}

48 \fi

Optional argument given, set up specific default.

2w \else

50 \ifcsname #2series@#1\endcsname % supported are

51 % \[md/bflseries@[rm/sf/tt]
52 \expandafter\edef

53 \csname #2series@#1\endcsname{#3}/,

If the interface is used we remove the frozen kernel default. This way, we know that
something was explicitly set up (even if the setup has the same value as the default).

54 \expandafter\let

55 \csname #2series@#1@kernel\endcsname\@undefined

56 \else

57 \@latex@error{Wrong syntax for \string\DeclareFontSeriesDefaultl},
58 {Optional argument must be ’rm’, ’sf’, or ’tt’. \MessageBreak
59 Mandatory first argument must be ’md’ or ’bf’.}

60 \fi

61 \fi

62 }

(End definition for \DeclareFontSeriesDefault. This function is documented on page 77.)

We initialize the family specific default at the end of the format generation. Later on
they may get overwritten in the preamble or a package via \DeclareFontSeriesDefault
(or possibly directly).

Conceptual change: The \bfdefault will be b not bx because that is what it should
be really for nearly every font except Computer/Latin Modern.

141 see no easy way to achieve this without compromising compatibility with existing packages that
currently use mweights and directly define (some) of the \mdseries@.. commands but not others.

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 364

To account for the fact that by default we typeset in CM or LM we set up the
\bfseries@.. defaults to use bx instead.

This means that it behaves like before because if the default fonts are used then
\bfseries@rm etc kick in and make \textbf use bx. However, if the font gets changed
then \bfdefault will get used.

63 \def\bfseries@rm{bx}
s« \def\bfseries@sf{bx}
65 \def\bfseries@tt{bx}

Frozen version of the kernel defaults so we can see if they have changed.

66 \let\bfseries@rm@kernel\bfseries@rm
7 \let\bfseries@sf@kernel\bfseries@sf
ss \let\bfseries@tt@kernel\bfseries@tt

The default for the medium series is m and this will be interpreted as resetting both
weight and width. To reset only one of them the virtual value ?m and m? are available.
60 \def\mdseries@rm{m}
70 \def\mdseries@sf{m}
71 \def\mdseries@tt{m}

(End definition for \mdseries@rm and others. These functions are documented on page ?77?.)

\series@change@debug For debugging, but right now none of this code is extracted. The idea is to have a separate
package with debugging code one day.

> (*debug)

s \let\series@change@debug\typeout

+ \let\series@change@debug\@gobble

5 (/debug)

(End definition for \series@change@debug. This function is documented on page 77.)

N NN

y

\prepare@familyGseriestupdate This is core command that prepares for the family update. The big difference to the
documented code above is that the nested \ifx statements seem to be missing. Instead
we loop through an internal list that holds the names of the three meta families. This
approach allows us to extend the mechanism at a later stage to allow for additional named
meta families.

Here is the current definition of that list:
\Cmeta@family@list ., \def\Ometa@family@list{\@elt{rm}\Celt{sf}\Celt{tt}}

\def\prepare@family@series@update#1#2{/,

75 \if@forced@series
o (+debug) \series@change@debug{No series preparation (forced \f@series)\on@linel}}
80 \fontfamily#2,

s \else
2 (+debug) \series@change@debug{Prepearing for switching to #1 (#2)\on@linel}},
83 \expand@font@defaults

We prepare for changing the current series. We have to find it before changing the family
as discussed above.

84 \let\target@series@value\Q@empty
85 \def\target@meta@family@value{#1}/,

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 365

As the very last item in the meta family list we add \@elt{??} and define this pseudo
meta family to be the current font family. So if none of the real meta families matched
then this will match. This will cover the following case:

o \bfseries is called for a family using bx (e.g., CMR)
o Switch to a font family that is none of the meta families, e.g., via \fontfamily{ptm}\selectfont
e Then none of the real meta families, match but the final \@elt{??} will.

e Therefore if the current series is \mddefault or \bfdefault it will be detected and
the corresponding target series selected.

86 \expandafter\edef\csname ?7def@ult\endcsname{\f@familyl}y,

To find it we loop over the meta family list with a suitable definition of \@elt.

87 \let\@elt\update@seriesQtarget@value

88 \@meta@family@list

Last resort pseudo meta family. Will only be looked at f none of the real ones have
matched.

89 \@elt{?7}%

9 \let\@elt\relax

That will figure out the correct series value to use without updating it. Now we can
change the family.

01 \fontfamily#2%

After that we update the series. That code is again like the one above.

92 \ifx\target@series@value\Qempty
o3 (+debug) \series@change@debug{Target series still empty ...}}

o4 \else

95 \ifx \f@series\target@series@value

o (+debug) \series@change@debug{Target series unchanged:

o7 (+debug) \f@series \space = \target@series@value}
% \else

99 \maybe@load@fontshape

w0 {+debug) \series@change@debug{Target series:

101 (+debug) \f@series \space -> \target@series@value}},

The \target@series@value may contain something like cm (coming from a default) and
so we can’t directly asign it to \f@series be have to drop any surplus m first.

102 % \let\f@series\target@series@value

103 \series@maybe@drop@one@m\target@series@value\f@series
104 \fi

105 \fi

s \fi

107 }

(End definition for \prepare@family@series@update and \@meta@family@list. These functions are
documented on page 77.)

\update@series@target@value In this macro used in the look you basically find the nested \ifxs from the outline above.
The only difference is that is it is parameterized instead of being written out and only for
one block of tests because the code is called reatedly when looping over the meta family
list. From the list we get each meta family name in turn.

10s \def\update@seriesQtarget@value#1{/,

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 366

There is one additional test at the beginning, because the list contains all meta families
and we need to ignore the case where current one from the list and target one are identical.

0o \def\reserved@a{#1}/
10 \ifx\target@meta@family@value\reserved@a % rm -> rm do nothing

111 \else
112 (+debug) \series@change@debug{Trying to match #1: \csname#1ldef@ult\endcsname
115 (+debug) \space = \f@family\space 7}

We only “do” something if the current font family matches the current meta family.
114 \expandafter\ifx\csname#1def@ult\endcsname\f@family

If that’s the case we know that this is the block that applies (only one meta family can
match). So to speed things up we change \@elt so that the rest of the loop gets gobbled.
115 \let\@elt\@gobble

Then we try to find the right new value for the series (as explained above). The two
macros defined first are only there because we now need to use \csname and this way the
code will be a little faster.

116 \expandafter\let\expandafter\reserved@b

117 \csname mdseries@\target@meta@family@value\endcsname

118 \expandafter\let\expandafter\reserved@c

119 \csname bfseries@\target@meta@family@value\endcsname

120 (+debug)\series@change@debug{Targets for mdseries and bfseries:

121 (+debug) \reserved@b\space and \reserved@c}

This here is now identical to the nested \ifx block from the outline, except that it there
appeared twice in \rmfamily. This is now covered by looping and stopping the loop
when a match was found.

We have to sanitize the default value first because it may contain something like mc and
that would never match \f@series because there it would be called ¢ with the m dropped.
It would be probably better to do that differently these days, but it is hard to adjust
without causing a lot of issues, so we do the dropping in various places instead.

122 \expandafter\series@maybe@drop@onedm

123 \csname mdseries@#1\endcsname\reserved@d

124 \ifx\reserved@d\f@series

125 (+debug) \series@change@debug{mdseries@#1 matched -> \reserved@bl}},

126 \let\target@series@value\reserved@b
127 \else

Again do some sanitizing.

128 \expandafter\series@maybe@drop@one®m

129 \csname bfseries@#1\endcsname\reserved@d

130 \ifx\reserved@d\f@series

131 (+debug) \series@change@debug{bfseries@#1 matched -> \reserved@c});

132 \let\target@series@value\reservedQc
133 \else\ifx\f@series\mddefQult \let\target@series@value\reserved@b
132 (+debug) \series@change@debug{mddef@ult matched -> \reserved@b}

135 \else\ifx\f@series\bfdefQult \let\target@series@value\reservedQc

136 (+debug) \series@change@debug{bfdef@ult matched -> \reserved@c}),
137 \fi\fi\fi\fi

138 \fi

139 \fi

140 }

(End definition for \update@series@target@value. This function is documented on page 77.)

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 367

\init@series@setup

This is code to be run at begin document . ..
121 \def\init@series@setupi{’

We only want bx in \bfseries@rm if the roman font is Computer Modern or Latin
Modern, otherwise it should be b. It was set to bx in the kernel so that any font use with
the default families in the preamble get this value. Now at the real document start we
check if the fonts have been changed. If there was a \DeclareFontSeriesDefault decla-
ration or \bfseries@rm was directly altered then it differs from \bfseries@rm@kernel
and we do nothing. Otherwise we check if \rmdefault is one of the CM/LM font families
and if so we keep bx otherwise we change it to b.

This approach doesn’t cover one case: CM/LM got changed to a different family
that supports bx, but the support package for that family used \def\bfseries@rm{bx}
instead of using \DeclareFontSeriesDefault. In that case the code here changes it to
b. Solution: use the \DeclareFontSeriesDefault interface.

12 \ifx\bfseries@rm@kernel\bfseries@rm

143 \expandafter\in@\expandafter{\rmdefault}y,
144 {cmr,cmss,cmtt,lcmss,lcmtt,lmr,lmss,lmtt}%
145 \ifin@ \else \def\bfseries@rm{b}\fi\fi

Same approach for \bfseries@sf and \bfseries@tt:

s \ifx\bfseries@sf@kernel\bfseries@sf

147 \expandafter\in@\expandafter{\sfdefaultl}y,

148 {cmr,cmss,cmtt,lcmss,lcmtt,lmr,lmss,1lmtt}%
149 \ifin@ \else \def\bfseries@sf{b}\fi\fi

150 \ifx\bfseries@tt@kernel\bfseries@tt

151 \expandafter\in@\expandafter{\ttdefault}y,

152 {cmr,cmss,cmtt,lcmss,lcmtt,lmr,lmss,1lmtt}%
153 \ifin@ \else \def\bfseries@tt{b}\fi\fi

If the document preamble has changed the \familydefault or if the if the
\rmdefault contains a new font family, we may have to adjust the series defaults accord-
ingly, before starting typesetting.

Similarly, if the user has changed the \mddefault or the medium series for the family
selected as document font we may also have to adjust the \seriesdefault.

On the other hand if the document font is still CM or LM then \bfdefault is wrong,
because it is now saying b and not bx as it should for such fonts.

To fix all this we first run \reset@font (the internal kernel name for \normalfont).
This will set up the document encoding, family, series and shape based on the current
values of \encodingdefault, \familydefault, \seriesdefault and \shapedefault.
However, if the family (from \familydefault) has special medium default we should
switch to that (and not use what is current value from \seriesdefault). This can be
achieved by afterwards calling \mediumseries and then changing \seriesdefault to
the now current series value (in \f@series).

But what should happen if \seriesdefault got explicitly changed? In that case the
explicit change should surive and we should not alter \seriesdefault. This is solved
by comparing the current value of \seriesdefault with a kernel version saved in the
format and if they differ we do not call \mdseries or change \seriesdefault.

152 \reset@font
155 \ifx\seriesdefault\seriesdefault@kernel

156 \mdseries

157 \let\seriesdefault\f@series
158 \fi

159 }h

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 368

\expand@font@defaults
\rm@def@ult
\sf@def@ult
\tt@def@ult
\md@def@ult
\bf@def@ult

(End definition for \init@series@setup. This function is documented on page ?77.)

As the kernel code now implements the same functionality as mweights, albeit inter-
nally coded slightly differently, that package shouldn’t be loaded any more. We therefore
pretend that it already got loaded. Thus, a font package that tries to load it and then
sets \mdseries@. ., etc. will continue to work but will now use the kernel code.

Of course, mid-term such package should probably use \DeclareFontSeriesDefault
instead of making using low-level definitions.

0 \expandafter\let\csname ver@mweights.sty\endcsname\fmtversion

161 (/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease) {\DeclareFontSeriesDefault}{Custom series}/,
latexrelease)
latexrelease)\let\DeclareFontSeriesDefault\@Qundefined
latexrelease)\let\bfseries@rm\@undefined
latexrelease)\let\bfseries@sf\Qundefined
latexrelease)\let\bfseries@tt\Qundefined
latexrelease)\let\bfseries@rm@kernel\@undefined
latexrelease)\let\bfseries@sf@kernel\Qundefined
latexrelease)\let\bfseries@tt@kernel\Qundefined

)

)

)

)

)

)

)

)

)

162
163
164
165
166
167
168
169
170
171
172
173 (latexrelease)\let\mdseries@rm\@undefined
latexrelease)\let\mdseries@sf\Qundefined
latexrelease)\let\mdseries@tt\Qundefined

latexrelease)\expandafter\let\csname ver@mweights.sty\endcsname\@undefined
latexrelease

latexrelease)\let\@meta@family@list\@undefined
latexrelease)\let\prepare@family@series@update\Qundefined
latexrelease)\let\update@series@target@value\Q@undefined

151 (latexrelease

174

175

176

177

78
179
180

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

This is always called in \document so don’t make it undefined.

152 (latexrelease)\let\init@series@setup\relax
latexrelease)

latexrelease) \EndIncludeInRelease
*2ekernel)

(
(
{
156 (/2ekernel)
(
(
(

3

=

*2ekernel | latexrelease)
latexrelease) \IncludeInRelease{2020/10/01}}
latexrelease) {\bfseries}{Custom series with hooks}},

©

8

189

The family specific defaults are fully expanded, i.e., they are defined via \edef inside
\DeclareFontSeriesDefault. However, the overall defaults, e.g., \bfdefault may have
been redefined by the user and thus may not be fully expanded. So to enable reliable com-
parison we make expanded versions of them. That we rerun each time. The alternative
would be to only allow for changes before begin document.

100 \def\expand@font@defaults{y,

w01 \edef\rmdef@ult{\rmdefault}y,

102 \edef\sfdef@ult{\sfdefault}),

103 \edef\ttdef@ult{\ttdefaultl}y,

The series defaults may contain some surplus m that we need to drop here.

14 \series@maybe@drop@one@m\bfdefault\bfdefQult
15 \series@maybe@drop@one@m\mddefault\mddef@ult

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 369

\bfseries

Formats that set up parallel fonts, e.g., for Japanese, can use this hook to add additional
code here.

16 \UseHook{expand@font@defaultsl}y,

197 }

(End definition for \expand@font@defaults and others. These functions are documented on page 77.)

This document command switches to the bold series.
19s \DeclareRobustCommand\bfseries{)
1o \not@math@alphabet\bfseries\mathbf

In the original NFSS definition it then called \fontseries with the value \bfdefault.
In the new scheme we have more alternatives and therefore check if the current family
(\fefamily) is the current \rmdef@ult, \sfdef@ult or \ttdef@ult and the select the
correct family default in that case.

20 \expand@font@defaults

If \bfdefault and \befdefault@previous are different then the default got changed
directly through the legacy interface (i.e., via \def or \renewcommand. In that case we
reset all meta family defaults so that the document behaves like it was the case before
the new mechanism was introduced.

200 \ifx\bfdefault\bfdefault@previous\else

We add \@empty and then let \bfdefault@previous to \bfdefault so that we can
detect any further change.

202 \expandafter\def\expandafter\bfdefault

203 \expandafter{\bfdefault\Qemptyl}/

204 \let\bfseries@previous\bfdefault

And we reset the meta family defaults (\bfdef@ult is an expanded version of \bfdefault.
205 \let\bfseries@rm\bfdefQult

206 \let\bfseries@sf\bfdefQult

207 \let\bfseries@tt\bfdef@ult

Formats that set up parallel fonts, e.g., for Japanese, can use this hook to add resets
here. Not that this hook is only run when resets are necessary.

208 \UseHook{bfseries/defaults}/

209 \fi

210 \ifx\f@family\rmdefQult \fontseries\bfseries@rm
211 \else\ifx\f@family\sfdef@ult \fontseries\bfseries@sf

212 \else\ifx\f@family\ttdef@ult \fontseries\bfseries@tt

If not \bfdefault is used.

213 \else \fontseries\bfdefault
214 \fi\fi\fi

This hook in contrast is always executed.

215 \UseHook{bfseries})
216 \selectfont

217 }

(End definition for \bfseries. This function is documented on page ?77.)

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 370

\mdseries

\rmfamily

This document command switches to the medium series.

215 \DeclareRobustCommand\mdseries{
219 \not@math@alphabet\mdseries\relax

220 \expand@font@defaults

21 \ifx\mddefault\mddefault@previous\else

222 \expandafter\def\expandafter\mddefault\expandafter{\mddefault\Q@emptyl}y,
223 \let\mdseries@previous\mddefault

224 \let\mdseries@rm\mddef@ult

225 \let\mdseries@sf\mddefQult

226 \let\mdseries@tt\mddef@ult

Formats that set up parallel fonts, e.g., for Japanese, can use this hook to add resets
here.

207 \UseHook{mdseries/defaults}/,

228 \fi

229 \ifx\f@family\rmdefQult \fontseries\mdseries@rm
230 \else\ifx\f@family\sfdef@ult \fontseries\mdseries@sf
231 \else\ifx\f@family\ttdef@ult \fontseries\mdseries@tt
232 \else \fontseries\mddefault
233 \fi\fi\fi

23 \UseHook{mdseries}/
235 \selectfont

236 F
(End definition for \mdseries. This function is documented on page ?77?.)

Here are the document level commands for changing the main font families, or rather, here
is a documented outline of the code, the actual code is then streamlined and somewhat
generalized.

DeclareRobustCommand\rmfamily{’
\not@math@alphabet\rmfamily\mathrm

If families are changed then we have to do a bit more work. In the original NFSS
implementation a family change kept encoding, series shape and size unchanged but now
we can’t any longer simply reuse the current series value. Instead we may have to change
it from one family default to the next.

\expand@font@defaults

We have to do the testing while the current family is still unchanged but we have to
do the adjustment of the series after it got changed (because the new family might has
different sets ofshapes available and we certainly don’t want to see substituation going
on. So we use \target@series@value to hold the target series (if any).

\let\target@series@value\@empty
Thus, if the current family is the sans family
\ifx\f@family\sfdef@ult
and if we using the medium series of the sans family
\ifx\f@series\mdseries@sf

then lets switch to the medium series for the serif family

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 371

\let\target@series@value\mdseries@rm

and if we use the bold series of the sans family switch to the bold default of the serif
family:

\else\ifx\f@series\bfseries@sf \let\target@series@value\bfseries@rm

However, the sans family may not have any specific defaults set, so we also compare with
the overall defaults.

\else\ifx\f@series\mddef@ult \let\target@series@value\mdseries@rm
\else\ifx\f@series\bfdef@ult \let\target@series@value\bfseries@rm

If neither test was true we leave the series alone. This way a special manual setting such
as \fontseries{lc} is not undone if the family changes (of course there may not be any
support for it in the new family but then the NFSS substitution kicks in and sorts it
out).

\Ei\fi\fi\fi

We need to do the same if the current family is the typewriter family:

\else\ifx\f@family\ttdef@ult
\ifx\f@series\mdseries@tt \let\target@series@value\mdseries@rm
\else\ifx\f@series\bfseries@tt \let\target@series@value\bfseries@rm
\else\ifx\f@series\mddef@ult \let\target@series@value\mdseries@rm
\else\ifx\f@series\bfdef@ult \let\target@series@value\bfseries@rm
\fi\fi\fi\fi

\fi\fi

With these preparations for series out of the way we can now change the font family to
\rmdefault.

