
LATEX News
Issue 35, June 2022

Contents

Introduction 1

Document metadata interface 1

The latex-lab bundle 2

A new mark mechanism for LATEX 2

A key/value approach to option handling 3

New or improved commands 3
Floating point and integer calculations 3
CamelCase commands for changing arguments

to csnames 3
Testing for (nearly) empty arguments 4
Better allocator for Lua command ids 4
Starred command version for \ref, \Ref and

\pageref 4
Preparation for supporting PDF in backends . 4

Code improvements 4
\protected UTF-8 character definitions 4
A small update to \obeylines and

\obeyspaces 5
ltxdoc gets a nocfg option 5
doc upgraded to version 3 5
doc can now show dates in change log 5
LuaTEX callback improvements 5
Class proc supports twoside 5
Croatian character support 5
Cleanup of the Unicode declaration interface . 6
New hook: include/excluded 6
Input support for normalized angle brackets . . 6

Bug fixes 6
Using \DeclareUnicodeCharacter with C1

control points 6
Fix \ShowCommand when used with ltcmd . . . 6
Make \cite{} produce a warning 6
Fix adding cmd hooks to simple macros 6
Warn if shipout/lastpage hook is executed

too early 6
More consistent use of cramped math styles in

LuaTEX 6
Fixed bug when setting hook rules for one-

time hooks 6

Changes to packages in the amsmath category 7
amsopn: Do not reset \operator@font 7
amsmath: Error in \shoveleft 7
amsmath and amsopn: Robustify user commands 7

Changes to packages in the graphics category 7
Color in formulas 7
Fix locating files with \graphicspath 7

Changes to packages in the tools category 7
multicol: Fix \newcolumn 7
bm: Fix for amsmath operators 8

Introduction
The 2022 June release of LATEX is again focussing
on improvements made for our multi-year project to
automatically offer tagged PDF output [1]. These are
the new document metadata interface, the new mark
mechanism for LATEX, a standard key/value approach
for options, and the introduction of the latex-lab area
for temporary code that can be optionally loaded by
a document (when \DocumentMetadata is used with
certain test keys). These additions are described in the
first sections. Related to this effort there are updates
to hyperref and tagpdf both of which have their own
distributions.

As usual, we also added a number of smaller
improvements and bug fixes in various components of
core LATEX. Perhaps the most interesting ones (for some
users) are direct support for floating point arithmetic
(via \fpeval see below) and the ability to properly
color parts of math formulas without introducing
spacing problems. For this we now offer the command
\mathcolor; see the description near the end of the
newsletter. There is also a new major release of the doc
package that supports a more fine-grained classification
of code elements and properly supports hyperref.

Document metadata interface
Until recently there was no dedicated location to declare
settings that affect a document as a whole. Settings
had to be placed somewhere in the preamble or as class
options or sometimes even as package options. For some
such settings this may cause issues, e.g., setting the PDF
version is only possible as long as the PDF output file
has not yet been opened which can be caused by loading
one or the other package.

LATEX News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2022, all rights reserved.

For the “LATEX Tagged PDF project” [1] further
metadata about the whole document (and its processing)
need to be specified and again this data should be all
placed in a single well-defined place.

For this reason we introduce the new command
\DocumentMetadata to unify all such settings in
one place. The command expects a key/value list
that describes all document metadata for the current
document. It is only allowed to be used at the very
beginning of the document, i.e., the declaration has to
be placed before \documentclass and will issue an error
if found later.

At this point in time we only provide the bare
command in the format, the actual processing of the
key/value is defined externally and the necessary code
will be loaded if the command is used. This scheme
is chosen for two reasons: by adding the command
in the kernel it is available to everybody without the
need to load a special package using \RequirePackage.
The actual processing, though, is external so that we
can easily extend the code (e.g., offering additional
keys or changing the internal processing) while the
above mentioned project is progressing. Both together
allows users to immediately benefit from intermediate
results produced as part of the project, as well as
offering the LATEX Project Team the flexibility to
enable such intermediate results (for test purposes or
even production use) in-between and independently of
regular LATEX releases. Over time, tested and approved
functionality can then seamlessly move into the kernel
at a later stage without any alterations to documents
already using it. At the same time, not using the new
consolidated interface means that existing documents
are in no way affected by the work that is carried out
and is in a wider alpha or beta test phase.

Documentation about the new command and
already existing keys are in l3meta.pdf and
documentmetadata-support.pdf and also in the
documentation of the pdfmanagement-testphase package.

