
The ltmarks.dtx code∗

Frank Mittelbach, LATEX Project†

May 25, 2023

Abstract
Marks are used to communicate information about the content of a page to the

output routine. For example, in order to construct running headers, the output
routine needs information about which section names are present on a page, and
this information is passed to it through the mark system. However, marks may
also be used for other purposes. This module provides a generalized mechanism for
marks of independent classes.

Contents
1 Introduction 2

2 Design-level and code-level interfaces 2
2.1 Debugging mark code . 5

3 Application examples 5

4 Legacy LATEX 2ε interface 5
4.1 Legacy design-level and document-level interfaces 6
4.2 Legacy interface extensions . 6

5 Notes on the mechanism 7

6 Internal output routine functions 8

7 The Implementation 9
7.1 Allocating new mark classes . 9
7.2 Updating mark structures . 10
7.3 Placing and retrieving marks . 14
7.4 Comparing mark values . 16
7.5 Messages . 16
7.6 Debugging the mark structures . 17
7.7 Designer-level interfaces . 18

∗This file has version v1.0d dated 2022/06/01, © LATEX Project.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

8 LATEX 2ε integration 19
8.1 Core LATEX 2ε integration . 19
8.2 Other LATEX 2ε output routines . 21

1 Introduction
The TEX engines offer a low-level mark mechanism to communicate information about
the content of the current page to the asynchronous operating output routine. It works
by placing \mark commands into the source document. When the material for the current
page is assembled in box 255, TEX scans for such marks and sets the commands \topmark,
\firstmark and \botmark. The \firstmark receives the content of the first \mark seen
in box 255 and \botmark the content of the last mark seen. The \topmark holds the
content of the last mark seen on the previous page or more exactly the value of \botmark
from the previous page. If there are no marks on the current page then all three are
made equal to the \botmark from the previous page.

This mechanism works well for simple formats (such as plain TEX) whose output
routines are only called to generate pages. It fails, however, in LATEX (and other more
complex formats), because here the output routine is sometimes called without producing
a page, e.g., when encountering a float and placing it into one of the float regions. In that
case the output routine is called, determines where to place the float, alters the goal for
assembling text material (if the float was added to the top or bottom region) and then
it resumes collecting textual material.

As a result the \botmark gets updated and so \topmark no longer reflects the situ-
ation at the top of the next page when that page is finally boxed.

Another problem for LATEX was that it wanted to use several “independent” marks
and in the early implementations of TEX there was only a single \mark command available.
For that reason LATEX implemented its own mark mechanism where the marks always
contained two parts with their own interfaces: \markboth and \markright to set marks
and \leftmark and \rightmark to retrieve them.

However, this extended mechanism (while supporting scenarios such as chap-
ter/section marks) was far from general. The mark situation at the top of a page (i.e.,
\topmark) remained unusable and the two marks offered were not really independent of
each other because \markboth (as the name indicates) was always setting both.

The new mechanism overcomes both issues:

• It provides arbitrarily many, fully independent named marks, that can be allocated
and, from that point onwards, used.

• It offers access for each such marks to retrieve its top, first, and bottom values
separately.

• Furthermore, the mechanism is augmented to give access to marks in different
“regions” which may not be just full pages.

2 Design-level and code-level interfaces
The interfaces are mainly meant for package developers, but they are usable (with appro-
priate care) also in the document preamble, for example, when setting up special running
headers with fancyhdr, etc. They are therefore available both as CamelCase commands

2

as well as commands for use in the L3 programming layer. Both are described together
below.

\NewMarkClass {⟨class⟩}
\mark_new_class:n {⟨class⟩}

Declares a new ⟨class⟩ of marks to be tracked by LATEX. Each ⟨class⟩ must be declared
before it is used.

Mark classes can only be declared before \begin{document}.

\NewMarkClass
\mark_new_class:n

\InsertMark {⟨class⟩} {⟨text⟩}
\mark_insert:nn {⟨class⟩} {⟨text⟩}

Adds a mark to the current galley for the ⟨class⟩, containing the ⟨text⟩.
It has no effect in places in which you can’t place floats, e.g., a mark inside a box or

inside a footnote never shows up anywhere.
If used in vertical mode it obeys LATEX’s internal \@nobreak switch, i.e., it does not

introduce a breakpoint if used after a heading. If used in horizontal mode it doesn’t
handle spacing (like, for example, \index or \label does, so it should be attached to
material that is typeset.