\fontfamily\rmdefault

If \target@series@value is still empty there is nothing more to do other than
selecting the new family. However, if not then we should update the font series now as
well. But there is one further subtle issue. We may not have loaded an .fd file for our
target font family yet. In the past that was done in \selectfont if necessary but since
we are now doing all the comparisons in \fontseries we need to make sure that the
font family specifications are already loaded prior to calling \fontseries.

\ifx\target@series@value\@empty \else
\maybe@load@fontshape

Updating the series in this case means directly changing \f@series to the target value.
We don’t want to go through \fontseries because that would apply the mappings and
then bx + b would keep bx instead of changing to b as desired. as

\let\f@series\target@series@value
\fi
\selectfont}

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 372

So now for the real definition: most of the code above gets delegated to a helper
command \prepare@family@series@update so that the definition becomes again fairly
short. In addition we add a hook, mainly for our Japanese friends so that the code can
be extended prior to the call to \selectfont.

237 \DeclareRobustCommand\rmfamily{’
238 \not@math@alphabet\rmfamily\mathrm

This holds all the code discussed above, first argument is the meta family, i.e., rm in
this case, and second argument is the default family name, e.g., cmr indirectly accessed
via \rmdefault. This is calling \fontfamily and if necessary \fontseries as outline
above.

239 \prepare@family@series@update{rm}\rmdefault

Then comes the hook code (by default a no-op) and finally the call to \selectfont.

240 \UseHook{rmfamily}/
241 \selectfont}

The definitions for \sffamily and \ttfamily are similar, the differences are only in what
\sffamily font families get checked.

\ttfamily ., \DeclareRobustCommand\sffamily{%

243 \not@math@alphabet\sffamily\mathsf

244 \prepare@family@series@update{sf}\sfdefault
245 \UseHook{sffamily}/,

246 \selectfont}

27 \DeclareRobustCommand\ttfamily{%

248 \not@math@alphabet\ttfamily\mathtt

249 \prepare@family@series@update{tt}\ttdefault
250 \UseHook{ttfamily}/

251 \selectfont}

(End definition for \rmfamily, \sffamily, and \ttfamily. These functions are documented on page
7))

rmfamily Declare the hooks used above.

sffamily ., \NewHook{rmfamily}
ttfamily .5; \NewHook{sffamily}
normalfont ¢ \NewHook{ttfamily}
expand@font@defaults 25 \NewHook{normalfont}
bfseries 25¢ \NewHook{expand@font@defaults}
bfseries/defaults 2 \NewHook{bfseries}
253 \NewHook{bfseries/defaults}
250 \NewHook{mdseries}
200 \NewHook{mdseries/defaults}

a1

N

&

mdseries
mdseries/defaults

(End definition for rmfamily and others. These functions are documented on page 77.)

\@rmfamilyhook These four hooks have legacy versions used in 2020/02/02 so we should support them
\@sffamilyhook until they aren’t any longer used.
\@ttfamilyhook ., \let\Ormfamilyhook\@empty

22 \let\@sffamilyhook\@empty

263 \let\@ttfamilyhook\@empty

264 \let\@defaulfamilyhook\@empty

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 373

(End definition for \@rmfamilyhook, \@sffamilyhook, and \@ttfamilyhook. These functions are docu-
mented on page 77.)

2

5 (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{2020/02/02}%

latexrelease {\bfseries}{Custom series with hooks}/
latexrelease

latexrelease) \def\expand@font@defaults{y

latexrelease) \edef\rmdef@ult{\rmdefault},

latexrelease) \edef\sfdef@ult{\sfdefault}’

latexrelease) \edef\ttdef@ult{\ttdefault}’

latexrelease) \edef\bfdef@ult{\bfdefaultl}y,

latexrelease) \edef\mddef@ult{\mddefault}’

latexrelease) \edef\famdef@ult{\familydefault}y,

latexrelease)}

latexrelease

latexrelease)\DeclareRobustCommand\bfseries{%

latexrelease) \not@math@alphabet\bfseries\mathbf

latexrelease) \expand@font@defaults

latexrelease \ifx\f@family\rmdef@ult \fontseries\bfseries@rm
latexrelease \else\ifx\f@family\sfdef@ult \fontseries\bfseries@sf
latexrelease \else\ifx\f@family\ttdef@ult \fontseries\bfseries@tt

S

266

N

7

268

269

270

271

272

273

274

282

33

284

235 {latexrelease \else \fontseries\bfdefault
256 (latexrelease \fi\fi\fi
257 (latexrelease) \selectfont

(

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

(latexrelease)}

(latexrelease)
(latexrelease)\DeclareRobustCommand\mdseries{%
201 (latexrelease) \not@math@alphabet\mdseries\relax
(latexrelease) \expand@font@defaults
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

288
289

290

202
203 (latexrelease \ifx\f@family\rmdef@ult \fontseries\mdseries@rm
latexrelease \else\ifx\f@family\sfdef@ult \fontseries\mdseries@sf

latexrelease \else\ifx\f@family\ttdef@ult \fontseries\mdseries@tt

294

295

206 {latexrelease \else \fontseries\mddefault
207 (latexrelease \fi\fi\fi
203 (latexrelease) \selectfont

latexrelease)}

latexrelease

latexrelease)\DeclareRobustCommand\rmfamily{%
\not@math@alphabet\rmfamily\mathrm
\prepare@family@series@update{rm}\rmdefault
latexrelease \@rmfamilyhook

latexrelease \selectfont}
latexrelease)\DeclareRobustCommand\sffamily{%
\not@math@alphabet\sffamily\mathsf
\prepare@family@series@update{sf}\sfdefault
latexrelease \@sffamilyhook

latexrelease \selectfont}
latexrelease)\DeclareRobustCommand\ttfamily{%
\not@math@alphabet\ttfamily\mathtt
\prepare@family@series@update{tt}\ttdefault
\@ttfamilyhook

\selectfont}

299

300

latexrelease
latexrelease

latexrelease
latexrelease

latexrelease
latexrelease
latexrelease
latexrelease

316 (latexrelease

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 374

\IfFontSeriesContextTF

(latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}Y%
(latexrelease) {\bfseries}{Custom series with hooks}%
(latexrelease)
(latexrelease)\let\expand@font@defaults\Qundefined
(latexrelease)
(latexrelease)\DeclareRobustCommand\bfseries
(latexrelease) {\not@math@alphabet\bfseries\mathbf
(latexrelease) \fontseries\bfdefault\selectfont}
(latexrelease)\DeclareRobustCommand\mdseries
(latexrelease) {\not@math@alphabet\mdseries\relax
(latexrelease) \fontseries\mddefault\selectfont}
(latexrelease)\DeclareRobustCommand\rmfamily
331 (latexrelease) {\not@math@alphabet\rmfamily\mathrm
()
()
()
()
()
{)
()
()
()
()
()
()
()
(

317

8

319

3

]

0

321

322

323

O

324

325

3

]

6

7

w
O

328
329

330

latexrelease \fontfamily\rmdefault\selectfont}

latexrelease)\DeclareRobustCommand\sffamily

latexrelease {\not@math@alphabet\sffamily\mathsf

latexrelease \fontfamily\sfdefault\selectfont}

latexrelease)\DeclareRobustCommand\ttfamily

{\not@math@alphabet\ttfamily\mathtt
\fontfamily\ttdefault\selectfont}

332

34
335
336
337 (latexrelease
latexrelease
latexrelease
latexrelease)\let\@rmfamilyhook\@undefined
latexrelease)\let\@sffamilyhook\@undefined
latexrelease)\let\@ttfamilyhook\@undefined
latexrelease
latexrelease)\EndIncludeInRelease

*2ekernel)

338

339

340

341

342

B

43
344

345

With the ability for \bfseries or \mdseries to be mapped to different NFSS axis values
it becomes important to have the ability to determine the current context as we can no
longer look at \f@series to answer a question such as “am I currently typsetting in a
bold typeface?”

This is provided by the test \IfFontSeriesContextTF. It takes three arguments:

e The context we try to check (either bf for bold or md for medium, i.e., the same
that can go into the first mandatory argument of \DeclareFontSeriesDefault),

o what to do if we are in this context (true case) and
o what to do if we are not (false case).
This allows you to define commands like \IfBold, e.g.,
\newcommand\IfBold [2] {\IfSeriesContextTF{bf {#1}{#2}}
and then do
This is \IfBold{bold}{non-bold} text.

and get the appropriate result.

sa6 {/2ekernel)

27 (*2ekernel | latexrelease)

s4s (latexrelease) \IncludeInRelease{2020/10/01}

310 (latexrelease) {\IfFontSeriesContextTF}{Font series context}),

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 375

\test@font@series@context

350 \DeclareRobustCommand\IfFontSeriesContextTF [1]1{%

351 \expand@font@defaults

In the beginning we haven’t found the context we are loking for.

52 \@font@series@contextfalse

We store the requested context away for use in the tests.

353 \def\requested@test@context{#1}/

The next definition is there to ensure that get a final match during testing even if the

current family is non of the meta families (rm, sf or tt). This will then basically tests if
the current font family matches the overall default.

354 \expandafter\edef\csname ?7def@ult\endcsname{\f@familyl}y,

Then we run through the meta family list (currently containing just the three val-
ues) followed by the artifical meta family ?? and test each of them in turn using
\test@font@series@context as the testing command.

5 \let\@elt\test@font@series@context

356 \@meta@family@list

357 \Q@elt{?7?}%

3ss \let\@elt\relax

o

Following that we evaluate the status of \if@font@series@context to determine which
of the remaining arguments (true/false case) we have to execute.

350 \if@font@series@context
0 \expandafter\@firstoftwo

361 \else
32 \expandafter\@secondoftwo
363 \fi

364}

(End definition for \IfFontSeriesContextTF. This function is documented on page ?7.)

This tests the context (stored in \requested@test@context) and updates the bookean
if the right context is found.

365 \def\test@font@series@context#1{’
First task is to figure out whether the current family matches \rmfamily, \sffamily,

etc. so in \reserved@a we store the value of \rmdef@ult (or whatever the given meta
family is) and compare that to \f@family.

36 \edef\reserved@a{\csname #1ldef@ult\endcsnamel}},
367 \ifx\f@family\reserved@a

If they match we have found the right meta family so we don’t need to test any of the
remaining meta family and therefore change \@elt to \@gobble.

368 \let\@elt\Q@gobble

Now we have to test if \f@series matches the requested context (e.g., whether
\bfseries@rm has that value if the current meta family is rm and we are looking for
the bf context).

369 \expandafter\ifx
370 \csname\requested@test@context series@#1\endcsname\f@series

If yes we change the boolean and are done.

371 \@font@series@contexttrue

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 376

\if@font@series@context

\DeclareEmphSequence
\emforce

\emreset

If not then maybe the reason is that nothing special was set up for that meta family so
we also check now check if \f@series matches the overall default (e.g., \bfdef@ult if
we are looking for the bold context). If that matches we change the boolean.

372 \else

\expandafter\ifx

374 \csname\requested@test@context def@ult\endcsname\f@series

@

375 \@font@series@contexttrue
376 \fi\fi\fi
377 }

(End definition for \test@font@series@context. This function is documented on page 77.)

The boolean to signal if we found the requested font series context.

372 \newif\if@font@series@context

(End definition for \if@font@series@context. This function is documented on page 77.)

L

o (/2ekernel | latexrelease)

350 (latexrelease)\EndIncludeInRelease

(
(latexrelease)\IncludeInRelease{0000/00/00}%
(latexrelease) {\IfFontSeriesContextTF}{Font series contextl}%
(latexrelease)
ss1 (latexrelease)\let\IfFontSeriesContextTF\Qundefined
ss5 (latexrelease)\let\test@font@series@context\@undefined
()
()
()
()
(

381
382

383

latexrelease)\let\if@font@series@context\Qundefined
latexrelease)\1let\@font@series@contexttrue\Qundefined
latexrelease)\let\@font@series@contextfalse\@undefined
latexrelease)\EndIncludeInRelease

*2ekernel)

386

387

3 Supporting nested emphasis

By default M TEX 2¢ supports two levels of nested emphasis: if the current font has an
upright shape then it switches to \itshape otherwise to \eminnershape (which defaults
to \upshape). This means nested emphasis will ocssilate between italic and upright
shapes.

Sometimes it would be nice to allow for a more lengthly sequence, but instead of
providing a fixed one I’ TEX now offers a general mechanism that allows to define arbitrary
sequences.

This declaration expects a comma separated list of (font) change declarations corre-
sponding to increasing levels of emphasis. The mechanism tries to be “smart” and verifies
that the declarations actually alter the font. If not it will ignore this level and tries the
next one—the assumption being that there was a manual font change in the document
to the font that is now supposed to be used for emphasis. Of course, this only works if
the declarations in the list actually change the font and not, say, just the color. In such
a case one has to use \emforce to which directs the mechanism to use the level even if
the font attributes haven’t changed.

If the nesting is so deep, that the specified levels are exhausted then \emreset is
used as a final set of declarations (which by default returns back to the upright shape).
Any additional nesting levels will then reuse the list from its beginning.

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 377

\DeclareEmphSequence \DeclareEmphSequence expects a clist of declaration. Spaces in the argument are
dropped to avoid surious spaces in the output. The declarations are additive. At the very
end the shape is reset using \emreset and \emforce so that this case is never skipped.'®
Further nested calls restart at the beginning.
so1 {/2ekernel)

> (*2ekernel | latexrelease)

503 (latexrelease) \IncludeInRelease{2020/02/02}

01 (latexrelease) {\DeclareEmphSequence}{Nested emph}},

305 \def\DeclareEmphSequence#1{%

306 \protected@edef\emfontdeclare@clist{\zap@space#1, \@empty\emforce\emresetl}y,

397 }

By default the it is empty, in which case \eminnershape is used by ITEX.

208 \let\emfontdeclare@clist\@empty

w
©

(End definition for \DeclareEmphSequence. This function is documented on page ?7.)

\emrest Reset the font to upright and upper/lower case. With the default rules using
\shapedefault does that for us but to be on the safe side we do it like this:

300 \DeclareRobustCommand\emreset{\upshape\ulcshape}

(End definition for \emrest. This function is documented on page 77.)

\em The new definition for \em (and implicitly \emph is like it was before if \emfontdeclare@clist
is empty.
200 \DeclareRobustCommand\em{%
201 \@nomath\em
202 \ifx\emfontdeclare@clist\Q@empty
403 \ifdim \fontdimen\@ne\font >\z@
404 \eminnershape \else \itshape \fi
205 \else
But if not we use the list to decide how to do emphasis.

We use the current font to check if the declarations have any effect, so even a size
change is allowed and identified as a modification (but a color change, for example, isn’t).
So first we save the current status.

206 \edef\em@currfont{\csname\curr@fontshape/\f@size\endcsnamelj,

Then we grab the next element from the list and check if it can be used.

407 \expandafter\do@emfont@update\emfontdeclare@clist\do@emfont@update
408 \fi
409 }

210 \def\eminnershape{\upshape}

(End definition for \em. This function is documented on page 77.)

\do@emfont@update We know that the list (if not empty) has at least 2 elements separated by a comma, so
we pick up the first in #1 and the rest in #2.

211 \def\doQ@emfont@update#l,#2\do@emfont@update{’
First action is to alter the list and move the first entry to the end
412 \def\emfontdeclare@clist{#2,#1}/

15Maybe we should not add \emforce but allow that case to be skipped as well. Of course, that might
result in an endless loop if somebody defines a sequence without any font change and without \emforce
but ...

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 378

\emforce
\em@force

\em
\eminnershape

Then we execute current declaration. Appending \selectfont means one can write just
\fontshape{it}} and that works then too.
213 % \typeout{Use: \detokenize{#1}}%
24 #1\selectfont
We then compare the current font with our saved version, but with a slight twist: we add
\em@force at the end of the name. Normally this is empty so has no effect but if there
was an \emforce as part of #1 it will append a / to the font name (making it invalid)
thus this will then always fail the test.

If the test fails we are done and the declarations will be used. Otherwise we will try
the next declaration in the sequence.

215 \expandafter\ifx\csname \curr@fontshape/\f@size\em@force

For the comparison with \ifx we have to exand \em@currfont once as the relevant info
is inside.

416 \expandafter\endcsname

417 \em@currfont
215 \expandafter\do@emfontQupdate\emfontdeclare@clist\do@emfont@update

If \emforce was used, we have to undo its effect:

10 \else

420 \let\em@force\Q@empty
41 \fi
a2 }

(End definition for \do@emfont@update. This function is documented on page 77?.)

The definition of \emforce is simple: change \em@force to make the above test always
invalid.

; \protected\def\emforce{\def\em@force{/}}
24 \let\em@force\Qempty

w5 (/2ekernel | latexrelease)

o (latexrelease)\EndIncludeInRelease

4

]

>

4

]

(End definition for \emforce and \em@force. These functions are documented on page 77?.)

These are the older definitions for \em, prior to 2020.

We also have to define the emphasize font change command (i.e. \em). This command
will look is the current font is sloped (i.e. has a positive \fontdimen1) and will then select
either \upshape or \itshape.

227 (latexrelease)\IncludeInRelease{2015/01/01}{\DeclareEmphSequence}{Nested emphl}’,
latexrelease)\let\DeclareEmphSequence\@undefined
latexrelease)\let\emfontdeclare@clist\Qundefined
latexrelease)\let\emreset\Qundefined
latexrelease)\1let\do@emfont@update\Q@undefined
latexrelease)\let\emforce\Qundefined

latexrelease)\let\em@f orce\@undefined

()
()
()
()
()
()
130 (latexrelease)
()
()
()
()
()
()

28

429

430

431

IS

32

433

latexrelease)\DeclareRobustCommand\em
{\@nomath\em \ifdim \fontdimen\@ne\font >\z@
\eminnershape \else \itshape \fi}},

435
136 {latexrelease
latexrelease
latexrelease)\EndIncludeInRelease
latexrelease

latexrelease)\IncludeInRelease{0000/00/00}{\DeclareEmphSequence}{Nested emphl,

437
438
439

440

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 379

\not@math@alphabet

\newfont

a1 (latexrelease) \DeclareRobustCommand\em

w2 (latexrelease) {\@nomath\em \ifdim \fontdimen\@ne\font >\z@
a3 (latexrelease) \upshape \else \itshape \fil}J,
(latexrelease)\let\eminnershape\@undefined

us (latexrelease)\EndIncludeInRelease

ws (*2ekernel)

444

(End definition for \em and \eminnershape. These functions are documented on page 77.)

This function generates an error message when it is called in math mode. The same
function should be defined in newlfont.sty.

27 \def\not@math@alphabet#1#2{J,

448 \relax

449 \ifmmode

450 \@latex@error{Command \noexpand#linvalid in math model}J,
451 {%

452 Please

453 \ifx#2\relax

454 define a new math alphabet™"J}

455 if you want to use a special font in math mode,
456 \else

We have to a \noexpand below to prevent expansion of #2. In case of #1 we can omit this
(due to the current definition of robust commands since they do come out right there :-).

457 use the math alphabet \noexpand#2instead of
458 the #1lcommandy

459 \fi

460 .

461 }%

462 \fi}

(End definition for \not@math@alphabet. This function is documented on page ?7.)
Finally we provide two abbreviations to switch to the BTEX versions.

163 \DeclareRobustCommand\boldmath{\@nomath\boldmath

464 \mathversion{bold}}
165 \DeclareRobustCommand\unboldmath{\@nomath\unboldmath
466 \mathversion{normall}}

Here we switch to the default math version by defining the internal macro \math@version.
We dare not to call \mathversion at this place because this would call \glb@settings.

167 \def\math@version{normal}

3.1 Legacy

We start by defining a few macros that are part of standard I4TEX’s user interface. The
use of these functions is not encouraged, but they will allow to process older documents
without changes to the source.