Package and class authors can test if a user has used
\DocumentMetadata with \IfDocumentMetadataTF.

The latex-lab bundle
We added a new latex-laboratory bundle in which we
place new code that is going to be available only through
a \DocumentMetadata declaration and that is—most
importantly—work under development and subject
to change without further notice. This means, that
commands and interfaces provided there may get altered
or removed again after some public testing. The code
can be accessed through the \DocumentMetadata key
testphase. Currently supported values are phase-I
and phase-II that enable code of the tagged PDF
project (phase-I is frozen and phase-II the phase we are

currently working on). With
\DocumentMetadata{testphase=phase-II}

you currently enable tagging for paragraphs and
footnotes, more document elements will follow soon.

For more detailed testing it is also possible to pass
other values to testphase, for example, the first
incarnation of a template design interface based on
l3keys can be accessed through the value prototype,
thus
\DocumentMetadata

{testphase={phase-II,prototype}}

will enable all of phase-II plus the draft template
interface (which is not yet integrated in phase-II).

Eventually, code will move (once considered stable)
from the testphase into the LATEX kernel itself.
Tagging will continue to require a \DocumentMetadata
declaration, but you will then be able to drop the
testphase key setting.

A new mark mechanism for LATEX
The mark mechanism is TEX’s way to pass information to
the page-building process which happens asynchronously
in order to communicate relevant data for running
headers and footers to the latter, e.g., what is the first
section on the page or the last subsection, etc. However,
marks may also be used for other purposes. The new
kernel module provides a generalized mechanism for
marks of independent classes.

The TEX engines offer a low-level mark mechanism
to communicate information about the content of the
current page to the asynchronous operating output
routine. It works by placing \mark commands into the
source document.

This mechanism works well for simple formats (such
as plain TEX) whose output routines are only called to
generate pages. It fails, however, in LATEX (and other
more complex formats), because here the output routine
is sometimes called without producing a page, e.g., when
encountering a float and placing it into one of the float
regions. When that happens TEX’s \topmark no longer
reflects the situation at the top of the next page when
that page is finally boxed.

Furthermore, TEX only offered a single mark while
LATEX wanted to keep track of more than one piece of
information. For that reason, LATEX implemented its
own mark mechanism where the marks always contained
two parts with their own interfaces: \markboth
and \markright to set marks and \leftmark and
\rightmark to retrieve them.

Unfortunately, this extended mechanism (while
supporting scenarios such as chapter/section marks) was
far from general. The mark situation at the top of a
page (i.e., \topmark) remained unusable and the two

–2

marks offered were not really independent of each other
because \markboth (as the name indicates) was always
setting both.

The new mechanism now available in LATEX starting
with the 2022 release overcomes both issues:

• It provides arbitrary many, fully independent
named marks, that can be allocated and from that
point onwards used.

• It offers access for each such marks to retrieve its
top, first, and bottom value separately.

• Furthermore, the mechanism is augmented to give
access to marks in different “regions” which may
not be just full pages.

The legacy interfaces, e.g., \markboth, are kept. Thus
classes and packages making use of them continue to
work flawlessly. To make use of the extended possibility
a new set of commands for declaration of mark classes,
setting their values and querying their state (in the
output routine) is now available in addition. You find
the documentation for the new interfaces together with
examples and further notes on the mechanism in the file
ltmarks-doc.pdf. Just call texdoc ltmarks-doc to
display it on your computer.

A key/value approach to option handling
The classical LATEX 2ε method for handling options,
using \ProcessOptions, treats each entry in the list as
a string. Many package authors have sought to extend
this handling by treating each entry as a key–value pair
(keyval) instead. To-date, this has required the use of
additional packages, for example kvoptions.

The LATEX team have for some time offered the
package l3keys2e to allow keyvals defined using the L3
programming layer module l3keys to act as package
options. This ability has now been integrated directly
into the kernel. As part of this integration, the syntax
for processing keyval options has been refined, such that
\ProcessKeyOptions

will now automatically pick up the package name as
the key family, unless explicitly given as an optional
argument.
\ProcessKeyOptions[family]

To support creating key options for this mechanism,
the new command \DeclareKeys has been added. This
works using the same general approach as l3keys or
pgfkeys: each key has one or more properties which
define its behavior.