\InsertMark
\mark_insert:nn

\AddToHook {insertmark} {⟨code⟩}

When marks are inserted, the mark content may need some special treatment, e.g., by
default \label, \index, and \glossary do not expand at this time (but only later if
and when the mark content is actually used. In order to allow packages to augment or
alter this setup there is a public hook insertmark that is executed at this point. It runs
in a group so local modification to commands are only applied to the ⟨text⟩ argument of
\InsertMark or \mark_insert:nn.

insertmark

\TopMark [⟨region⟩] {⟨class⟩}
\FirstMark [⟨region⟩] {⟨class⟩}
\LastMark [⟨region⟩] {⟨class⟩}
\mark_use_top:nn {⟨region⟩} {⟨class⟩}
\mark_use_first:nn {⟨region⟩} {⟨class⟩}
\mark_use_last:nn {⟨region⟩} {⟨class⟩}

These functions expand to the appropriate mark ⟨text⟩ for the given ⟨class⟩ in the specified
⟨region⟩. The default ⟨region⟩ in the design-level commands is page. Note that with the
L3 layer commands there are no optional arguments, i.e., both arguments have to be
provided.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨text⟩ does not expand further when appearing in an x-type or e-type
argument expansion.

The “first” and “last” marks are those seen first and last in the current region/page,
respectively. The “top” mark is the last mark of the ⟨class⟩ seen in an earlier region, i.e.,
the ⟨text⟩ what would be “current” at the very top of the region.

Important! The commands are only meaningful inside the output routine, in other places their
result is (while not random) unpredictable due to the way LATEX cuts text material into
pages.

\TopMark ⋆
\FirstMark ⋆
\LastMark ⋆
\mark_use_top:nn ⋆
\mark_use_first:nn ⋆
\mark_use_last:nn ⋆

Currently, ⟨region⟩ is one of page, previous-page, column, and previous-column.
If a page has just been finished then the region page refers to the current page and

3

previous-page, as the name indicates, to the page that has been finished previously.
This means you are able to access mark information for the current page as well as for
the page before if you are inside the output routine, without the need to explicitly save
that information beforehand.

In single column documents the column is the same as the page region, but in
two-column documents, column refers to the current column that just got finished and
previous-column to the one previously finished. Code for running headers are (in standard
LATEX) only evaluated when both columns are assembled, which is another way of saying
that in that case previous-column refers to the left column and column to the right
column. However, to make this a bit nicer to access, there are also alias regions named
first-column and last-column1 to access these regions.2

Note that you can only look backwards at already processed regions, e.g., in a
twoside document finishing a recto (odd, right-hand) page you can access the data
from the facing verso (left-hand) page, but if you are finishing a left-hand page you can’t
integrate data from the upcoming right-hand page. If such a scenario needs to be realized
then it is necessary to save the left-hand page temporarily instead of finalizing it, process
material for the right-hand page and once both are ready, attach running headers and
footers and shipout out both in one go.3

\IfMarksEqualTF [⟨region⟩] {⟨class⟩} {⟨pos1⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
\mark_if_eq:nnnnTF {⟨region⟩} {⟨class⟩} {⟨pos1⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
\mark_if_eq:nnnnnnTF {⟨region1⟩} {⟨class1⟩} {⟨pos1⟩}

{⟨region2⟩} {⟨class2⟩} {⟨pos2⟩} {⟨true⟩} {⟨false⟩}
These conditionals allow you to compare the content of two marks and act based on the
result. The commands work in an expansion context, if necessary.

\IfMarksEqualTF ⋆
\mark_if_eq:nnnnTF ⋆
\mark_if_eq:nnnnnnTF ⋆

It is quite common when programming with marks to need to interrogate conditions
such as whether marks have appeared on a previous page, or if there are multiple marks
present on the current page, and so on. The tests above allow for the construction of a
variety of typical test scenarios, with three examples presented below.