18 \def\newfont#1#2{\@ifdefinable#1{\font#1=#2\relax}}

(End definition for \newfont. This function is documented on page 77.)

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 380

\symbol

\@setfontsize
\@setsize

\hexnumber@

\nfss@text

/2ekernel)

*2ekernel | latexrelease)

(latexrelease) \ IncludeInRelease{2020/10/01})

472 (latexrelease) {\symbol}{XeTeX change for math}}
\ifdefined\XeTeXversion

a2 \DeclareRobustCommand\symbol [1] {\Ucharcat#1 12\relax}

a5 \else

276 \DeclareRobustCommand\symbol [1] {\char#1\relax}

477 \fi

/2ekernel | latexrelease)

469 <
470 <

4

3

1

N

473

78

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}7
latexrelease) {\symbol}{XeTeX change for mathl}},
latexrelease)
latexrelease) \DeclareRobustCommand\symbol [1]{\char#1\relax}

)

)

479

480

481

0

482
483
latexrelease
135 (latexrelease)\EndIncludeInRelease
a6 (*2ekernel)

484

o~ o~ o~~~ o~~~

(End definition for \symbol. This function is documented on page 77?.)

3.2 Miscellaneous

This abbreviation is used by I TEX’s user level size changing commands, such as \large.
«57 \def\@setfontsize#1#2#3{\OGnomath#17,

For the benefit of people relying on keeping the name of the current font command saved
in \@currsize we define it. To ensure that \@setfontsize keeps being robust we omit
this assignment during times where \protect differs from \@typeset@protect.

488 \ifx\protect\@typeset@protect
489 \let\@currsize#1y,

490 \fi

401 \fontsize{#2}{#3}\selectfont}

For compatibility we also define \@setsize the 209 command

w02 (*compat)
103 \def\@setsize#1#2#3#4{\O@setfontsize#1{#4}{#2}}
494 (/compat)

(End definition for \@setfontsize and \@setsize. These functions are documented on page 77.)

To set up IMTEX’s special math character definitions we first provide a macro to generate
hexadecimal numbers. It is a rather simple \ifcase.

105 \def\hexnumber@#1{\if case\number#1
16 O0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or
1.7 9\or A\or B\or C\or D\or E\or F\fi}

(End definition for \hexnumber@. This function is documented on page ?7.)

In it simplest form \nfss@text is an \mbox. This will produce unbreakable text outside
math and inside math you will get text with the same fonts as outside. The only drawback
is that such item won’t change sizes in subscripts. But this behavior can be easily changed.

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 381

\copyright

\normalfont
\reset@font

\@defaultfamilyhook

With the amstex style option one will get a sub style called amstext which will redefine
the \nfss@text macro to produce correct text in all sizes.

We have to use \def instead of the shorter \let since \mbox is undefined when we
reach this point.

108 \def\nfss@text#1{{\mbox{#1}}}

(End definition for \nfss@text. This function is documented on page ?7.)

The definition of \copyright was changed so that it works in other type styles, and to
make it robust. We leave the family untouched so that the copyright notice will come
out differently if a different font family is in use. This command is commented out, since
it is now defined in ltoutenc.dtx.

209 %\DeclareRobustCommand\copyright

500 % {{\ooalign{\hfil

so1 \raise.07ex\hbox{\mdseries\upshape c}\hfillcrcr

502 % \mathhexbox20D}}}

(End definition for \copyright. This function is documented on page ?7.)

The macro \reset@font is used in KTEX to switch to a standard font, in order to initialize
the current font in situations where typesetting is done in a new visual context (e.g. in
a footnote). We define it here to allow the test for the new IXTEX version above but
nevertheless are able to run all kind of mixtures.

The user interface name for \reset@font is \normalfont:

(/2ekernel)

soa {*2ekernel | latexrelease)

so5 (latexrelease) \IncludeInRelease{2020/02/02}

s (latexrelease) {\normalfont}{Add hook to \normalfont}}

507 \DeclareRobustCommand\normalfont{%

503

Instead of calling \usefont, as it was done in the past, we inline the code from \usefont
as we want to add the hook before \selectfont, but after all the font attributes are set.

508 \fontencoding\encodingdefault
509 \edef\f@family{\familydefault}%
510 \edef\f@series{\seriesdefault}y,
511 \edef\f@shape{\shapedefault}y,
512 \UseHook{normalfont}%

This is the old name for the hook introduced in 2020/02/02. It will be removed in one
of the future releases!

513 \@defaultfamilyhook % hookname from 2020/02 will vanish
514 \selectfont}

515 \let\reset@font\normalfont

(End definition for \normalfont and \reset@font. These functions are documented on page 77.)

By default the hooks do nothing.
si6 \let\@defaultfamilyhook\@empty %FMi sort out

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 382

(End definition for \@defaultfamilyhook. This function is documented on page 77.)

si7 {/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\normalfont}{Add hook to \normalfont}},
latexrelease
latexrelease
latexrelease

518
519
520
521
\DeclareRobustCommand\normalfont
{\usefont\encodingdefault

20 (latexrelease \familydefault

latexrelease \seriesdefault
526 (latexrelease \shapedefault
527 {latexrelease \relax}

latexrelease)\let\reset@font\normalfont
latexrelease
latexrelease
latexrelease
latexrelease

*2ekernel)

We left out the special ITEX fonts which are not automatically included in the base
version of the font selection since these fonts contain only a few characters which are also
included in the AMS fonts so anybody who is using these fonts doesn’t need them. But
for compatibility reasons we will define these symbols.

53 \def\not@base#1{\@latex@error

535 {Command \noexpand#lnot provided in base LaTeX2el},
s3 {Load the latexsym or the amsfonts package to
537 define this symbol}}

533 \def\mho{\not@base\mho}

539 \def\Join{\not@base\Join}

510 \def\Box{\not@base\Box}

511 \def\Diamond{\not@base\Diamond}

s> \def\leadsto{\not@base\leadsto}

si3 \def\sqsubset{\not@base\sqgsubset}

s \def\sqsupset{\not@base\sqsupset}

555 \def\1hd{\not@base\1lhd}

536 \def\unlhd{\not@base\unlhd}

517 \def\rhd{\not@base\rhd}

515 \def\unrhd{\not@base\unrhd}

\let\@defaultfamilyhook\@undefined

\EndIncludeInRelease

L,
]
b G
o~~~ o~~~ o~~~ o~ o~~~
LIIAL L SIS L L SR S LS. L

We now initialize all variables set by \DeclareErrorFont. These values are not really
important since they will be overwritten later on by the definition in fontdef.ltx.

However, if fontdef.cfg is corrupted then at least a hopefully suitable error font
is present.

ss0 \DeclareErrorFont{0T1}Hcmr}{m}{n}{10} %) don’t modify this setting
550 %% overwrite it in fontdef.cfg
551 %% if necessary

We also set some default values for \f@family etc. Note that we don’t yet have any
encodings that comes later. In the past this was implicitly done by \DeclareErrorFont.

\fontfamily{cmr}
553 \fontseries{m}
\fontshape{n}
\fontsize{10}{10}

L,
a
[

o
a

4

L,
a
a

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 383

\seriesdefault
\seriesdefault@kernel

The initial fontenc package load list. This will get overwritten in fonttext and is
only provided in case an old fonttext.cfg does not define the command:

556 \def\@fontenc@load@list{\@elt{T1,0T1}}
We now load the customizable parts of NFSS.
ss7 \InputIfFileExists{fonttext.cfg}

558 {\typeout{ == J%

550 ~~J%

560 Local config file fonttext.cfg used™"J%

561 ~~J%

562 Y%

563 \def\@addtofilelist##1{\xdef\@filelist{\@filelist,##1}}%
564 }

565 {\input{fonttext.ltx}}

s60 \let\@addtofilelist\@gobble
Ditto for math although I don’t think that we will get a lot of customisation :-)
567 \InputIfFileExists{fontmath.cfg}

568 {\typeout{ ~~J%

569 ~~J%

570 Local config file fontmath.cfg used”"J%

571 AAJ%

572 Yh

573 \def\@addtofilelist##1{\xdef\@filelist{\@filelist,##1}}%
574 }

575 {\input{fontmath.ltx}}

s \let\@addtofilelist\@gobble

Then we preload several fonts. This file might be customized without changing the
behavior of the format (i.e. necessary font definitions will be loaded at runtime if they
are not preloaded). This is done in the file preload.1ltx.

577 \InputIfFileExists{preload.cfg}

578 {\typeout{ ~~J%

579 ~~J%

580 Local config file preload.cfg used™"J}

581 AAJ%

582 Yh

563 \def\@addtofilelist##1{\xdef\@filelist{\@filelist,##1}}%
584 }

585 {\input{preload.ltx}}

536 \let\@addtofilelist\@gobble

After \seriesdefault got defined inside fonttext.ltx or a .cfg file overwriting it, we
alter its value by appending \@empty to it. This will vanish if expanded but allows us
to check if the default gets altered (even to the same value) in the document preamble.
All we have to do is to save the current value somewhere and later compare the two. For
this we use \seriesdefault@kernel.

se7 \expandafter\def\expandafter\seriesdefault\expandafter{\seriesdefault\@empty}
sss \let\seriesdefault@kernel\seriesdefault

(End definition for \seriesdefault and \seriesdefault@kernel. These functions are documented on
page 77.)

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 384

\@acci We also save the values of some accents in \@acci, \@accii and \@acciii so they can
\@accii be restored by a minipage inside a tabbing environment.

\Q@acciii ;5 \let\Gacci\’ \let\Qaccii\‘ \let\@acciiil=
(End definition for \@acci, \@accii, and \@acciii. These functions are documented on page ?7.)

\cal Here were the two old (alphabet identifiers).
\mit
(End definition for \cal and \mit. These functions are documented on page 77.)

590 (/2ekerne|)

File w: 1tfssini.dtx Date: 2020/08/27 Version v3.2¢ 385

File x
fontdef.dtx

<-latexrelease> [2020/08/01 v3.0i LaTeX Kernel (<-latexrelease> font setup)]

1 Introduction

This file is used to generate the files fonttext.ltx (text font declarations) and
fontmath.ltx (math font declarations), which are used during the format generation.
It contains the declaration of the standard text encodings used at the site as well as a
minimal subset of font shape groups that NFSS will look at to ensure that the specified
encodings are valid.

The math part contains the setup for math encodings as well as the default math
symbol declarations that belong to the encoding.

It is possible to change this setup (by using other fonts, or defaults) without losing
the ability to process documents written at other sites. Portability in this sense means
that a document will compile without errors. It does not mean, however, that identical
output will be produced. For this it is necessary that the distributed setup is used at
both installations.

2 Customization

You are not allowed to change this source file! If you want to change the default encodings
and/or the font shape groups preloaded you should create a copy of fonttext.1ltx under
the name fonttext.cfg and change this copy. If 'TEX 2¢ finds a file of this name it will
use it, otherwise it uses the standard file which is fontdef.1tx.

If you don’t plan to use Computer Modern much or at all, it might (!) be a good
idea to make your own fonttext.cfg. Look at the comments below (docstrip module
‘text’) to see what should should go into such a file.

To change the math font setup use a copy of fontmath.ltx under the name
fontmath.cfg and change this copy. However, dealing with this interface is even more
a job for an expert than changing the text font setup — in short, we don’t encourage
either.

Warning: please note that we don’t support customised IXTEX versions.
Thus, before sending in a bug report please try your test file with a EXTEX
format which is not customised and send in the log from that version (unless
the problem goes away).

Please note: the following standard encodings have to be defined in all local variants
of font....cfg to guarantee that all XTEX installations behave in the same way.

T1 Cork TEX text encoding

0T1 old TEX text encoding

U unknown encoding

OML old TEX math letters encoding

OMS old TEX math symbols encoding

OMX old TEX math extension symbols encoding
TU Unicode

File x: fontdef.dtx Date: ? Version ? 386

Notice that some of these encodings are ‘old’ in the sense that we hope that they will be
superseded soon by encoding standards defined by the TEX user community. Therefore
this set of default encodings may change in the future.

The first candidate is 0T1 which will soon be replaced by T1, the official TEX text
encoding.

Warning: If you add additional encodings to this file there is no guarantee
any longer that files processable at your installation will also be processable
at other installations. Thus, if you make use of such an encoding in your
document, e.g. if you intend to typeset in Cyrillic (0T2 encoding), you need
to specify this encoding in the preamble of your document prior to sending it
to another installation. Once the encoding is specified in that place in your
document, the document is processable at all IWTEX installations (provided
they have suitable fonts installed).

For this reason we suggest that you define a short package file that sets up an
additional encoding used at your site (rather than putting the encoding into
this file) since this package can easily be shipped with your document.

3 The docstrip modules

The following modules are used to direct docstrip in generating external files:

driver produce a documentation driver file
text produce the file fonttext.ltx
math produce the file fontmath.1ltx

cfgtext produce a dummy fonttext.cfg file
cfgmath produce a dummy fontmath.cfg file

A typical docstrip command file would then have entries like:

generateFile{fonttext.ltx}{t}{\from{fontdef.dtx}{text}}

4 A driver for this document

The next bit of code contains the documentation driver file for TEX, i.e. the file that will
produce the documentation you are currently reading. It will be extracted from this file
by the DOCSTRIP program.

v (*driver)

> \documentclass{ltxdoc}

; \GetFileInfo{fontdef.dtx}

+ \begin{document}

5 \DocInput{fontdef.dtx}

s \end{document}
(/driver)

~

5 The fonttext.1ltx file

The identification is done earlier on with a \ProvidesFile declaration.
8 (*text)
o \typeout{=== Don’t modify this file, use a .cfg file instead ===""J}

File x: fontdef.dtx Date: ? Version 7 387

5.1 Encodings

This file declares the standard encodings for text and math fonts. All others should be
declared in packages or in the documents directly.

For every text encoding there are normally a number of encoding specific commands,
e.g. accents, special characters, etc. (The definition for such a command might have to
change when the encoding is changed, because the character is in a different position, or
not available at all, or the accent is produced in a different way.) This is handled by a
general mechanism which is described in 1toutenc.dtx.

By convention, text encoding specific declarations, including the declaration \DeclareFontEncoding
are kept in separate file of the form (enc)enc.def, e.g. otlenc.def. This allows other
applications to make use of the declarations as well.

Similar to the default encoding, the loading of the encoding files for the two major
text encodings shouldn’t be changed. In particular, the inputenc package depends on
this.

10 \input {omlenc.def}
11 \input {omsenc.def}

Documents containing a lot of accented characters should really be using T1 fonts. We
therefore load this last so that T1 encoding specific commands are executed as fast as
possible (encoding files are no longer reloaded in fontenc.

12 \input {otlenc.def}

13 \input {tlenc.def}

14 \input{tslenc.def}

15 \ifx\Umathcode\Qundefined
We then set the default text font encoding. This will hopefully change some day to
T1. This setting should not be changed to produce a portable format.
16 \fontencoding{OT1}
The initial fontenc package load list if an 8-bit TEX engine is used:
17 \def\@fontenc@load@list{\@elt{T1,0T1}}
15 \def\rmsubstdefault{cmr}
10 \def\sfsubstdefault{cmss}

20 \def\ttsubstdefault{cmtt}
21 \LoadFontDefinitionFile{TS1}{cmr}

» \else

Unicode.

>3 \input {tuenc.def}
2 \fontencoding{TU}

The initial fontenc package load list if a Unicode engine is used:
»s \def\@fontenc@load@list{\@elt{TU}}

2 \DeclareFontSubstitution{TU}{1lmr}{m}{n}
27 \LoadFontDefinitionFile{TU}{1mr}

23 \LoadFontDefinitionFile{TU}{1lmss}

20 \LoadFontDefinitionFile{TU}{1lmtt}

30 \def\rmsubstdefault{lmr}
31 \def\sfsubstdefault{lmss}
3 \def\ttsubstdefault{lmtt}
33 \LoadFontDefinitionFile{TS1}{1lmr}

File x: fontdef.dtx Date: ? Version ? 388

31 \DeclareFontSubstitution{TU}{1mr}{m}{n}

End of Unicode branch.
35 \fi

If different encodings for text fonts are in use one could put the common setup
into \DeclareFontEncodingDefaults. There is now a better mechanism so using this
interface is discouraged!

;s \DeclareFontEncodingDefaults{}{}

Then we define the default substitution for every encoding. This release of IXTEX 2¢
assumes that the ec fonts are available. It is possible to change this to point to some
other font family (e.g., Times with the appropriate encoding if it is available) without
making documents non-portable. However, in such a case documents will produce dif-
ferent page breaks at other sites. The substitution defaults can all be changed without
losing portability as long as there are font shape definitions for the selected substitutions.

37 \DeclareFontSubstitution{T1}{cmr}{m}{n}
32 \DeclareFontSubstitution{0T1}{cmr}{m}{n}

For every encoding declaration, IXTEX 2¢ will try to verify that the given substitution
information makes sense, i.e. that it is impossible to go into an endless loop if font
substitution happens. This is done at the moment the \begin{document} is encountered.
I¥TEX 2¢ will then check that for every encoding the substitution defaults form a valid font
shape group, which means that it will check if there is a \DeclareFontShape declaration
for this combination. We will therefore load the corresponding .fd files now. If we don’t
do this they would be loaded at verification time (i.e. at \begin{document} which would
delay processing unnecessarily.

Warning: Please note that this means that you have to regenerate the format
whenever you change any of these .fd files since IMTEX 2¢ will not read .fd
files if it already knows about the encoding/family combination.

The \nfss@catcodes ensures that white space is ignored in any definitions made in
the fd files.
s \begingroup
20 \nfss@catcodes
2 \input {tlcmr.fd}
2 \input {otlcmr.fd}
23 \endgroup

We also load some other font definition files which are normally needed in a docu-
ment. This is only done for processing speed and you can comment the next two lines
out to save some memory. If necessary these files are then loaded when your document is
processed. (Loading .£d files is a less drastic step compared to preloading fonts because
the number of fonts is limited 255 at (nearly) every TEX installation, while the amount
of main memory is not a limiting factor at most installations.)
2 \begingroup
25 \nfss@catcodes
s \input {otlcmss.fd}
27 \input {otlcmtt.fd}
2 \endgroup

File x: fontdef.dtx Date: ? Version ? 389

\encodingdefault
\rmdefault
\sfdefault
\ttdefault

Even with all the precautions it is still possible that NFSS will run into problems,
for example, when a .fd file contains corrupted data. To guard against such cases NFSS
has a very low-level fallback font that is installed with the following line.

s \DeclareErrorFont{0T1}{cmr}{m}{n}{10}

This means, “if everything else fails use Computer Modern Roman normal shape at 10pt
in the old text encoding”. You can change the font used but the encoding should be the
same as the one specified with \fontencoding above.

5.2 Defaults

To allow the use of \rmfamily, \sffamily, etc. in documents even if non-standard fam-
ilies are used we provide nine macros which hold the name of the corresponding families,
series, and so on. This makes it easy to use other font families (like Times Roman, etc.).
One simply has to redefine these defaults.

All these hooks have to be defined in this file but you can change their meaning
(except for \encodingdefault) without making documents non-portable.

The following three definitions set up the meaning for \rmfamily, \sffamily, and
\ttfamily.