Options for packages which use this new approach
will not be checked for clashes by the kernel. Instead,
each time a \usepackage or \RequirePackage line is
encountered, the list of options given will be passed
to \ProcessKeyOptions. Options which can only be

given the first time a package is loaded can be marked
using the property .usage = load, and will result in a
warning if used in a subsequent package loading line.

Package options defined in this way can also be set
within a package using the new command \SetKeys,
which again takes an optional argument to specify the
family, plus a mandatory one for the options themselves.

New or improved commands
Floating point and integer calculations
The L3 programming layer offers expandable commands
for calculating floating point and integer values, but
so far these functions have only been available to
programmers, because they require \ExplSyntaxOn
to be in force. To make them easily available at the
document-level, the small package xfp defined \fpeval
and \inteval.

An example of use could be the following:
\LaTeX{} can now compute:
\[\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}

= \fpeval{sin(3.5)/2 + 2e-3} \]

which produces the following output:

LATEX can now compute:

sin(3.5)
2 + 2 · 10−3 = −0.1733916138448099

These two commands have now been moved into the
kernel and in addition we also provide \dimeval and
\skipeval. The details of their syntax are described
in usrguide3.pdf. The command \fpeval offers a
rich syntax allows for extensive calculations whereas
the other three commands are essentially thin wrappers
for \numexpr, \dimexpr, and \glueexpr—therefore
inheriting some syntax peculiars and limitations in
expressiveness.
\newcommand\calulateheight[1]{%
\setlength\textheight{\dimeval{\topskip

+ \baselineskip * \inteval{#1-1}}}}

The above, for example, calculates the appropriate
\textheight for a given number of text lines.

(github issue 711)

CamelCase commands for changing arguments to csnames
It is sometimes helpful to “construct” a command
name on the fly rather than providing it as a single
\... token. For these kind of tasks the LATEX3
programming layer offers a general mechanism (in form
of \exp_args:N... and \cs_generate_variant:Nn).
However, when declaring new document-level commands
with \NewDocumentCommand or \NewCommandCopy, etc.
the L3 programming layer may not be active, and even
if it is, mixing CamelCase syntax with L3 programming

–3

https://github.com/latex3/latex2e/issues/711

syntax is not really a good approach. We have therefore
added the commands \UseName and \ExpandArgs to
assist in such situations, e.g.,

\NewDocumentCommand\newcopyedit{mO{red}}
{\newcounter{todo#1}%
\ExpandArgs{c}\NewDocumentCommand{#1}{s m}%
{\stepcounter{todo#1}%
\IfBooleanTF {##1}%

{\todo[color=#2!10]%
{\UseName{thetodo#1}: ##2}}%

{\todo[inline,color=#2!10]%
{\UseName{thetodo#1}: ##2}}%

}%
}

which provides a declaration mechanism for copyedit
commands, so that \newcopyedit{FMi}[blue] then
defines \FMi (and the necessary counter).

The command \ExpandArgs can be useful with the ar-
gument cc or Nc in combination with \NewCommandCopy
if the old or new command name or both need construct-
ing. Finally, there is \UseName which takes its argument
and turns it into a command (i.e., a CamelCase version
of \@nameuse (LATEX 2ε) or \use:c (L3 programming
layer)) which was also used in the example above.

(github issue 735)

Testing for (nearly) empty arguments
In addition to \IfNoValueTF to test if an optional
argument was provided or not, there is now also
\IfBlankTF, which tests if the argument is empty or
contains only blanks. Based on the result it selects a true
or false code branch. As usual, the variants \IfBlankT
and \IfBlankF are also provided for use when only
one branch leads to some action. Further details and
examples are given in usrguide3.pdf.

This test can also be useful if you set up key/value
options and want to test if a key was specified without
giving a value or through specifying “key = ,”.

Better allocator for Lua command ids
In LuaTEX we already had the \newluafunction macro
which allocates a Lua function identifier which can
be used to define commands with \luadef. But this
always required two steps: \newluafunction defines
the passed control sequence as an integer, which then
has to be used to define the actual Lua command
with \luadef. After that, the integer is no longer
needed. This was inconsistent with other allocators.
Therefore we added two new allocators \newluacmd and
\newexpandableluacmd which directly define a control
sequences invoking the allocated Lua function. The first
one defines a non-expandable Lua command, the second
one an expandable one. Of course, the associated Lua
function still has to be defined by assigning a function to

the lua.get_functions_table() table. The required
index is available in \allocationnumber.

An example could be
\newluacmd \greeting
\directlua {
lua.get_functions_table()

[tex.count.allocationnumber]
= function()
local name = token.scan_argument()
tex.sprint(’Hello ’, name, ’!’)

end
}

\greeting{world}

(github issue 536)

Starred command version for \ref, \Ref and \pageref
For a long time hyperref provides starred versions for the
reference commands that don’t create active links. This
syntax extension required users and package authors
to check if hyperref was loaded and adjust the coding
accordingly or take the starred forms out if text was
copied to a document without hyperref. The commands
have now been aligned with the hyperref usage and
always allow an optional star. The showkeys package has
been updated to handle the starred versions too, both
with hyperref or nameref and without. The commands
are defined with \NewDocumentCommand and so no longer
expand when written to auxiliary files. This reduces the
number of compilations needed to resolve references in
captions and sectioning commands. The package ifthen
has been updated to ensure that \pageref can still be
used inside tests like \isodd.

Preparation for supporting PDF in backends
At the current point in time, basic support for PDF
in backends is not part of LATEX core; it is provided
by external package like hyperref. At some time in
the future that work will be placed into the kernel
but for now it is separate and has to be explicitly
loaded in the document. To enable class and package
authors to support PDF specific task like the creation
of link targets without having to test first if hyperref
has been loaded, dummy versions of the commands
\MakeLinkTarget, \LinkTargetOn, \LinkTargetOff
and \NextLinkTarget are provided.

Code improvements
\protected UTF-8 character definitions
The characters defined via utf8.def are now defined
as \protected macros. This makes them safe to
use in expansion contexts where the classic \protect
mechanism is not enabled, notably L3 programming
layer e and x arguments.

–4

https://github.com/latex3/latex2e/issues/735
https://github.com/latex3/latex2e/issues/536

Related to this change \MakeUppercase and
\MakeLowercase have been updated to use the Unicode-
aware case changing functions \text_lowercase:n
in place of the TEX-primitive \lowercase. A similar
change will be made in the textcase package.

Note for technical reasons these low level character
handling changes will not be rolled back if the format
version is rolled back using the latexrelease package
rollback mechanism. (github issue 780)

A small update to \obeylines and \obeyspaces
The plain TEX versions of \obeylines and \obeyspaces
make ^^M and ␣ active and force them to execute \par
and \space, respectively. Don Knuth makes a remark
in the TEXbook that one can then use a trick such as
\let\par=\cr \obeylines \halign{...

However, redefining \par like this is not really a great
idea in LATEX, because it may lead to all kind of
problems. We have therefore changed the commands to
use an indirection: the active characters now execute
\obeyedline and \obeyedspace, which in turn do what
the hardwired solution did before.

But • this • means • that • it • is • now • possible
• to • achieve • special • effects • in • a • safe •
way. • This • paragraph, • for • example, • was •
produced • by • making • \obeyedspace • generate
• {\␣\textbullet\␣} • and • enabling •
\obeyspaces • within • a • quote • environment.

Thus, if you are keen to use the plain TEX trick, you need
to say \let\obeyedlines=\cr now. (github issue 367)

ltxdoc gets a nocfg option
The LATEX sources are formatted with the ltxdoc class,
which supports loading a local config file ltxdoc.cfg.
In the past the LATEX sources used such a file but it
was not distributed. As a result reprocessing the LATEX
sources elsewhere showed formatting changes. We now
distribute this file which means that it is loaded by
default. With the option nocfg this can be prevented.

doc upgraded to version 3
After roughly three decades the doc package gets a
cautious uplift, as already announced at the TUG
conference 2019—changes to doc are obviously always
done in a leisurely manner.

Given that most documentation is nowadays viewed on
screen, hyperref support is added and by default enabled
(suppress it with option nohyperref or alternatively
with hyperref=false) so the internal cross-reference
are properly resolved including those from the index
back into the document.

Furthermore, doc has now a general mechanism to
define additional “doc” elements besides the two Macro
and Env it did know in the past. This enables better
documentation because you can now clearly mark

different types of objects instead of simply calling them
all “macros”. If desired, they can be collected together
under a heading in the index so that you have a section
just with your document interface commands, or with
all parameters, or . . .

The code borrows ideas from Didier Verna’s dox
package (although the document level interface is
different) and it makes use of Heiko Oberdiek’s hypdoc
package, which at some point in the future will be
completely integrated, given that its whole purpose
it to patch doc’s internal commands to make them
hyperref-aware.