50 \ifx\Umathcode\@undefined

51 \newcommand\encodingdefault{0T1}

52 \newcommand\rmdefault{cmr}

53 \newcommand\sfdefault{cmss}

s \newcommand\ttdefault{cmtt}

55 \else

s \newcommand\encodingdefault{TU}

57 \newcommand\rmdefault{lmr}

ss \fontfamily{\rmdefault}

50 \newcommand\sfdefault{lmss}

s \newcommand\ttdefault{lmtt}

61 \fi

62 (/text)

s (latexrelease)\IncludeInRelease{2017/01/01}%
latexrelease {\encodingdefault}{TU encoding default}},
latexrelease)\ifx\Umathcode\@undefined
latexrelease) \renewcommand\encodingdefault{0T1}
latexrelease)\fontencoding{\encodingdefault}
latexrelease) \renewcommand\rmdefault{cmr}
latexrelease)\fontfamily{\rmdefault}
latexrelease)\renewcommand\sfdefault{cmss}
latexrelease) \renewcommand\ttdefault{cmtt}

)
)
)
)
)
)
)
)
)
latexrelease)\else
)
)
)
)
)
)
)
)
)
)

64

5

6

67

8

69

70

~

2

latexrelease)\renewcommand\encodingdefault{TU}

latexrelease)’done in everyjob\fontencoding{\encodingdefault}
latexrelease)\renewcommand\rmdefault{lmr}
latexrelease)\fontfamily{\rmdefault}

latexrelease) \renewcommand\sfdefault{lmss}
latexrelease)\renewcommand\ttdefault{lmtt}

latexrelease)\fi

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

{\encodingdefault}{TU encoding default}/

73

74

5

76

7

8

79

Y

0

81

o~~~ o~~~ o~~~ o~~~ o~~~ o~~~

2 (latexrelease

File x: fontdef.dtx Date: ? Version 7 390

\bfdefault
\mddefault

\itdefault
\sldefault
\scdefault
\updefault

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
o (latexrelease
1 (*text)

\fontencoding{0OT1}
\renewcommand\encodingdefault{0T1}
\fontencoding{\encodingdefault}
\renewcommand\rmdefault{cmr}
\fontfamily{\rmdefault}
\renewcommand\sfdefault{cmss}
\renewcommand\ttdefault{cmtt}
\EndIncludeInRelease

3

0

4

85

6

3

=)

7

88

89

o~ o~~~ o~~~
e~ —— e~~~

©

©

(End definition for \encodingdefault and others. These functions are documented on page 77.)

Series changing commands are influenced by the following hooks.

o> \newcommand\bfdefault{b} I overwritten below (for rollback)
03 \newcommand\mddefault{m} J overwritten below (for rollback)

(End definition for \bfdefault and \mddefault. These functions are documented on page ?7.)

Shape changing commands use the following hooks.

01 \newcommand\itdefault{it}
o5 \newcommand\sldefault{sl}
9 \newcommand\scdefault{sc}
o7 \newcommand\updefault{up} % overwritten below (for rollback)

(End definition for \itdefault and others. These functions are documented on page 77.)

98 (/text)

o (*text | latexrelease)

o (latexrelease) \IncludeInRelease{2020/02/02}),

101 (latexrelease) {\updefault}{font defaults change}
102 % \begin{macrocode}

103 \renewcommand\updefault{up}

1

o

We append \@empty to the series value so that we can detect if it got changed via \def

or \renewcommand later.

104 \renewcommand\bfdefault{b\@empty}
105 \renewcommand\mddefault{m\Q@empty}

¢ \let\bfdefault@previous\bfdefault

107 \let\mddefault@previous\mddefault

s (/text | latexrelease)

(latexrelease)\EndIncludeInRelease

(latexrelease)\IncludeInRelease{0000/00/003}%

(latexrelease) {\updefault}{font defaults changel/,

(latexrelease)
(latexrelease)\renewcommand\updefault{n}

s+ (latexrelease)\renewcommand\bfdefault{bx}
()
()
()
()
(

1

1

o

109

110

1

112

113

1

latexrelease
latexrelease)\let\bfdefault@previous\undefined
latexrelease)\let\mddefault@previous\undefined
latexrelease) \EndIncludeInRelease

*text)

5

1

116

7
118

119

File x: fontdef.dtx Date: ? Version ?

391

\familydefault
\seriesdefault
\shapedefault

Finally we have the hooks that describe the behaviour of the \normalfont command.
To stay portable, the definition of \encodingdefault should not be changed and should
match the setting above for \fontencoding. All other values can be set according to
your taste.

120 \newcommand\familydefault{\rmdefault}

121 \newcommand\seriesdefault{\mddefault}

In previous releases \shapedefault pointed to \updefault which resolved to n, but
these days that is no longer the case (and up is wrong when you want to do a reset. So
we now use n explicitly.

122 \newcommand\shapedefault{n}

(End definition for \familydefault, \seriesdefault, and \shapedefault. These functions are docu-
mented on page 77.)
This finishes the low-level setup in fonttext.ltx.

123 (/text)

6 The fontmath.1ltx file

The identification is done earlier on with a \ProvidesFile declaration.

124 (*math)
125 \typeout{=== Don’t modify this file, use a .cfg file instead ===""J}

6.1 The font encodings used

126 \DeclareFontEncoding{OML}{}{}
127 \DeclareFontEncoding{OMS}{}{}
125 \DeclareFontEncoding{OMX}{}{}

Finally a declaration for U encoding which serves for all fonts that do not fit standard
encodings. For math this sets up \noaccents@ providing for AMS-IATEX. This macro
is used therein to handle accented characters if they are not supported by the font. In
other words, if fonts with U encoding are used in math, all accents (like from \breve) are
obtained from some other font that has them.

120 \DeclareFontEncoding{U}{}{\noaccents@}

The encodings for math are next:

130 \DeclareFontSubstitution{OML}{cmm}{m}{it}
131 \DeclareFontSubstitution{OMS}{cmsy}{m}{n}
1322 \DeclareFontSubstitution{OMX}{cmex}{m}{n}
133 \DeclareFontSubstitution{U}{cmr}{m}{n}

132 \begingroup

135 \nfss@catcodes

136 \input {omlcmm.fd}
137 \input {omscmsy.fd}
135 \input {omxcmex.fd}
130 \input {ucmr.fd}

120 \endgroup

6.1.1 Symbolfont and Alphabet declarations

We now define the basic symbol fonts used by KTEX. These four symbol fonts must be
defined by this file.

File x: fontdef.dtx Date: ? Version ? 392

It is possible to make the symbol fonts point to other external fonts without losing
the ability to process documents written at other sites, as long as one defines the same
symbol font names with the same encodings, e.g. operators with OT1 etc. If other
encodings are used documents become non-portable. Such a change should therefore be
done in a package file.

121 \DeclareSymbolFont{operators} {0Ti}{cmr} {m}{n}
122 \DeclareSymbolFont{letters} {OML} cmm} {m}{it}
13 \DeclareSymbolFont{symbols} {oMSHcmsyH{m}P{n}
124 \DeclareSymbolFont{largesymbols}{0MX}{cmex}{m}{n}

1s \SetSymbolFont{operators}{bold}{0T1}{cmr} {bx}{n}
16 \SetSymbolFont{letters} {bold}{OML}{cmm} {b}{it}
27 \SetSymbolFont{symbols} {bold}{0MS}{cmsy}{b}{n}

Below are the seven math alphabets which are defined by NFSS. Again they must
be defined by this file. However, as before you can change the fonts used without losing
portability, but you should be careful when changing the encoding since that may make
documents come out wrong.

125 \DeclareSymbolFontAlphabet{\mathrm} {operators}
149 \DeclareSymbolFontAlphabet{\mathnormal}{letters}
150 \DeclareSymbolFontAlphabet{\mathcal} {symbols}

151 \DeclareMathAlphabet {\mathbf}{OT1}H cmr}{bx}{n}
152 \DeclareMathAlphabet {\mathsf}{0T1}{cmss}{m}{n}
153 \DeclareMathAlphabet {\mathit}{0T1}{cmrIHm}{it}
15« \DeclareMathAlphabet {\mathtt}{0T1}{cmtt}H{m}{n}

Given the currently available fonts we cannot bold-en \mathbf and \mathtt but
in principle one could use ‘ultra bold’ or something. The alphabets defined via
\DeclareSymbolFontAlphabet will change automatically in a new math version if the
corresponding symbol font changes.

155 \SetMathAlphabet\mathsf{bold}{0T1}{cmss}{bx}{n}
156 \SetMathAlphabet\mathit{bold}{0T1}{cmr}{bx}{it}

6.2 Math font sizes

The declarations below declare the text, script and scriptscript size to be used for each
text font size.

All occurrences of sizes longer than a single character are replaced with the macro
name that holds them, saving a number of tokens (but losing a bit of speed, so this may
not stay this way).

157 \DeclareMathSizes{5}{5}{5}{5}

155 \DeclareMathSizes{6}{6}{5}{5}

150 \DeclareMathSizes{7}{7}{5}{5}

10 \DeclareMathSizes{8}{8}{6}{5}

161 \DeclareMathSizes{9}{9}{6}{5}

12 \DeclareMathSizes{\@xpt}{\@xpt}{7}{5}

16z \DeclareMathSizes{\@xipt}{\@xipt}{8}{6}

16« \DeclareMathSizes{\@xiipt}{\@xiipt}{8}{63}

15 \DeclareMathSizes{\@xivpt}{\@xivpt}{\@xpt}{7}

166 \DeclareMathSizes{\@xviipt}{\@xviipt}{\@xiipt}{\@xpt}
167 \DeclareMathSizes{\@xxpt}{\O@xxpt}{\@xivpt}{\@xiipt}
s \DeclareMathSizes{\@xxvpt}{\@xxvpt}{\@xxpt}{\@xviipt}

File x: fontdef.dtx Date: ? Version ? 393

6.3 The math symbol assignments

We start by setting up math codes for most of the characters typed in directly from
the keyboard. Most of them are normally already setup up in the same way by IniTEX.
However, we repeat them here to have a complete setup which can be exchanged with
another if desired.

6.3.1 The letters

160 \DeclareMathSymbol{a}{\mathalpha}{letters}{‘a}
170 \DeclareMathSymbol{b}{\mathalpha}{letters}{ b}
171 \DeclareMathSymbol{c}{\mathalpha}{letters}{‘c}
17> \DeclareMathSymbol{d}{\mathalpha}{letters}{‘d}
173 \DeclareMathSymbol{e}{\mathalpha}{letters}{‘e}
172 \DeclareMathSymbol{f}{\mathalpha}{letters}{‘f}
175 \DeclareMathSymbol{g}{\mathalpha}{letters}{‘g}
176 \DeclareMathSymbol{h}{\mathalpha}{letters}{‘h}
177 \DeclareMathSymbol{i}{\mathalpha}{letters}{‘i}
175 \DeclareMathSymbol{j}{\mathalpha}{letters}{‘j}
179 \DeclareMathSymbol{k}{\mathalpha}{letters}{‘k}
150 \DeclareMathSymbol{1}{\mathalpha}{letters}{ 1}
151 \DeclareMathSymbol{m}{\mathalpha}{letters}{‘m}
122 \DeclareMathSymbol{n}{\mathalpha}{letters}{‘n}
153 \DeclareMathSymbol{o}{\mathalpha}{letters}{ o}
122 \DeclareMathSymbol{p}{\mathalpha}{letters}{‘p}
155 \DeclareMathSymbol{q}{\mathalpha}{letters}{‘q}
156 \DeclareMathSymbol{r}{\mathalpha}{letters}{‘r}
157 \DeclareMathSymbol{s}{\mathalpha}{letters}{‘s}
185 \DeclareMathSymbol{t}{\mathalpha}{letters}{‘t}
159 \DeclareMathSymbol{u}{\mathalpha}{letters}{‘u}
100 \DeclareMathSymbol{v}{\mathalpha}{letters}{‘v}
191 \DeclareMathSymbol{w}{\mathalpha}{letters}{‘w}
192 \DeclareMathSymbol{x}{\mathalpha}{letters}{‘x}
103 \DeclareMathSymbol{y}{\mathalpha}{letters}{‘y}
104 \DeclareMathSymbol{z}{\mathalpha}{letters}{‘z}

105 \DeclareMathSymbol{A}{\mathalpha}{letters}{ A}
195 \DeclareMathSymbol{B}{\mathalpha}{letters}{ B}
107 \DeclareMathSymbol{C}{\mathalpha}{letters}{‘C}
105 \DeclareMathSymbol{D}{\mathalpha}{letters}{‘D}
199 \DeclareMathSymbol{E}{\mathalpha}{letters}{‘E}
200 \DeclareMathSymbol{F}{\mathalpha}{letters}{‘F}
201 \DeclareMathSymbol{G}{\mathalpha}{letters}{‘G}
202 \DeclareMathSymbol{H}{\mathalpha}{letters}{‘H}
20: \DeclareMathSymbol{I}{\mathalpha}{letters}{‘I}
200 \DeclareMathSymbol{J}{\mathalpha}{letters}{‘J}
205 \DeclareMathSymbol{K}{\mathalpha}{letters}{‘K}
206 \DeclareMathSymbol{L}{\mathalpha}{letters}{‘L}
207 \DeclareMathSymbol{M}{\mathalpha}{letters}{‘M}
206 \DeclareMathSymbol{N}{\mathalpha}{letters}{‘N}
200 \DeclareMathSymbol{0}{\mathalpha}{letters}{ 0}
210 \DeclareMathSymbol{P}{\mathalpha}{letters}{‘P}
211 \DeclareMathSymbol{Q}{\mathalpha}{letters}{‘Q}
212 \DeclareMathSymbol{R}{\mathalpha}{letters}{‘R}
215 \DeclareMathSymbol{S}{\mathalpha}{letters}{‘S}

File x: fontdef.dtx Date: ? Version 7 394

212 \DeclareMathSymbol{T}{\mathalpha}{letters}{‘T}
215 \DeclareMathSymbol{U}{\mathalpha}{letters}{ U}
216 \DeclareMathSymbol{V}{\mathalpha}{letters}{‘V}
17 \DeclareMathSymbol{W}{\mathalpha}{letters}{‘W}
215 \DeclareMathSymbol{X}{\mathalpha}{letters}{ X}
219 \DeclareMathSymbol{Y}{\mathalpha}{letters}{‘Y}
220 \DeclareMathSymbol{Z}{\mathalpha}{letters}{‘Z}

6.3.2 The digits

221 \DeclareMathSymbol{0}{\mathalpha}{operators}{‘0}
22 \DeclareMathSymbol{1}{\mathalpha}{operators}{‘1}
23 \DeclareMathSymbol{2}{\mathalpha}{operators}{‘2}
222 \DeclareMathSymbol{3}{\mathalpha}{operators}{‘3}
25 \DeclareMathSymbol{4}{\mathalpha}{operators}{‘4}
26 \DeclareMathSymbol{5}{\mathalpha}{operators}{‘5}
227 \DeclareMathSymbol{6}{\mathalpha}{operators}{‘6}
25 \DeclareMathSymbol{7}{\mathalpha}{operators}{‘7}
220 \DeclareMathSymbol{8}{\mathalpha}{operators}{‘8}
230 \DeclareMathSymbol{9}{\mathalpha}{operators}{‘9}

N

6.3.3 Punctuation, brace, etc. keys

231 \DeclareMathSymbol{!}{\mathclose}{operators}{"21}

232 \DeclareMathSymbol{*}{\mathbin}{symbols}{"03} 7 \ast
233 \DeclareMathSymbol{+}{\mathbin}{operators}{"2B}

23 \DeclareMathSymbol{, }{\mathpunct}{letters}{"3B}

235 \DeclareMathSymbol{-}{\mathbin}{symbols}{"00}

236 \DeclareMathSymbol{.}{\mathord}{letters}{"3A}

237 \DeclareMathSymbol{:}{\mathrel}{operators}{"3A}

233 \DeclareMathSymbol{;}{\mathpunct}{operators}{"3B}

230 \DeclareMathSymbol{=}{\mathrel}{operators}{"3D}

220 \DeclareMathSymbol{?}{\mathclose}{operators}{"3F}

The following symbols are defined as delimiters below which automatically defines them
as math symbols.

21 %\DeclareMathSymbol{ (}{\mathopen}{operators}{"28}

22 %\DeclareMathSymbol{) }{\mathclose}{operators}{"29}

215 Y \DeclareMathSymbol{/}{\mathord}{letters}{"3D}

214 f\DeclareMathSymbol{ [}{\mathopen}{operators}{"5B}

25 % \DeclareMathSymbol{]}{\mathclose}{operators}{"5D}

216 % \DeclareMathSymbol{|}{\mathord}{symbols}{"6A}

27 % \DeclareMathSymbol{<}{\mathrel}{letters}{"3C}

25 % \DeclareMathSymbol{>}{\mathrel}{letters}{"3E}

Should all of the following being activated by default? Probably not.
220 %\DeclareMathSymbol{ ‘\{}{\mathopen}{symbols}{"663}
250 %\DeclareMathSymbol{‘\}}{\mathclose}{symbols}{"67}
251 %\DeclareMathSymbol{ ‘\\}{\mathord}{symbols}{"6E} 7 \backslash
252 \mathcode‘\ ="8000 % \space
253 \mathcode ‘\’="8000 % ~\prime
54 \mathcode ‘_="8000 % _

6.3.4 Delimitercodes for characters

[to be completed]
Finally, IniTEX sets all \delcode values to -1, except \delcode‘.=0

File x: fontdef.dtx Date: ? Version 7 395

255 \DeclareMathDelimiter{(}{\mathopen} {operators}{"28}{largesymbols}{"00}
256 \DeclareMathDelimiter{)}{\mathclose}{operators}{"29}{largesymbols}{"01}
57 \DeclareMathDelimiter{ [}{\mathopen} {operators}{"5B}{largesymbols}{"02}
255 \DeclareMathDelimiter{]}{\mathclose}{operators}{"5D}{largesymbols}{"03}

The next two are considered to be relations when not used in the context of a de-
limiter! And worse, they do even represent different glyphs when being used as delimiter
and not as delimiter. This is a user level syntax inherited from plain TEX. Therefore we
explicitly redefine the math symbol definitions for these symbols afterwards.

50 \DeclareMathDelimiter{<}{\mathopen}{symbols}{"68}{largesymbols}{"0A}
260 \DeclareMathDelimiter{>}{\mathclose}{symbols}{"69}{largesymbols}{"0B}
21 \DeclareMathSymbol{<}{\mathrel}{letters}{"3C}
22 \DeclareMathSymbol{>}{\mathrel}{letters}{"3E}

And here is another case where the non-delimiter version produces a glyph different from
the delimiter version.

263 \DeclareMathDelimiter{/}{\mathord}{operators}{"2F}{largesymbols}{"OE}
26+ \DeclareMathSymbol{/}{\mathord}{letters}{"3D}

265 \DeclareMathDelimiter{|}{\mathord}{symbols}{"6A}{largesymbols}{"0C}

26 \expandafter\DeclareMathDelimiter\@backslashchar
267 {\mathord}{symbols}{"6E}{largesymbols}{"OF}

N.B. { and } should NOT get delcodes; otherwise parameter grouping fails!