All changes are expected to be upward compatible,
but if you run into issues with older documentation
using doc a simple and quick solution is to load the
package as follows: \usepackage{doc}[=v2]

doc can now show dates in change log
Up to now the change log was always sorted by
version numbers (ignoring the date that was given
in the \changes command). It can now be sorted
by both version and date if you specify the option
reportchangedates on package level and in that case
the changes are displayed with

⟨version⟩ – ⟨date⟩

as the heading (instead of just ⟨version⟩), when using
\PrintChanges. (github issue 531)

LuaTEX callback improvements
The LuaTEX callbacks hpack_quality and
vpack_quality are now exclusive and therefore
only allow a single handler. The previous type list
resulted in incorrect parameters when multiple handlers
were set, therefore this only makes an existing restriction
more explicit.

Additionally the return value true for list callbacks
is now handled internally and no longer passed on to the
engine. This simplifies the handling of these callbacks
and makes it easier to provide consistent interfaces for
user defined list callbacks.

Class proc supports twoside
The document class proc, which is a small variation on
the article class, now supports the twoside option
displaying different data in the footer line on recto and
verso pages. (github issue 704)

Croatian character support
The default inputenc support has been extended to
support the 9 characters DŽ, Dž, dž, LJ, Lj, lj, NJ,
Nj, nj, input as single UTF-8 code points in the range
U+01C4 to U+01CC. (github issue 723)

–5

https://github.com/latex3/latex2e/issues/780
https://github.com/latex3/latex2e/issues/367
https://github.com/latex3/latex2e/issues/531
https://github.com/latex3/latex2e/issues/704
https://github.com/latex3/latex2e/issues/723

Cleanup of the Unicode declaration interface
When declaring encoding specific commands for
the Unicode (TU) encoding some declarations (e.g.,
\DeclareUnicodeComposite) do not have an explicit
argument for the encoding name, but instead use the
command \UnicodeEncodingName internally. There
was one exception though: \DeclareUnicodeAccent
required an explicit encoding argument. This inconsis-
tency has now been removed and the encoding name
is always implicit. To avoid a breaking change for a
few packages on CTAN \DeclareUnicodeAccent still
accepts three arguments if the second argument is TU or
\UnicodeEncodingName. Once all packages have been
updated this code branch will get removed.

At the same time we added \DeclareUnicodeCommand
and \DeclareUnicodeSymbol for consistency. They
also use \UnincodeEncodingName internally, instead of
requiring an encoding argument as their general purpose
counterparts do. (github issue 253)

New hook: include/excluded
A few releases ago we introduced a number of file hooks
for different types of files, see [2] and in particular [4].
The hooks for \include files now got an addition: if such
a file is not included (because \includeonly is used and
its ⟨name⟩ is not listed in the argument) then the hooks
include/excluded and include/⟨name⟩/excluded are
executed in that order—of course, only if they contain
code. This happens after LATEX has loaded the .aux
file for this include file, i.e., after LATEX has updated its
counters to pretend that the file was seen.

Input support for normalized angle brackets
Source files containing 〈 or 〉 directly written as Unicode
codepoints U+2329 and U+232A no longer break
when the source file gets normalized under Unicode
normalization rules. (github issue gh/714)

Bug fixes
Using \DeclareUnicodeCharacter with C1 control points
An error in the UTF-8 handling for non-Unicode TEX,
has prevented \DeclareUnicodeCharacter being used
with characters in the range hex 80 to 9F, this has been
corrected in this release. (github issue 730)

Fix \ShowCommand when used with ltcmd
When \ShowCommand support was added for ltcmd in
the previous release [3], a blunder in the code made it
so that when \ShowCommand was used on a command
defined with ltcmd, it only printed the meaning of the
command in the terminal, but didn’t stop for interaction
as it does elsewhere (mimicking \show). The issue is
now fixed. (github issue 739)

Make \cite{} produce a warning
When the \cite command can’t resolve a citation label
it issue a warning “Citation ‘⟨label⟩’ on page ⟨page⟩
undefined”. However, due to some implementation
details a completely empty argument was always
silently accepted. Given that there are probably people
who write \cite{} with the intention to fill in the
correct label later it is rather unfortunate if that is not
generating a warning that something in the document is
still amiss. This has finally been corrected and a warning
is now generated also in this case. (github issue 790)