6.4 Symbols accessed via control sequences
6.4.1 Greek letters

26 \DeclareMathSymbol{\alpha}{\mathord}{letters}{"0B}
260 \DeclareMathSymbol{\beta}{\mathord}{letters}{"0C}

270 \DeclareMathSymbol{\gamma}{\mathord}{letters}{"0D}
271 \DeclareMathSymbol{\delta}{\mathord}{letters}{"OE}
72 \DeclareMathSymbol{\epsilon}{\mathord}{letters}{"OF}
273 \DeclareMathSymbol{\zeta}{\mathord}{letters}{"10}

272 \DeclareMathSymbol{\eta}{\mathord}{letters}{"11}

275 \DeclareMathSymbol{\theta}{\mathord}{letters}{"12}
276 \DeclareMathSymbol{\iota}{\mathord}{letters}{"13}

277 \DeclareMathSymbol{\kappa}{\mathord}{letters}{"14}
275 \DeclareMathSymbol{\lambda}{\mathord}{letters}{"15}
279 \DeclareMathSymbol{\mu}{\mathord}{letters}{"16}

250 \DeclareMathSymbol{\nu}{\mathord}{letters}{"17}

251 \DeclareMathSymbol{\xi}{\mathord}{letters}{"18}

s> \DeclareMathSymbol{\pi}{\mathord}{letters}{"19}

233 \DeclareMathSymbol{\rho}{\mathord}{letters}{"1A}

232 \DeclareMathSymbol{\sigma}{\mathord}{letters}{"1B}
25 \DeclareMathSymbol{\tau}{\mathord}{letters}{"1C}

236 \DeclareMathSymbol{\upsilon}{\mathord}{letters}{"1D}
257 \DeclareMathSymbol{\phi}{\mathord}{letters}{"1E}

2ss \DeclareMathSymbol{\chi}{\mathord}{letters}{"1F}

230 \DeclareMathSymbol{\psi}{\mathord}{letters}{"20}

200 \DeclareMathSymbol{\omegal}{\mathord}{letters}{"21}
201 \DeclareMathSymbol{\varepsilon}{\mathord}{letters}{"22}
202 \DeclareMathSymbol{\vartheta}{\mathord}{letters}{"23}
203 \DeclareMathSymbol{\varpi}{\mathord}{letters}{"24}

File x: fontdef.dtx Date: ? Version ? 396

294
295

296

299

\DeclareMathSymbol{\varrho}{\mathord}{letters}{"25}
\DeclareMathSymbol{\varsigma}{\mathord}{letters}{"263}
\DeclareMathSymbol{\varphi}{\mathord}{letters}{"27}
\DeclareMathSymbol{\Gamma}{\mathalpha}{operators}{"00}

s \DeclareMathSymbol{\Delta}{\mathalpha}{operators}{"01}

\DeclareMathSymbol{\Theta}{\mathalpha}{operators}{"02}
\DeclareMathSymbol{\Lambda}{\mathalpha}{operators}{"03}
\DeclareMathSymbol{\Xi}{\mathalpha}{operators}{"04}

2 \DeclareMathSymbol{\Pi}{\mathalpha}{operators}{"052}

\DeclareMathSymbol{\Sigma}{\mathalpha}{operators}{"06}
\DeclareMathSymbol{\Upsilon}{\mathalpha}{operators}{"07}
\DeclareMathSymbol{\Phi}{\mathalpha}{operators}{"08}
\DeclareMathSymbol{\Psi}{\mathalpha}{operators}{"09}
\DeclareMathSymbol{\Omega}{\mathalpha}{operators}{"0A}

6.4.2 Ordinary symbols

308

309

310

\DeclareMathSymbol{\aleph}{\mathord}{symbols}{"40}
\DeclareMathSymbol{\imath}{\mathord}{letters}{"7B}
\DeclareMathSymbol{\jmath}{\mathord}{letters}{"7C}
\DeclareMathSymbol{\ell}{\mathord}{letters}{"60}
\DeclareMathSymbol{\wp}{\mathord}{letters}{"7D}
\DeclareMathSymbol{\Re}{\mathord}{symbols}{"3C}
\DeclareMathSymbol{\Im}{\mathord}{symbols}{"3D}
\DeclareMathSymbol{\partial}{\mathord}{letters}{"40}
\DeclareMathSymbol{\infty}{\mathord}{symbols}{"31}
\DeclareMathSymbol{\prime}{\mathord}{symbols}{"30}

s15 \DeclareMathSymbol{\emptyset}{\mathord}{symbols}{"3B}

\DeclareMathSymbol{\nabla}{\mathord}{symbols}{"72}
\DeclareMathSymbol{\top}{\mathord}{symbols}{"3E}
\DeclareMathSymbol{\bot}{\mathord}{symbols}{"3F}
\DeclareMathSymbol{\triangle}{\mathord}{symbols}{"34}
\DeclareMathSymbol{\forall}{\mathord}{symbols}{"38}
\DeclareMathSymbol{\exists}{\mathord}{symbols}{"39%}
\DeclareMathSymbol{\neg}{\mathord}{symbols}{"3A}

Alias:

326

339

340

A \let\lnot=\neg
\DeclareMathSymbol{\1lnot}{\mathord}{symbols}{"34}

\DeclareMathSymbol{\flat}{\mathord}{letters}{"5B}
\DeclareMathSymbol{\natural}{\mathord}{letters}{"5C}
\DeclareMathSymbol{\sharp}{\mathord}{letters}{"5D}
\DeclareMathSymbol{\clubsuit}{\mathord}{symbols}{"7C}
\DeclareMathSymbol{\diamondsuit}{\mathord}{symbols}{"7D}
\DeclareMathSymbol{\heartsuit}{\mathord}{symbols}{"7E}
\DeclareMathSymbol{\spadesuit}{\mathord}{symbols}{"7F}

\DeclareRobustCommand\hbar{{\mathchar’26\mkern-9muh}}
\DeclareRobustCommand\surd{{\mathchar"1270}}
\DeclareRobustCommand\angle{{\vbox{\ialign{$\mO@th\scriptstyle##$\crcr

\not\mathrel{\mkernl4mu}\crcr

\noalign{\nointerlineskip}

\mkern2.5mu\leaders\hrule \@height.34pt\hfill\mkern2.5mu\crcr}}}}

6.4.3 Large Operators

341

\DeclareMathSymbol{\coprod}{\mathop}{largesymbols}{"60}

File x: fontdef.dtx Date: ? Version 7 397

322 \DeclareMathSymbol{\bigvee}{\mathop}{largesymbols}{"57}
323 \DeclareMathSymbol{\bigwedge}{\mathop}{largesymbols}{"563}
;.2 \DeclareMathSymbol{\biguplus}{\mathop}{largesymbols}{"55}
15 \DeclareMathSymbol{\bigcap}{\mathop}{largesymbols}{"54}
56 \DeclareMathSymbol{\bigcup}{\mathop}{largesymbols}{"53}
;a7 \DeclareMathSymbol{\intop}{\mathop}{largesymbols}{"52}

348 \DeclareRobustCommand\int{\intop\nolimits}

320 \DeclareMathSymbol{\prod}{\mathop}{largesymbols}{"51}

550 \DeclareMathSymbol{\sum}{\mathop}{largesymbols}{"50}

351 \DeclareMathSymbol{\bigotimes}{\mathop}{largesymbols}{"4E}
;52 \DeclareMathSymbol{\bigoplus}{\mathop}{largesymbols}{"4C}
553 \DeclareMathSymbol{\bigodot}{\mathop}{largesymbols}{"4A}
352 \DeclareMathSymbol{\ointop}{\mathop}{largesymbols}{"48}
355 \DeclareRobustCommand\oint{\ointop\nolimits}

356 \DeclareMathSymbol{\bigsqcup}{\mathop}{largesymbols}{"463}
357 \DeclareMathSymbol{\smallint}{\mathop}{symbols}{"73}

6.4.4 Binary symbols

356 \DeclareMathSymbol{\triangleleft}{\mathbin}{letters}{"2F}
;50 \DeclareMathSymbol{\triangleright}{\mathbin}{letters}{"2E}
50 \DeclareMathSymbol{\bigtriangleup}{\mathbin}{symbols}{"34}
561 \DeclareMathSymbol{\bigtriangledown}{\mathbin}{symbols}{"353}

Alias:

s2 % \let \varbigtriangledown \bigtriangledown

33 % \let \varbigtriangleup \bigtriangleup

s \DeclareMathSymbol{\varbigtriangleup}{\mathbin}{symbols}{"34}
s6s \DeclareMathSymbol{\varbigtriangledown}{\mathbin}{symbols}{"35}

These last two synonyms are needed because the stmaryrd package redefines them as
Operators.
366 \DeclareMathSymbol{\wedge}{\mathbin}{symbols}{"5E}
367 \DeclareMathSymbol{\vee}{\mathbin}{symbols}{"5F}

Alias:

s 4 \let\land=\wedge

0 % \let\lor=\vee

s70 \DeclareMathSymbol{\land}{\mathbin}{symbols}{"5E}
;71 \DeclareMathSymbol{\lor}{\mathbin}{symbols}{"5F}

52 \DeclareMathSymbol{\cap}{\mathbin}{symbols}{"5C}

373 \DeclareMathSymbol{\cup}{\mathbin}{symbols}{"5B}

;72 \DeclareMathSymbol{\ddagger}{\mathbin}{symbols}{"7A}
375 \DeclareMathSymbol{\dagger}{\mathbin}{symbols}{"79}
376 \DeclareMathSymbol{\sqcap}{\mathbin}{symbols}{"75}
577 \DeclareMathSymbol{\sqcup}{\mathbin}{symbols}{"74}
37 \DeclareMathSymbol{\uplus}{\mathbin}{symbols}{"5D}
379 \DeclareMathSymbol{\amalg}{\mathbin}{symbols}{"71}
se0 \DeclareMathSymbol{\diamond}{\mathbin}{symbols}{"05}
351 \DeclareMathSymbol{\bullet}{\mathbin}{symbols}{"0F}
;2 \DeclareMathSymbol{\wr}{\mathbin}{symbols}{"6F}

;3 \DeclareMathSymbol{\div}{\mathbin}{symbols}{"04}

332 \DeclareMathSymbol{\odot}{\mathbin}{symbols}{"0C}

335 \DeclareMathSymbol{\oslash}{\mathbin}{symbols}{"0B}
ss6 \DeclareMathSymbol{\otimes}{\mathbin}{symbols}{"0A}
357 \DeclareMathSymbol{\ominus}{\mathbin}{symbols}{"09}

File x: fontdef.dtx Date: ? Version ? 398

396

397

; \DeclareMathSymbol{\oplus}{\mathbin}{symbols}{"08}

\DeclareMathSymbol{\mp}{\mathbin}{symbols}{"07}
\DeclareMathSymbol{\pm}{\mathbin}{symbols}{"06}
\DeclareMathSymbol{\circ}{\mathbin}{symbols}{"OE}
\DeclareMathSymbol{\bigcirc}{\mathbin}{symbols}{"0D}

503 \DeclareMathSymbol{\setminus}{\mathbin}{symbols}{"6E}

\DeclareMathSymbol{\cdot}{\mathbin}{symbols}{"01}
\DeclareMathSymbol{\ast}{\mathbin}{symbols}{"03}
\DeclareMathSymbol{\times}{\mathbin}{symbols}{"02}
\DeclareMathSymbol{\star}{\mathbin}{letters}{"3F}

6.4.5 Relations

398

As

\DeclareMathSymbol{\propto}{\mathrel}{symbols}{"2F}
\DeclareMathSymbol{\sqsubseteq}{\mathrel}{symbols}{"763}
\DeclareMathSymbol{\sqsupseteq}{\mathrel}{symbols}{"77}
\DeclareMathSymbol{\parallel}{\mathrel}{symbols}{"6B}
\DeclareMathSymbol{\mid}{\mathrel}{symbols}{"6A}

203 \DeclareMathSymbol{\dashv}{\mathrel}{symbols}{"61}

\DeclareMathSymbol{\vdash}{\mathrel}{symbols}{"60}
\DeclareMathSymbol{\nearrow}{\mathrel}{symbols}{"25}
\DeclareMathSymbol{\searrow}{\mathrel}{symbols}{"26}

7 \DeclareMathSymbol{\nwarrow}{\mathrel}{symbols}{"2D}
s \DeclareMathSymbol{\swarrow}{\mathrel}{symbols}{"2E}

\DeclareMathSymbol{\Leftrightarrow}{\mathrel}{symbols}{"2C}

\DeclareMathSymbol{\Leftarrow}{\mathrel}{symbols}{"28}

\DeclareMathSymbol{\Rightarrow}{\mathrel}{symbols}{"29}
\DeclareRobustCommand\neq{\not=}

\neq is robust we should not use \1let to define \ne as then it would change if \neq

changes.

413

\DeclareRobustCommand\ne{\not=}

It would ok to use \let for those declared by \DeclareMathSymbol but for a cleaner
interface we avoid it always (just in case the internals change).

414

415

\DeclareMathSymbol{\leq}{\mathrel}{symbols}{"14}
\DeclareMathSymbol{\geq}{\mathrel}{symbols}{"15}

Alias:

416

% \let\le=\leq
% \let\ge=\geq

; \DeclareMathSymbol{\le}{\mathrel}{symbols}{"14}
o \DeclareMathSymbol{\ge}{\mathrel}{symbols}{"15}

\DeclareMathSymbol{\succ}{\mathrel}{symbols}{"1F}
\DeclareMathSymbol{\prec}{\mathrel}{symbols}{"1E}
\DeclareMathSymbol{\approx}{\mathrel}{symbols}{"19}

; \DeclareMathSymbol{\succeq}{\mathrel}{symbols}{"173}

\DeclareMathSymbol{\preceq}{\mathrel}{symbols}{"16}
\DeclareMathSymbol{\supset}{\mathrel}{symbols}{"1B}
\DeclareMathSymbol{\subset}{\mathrel}{symbols}{"1A}
\DeclareMathSymbol{\supseteq}{\mathrel}{symbols}{"13}

; \DeclareMathSymbol{\subseteq}{\mathrel}{symbols}{"12}

\DeclareMathSymbol{\in}{\mathrel}{symbols}{"32}
\DeclareMathSymbol{\ni}{\mathrel}{symbols}{"33}

Alias:

431

% \let\owns=\ni

File x: fontdef.dtx Date: ? Version ? 399

232 \DeclareMathSymbol{\owns}{\mathrel}{symbols}{"33}

233 \DeclareMathSymbol{\gg}{\mathrel}{symbols}{"1D}

232 \DeclareMathSymbol{\11}{\mathrel}{symbols}{"1C}

235 \DeclareMathSymbol{\not}{\mathrel}{symbols}{"36}

23 \DeclareMathSymbol{\leftrightarrow}{\mathrel}{symbols}{"24}
237 \DeclareMathSymbol{\leftarrow}{\mathrel}{symbols}{"20}

235 \DeclareMathSymbol{\rightarrow}{\mathrel}{symbols}{"21}

Alias:

20 % \let\gets=\leftarrow

w0 % \let\to=\rightarrow

21 \DeclareMathSymbol{\gets}{\mathrel}{symbols}{"20}
22 \DeclareMathSymbol{\to}{\mathrel}{symbols}{"21}

213 \DeclareMathSymbol{\mapstochar}{\mathrel}{symbols}{"37}

444 \DeclareRobustCommand\mapsto{\mapstochar\rightarrow}

25 \DeclareMathSymbol{\sim}{\mathrel}{symbols}{"18}

26 \DeclareMathSymbol{\simeq}{\mathrel}{symbols}{"27}

w7 \DeclareMathSymbol{\perp}{\mathrel}{symbols}{"3F}

«s \DeclareMathSymbol{\equiv}{\mathrel}{symbols}{"11}

219 \DeclareMathSymbol{\asymp}{\mathrel}{symbols}{"10}

250 \DeclareMathSymbol{\smile}{\mathrel}{letters}{"5E}

251 \DeclareMathSymbol{\frown}{\mathrel}{letters}{"5F}

252 \DeclareMathSymbol{\leftharpoonup}{\mathrel}{letters}{"28}
253 \DeclareMathSymbol{\leftharpoondown}{\mathrel}{letters}{"29}
254 \DeclareMathSymbol{\rightharpoonup}{\mathrel}{letters}{"2A}
255 \DeclareMathSymbol{\rightharpoondown}{\mathrel}{letters}{"2B}

Here cometh much profligate robustification of math constructs. Warning: some of
these commands may become non-robust if an AMS package is loaded.

Further potential problems: some math font packages may make unfortunate as-
sumptions about some of these definitions that are not true of the robust versions we
need.

256 \DeclareRobustCommand

257 \cong{\mathrel{\mathpalette\@vereq\sim}} % congruence sign

w55 \def\@vereq#1#2{\lower.5\p@\vbox{\lineskiplimit\maxdimen\lineskip-.5\p@
450 \ialign{$\m@th#1\hfil##\hfil$\crcr#2\crcr=\crcr}}}

20 \DeclareRobustCommand

21 \notin{\mathrel{\m@th\mathpalette\c@ncell\in}}

22 \def\cOncel#1#2{\m@th\ooalign{$\hfil#1\mkernimu/\hfil$\crcr$#1#2$}}
23 \DeclareRobustCommand

w4 \rightleftharpoons{\mathrel{\mathpalette\rlh@{}}}

25 \def\rlh@#1{\vcenter{\m@th\hbox{\ooalign{\raise2pt

466 \hbox{$#1\rightharpoonup$}\crcr

467 $#1\1leftharpoondown$}}}}

265 \DeclareRobustCommand

w60 \doteq{\buildrel\textstyle.\over=}

6.4.6 Arrows

170 \DeclareRobustCommand

a1 \joinrel{\mathrel{\mkern-3mu}}

172 \DeclareRobustCommand

473 \relbar{\mathrel{\smash-}} % \smash, because -

474 % has the same height as +

File x: fontdef.dtx Date: ? Version 7 400

In contrast to plain.tex \Relbar got braces around the equal sign to guard against
it being “math active” expanding to \futurelet.... This might be the case when
packages are implementing shorthands for math, e.g. => meaning \Rightarrow etc. It
would actually be better not to use = in such definitions but instead define something
like \mathequalsign and use this. However we can’t do this now as it would break other
math layouts where characters are in different places (since those wouldn’t know about
the need for a new command name).