Fix adding cmd hooks to simple macros
A bug in how LATEX would detect the type of a
command was causing a premature forced expansion of
such commands, which, depending on their definition,
could be harmless or could cause severe trouble. This
has been fixed in the latest release. (github issue 795)

(https://tex.stackexchange.com/q/637565)

Warn if shipout/lastpage hook is executed too early
The hook shipout/lastpage is intended to place
\specials into the last page shipped out. This is
needed for some use cases, e.g., tagging. If that hook is
nonempty and the user has added additional pages since
the last run, then LATEX executes this hook too early,
but until now without giving any indication that the
document needs rerunning. This has now been corrected
and an appropriate warning is given. (github issue 813)

More consistent use of cramped math styles in LuaTEX
Using LuaTEX’s \Udelimiterover to place a horizontally
extensible glyph on top of a mathematical expression now
causes the expression to be set in cramped style as used
in similar situations by traditional TEX math rendering.
Similarly cramped style is now used for expressions set
under such a delimiter using \Uunderdelimiter but no
longer used when setting an expression on top of such
extensible glyphs using \Uoverdelimiter. This new
behavior follows TEX’s rule that cramped style is used
whenever something else appears above the expression.
Additionally the math style of these constructs can now
be detected using \mathstyle.

The old behavior can be restored by adding
\mathdefaultsmode=0

to a document.

Fixed bug when setting hook rules for one-time hooks
If a \DeclareHookRule command is set for a one-time
hook, it has to come before the hook gets used, because
otherwise it never applies—after all, the hook is used
only once. There was a bug in the implementation
in that the sorting mechanism was still applied if the
\DeclareHookRule declaration appeared while the
one-time hook was executed, causing the spurious

–6

https://github.com/latex3/latex2e/issues/253
https://github.com/latex3/latex2e/issues/gh/714
https://github.com/latex3/latex2e/issues/730
https://github.com/latex3/latex2e/issues/739
https://github.com/latex3/latex2e/issues/790
https://github.com/latex3/latex2e/issues/795
https://tex.stackexchange.com/q/637565
https://github.com/latex3/latex2e/issues/813

typesetting of the code labels and the hook name. This
bug is now fixed and an error is raised when a new
sorting rule is added to an already used one-time hook.

A possible scenario in which this new error is raised
is the following: package AAA declares a hook rule for
begindocument (i.e., \AtBeginDocument) to sort out
the behavior between itself and some other package.
Package BBB wants to load package AAA but only if
it hasn’t been loaded in the preamble, so delays the
loading to begindocument. In that case the hook rule
declared by AAA can no longer be applied and you get
the error. If that happens the solution is to load the
package in begindocument/before, which is executed at
the very end of the preamble but before begindocument
is processed. (github issue 818)

Changes to packages in the amsmath category
amsopn: Do not reset \operator@font
The package amsopn used to define \operator@font but
this command is already provided by the LATEX format
(for at least 14 years). As a result the definition in
amsopn is equivalent to a reset to the kernel definition,
which is unnecessary and surprising if you alter the
math setup (e.g., by loading a package) and at a later
stage add amsmath, which then undoes part of your
setup. For this reason the definition was taken out and
amsmath/amsopn now relies on the format definition.

In the unlikely event that you want the resetting to
happen, use

\makeatletter
\def\operator@font{\mathgroup\symoperators}

\makeatother

after loading the package. (github issue 734)

amsmath: Error in \shoveleft
If \shoveleft started out with the words “plus” or
“minus” it was misunderstood as part of a rubber length
and led either to an error or was swallowed without
trace. By adding a \relax this erroneous scanning
into the argument of \shoveleft is now prevented.

(github issue 714)

amsmath and amsopn: Robustify user commands
Most user-level commands have been made robust in
the LATEX kernel during the last years, but variant
definitions in amsmath turned them back into fragile
beings. We have now made most commands in amsmath
and amsopn robust as well to match the kernel behavior.
This also resolves a bug recently discovered in the
mathtools package, which was due to \big not being
robust after amsmath was loaded. (github issue 123)

Changes to packages in the graphics category
Color in formulas
While it is possible to color parts of a formula using
\color commands the approach is fairly cumbersome.
For example, to color an summation sign, but not
its limits, you need four \color commands and some
seemingly unnecessary set of braces to get coloring and
spacing right:
\[X = \color{red} \sum
% without {{ the superscript below is misplaced

_{{\color{black} i=1}}
% without {{ the \sum is black

^{{\color{black} n}}
\color{black} % without it the x_i is red
x_i \]

Leave out any of the \color commands or any of the
{{...}} will give you a wrong result instead of the
desired

X =
n∑

i=1
xi

So even if this is possible, it is not a very practical
solution and furthermore there are a number of cases
where it is impossible to color a certain part of a formula,
for example, an opening symbol such as \left(but not
the corresponding \right).

We have therefore added the command \mathcolor
to the color and xcolor package, which has the same
syntax as \textcolor, but is specially designed for use
in math and handles sub and superscripts and other
aspects correctly and preserves correct spacing. Thus,
the above example can now be written as
\[X = \mathcolor{red}{\sum}_{i=1}^n x_i \]

This command is only allowed in formulas. For details
and further examples, see mathcolor.pdf.

Fix locating files with \graphicspath
If a call to \includegraphics asked for a file (say,
image) without extension, and if both A/image.pdf and
B/image.tex existed (both A/ and B/ in \graphicspath,
but neither in a folder searched by kpse), then
A/image.pdf would not be found, and a “file not
found” error would be incorrectly thrown. The issue
is now fixed and the graphics file is correctly found.

(github issue 776)
(https://tex.stackexchange.com/q/630167)

Changes to packages in the tools category
multicol: Fix \newcolumn
The recently added \newcolumn didn’t work prop-
erly if used in vertical mode, where it behaved
like \columnbreak, i.e., spreading the column
material out instead running the column short.

(https://tex.stackexchange.com/q/624940)

–7

https://github.com/latex3/latex2e/issues/818
https://github.com/latex3/latex2e/issues/734
https://github.com/latex3/latex2e/issues/714
https://github.com/latex3/latex2e/issues/123
https://github.com/latex3/latex2e/issues/776
https://tex.stackexchange.com/q/630167
https://tex.stackexchange.com/q/624940

bm: Fix for amsmath operators
An internal command used in the definition of operator
commands such as \sin in amsmath has been guarded in
\bm to prevent internal syntax errors due to premature
expansion. (github issue 744)

References
[1] Frank Mittelbach and Chris Rowley: LATEX Tagged

PDF—A blueprint for a large project.
https://latex-project.org/publications/
indexbyyear/2020/

[2] LATEX Project Team: LATEX 2ε news 32.
https://latex-project.org/news/latex2e-news/
ltnews32.pdf

[3] LATEX Project Team: LATEX 2ε news 34.
https://latex-project.org/news/latex2e-news/
ltnews34.pdf

[4] Frank Mittelbach, Phelype Oleinik, LATEX Project
Team: The ltfilehook documentation.
Run texdoc ltfilehook-doc to view.

–8

https://github.com/latex3/latex2e/issues/744
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/news/latex2e-news/ltnews32.pdf
https://latex-project.org/news/latex2e-news/ltnews32.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf

	Introduction
	Document metadata interface
	The latex-lab bundle
	A new mark mechanism for LaTeX
	A key/value approach to option handling
	New or improved commands
	Floating point and integer calculations
	CamelCase commands for changing arguments to csnames
	Testing for (nearly) empty arguments
	Better allocator for Lua command ids
	Starred command version for \ref, \Ref and \pageref
	Preparation for supporting PDF in backends

	Code improvements
	\protected UTF-8 character definitions
	A small update to \obeylines and \obeyspaces
	ltxdoc gets a nocfg option
	doc upgraded to version 3
	doc can now show dates in change log
	LuaTeX callback improvements
	Class proc supports twoside
	Croatian character support
	Cleanup of the Unicode declaration interface
	New hook: include/excluded
	Input support for normalized angle brackets

	Bug fixes
	Using \DeclareUnicodeCharacter with C1 control points
	Fix \ShowCommand when used with ltcmd
	Make \cite{} produce a warning
	Fix adding cmd hooks to simple macros
	Warn if shipout/lastpage hook is executed too early
	More consistent use of cramped math styles in LuaTeX
	Fixed bug when setting hook rules for one-time hooks

	Changes to packages in the amsmath category
	amsopn: Do not reset \operator@font
	amsmath: Error in \shoveleft
	amsmath and amsopn: Robustify user commands

	Changes to packages in the graphics category
	Color in formulas
	Fix locating files with \graphicspath

	Changes to packages in the tools category
	multicol: Fix \newcolumn
	bm: Fix for amsmath operators