475 \DeclareRobustCommand

276 \Relbar{\mathrel{=1}}

277 \DeclareMathSymbol{\lhook}{\mathrel}{letters}{"2C}

478 \DeclareRobustCommand\hookrightarrow{\lhook\joinrel\rightarrow}

279 \DeclareMathSymbol{\rhook}{\mathrel}{letters}{"2D}

480 \DeclareRobustCommand\hookleftarrow{\leftarrow\joinrel\rhook}

251 \DeclareRobustCommand

s> \bowtie{\mathrel\triangleright\joinrel\mathrel\triangleleft}

133 \DeclareRobustCommand

484 \models{\mathrel{|}\joinrel\Relbar}

255 \DeclareRobustCommand

s6 \Longrightarrow{\Relbar\joinrel\Rightarrow}

LaTeX Change: \longrightarrow and \longleftarrow redefined to make then
robust.
257 \DeclareRobustCommand\longrightarrow

488 {\relbar\joinrel\rightarrow}
20 \DeclareRobustCommand\longleftarrow
490 {\leftarrow\joinrel\relbar}

201 \DeclareRobustCommand

22 \Longleftarrow{\Leftarrow\joinrel\Relbar}

203 \DeclareRobustCommand

204 \longmapsto{\mapstochar\longrightarrow}

205 \DeclareRobustCommand

26 \longleftrightarrow{\leftarrow\joinrel\rightarrow}
207 \DeclareRobustCommand

25 \Longleftrightarrow{\Leftarrow\joinrel\Rightarrow}
209 \DeclareRobustCommand

soo \iff{\;\Longleftrightarrow\;}

6.4.7 Punctuation symbols

500 \DeclareMathSymbol{\ldotp}{\mathpunct}{letters}{"3A}
so2 \DeclareMathSymbol{\cdotp}{\mathpunct}{symbols}{"01}
503 \DeclareMathSymbol{\colon}{\mathpunct}{operators}{"3A}

This is commented out, since \1dots is now defined in ltoutenc.dtx.
504 %\def\@ldots{\mathinner{\ldotp\ldotp\ldotp}}
505 %\DeclareRobustCommand\ldots
506 o {\relax\ifmmode\@ldots\else\mbox{$\m@th\@ldots\,$}\fi}

507 \DeclareRobustCommand

s8 \cdots{\mathinner{\cdotp\cdotp\cdotp}}

s00 \DeclareRobustCommand

sio \vdots{\vbox{\baselineskip4\p@ \lineskiplimit\z®@
511 \kern6\p@\hbox{.}\hbox{.}\hbox{.}}}

si2 \DeclareRobustCommand

513 \ddots{\mathinner{\mkernimu\raise7\p@

514 \vbox{\kern7\p@\hbox{.}}\mkern2mu

File x: fontdef.dtx Date: ? Version ? 401

515 \raise4\p@\hbox{.}\mkern2mu\raise\p@\hbox{. }\mkernimu}}
6.4.8 Math accents

sie \DeclareMathAccent{\acute}{\mathalpha}{operators}{"13}

517 \DeclareMathAccent{\grave}{\mathalpha}{operators}{"12}

si5 \DeclareMathAccent{\ddot}{\mathalpha}{operators}{"7F}

s.9 \DeclareMathAccent{\tilde}{\mathalpha}{operators}{"7E}

520 \DeclareMathAccent{\bar}{\mathalpha}{operators}{"16}

521 \DeclareMathAccent{\breve}{\mathalpha}{operators}{"15}

522 \DeclareMathAccent{\check}{\mathalpha}{operators}{"14}

523 \DeclareMathAccent{\hat}{\mathalpha}{operators}{"5E}

s22 \DeclareMathAccent{\vec}{\mathord}{letters}{"7E}

525 \DeclareMathAccent{\dot}{\mathalpha}{operators}{"5F}

526 \DeclareMathAccent{\widetilde}{\mathord}{largesymbols}{"65}
527 \DeclareMathAccent{\widehat}{\mathord}{largesymbols}{"62}

For some reason plain TEX never bothered to provide a ring accent in math (although it

is available in the fonts), but since we got a request for it here we go:
s2s \DeclareMathAccent{\mathring}{\mathalpha}{operators}{"17}

6.4.9 Radicals
s20 \DeclareMathRadical{\sqrtsign}{symbols}{"70}{largesymbols}{"70}
6.4.10 Over and under something, etc

s30 \DeclareRobustCommand\overrightarrow[1]{\vbox{\m@th\ialign{##\crcr

531 \rightarrowfill\crcr\noalign{\kern-\p@\nointerlineskip}

532 $\hfil\displaystyle{#1}\hfil$\crcr}}}

s33 \DeclareRobustCommand\overleftarrow[1]{\vbox{\m@th\ialign{##\crcr
534 \leftarrowfill\crcr\noalign{\kern-\p@\nointerlineskip}’

535 $\hfil\displaystyle{#1}\hfil$\crcr}}}

s3 \DeclareRobustCommand\overbrace[1]

537 {\mathop{\vbox{\m@th\ialign{##\crcr\noalign{\kern3\p@}/

538 \downbracefill\crcr\noalign{\kern3\p@\nointerlineskip}/

539 $\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}

520 \DeclareRobustCommand\underbrace [1] {\mathop{\vtop{\m@th\ialign{##\crcr
541 $\hfil\displaystyle{#1}\hfil$\crcr

542 \noalign{\kern3\p@\nointerlineskip}

543 \upbracefill\crcr\noalign{\kern3\p@}}}}\limits}

(quite a waste of tokens, IMHO — Frank)

s« \DeclareRobustCommand\skew [3]

s5 {{\muskip\z@#1mu\divide\muskip\z@\tw@ \mkern\muskip\z@

546 #2{\mkern-\muskip\z@{#3}\mkern\muskip\z@}\mkern-\muskip\z@}{}}

ss7 \DeclareRobustCommand\rightarrowfill{$\m@th\smash-\mkern-7mu,

sis \cleaders\hbox{$\mkern-2mu\smash-\mkern-2mu$}\hfill

s20 \mkern-7mu\mathord\rightarrow$}

ss0 \DeclareRobustCommand\leftarrowfill{$\m@th\mathord\leftarrow\mkern-7muy
ss1 \cleaders\hbox{$\mkern-2mu\smash-\mkern-2mu$}\hfill

s> \mkern-7mu\smash-$}

553 \DeclareMathSymbol{\braceld}{\mathord}{largesymbols}{"7A}

ss2 \DeclareMathSymbol{\bracerd}{\mathord}{largesymbols}{"7B}

555 \DeclareMathSymbol{\bracelu}{\mathord}{largesymbols}{"7C}

556 \DeclareMathSymbol{\braceru}{\mathord}{largesymbols}{"7D}

557 \DeclareRobustCommand\downbracefill{$\m@th \setbox\z@\hbox{$\braceld$}/
ss53. \braceld\leaders\vrule \Gheight\ht\z@ \@depth\z@\hfill\braceru

File x: fontdef.dtx Date: ? Version ?

402

sso \bracelu\leaders\vrule \@height\ht\z@ \@depth\z@\hfill\bracerd$}

s60 \DeclareRobustCommand\upbracefill{$\m@th \setbox\z@\hbox{$\braceld$l}’
s61 \bracelu\leaders\vrule \@height\ht\z@ \@depth\z@\hfill\bracerd

se2 \braceld\leaders\vrule \@height\ht\z@ \@depth\z@\hfill\braceru$}

6.4.11 Delimiters

s63 \DeclareMathDelimiter{\lmoustache} % top from (, bottom from)
564 {\mathopen}{largesymbols}{"7A}{largesymbols}{"40}
s6s \DeclareMathDelimiter{\rmoustache} % top from), bottom from (
566 {\mathclose}{largesymbols}{"7B}{largesymbols}{"41}

se7 \DeclareMathDelimiter{\arrowvert} % arrow without arrowheads
568 {\mathord}{symbols}{"6A}{largesymbols}{"3C}
s60 \DeclareMathDelimiter{\Arrowvert} % double arrow without arrowheads

570 {\mathord}{symbols}{"6B}{largesymbols}{"3D}
s71. \DeclareMathDelimiter{\Vert}
2 {\mathord}{symbols}{"6B}{largesymbols}{"0D}

5

\DeclareMathDelimiter produces a command that is robust (with an internal macro
containing the payload) so we should not use \let for making an alias

573 Ah\let\|=\Vert

s+ \DeclareMathDelimiter{\|}

575 {\mathord}{symbols}{"6B}{largesymbols}{"0D}

s6 \DeclareMathDelimiter{\vert}

577 {\mathord}{symbols}{"6A}{largesymbols}{"0C}
575 \DeclareMathDelimiter{\uparrow}

579 {\mathrel}{symbols}{"22}{largesymbols}{"78}
ss0 \DeclareMathDelimiter{\downarrow}

581 {\mathrel}{symbols}{"23}{largesymbols}{"79}
s22 \DeclareMathDelimiter{\updownarrow}

583 {\mathrel}{symbols}{"6C}{largesymbols}{"3F}
532 \DeclareMathDelimiter{\Uparrow}

585 {\mathrel}{symbols}{"2A}{largesymbols}{"7E}
ss6 \DeclareMathDelimiter{\Downarrow}

587 {\mathrel}{symbols}{"2B}{largesymbols}{"7F}
ses \DeclareMathDelimiter{\Updownarrow}

589 {\mathrel}{symbols}{"6D}{largesymbols}{"77}
so0 \DeclareMathDelimiter{\backslash} % for double coset G\backslash H

501 {\mathord}{symbols}{"6E}{largesymbols}{"OF}
s> \DeclareMathDelimiter{\rangle}
593 {\mathclose}{symbols}{"69}{largesymbols}{"0B}

soo \DeclareMathDelimiter{\langle}

595 {\mathopen}{symbols}{"68}{largesymbols}{"0A}
so0 \DeclareMathDelimiter{\rbrace}

597 {\mathclose}{symbols}{"67}{largesymbols}{"09}
s0s \DeclareMathDelimiter{\lbrace}

599 {\mathopen}{symbols}{"66}{largesymbols}{"08}
60 \DeclareMathDelimiter{\rceil}

601 {\mathclose}{symbols}{"65}{largesymbols}{"07}
c2 \DeclareMathDelimiter{\lceil}

603 {\mathopen}{symbols}{"64}{largesymbols}{" 063}
60+ \DeclareMathDelimiter{\rfloor}

605 {\mathclose}{symbols}{"63}{largesymbols}{"05}
o5 \DeclareMathDelimiter{\1floor}

607 {\mathopen}{symbols}{"62}{largesymbols}{"04}

File x: fontdef.dtx Date: ? Version ? 403

\1lgroup
\rgroup
\bracevert

\mathparagraph
\mathsection
\mathdollar
\mathsterling
\mathunderscore

\mathellipsis

There are three plain TEX delimiters which are not fully supported by NFSS, since they
partly point into a bold cmr font. Allocating a full symbol font, just to have three
delimiters seems a bit too much given the limited space available. For this reason only
the extensible sizes are supported. If this is not desired one can use, without losing
portability, define \mathbf and \mathtt as font symbol alphabet (setting up cmr/bx/n
and cmtt/m/n as symbol fonts first) and modify the delimiter declarations to point with
their small variant to those symbol fonts. (This is done in oldlfont.dtx so look there
for examples.)

o5 \DeclareMathDelimiter{\lgroup} 7, extensible (with sharper tips

609 {\mathopen}{largesymbols}{"3A}{largesymbols}{"3A}

610 \DeclareMathDelimiter{\rgroup} % extensible) with sharper tips

611 {\mathclose}{largesymbols}{"3B}{largesymbols}{"3B}

612 \DeclareMathDelimiter{\bracevert} 7 the vertical bar that extends braces

613 {\mathord}{largesymbols}{"3E}{largesymbols}{"3E}

(End definition for \lgroup, \rgroup, and \bracevert. These functions are documented on page 77.)

6.5 Math versions of text commands

The \mathunderscore here is really a text definition, so it has been put back into
ltoutenc.dtx (by Chris, 30/04/97) and should be removed from here.
These symbols are the math versions of text commands such as \P, \$, etc.

These math symbols are not in plain TEX.

61« \DeclareMathSymbol{\mathparagraph}{\mathord}{symbols}{"7B}
615 \DeclareMathSymbol{\mathsection}{\mathord}{symbols}{"78}
616 \DeclareMathSymbol{\mathdollar}{\mathord}{operators}{"24}

617 \DeclareRobustCommand\mathsterling{\mathit{\mathchar"7024}}
616 \DeclareRobustCommand\mathunderscore{\kern.06em\vbox{\hrule\@width.3em}}

(End definition for \mathparagraph and others. These functions are documented on page ?7.)

This is plain TEX’s \1dots.
619 \DeclareRobustCommand\mathellipsis{\mathinner{\ldotp\ldotp\ldotp}}%

(End definition for \mathellipsis. This function is documented on page 77.)

6.6 Other special functions and parameters

6.6.1 Biggggg
(/math)
(

*math | latexrelease)

(latexrelease) \ IncludeInRelease{2018/12/01})

625 (latexrelease) {\Big}{Start LR-mode}}
\DeclareRobustCommand\big[1]{\leavevmode@ifvmode

625 {\hbox{$\left#1\vbox to8.5\p@{}\right.\n@space$}}}

526 \DeclareRobustCommand\Big[1]{\leavevmode@ifvmode

627 {\hbox{$\left#1\vbox toll.5\p@{}\right.\n@space$}}}

05 \DeclareRobustCommand\bigg[1]{\leavevmode@ifvmode

629 {\hbox{$\left#1\vbox told.5\p@{}\right.\n@space$}}}

630 \DeclareRobustCommand\Bigg[1]{\leavevmode@ifvmode

631 {\hbox{$\left#1\vbox tol7.5\p@{}\right.\n@space$}}}

032 (/math | latexrelease)

File x: fontdef.dtx Date: ? Version ? 404

\EndIncludeInRelease
\IncludeInRelease{0000/00/00}%

{\Big}{Start LR-model}/,
\def\big#1{{\hbox{$\left#1\vbox to8.5\pe{}\right.\n@space$}}}
\def\Big#1{{\hbox{$\left#1\vbox toll.5\p@{}\right.\nOspace$}}}
\def\bigg#1{{\hbox{$\left#1\vbox tol4.5\p@{}\right.\n@space$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox tol7.5\p@{}\right.\n@space$}}}
\EndIncludeInRelease

latexrelease
latexrelease
latexrelease
636 (latexrelease

(
(
(
(
037 (latexrelease
(
(
(
(

633

634

35

latexrelease
latexrelease
latexrelease
*math)

P
38

639

e~ —— ~—r i~~~

640

64

1
62 \def\n@space{\nulldelimiterspace\z@ \m@th}
6.6.2 The log-like functions

\operator@font The \operator@font determines the symbol font used for log-like functions.

03 \def\operator@font{\mathgroup\symoperators}

(End definition for \operator@font. This function is documented on page 77.)

6.6.3 Parameters

622 \thinmuskip=3mu
615 \medmuskip=4mu plus 2mu minus 4mu
616 \thickmuskip=6mu plus 5mu

This finishes the low-level setup in fontmath.ltx.
o7 {/math)

7 Default cfg files

We provide default cfg files here to ensure that on installations that search large file
trees we do not pick up some strange customisation files from somewhere.

ws (*cfgtext | cfgmath | cfgprel)

629 %o

650 hoth

651 Yt

652 %/ Load the standard setup:

053t

ose (+cfgtext) \input{fonttext.1tx}

o5 (+cfgmath) \input{fontmath.ltx}

o5 (+cfgprel)\input{preload.1ltx}

657 Tt

055 %h/% Small changes could go here; see documentation in cfgguide.tex for
050 %/ allowed modifications.

660 %%

o1 %k In particular it is not allowed to misuse this configuration file
62 %% to modify internal LaTeX commands!

663 %%

o4 %/ If you use this file as the basis for configuration please change
o5 %/ the \ProvidesFile lines to clearly identify your modification, e.g.,
666 %%

o7 (+cfgtext) %% \ProvidesFile{fonttext.cfg}[2001/06/01

ss (+cfgmath)%% \ProvidesFile{fonttext.cfg}[2001/06/01

oo (+cfgprel)%% \ProvidesFile{preload.cfg}[2001/06/01

670 %o Customised local font setupl]

671 %%

File x: fontdef.dtx Date: ? Version ? 405

672 Dot
73 {/cfgtext | cfgmath | cfgprel)

6

File x: fontdef.dtx Date: ? Version ? 406

File y
preload.dtx

1 Overview

This file contains an number of possible settings for preloading fonts during installation
of NFSS2 (which is used by I¥TEX 2¢). It will be used to generate the following files:

preload.min minimal subset of fonts necessary to run NFSS2
preload.ori preload of CM fonts similar to the old 1fonts.tex
preload.ltx The standard selection of preloads

cmpreloa.xpt preload of CM fonts for 10pt document size
cmpreloa.xip preload of CM fonts for 11pt document size
cmpreloa.xii preload of CM fonts for 12pt document size
dcpreloa.xpt preload of DC fonts for 10pt size

dcpreloa.xip preload of DC fonts for 11pt size

dcpreloa.xii preload of DC fonts for 12pt size

These files are for installations that make use of Computer Modern fonts either old
encoding (OT1) or Cork encoding (T1). The Computer Modern fonts with Cork encoding
are known as DC-fonts.

Most important is preload.ltx which is used during format generation. You are
not allowed to change this file.

2 Customization

You can customize the preloaded fonts in your IMTEX 2¢ system by installing a file with
the name preload.cfg. If this file exists it will be used in place of the system file
preload.ltx. You can, for example, copy one of the files mentioned above (that can be
generated from this source) to preload.cfg.

Or you can define completely other preloads. In that case start from preload.min
since that contains the fonts that have to be preloaded by *all* IATEX 2¢ systems.

Avoid using preload.ori, it will load so many fonts that on most installations it
is nearly impossible to load other font families afterwards. This file is only generated to
show what fonts have been preloaded by KTEX 2.09.

If you normally use other fonts than Computer Modern preload.min might be best.

Warning: If you preload fonts with encodings other than the normally sup-
ported encodings you have to declare that encoding in a fontdef.cfg con-
figuration file (see the documentation in the file fontdef.dtx). Adding an
extra encoding to the format might produce non-portable documents, thus
this should be avoided if possible.

3 Module switches for the DOCSTRIP program

The DOCSTRIP will generate the above file from this source using the following module
directives:

File y: preload.dtx Date: 2014/09/29 Version v2.1g 407

driver produce a documentation driver file
preload produce a preload. . . file

cm for OT1 encoded Computer Modern

dc for T1 encoded Computer Modern

min produce minimal subset

xpt produce 10pt preloads

xipt produce 11pt preloads

xiipt produce 12pt preloads

ori produce preloads similar to old 1fonts.tex
tex produce preload.ltx

A typical DOCSTRIP command file would then have entries like:
generateFile{preload.min}{t}{\from{preload.dtx}{preload,min}}

for generating preload files.

4 A driver for this document

The next bit of code contains the documentation driver file for TEX, i.e., the file that will
produce the documentation you are currently reading. It will be extracted from this file
by the DOCSTRIP program.
1 (*driver)
> \documentclass{ltxdoc}
s %\OnlyDescription % comment out for implementation details
\begin{document}
5 \DocInput{preload.dtx}
s \end{document}
7 (/driver)

5 The code

We begin by loading the math extension font (cmex10) and the IWTEX line and circle fonts.
It is necessary to do this explicitly since these are used by lplain.tex and latex.tex.
Since the internal font name contains / characters and digits we construct the name via
\csname. These are the only fonts (!) that must be loaded in this file.
All \DeclarePreloadSizes can be removed or others can be added, they only in-

fluence the processing speed.

¢ \expandafter\font\csname OMX/cmex/m/n/10\endcsname=cmex10\relax

o \font\tenln =linel0 \font\tenlnw =linewlO\relax

10 \font\tencirc=lcirclel0 \font\tencircw=lcirclewlO\relax

The above fonts should not be touched but anything below this point here in the preload
suggestions can be modified without any problems.

11 (=teX) Jok ko orkokskok ko bk ok ok sk okok ook ko ok ok R okok ook koK ok

1 (-tex)% Start any modification below this point **
3 {=tex) Yook kskkkok ks ok ks sk ks ks ks ok sk o ks ok

14 (—tex
15 hh
16 %% Computer Modern Roman:

B -

File y: preload.dtx Date: 2014/09/29 Version v2.1g 408

o

; (*ori)

\DeclarePreloadSizes{0T1}{cmr}{m}{n}
{5,6,7,8,9,10,10.95,12,14.4,17.28,20.74,24.88}

\DeclarePreloadSizes{0T1}{cmr}{bx}{n}{9,10,10.95,12,14.4,17.28%}

\DeclarePreloadSizes{0T1}{cmr}{m}{s1}{10,10.95,12}

3 \DeclarePreloadSizes{0T1}{cmr}{m}{it}{7,8,9,10,10.95,12}

(Jori
(+xpt & cm) \DeclarePreloadSizes{0T1}{cmr}{m}{n}{5,7,10}
(4+xpt & dc) \DeclarePreloadSizes{T1}{cmr}{m}{n}{5,7,10}
(4xipt & cm) \DeclarePreloadSizes{0T1}{cmr}{m}{n}{6,8,10.95}
(+xipt & dc) \DeclarePreloadSizes{T1}{cmr}{m}{n}{6,8,10.95}
(4xiipt & cm) \DeclarePreloadSizes{0T1}{cmr}{m}{n}{6,8,12}
(4xiipt & dc) \DeclarePreloadSizes{T1}{cmr}{m}{n}{6,8,12}

hh

> %% Computer Modern Sans:

hh==== ---
(4ori) \DeclarePreloadSizes{0T1}{cmss}{m}{n}{10,10.95,12}
hh

5 %% Computer Modern Typewriter:

; (+ori) \DeclarePreloadSizes{0T1}{cmtt}{m}{n}{9,10,10.95,12}

W
%% Computer Modern Math:
hh===~ -

(*ori)

3 \DeclarePreloadSizes{OML}{cmm}{m}{it}

{5,6,7,8,9,10,10.95,12,14.4,17.28,20.74}
\DeclarePreloadSizes{0MS}{cmsy}{m}{n}
{56,6,7,8,9,10,10.95,12,14.4,17.28,20.74}

a7 (/ori)

The math fonts are the same for both DC and CM fonts. So far there isn’t an agreed
standard.

- (ept)

\DeclarePreloadSizes{OML}{cmm}{m}{it}{5,7,10}
\DeclarePreloadSizes{0MS}{cmsyHm}{n}{5,7,10}
(/xpt)

(*xipt)

s \DeclarePreloadSizes{OML}{cmm}{m}{it}{6,8,10.95}

\DeclarePreloadSizes{0MS}{cmsy}{m}{n}{6,8,10.95}
(fxipt)

(*xiipt)
\DeclarePreloadSizes{OML}{cmm}{m}{it}{6,8,12}
\DeclarePreloadSizes{O0MS}{cmsy}{m}{n}{6,8,12}
(xiipt)

W

%% LaTeX symbol fonts:

s (*ori)

\DeclarePreloadSizes{U}{lasy}t{m}{n}
{5,6,7,8,9,10,10.95,12,14.4,17.28,20.74}
(/ori)

7 (/preload)

File y: preload.dtx Date: 2014/09/29 Version v2.1g 409

File z
Itintcmd.dtx

Abstract

The commands defined in this file 1tfntcmd are part of the kernel code for
KTEX 2¢ /NFSS2.
It is also meant to serve as documentation for package writers since it demonstrates
how to define high-level font changing commands using a small number of creator
functions.

1 Introduction

Font changes such as \bfseries, \sffamily, etc. are declarations; this means that their
scope is delimited by the grouping structure, either by the next \end of some environ-
ment or by explicitly using a group, e.g., writing something like {\bfseries...} in the
source. If you make the mistake of writing \bfseries{...} (thinking of \bfseries as
a command with one argument) then the result is rather striking.

Font declarations are an artifact of the TEX system and for several reasons it is
better to avoid them on the user level whenever possible. In ITEX3 they will probably
all be replaced by environments and by font commands taking one argument.

This file defines a creator function for such declarative font switches. This function
creates commands which can be used in both math and text.

This file also defines a number of high-level commands (all starting with \text. .)
that have one argument and typeset this argument in the requested way. Thus these
commands are for typesetting short pieces of text in a specific family, series or shape.
These are all produced as examples of the use of a creator function which is itself also
defined in this file.

Table 1 shows all these high-level commands in action. A further advantage of using
these commands is that they automatically take care of any necessary italic correction
on either side of their argument.

Thus, when using such commands, one does not have to worry about forgetting the
italic correction when changing fonts. Only in very few situations is this additional space
wrong but, for example, most typographers recommend omitting the italic correction if
a small punctuation character, like a comma, directly follows the font change. Since the
amount of correction required is partly a matter of taste, you can define in what situa-
tions the italic correction should be suppressed. This is done by putting the characters
that should cancel a preceding italic correction in the list \nocorrlist.'® The default
definition for this list is produced by the following.

\newcommand \nocorrlist {,.}

It is best to declare the most often used characters first, because this will make the
processing slightly faster. For example,

\emph{When using the \NFSS{} high-level commands,
the \emph{proper} use of italic corrections is
automatically taken care of}. Only

16 Any package that changes the \catcode of a character inside \nocorrlist must then explicitly reset
the list. Otherwise the changed character will no longer be recognized by the suppression algorithm.

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 410

Command Corresponds to Action

\textnormal{..} \normalfont Typeset argument in normal family
\textrm{..} \rmfamily Typeset argument in roman family
\textsf{..} \sffamily Typeset argument in sans serif family
\texttt{..} \ttfamily Typeset argument in typewriter family
\textmd{. .} \mdseries Typeset argument in medium series
\textbf{..} \bfseries Typeset argument in bold series
\textup{..} \upshape Typeset argument in normal shape
\textit{..} \itshape Typeset argument in italic shape
\textsl{..} \slshape Typeset argument in slanted shape
\textsc{..} \scshape Typeset argument in SMALL CAPS shape
\emph{. .} \em Typeset argument emphasized

Table 1: Font-change commands with arguments

The font change commands provided here all start with \text.. to emphasize
that they are for use in normal text and to be easily memorable. They
automatically take care of any necessary italic correction on either side of the
argument.

\emph{sometimes} one has to help \LaTeX{} by
adding a \verb=\nocorr= command.

which results in:

When using the NFSS high-level commands, the proper use of italic correc-
tions is automatically taken care of. Only sometimes one has to help BWTEX
by adding a \nocorr command.

In contrast, the use of the declaration forms is often more appropriate when you
define your own commands or environments.

\newenvironment{bfitemize}{\begin{itemize}\normalfont\bfseries}
{\end{itemizel}}
\begin{bfitemize}
\item This environment produces boldface items.
\item It is defined in terms of \LaTeX’s
\texttt{itemize} environment and NFSS
declarations.
\end{bfitemize}

This gives:

e This environment produces boldface items.

o It is defined in terms of KTEX’s itemize environment and NFSS
declarations.

In addition to global customization of when to insert the italic correction, it is of
course sometimes necessary to explicitly insert one with \/.

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 411

\DeclareTextFontCommand

It is also possible to suppress the italic correction in individual instances. For this,
the command \nocorr is provided.

The \nocorr must appear as the first or last token inside the braces of the argument
of the \text... commands, at that end of the text where you wish to suppress the italic
correction.

It is worth pointing out here that inserting a \/ in places where it can have no
function (i.e. anywhere except immediately after a slanted letter) is not an error—it
will just be silently ignored. Unfortunately this is not true if the redefinition of \/ in
amstex.sty is used as this version can cause space to be removed immediately before
the \/.

2 The implementation

This is the creator function for \text.. commands. It gives a warning if \foo or
\fragfoo is already defined.

In math mode it simply puts the font declaration and text into a box (possibly an
automagically sized one).

Otherwise it first scans the text to see where \nocorr occurs within it. This sets the
\check@ic commands to do what is necessary concerning the italic correction at both
ends.

The algorithm for deciding whether to put in an italic correction is not very subtle:
one is added whenever the newly current font is not itself positively sloped, unless the
next token is a character in the ‘nocorr’ list. At the end of the text this is done after
closing the group so as to check the ‘outer font’. Note that this will often result in adding
an italic correction token after a character in an unsloped font; we believe (in early 2003)
that this is perhaps inefficient but not dangerous.

It also now checks for empty contents of the text command and optimises this case.
Some care is also taken to check that doing dangerous things in vertical mode is avoided.

The italic correction token is added to the horizontal list before (in the list) an
immediately preceding non-zero glob of glue (skip) and any non-zero penalty preceding
that since, in the typical case, this puts it immediately after the last character in the
preceding word.

Note that it is necessary to put in the \aftergroup\maybe@ic at the end of the
group so that it comes after any other aftergroup tokens and immediately before the
following tokens. It is also necessary to remove the \fi from the token list before the
group ends; this is done by adding an \expandafter just before the closing brace.

1 (*2ekernel)

> \def \DeclareTextFontCommand #1#2{
3 \DeclareRobustCommand#1[1]1{%

4 \ifmmode

5

6

\nfss@text{#2##1}7,
6 \else
7 \hmode@bgroup
8 \text@command{##1}%
9 #2\check@icl ##1\check@icr
10 \expandafter
1 \egroup
12 \fi

13 Yh

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 412

\textrm
\textsf
\texttt
\textnormal

\textbf
\textmd

\textit
\textsl
\textsc
\textup

textulc
textsw
textssc

\emph

\nocorr

(End definition for \DeclareTextFontCommand. This function is documented on page 77.)

Now we define the \text(family) commands in terms of the above; \texttt does not
look very nice!

15 \DeclareTextFontCommand{\textrm}{\rmfamily}
s \DeclareTextFontCommand{\textsf}{\sffamily}
7 \DeclareTextFontCommand{\texttt}{\ttfamily}
12 \DeclareTextFontCommand{\textnormal}{\normalfont}

(End definition for \textrm and others. These functions are documented on page 77.)

For the series attribute:

19 \DeclareTextFontCommand{\textbf}{\bfseries}
20 \DeclareTextFontCommand{\textmd}{\mdseries}

(End definition for \textbf and \textmd. These functions are documented on page 77.)

And for the shapes:

21 \DeclareTextFontCommand{\textit}{\itshape}
2> \DeclareTextFontCommand{\textsl}{\slshape}
s \DeclareTextFontCommand{\textsc}{\scshape}
22 \DeclareTextFontCommand{\textup}{\upshape}

N}

(End definition for \textit and others. These functions are documented on page 77.)

(/2ekernel)

2 (*2ekernel | latexrelease)
(latexrelease)\IncludeInRelease{2020/02/02}Y

2 (latexrelease) {\textulc}{Additional text commands}

20 \DeclareTextFontCommand{\textulc}{\ulcshape}

50 \DeclareTextFontCommand{\textsw}{\swshape}

51 \DeclareTextFontCommand{\textssc}{\sscshape}

2 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}%
(latexrelease) {\textulc}{Additional text commands}

s (latexrelease)

s7 (latexrelease)\let\textulc\@undefined
(latexrelease)\let\textsw\@undefined
(latexrelease)\let\textssc\Qundefined

w0 (latexrelease)\EndIncludeInRelease

a (*2ekernel)

w

8

39

(End definition for textulc, textsw, and textssc. These functions are documented on page 77.)

Finally we have the \em font change declaration of I/ TEX. The corresponding definition
with argument is

22 \DeclareTextFontCommand{\emph}{\em}

(End definition for \emph. This function is documented on page 77.)

This is just a label, so it does nothing; it should also be unexpandable.

13 \let \nocorr \relax

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 413

\check@icl
\check@icr

\text@command
\check@nocorr@

(End definition for \nocorr. This function is documented on page 77.)

We define these defaults in case some error causes them to be expanded at the wrong
time.

2 \let \check@icl \@empty
25 \let \check@icr \Q@empty

(End definition for \check@icl and \check@icr. These functions are documented on page ?7.)

This checks for a \nocorr as the first token in its argument and also for one in any other
position not protected within braces (the latter is treated as if it were at the end of the
argument).
Is this the correct action in the ‘empty’ case? It is efficient but typographically it is,

strictly, incorrect!

26 \def \text@command #1{J

s \def \reserved@a {#1}%

s \ifx \reserved@a \Qempty

49 \let \check@icl \@empty

50 \let \check@icr \@empty

st \else

\space is a reserved word in IATEX or actually already in plain TEX. If somebody really
redefines it so many things will break that I don’t see any reason to make this routine
here slower than necessary.

A \def \reserved@b { 1}

53 % \ifx \reserved@a \reserved@b
54 \ifx \reserved@a \space

55 \let \check@icl \@empty

56 \let \check@icr \Q@empty

57 \else

58 \check@nocorr@ #1\nocorr\@nil
59 \fi

60 \fi

61 F

o2 \def \check@nocorr@ #1#2\nocorr#3\@nil {%

The two checks are initialised here to their values in the normal case.

63 \let \check@icl \maybeQic

e« \def \check@icr {\ifvmode \else \aftergroup \maybe@ic \fil}%

65 \def \reserved@a {\nocorr}’

66 \def \reserved@b {#11}%

67 \def \reserved@c {#3}/,

s \ifx \reserved@a \reserved@b

69 \ifx \reserved@c \Qempty

In this case there is a \nocorr at the start but not at the end, so \check@icl should be
empty.

70 \let \check@icl \@empty

7 \else

Otherwise there is a \nocorr both at the start and elsewhere, so no italic corrections
should be added.

7 \let \check@icl \@empty
73 \let \check@icr \@empty
74 \fl

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 414

\ifmaybe@ic

\maybe@ic
\maybe@ic®@

s \else
6 \ifx \reserved@c \Qempty

7!
7
In this case there is no \nocorr anywhere, so we need to check for an italic correction

at both the beginning and the end. This has been set up as the default so no code is
needed here.

77 \else
In this case there is no \nocorr at the start but there is one elsewhere, so no \aftergroup
is needed.

78 \let \check@icr \@empty
79 \fi

80 \fi

81 }

(End definition for \text@command and \check@nocorr@. These functions are documented on page ?77.)

Switch used soley within \maybe@ic not interfering with other switches.

& \newif\ifmaybe@ic
(End definition for \ifmaybe@ic. This function is documented on page ?7.)

These macros implement the italic correction.

&3 \def \maybe@ic {\futurelet\@let@token\maybe@ic@}

s« \def \maybe@ic@ {%

We first check to see if the current font is positively sloped. (But do not forget the
message Rainer sent about an upright font with non-zero slope! Or is this an urban
myth?) It has been suggested that this should test against a small positive value, but
what?

&5 \ifdim \fontdimen\@ne\font>\z@

% \else

87 \maybe@ictrue

It would be possible, but probably not worthwhile, to continue the forward scan beyond
any closing braces.

88 \expandafter\@tfor\expandafter\reserved@a\expandafter:\expandafter=/

89 \nocorrlist

We have to hide the \@let@token in the macro \t@st@ic rather than testing it directly
in the loop since it might be \let to a \fi or \else, which would result in chaos.

90 \do \t@st@ic

Frank thinks that the next bit it is inefficient if done after the second change. Chris
thinks that most all of this is inefficient for the commonest cases: but that is the price
of a cleverer algorithm. It is certainly needed to deal with the use of \nolinebreak.

01 \ifmaybe@ic \sw@slant \fi
92 \fi
03 }

(End definition for \maybe@ic and \maybe@ic@. These functions are documented on page 77.)

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 415

\t@st@ic

\sw@slant
\fix@penalty

The next token in the input stream is stored in \@let@token via a \let, the current
token from \nocorrlist is stored via \def in \reserved@a. To compare them we have
to fiddle around a bit.

If the only things to check were characters then this could be done via an \if thus
their catcodes would not matter; but this will not work whilst \futurelet is used above.

o \def \t@st@ic {%
o5 \expandafter\let\expandafter\reserved@b\expandafter=\reserved@a\relax
96 \ifx\reserved@b\Q@let@token

If they are the same we record the fact and jump out of the loop.

97 \maybe@icfalse
08 \@break@tfor
99 \fi

100 }

(End definition for \t@st@ic. This function is documented on page ?77.)

The definition of the mysterious \sw@slant command is as follows.
101 \def \sw@slant {%

It is surely correct to put in an italic correction when there is no skip. If the last thing
on the list is actually a zero skip (including things whose dimension part is zero, such
as \hfill), or anything other than a character, then the italic correction will have no
effect.

In order to work correctly with unbreakable spaces from ~ (and other common forms
of line-breaking control) we also move back across a penalty before the glue.

w2 \ifdim \lastskip=\z@

103 \fix@penalty

s \else

105 \skip@ \lastskip
106 \unskip

107 \fix@penalty

108 \hskip \skip@

109 \fi

110 }

The above code means: “If there is a non-zero space just before the current position
(\ifdim...) save the amount of that space (\skip@\lastskip), remove it (\unskip),
then do a similar thing if there is a penalty just before the skip, and finally put the space
back in.”

Since zero glue cannot be distinguished in this context from no glue, we dare not
put in an \hskip in this case as this may produce an unwanted breakpoint. This is not
satisfactory.

The penalty before the glue is handled similarly, with the same caveats concerning
the zero case. Is this the first recorded use of \unpenalty in standard KTEX code?

i \def \fix@penalty {J
112 \ifnum \lastpenalty=\z@

113 \@@italiccorr

s \else

115 \count@ \lastpenalty
116 \unpenalty

17 \@@italiccorr

File z: 1tfntcemd.dtx Date: 2019/12/17 Version v3.4c 416

\nocorrlist

\nfss@text

\Declare01dFontCommand

\@fontswitch
\@@math@egroup
\@@math@egroup

118 \penalty \count@
119 \fi
120 }

(End definition for \sw@slant and \fix@penalty. These functions are documented on page 77.)

This holds the list of characters that should prevent italic correction. They should be
ordered by decreasing frequency of use. If any such character is made active later on one
needs to redefine the list so that the active character becomes part of it.

121 \def \nocorrlist {,.}

(End definition for \nocorrlist. This function is documented on page ?7.)

This command will by default behave like a XTEX \mbox but may be redefined by pack-
ages such as amstext.sty to be a bit cleverer.

122 \ifx \nfss@text\@undefined

13 \def \nfss@text {\leavevmode\hbox}

e \fi

(End definition for \nfss@text. This function is documented on page ?7.)

This is the function used to create declarative font-changing commands that can also be
used to change alphabets in math-mode.

Usage: \DeclareOldFontCommand \fn{(font-change decls)} (math-alphabet)

Here \fn is the font-declaration command being defined, (font-change decls) is the
declaration it will expand to in text-mode, and (math-alphabet) is the (single) math
alphabet specifier which is to be used in math-mode.

It does not care whether the command being defined already exists but it does give
a warning if it redefines anything.

Here are some typical examples of its use in conjunction with more basic NFSS2 font

commands.

\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}
\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf}
\Declare0ldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt}

125 \def \DeclareOldFontCommand #1#2#3{%
126 \DeclareRobustCommand #1{\@fontswitch {#2}{#3}}/
127 }

(End definition for \DeclareOldFontCommand. This function is documented on page ?7.)

These two commands actually do the necessary tests and declarative font- or alphabet-
changing.

128 \def \@fontswitch #1#2{J
129 \ifmmode

130 \let \math@bgroup \relax
131 \def \math@egroup {\let \math@bgroup \@@math@bgroup
132 \let \math@egroup \@@math@egroup}’,

File z: 1tfntcemd.dtx Date: 2019/12/17 Version v3.4c 417

\normalsize

We need to have a \relax in the following line in case the #2 is something like \mathsf
grabbing the next token as an argument. For this reason the code also uses explicit
arguments again (see pr/1275).

133 #2\relax
134 \else

135 #19%

136 \fi

137}

136 \let \@@math@bgroup \math@bgroup
139 \let \@@math@egroup \math@egroup

(End definition for \@fontswitch, \@@math@egroup, and \@@math@egroup. These functions are docu-
mented on page 77.)
These commands are available only in the preamble.

120 \@onlypreamble \DeclareTextFontCommand
121 \Q@onlypreamble \DeclareOldFontCommand

3 Initialization

This is defined to produce an error.

122 \def\normalsize{’

123 \@latex@error {The font size command \protect\normalsize\space
144 is not defined:\MessageBreak

145 there is probably something wrong with

146 the class file}\@eha

147 }

s (/2ekernel)

(End definition for \normalsize. This function is documented on page ?7.)

File z: 1tfntemd.dtx Date: 2019/12/17 Version v3.4c 418

\oldstylenums
\legacyoldstylenums

File A
Ilttextcomp.dtx

This file contains the implementation for accessing the glyphs provided by the TS1 en-
coding (Text Companion Encoding). This is now offered as part of the kernel and so
the textcomp package which used to provide the definitions is now mainly needed for
compatibility reasons (and doesn’t do much any more).

Preserve the old definition of \oldstylenums under a different name.

This macro implements old style numerals but only works if we assume that the
standard math fonts are used. Thus it needs changing in case other math encodings are
used.

1 (*2ekernel | latexrelease)
> (latexrelease)\IncludeInRelease{2020/02/02}/
5 (latexrelease) {\oldstylenums}{01d style numerals}/,
+ \DeclareRobustCommand\legacyoldstylenums[1]{/
5 \begingroup
Provide spacing using the interword space of the current font.
6 \spaceskip\fontdimen\tw@\font

Then switch to the math italic font. We don’t change the current value of \f@series
which means that you can use bold numerals if \bfseries is in force. As family we use
\rmdefault which means that this only works if there exist an OML encoded version of
that font or rather a corresponding .£d file (which is the case for standard BTEX fonts
even though they only contain substitutions).

7 \usefont{OML}{\rmdefault}{\f@series}{it}%

8 \mathgroup\symletters #1,

9 \endgroup

0}

And here is the improved one that adjusts depending on surroundings.

\DeclareRobustCommand\oldstylenums [1]{Y%
2 \begingroup

13 \ifmmode
14 \mathgroup\symletters #1%
15 \else

The \CheckEncodingSubset is discused below.

16 \CheckEncodingSubset\QuseQtext@encoding{TS1}\tc@oldstylesubst2{{#1}}%
17 \fi

15 \endgroup

0}
The helper to select the substitution if needed.

0 \def\tc@oldstylesubst#1{}

21 \tc@errorwarn

2 {0ldstyle digits unavailable for

23 family \f@family.\MessageBreak

2 Default oldstyle digits used instead}\@eha
s \bgroup

%6 \expand@font@defaults

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 419

\textcompsubstdefault

\DeclareEncodingSubset

The substitution defaults are provided in the file fonttext.1ltx.

27 \ifx\f@family\rmdef@ult
28 \fontfamily\rmsubstdefault
29 \else\ifx\f@family\sfdefQult

30 \fontfamily\sfsubstdefault
31 \else\ifx\f@family\ttdefQult

32 \fontfamily\ttsubstdefault

33 \else

34 \fontfamily\textcompsubstdefault
35 \fi\fi\fi

36 \fontencoding{TS1}\selectfont#1},

37 \egroup

33}

(End definition for \oldstylenums and \legacyoldstylenums. These functions are documented on page
?7.)

Here is the default for the “unknown” case:
30 \def\textcompsubstdefault{\rmsubstdefault}

(End definition for \textcompsubstdefault. This function is documented on page 77.)

w0 {/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\oldstylenums}{01d style numerals}’
latexrelease

latexrelease)\DeclareRobustCommand\oldstylenums [1]{/

latexrelease \begingroup

47 (latexrelease \spaceskip\fontdimen\tw@\font

(

()
()
()
()
(tedens]

s (latexrelease) \usefont{OML}{\rmdefault}{\f@series}{it}/,

()
()
()
()
()
()
(

41

42

3

44

45

46

3

latexrelease \mathgroup\symletters #1%
latexrelease \endgroup

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) \EndIncludeInRelease

49
50
51 ¥
52 \let\legacyoldstylenums\@undefined
53 \def\textcompsubstdefault{cmr}

54

Everything else in the this file got introduced 2020/02/02, so we do a single rollback

(for now).
*2ekernel)

/2ekernel)

56 (
(

ss (*2ekernel | latexrelease)
(
(

57

latexrelease)\IncludeInRelease{2020/02/02}7
latexrelease) {\DeclareEncodingSubset}{Text companion symbols}

59

60

The declaration takes 3 mandatory arguments: an encoding for which a subsetting is
wanted (currently always TS1, and most likely forever), the font family for which we
declare the subset and finally the subset number (between 0 (all of the encoding is sup-
ported) and 9 many glyphs are missing.

For TS1 the numbers have been choosen in a way that most fonts can be fairly
correctly categorized, but the default settings are always conservative, that is they may
claim that less glyphs are supported than there actually are.

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 420

\CheckEncodingSubset

As these days many font families are set up to end in -LF (lining figures), -0sF
(oldstyle figures), etc. the declaration supports a shortcut: if the font family name ends
in —* then the star gets replaced by these common ending, e.g.,

\DeclareEncodingSubset{TS1}{Alegreya-*}{2}
is the same as writing

\DeclareEncodingSubset{TS1}{Alegreya-LF}{2}
\DeclareEncodingSubset{TS1}{Alegreya-0sF}{2}
\DeclareEncodingSubset{TS1}{Alegreya-TLF}{2}
\DeclareEncodingSubset{TS1}{Alegreya-TOsF}{2}

If only some are needed then one can define them individually but in many cases all four
are wanted, hence the shortcut.

The coding of the declaration has no error checking as it is mostly for internal use.
1 \def\DeclareEncodingSubset#1#2{%
2 \DeclareEncodingSubset@aux{#1}#2*\DeclareEncodingSubset@aux
63 }
¢« \def\DeclareEncodingSubsetQaux#1#2*#3\DeclareEncodingSubsetQaux#4{7

if #3 is empty then there was no star, otherwise we define all four variants.
os \expandafter\ifx\expandafter X\detokenize{#3}XJ,

66 \@DeclareEncodingSubset{#1}{#2}{#4}%

7 \else

68 \@DeclareEncodingSubset{#1}{#2LF}{#4}/,

69 \@DeclareEncodingSubset{#1}{#2TLF}{#41}/,

70 \@DeclareEncodingSubset{#1}{#20sF}{#4}/

71 \@DeclareEncodingSubset{#1}{#2T0sF}{#4}/,

72 \fi

73}

The subset info is stored in a command with the name \family: subset so if that

already exists we change otherwise declare a subset.

72 \def\@DeclareEncodingSubset#1#2#3{/,

75 \@ifundefined{#1:#2}%

76 {\@font@info{Setting #2 sub-encoding to #1/#3}}%
7 {\@font@info{Changing #2 sub-encoding to #1/#3}}}
78 \@namedef{#1:#2}{#3}}

Any reason to allow those in the middle of documents?

70 \@onlypreamble\DeclareEncodingSubset

20 \@onlypreamble\DeclareEncodingSubset@aux

s1 \@onlypreamble\@DeclareEncodingSubset

(End definition for \DeclareEncodingSubset. This function is documented on page ?7.)

The command \CheckEncodingSubset will check if the current font family has the right
encoding subset to typeset a certain command. It takes five arguments as follows: first
argument is either \UseTextSymbol, \UseTextAccent depending on whether or not the
symbol is a text symbol or a text accent.

The second argument is the encoding from which this symbol should be fetched.

The third argument is either a fake accessor command or an error message.
the code in that argument (if ever executed) receives two arguments: #2 and #5 of
\CheckEncodingSubset.

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 421

\tc@errorwarn

\tc@subst

Argument four is the subset encoding id to test against: if this value is higher than
the subset id of the current font family then we typeset the symbol, i.e., execute #1{#2}#5
otherwise it runs #3#5, e.g., to produce an error message or fake the glyph somehow.

Argument five is the symbol or accent command that is being checked.

For usage examples see definitions below.

2 \def\CheckEncodingSubset#1#2#3#4#5{),

83 \ifnum #4>

84 \expandafter\ifx\csname #2:\f@family\endcsname\relax
85 O\csname #2:7\endcsname

86 \else

87 \csname #2:\f@family\endcsname
88 \fi

89 \relax

9% \expandafter\@firstoftwo

or \else

92 \expandafter\@secondoftwo

03 \fi

94 {#1{#2}H{#3}%

95 #57,

9% }

(End definition for \CheckEncodingSubset. This function is documented on page ?7.)
To set up the glyphs for the subsets we need a number helpers.

To we produce errors, warnings, or only info in the transcripts if glyphs require substi-
tutions? By default it is “info” only. With the textcomp package that can be changed.

97 \def\tc@errorwarn#1#2{\@latex@info{#1}}

(End definition for \tc@errorwarn. This function is documented on page ?77.)

o5 \def\tc@subst#1{},

9 \tc@errorwarn

100 {Symbol \string#l not provided by\MessageBreak
101 font family \f@family\space

102 in TS1 encoding.\MessageBreak Default family used instead}\@eha
103 \bgroup

104 \expand@font@defaults

105 \ifx\f@family\rmdef@ult

106 \fontfamily\rmsubstdefault

107 \else\ifx\f@family\sfdefQult

108 \fontfamily\sfsubstdefault

109 \else\ifx\f@family\ttdefQult

110 \fontfamily\ttsubstdefault

111 \else

112 \fontfamily\textcompsubstdefault

113 \fi\fi\fi

Whatever default was chosen, we claim now (locally hopefully) that it can handle all slots
(even if not true) to avoid looping in certain situations, e.g., when something was set up
incorrectly.

114 \@namedef{TS1:\f@family}{0}%
115 \selectfont#1/,

116 \egroup

17 ¥

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 422

(End definition for \tc@subst. This function is documented on page ?77.)

\tc@fake@euro \tc@fake@euro isan example of a “fake” definition to use in arg #3 of \CheckEncodingSubset
when a symbol is not available in a certain font family. Here we produce a poor man’s
Euro symbol by combining a “C” with a “=".
115 \def\tc@fake@euro#1{/,
119 \leavevmode
120 \@font@info{Faking \noexpand#ifor font family
121 \f@family\MessageBreak in TS1 encoding}’
122 \valign{##\cr

123 \vfil\hbox to 0.07em{\dimen@\f@size\p@

124 \math@fontsfalse

125 \fontsize{.7\dimen@}\z@\selectfont=\hssl}%
126 \vfillcr%

127 \hbox{C}\crcr

128 VA

120 F

(End definition for \tc@fake@euro. This function is documented on page 77.)

\tc@check@symbol These are two abbreviations that we use below to check symbols and accents in TS1.
\tc@check@accent Only there to save some space, e.g., we can then write

DeclareTextCommandDefault{\textcurrency}{\tc@check@symbol3\textcurrency}

to ensure that \textcurrency is only typeset if the current font has a TS1 subset id
of less than 3. Otherwise \tc@error is called telling the user that for this font family
\textcurreny is not available.

130 \def\tc@check@symbol{\CheckEncodingSubset\UseTextSymbol{TS1}\tc@subst}

Accents and been mad an error in the textcomp package when not available. Now
that we provide the functionality in the kernel we avoid the eror by swapping in a T1
accent if the TS1 accent is not available.

131 %\def\tc@check@accent{\CheckEncodingSubset\UseTextAccent{TS1}\tc@error}

122 \def\tc@check@accent#1{\CheckEncodingSubset\UseTextAccent{TS1}{\tc@swap@accent#1}}
133 \def\tc@swapQaccent#1#2{\UseTextAccent{T1}#1}

(End definition for \tc@check@symbol and \tc@check@accent. These functions are documented on page
?7.)

1 Sub-encodings

Here are the default definitions for the TS1 symbols. First those that we assume are
always available if a font implements TS1.

132 \DeclareTextSymbolDefault{\textdollar}{TS1}
135 \UndeclareTextCommand{\textdollar} {0T1} % don’t use the OT1 def any longer

136 \DeclareTextSymbolDefault{\textsterling}{TS1}
137 \UndeclareTextCommand{\textsterling}{0T1} % don’t use the OT1 def any longer

133 \DeclareTextSymbolDefault{\textperthousand}{TS1}
50 \UndeclareTextCommand{\textperthousand}{T1} % don’t use the T1 def

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 423

Using \UndeclareTextCommand above is enough only if the encoding definition files are
not reloaded afterwards. In the past that happened if fontenc was used in the document
preamble (not any longer). So in some sense it is better to fully remove them from the
encoding files, but for rollbacks it is easier to keep them in for now.

These are the standard itemize and footnote symbols originally taken from OMS and

now from TS1:

140

141

142

143

144

146

\DeclareTextSymbolDefault{\textasteriskcentered}{TS1}
\DeclareTextSymbolDefault{\textbullet}{TS1}
\DeclareTextSymbolDefault{\textdaggerdbl}{TS1}
\DeclareTextSymbolDefault{\textdagger }{TS1}
\DeclareTextSymbolDefault{\textparagraph}{TS1}
\DeclareTextSymbolDefault{\textperiodcentered}{TS1}
\DeclareTextSymbolDefault{\textsection}{TS1}

And here are the other TS1 glyphs that are implemented by every font (or nearly

everyone—a few are commented out and moved to sub-encoding 9, because they aren’t
around in one or two fonts.

147

148

149

160

161

162

163

164

%%\DeclareTextSymbolDefault{\textbardbl}{TS1} % subst in sub-enc 9 above
\DeclareTextSymbolDefault{\textbrokenbar}{TS1}
%%k\DeclareTextSymbolDefault{\textcelsius}{TS1} ’, subst in sub-enc 9 above

) \DeclareTextSymbolDefault{\textcent}{TS1}

\DeclareTextSymbolDefault{\textcopyright}{TS1}
\DeclareTextSymbolDefault{\textdegree}{TS1}
\DeclareTextSymbolDefault{\textdiv}{TS1}
\DeclareTextSymbolDefault{\textlnot}{TS1}
\DeclareTextSymbolDefault{\textonehalf}{TS1}
\DeclareTextSymbolDefault{\textonequarter}{TS1}
%%\DeclareTextSymbolDefault{\textonesuperior}{TS1} % subst in sub-enc 9 above

¢ \DeclareTextSymbolDefault{\textordfeminine}{TS1}

\DeclareTextSymbolDefault{\textordmasculine}{TS1}
\DeclareTextSymbolDefault{\textpm}{TS1}
\DeclareTextSymbolDefault{\textquotesingle}{TS1}
\DeclareTextSymbolDefault{\textquotestraightbase}{TS1}
\DeclareTextSymbolDefault{\textquotestraightdblbase}{TS1}
\DeclareTextSymbolDefault{\textregistered}{TS1}
%%\DeclareTextSymbolDefault{\textthreequartersemdash}{TS1} %, subst in sub-enc 9 above
\DeclareTextSymbolDefault{\textthreequarters}{TS1}
%%\DeclareTextSymbolDefault{\textthreesuperior}{TS1} J subst in sub-enc 9 above

; \DeclareTextSymbolDefault{\texttimes}{TS1}

\DeclareTextSymbolDefault{\texttrademark}{TS1}
%%\DeclareTextSymbolDefault{\texttwelveudash}{TS1} % subst in sub-enc 9 above
%%\DeclareTextSymbolDefault{\texttwosuperior}{TS1} % subst in sub-enc 9 above
\DeclareTextSymbolDefault{\textyen}{TS1}

\DeclareTextSymbolDefault{\textcapitalcompwordmark}{TS1}
\DeclareTextSymbolDefault{\textascendercompwordmark}{TS1}

In the following sections the remaining default definitions are ordered by sub-

encoding in which they are become unavailable (i.e., they are not provided in the sub-
encoding with that number and all sub-encodings with higher numbers.

Thus the symbols that are available in sub-encoding x are the symbols above (always

available) and the symbols list in the sections for sub-encodings « + 1 and higher.

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d 424

1.1 Sub-encoding 1 (drop symbols not working in Latin Modern)

The \textcircled is available but the glyph is simply too small so we keep using the
OMS glyph.

175

176

\DeclareTextCommandDefault{\textcircled}

{\CheckEncodingSubset\UseTextAccent{TS1}{\UseTextAccent{OMS}}1\textcircled}

1.2 Sub-encoding 2 (majority of new OTF fonts via autoinst)

177

178

179

180

193

\DeclareTextCommandDefault{\t}

{\CheckEncodingSubset\UseTextAccent{TS1}{\UseTextAccent{OML}}2\t}

Capital accents are really only very seldom implemented, so from sub-encoding 2
onwards we use the normal T1 accents if they are asked for in the document.

In Unicode engines we don’t implement them at all but always use the basic accents
instead. whether that works or not really depends on the font, something like \"X usually
comes out wrong in Unicode engines.

\ifx\Umathcode\@undefined
\DeclareTextCommandDefault{\capitalacute}
\DeclareTextCommandDefault{\capitalbreve}
\DeclareTextCommandDefault{\capitalcaron}

\DeclareTextCommandDefault{\capitalcedilla}

\DeclareTextCommandDefault{\capitalcircumflex}

\DeclareTextCommandDefault{\capitaldieresis}

\DeclareTextCommandDefault{\capitaldotaccent}

\DeclareTextCommandDefault{\capitalgrave}

{\tc@check@accent{\’}2\capitalacute}
{\tc@check@accent{\u}2\capitalbreve}
{\tc@check@accent{\v}2\capitalcaron}
{\tc@check@accent{\c}2\capitalcedilla}
{\tc@check@accent{\"}2\capitalcircumflex}
{\tc@check@accent{\"}2\capitaldieresis}
{\tc@check@accent{\.}2\capitaldotaccent}
{\tc@check@accent{\‘}2\capitalgrave}

\DeclareTextCommandDefault{\capitalhungarumlaut}{\tc@check@accent{\H}2\capitalhungarumlaut]

\DeclareTextCommandDefault{\capitalmacron}
\DeclareTextCommandDefault{\capitalogonek}
\DeclareTextCommandDefault{\capitalring}
\DeclareTextCommandDefault{\capitaltie}
\DeclareTextCommandDefault{\capitaltilde}

{\tc@check@accent{\=}2\capitalmacron}
{\tc@check@accent{\k}2\capitalogonek}
{\tc@check@accent{\r}2\capitalring}
{\tc@check@accent{\t}2\capitaltie}
{\tc@check@accent{\~}2\capitaltilde}

For \newtie and \capitalnewtie this is actually wrong, they should pick up the accent
from the substitution font (not done yet).

194

206

207

208

209

210

211

File A: 1ttextcomp.dtx Date: 2020/04/29 Version v1.0d

\DeclareTextCommandDefault{\newtie}
\DeclareTextCommandDefault{\capitalnewtie}

{\tc@check@accent{\t}2\newtie}
{\tc@check@accent{\t}2\capitalnewtie}

In Unicode engines we just execute the simple accents:
s \else

\DeclareTextCommandDefault\capitalacute{\@tabacckludge’}

\DeclareTextCommandDefault\capitalbreve{\u}
\DeclareTextCommandDefault\capitalcaron{\v}

\DeclareTextCommandDefault\capitalcedilla{\c}
\DeclareTextCommandDefault\capitalcircumflex{\~}
\DeclareTextCommandDefault\capitaldieresis{\"}
\DeclareTextCommandDefault\capitaldotaccent{\.}

\DeclareTextCommandDefault\capitalgrave{\@tabacckludge‘}
\DeclareTextCommandDefault\capitalhungarumlaut{\H}
\DeclareTextCommandDefault\capitalmacron{\@tabacckludge=}

\DeclareTextCommandDefault\capitalnewtie{\t}
\DeclareTextCommandDefault\capitalogonek{\k}
\DeclareTextCommandDefault\capitalring{\r}
\DeclareTextCommandDefault\capitaltie{\t}
\DeclareTextCommandDefault\capitaltilde{\~}

425

212

213

subsets reasonable compact and most important linear.
214 \DeclareTextCommandDefault{\textlbrackdbl}
\DeclareTextCommandDefault{\textrbrackdbl}

215

226

N

27

228

229

230

231

232

233

234

235

\DeclareTextCommandDefault\newtie{\t}

\fi

The next two symbols exist in some fonts (faked?), but we ignore that to keep the

{\tc@check@symbol2\textlbrackdbl}
{\tc@check@symbol2\textrbrackdbl}

Old style numerals are again in some fonts but using -0sF, etc. is the better approach
get them, so we claim they aren’t in sub-encoding 2 as that’s true for most fonts.

\DeclareTextCommandDefault{\texteightoldstyle}
\DeclareTextCommandDefault{\textfiveoldstyle}
215 \DeclareTextCommandDefault{\textfouroldstyle}
o \DeclareTextCommandDefault{\textnineoldstyle}
\DeclareTextCommandDefault{\textoneoldstyle}

\DeclareTextCommandDefault{\