The first two conditionals cover only the common scenarios. Both marks are picked
up from the same ⟨region⟩ (by default page) and they have to be of the same ⟨class⟩.4
The ⟨posi⟩ argument can be either top, first, or last.

If you wish to compare marks across different regions or across different classes, you
have to do it using the generic test only available in the L3 programming layer or do it
manually, i.e., get the marks and then compare the values yourself.5

However, the basic version is enough for the following typical use cases:

Test for at most one mark of class myclass on current page: If the first and last
mark in a region are the same then either there was no mark at all, or there was
at most one. To test this on the current page:

\NewMarkClass{myclass}
\IfMarksEqualTF{myclass}{first}{last}

{ <zero or one mark> }{ <two or more marks> }
1This is called “last” not “second” in anticipation of extending the mechanism to multiple columns,

where first and last would still make sense.
2At the moment there aren’t any previous-...-column regions to access the columns from the pre-

vious page. If necessary, the mechanism could be easily augmented to cover them too, though.
3As of now that scenario is not yet officially supported.
4If an undeclared mark class is used the tests return true (not an error).
5If two undeclared mark classes are compared the result is always true; if a declared and an undeclared

mark class is used it is always false.

4

Test for no mark of class myclass in the previous page: If the top mark is the
same as the first mark, there is no mark in the region at all. If we wanted to
do this test for the previous page:

\IfMarksEqualTF[previous-page]{myclass}{top}{first}
{ <no marks> }{ <at least one mark> }

Comparing top and last would give you the same result.

Test for zero, one, or more than one: Combining the two tests from above you can
test for zero, one or more than one mark.

\IfMarksEqualTF{myclass}{top}{first}
{ <no marks> }
{\IfMarksEqualTF{myclass}{first}{last}

{ <exactly one mark> }{ <more than one mark> }}

If you need one of such tests more often (or if you want a separate command for it
for readability), then consider defining:

\providecommand\IfNoMarkTF[2][page]{\IfMarksEqualTF[#1]{#2}{first}{last}}

2.1 Debugging mark code

\DebugMarksOn ... \DebugMarksOff

Commands to turn the debugging of mark code on or off. The debugging output is
rather coarse and not really intended for normal use at this point in time.

\DebugMarksOn
\DebugMarksOff
\mark_debug_on:
\mark_debug_off:

3 Application examples
If you want to figure out if a break was taken at a specific point, e.g., whether a heading
appears at the top of the page, you can do something like this:

\newcounter{breakcounter}
\NewMarkClass{break}
\newcommand\markedbreak[1]{\stepcounter{breakcounter}%

\InsertMark{break}{\arabic{breakcounter}%
\penalty #1\relax
\InsertMark{break}{-\arabic{breakcounter}}

To test if the break was taken you can test if \TopMark{break} is positive (taken) or
negative (not taken) or zero (there was never any marked break so far). The absolute
value can be used to keep track of which break it was (with some further coding).

to be extended with additional application examples

4 Legacy LATEX 2ε interface
Here we describe the interfaces that LATEX 2ε offered since the early nineties and some
minor extensions.

5

4.1 Legacy design-level and document-level interfaces

\markboth {⟨left⟩} {⟨right⟩}
\markright {⟨right⟩}
LATEX 2ε uses two marks which aren’t fully independent. A “left” mark generated by
the first argument of \markboth and a “right” mark generated by the second argu-
ment of \markboth or by the only argument of \markright. The command \markboth
and \markright are in turn called from heading commands such as \chaptermark or
\sectionmark and their behavior is controlled by the document class.

For example, in the article class with twoside in force the \sectionmark will issue
\markboth with an empty second argument and \subsectionmark will issue \markright.
As a result the left mark will contain chapter titles and the right mark subsection titles.

Note, however, that in one-sided documents the standard behavior is that only
\markright is used, i.e., there will only be right-marks but no left marks!

\markboth
\markright

\leftmark
\rightmark

These functions return the appropriate mark value from the current page and work as
before, that is \leftmark will get the last (!) left mark from the page and \rightmark
the first (!) right mark.

In other words they work reasonably well if you want to show the section title that
is current when you are about to turn the page and also show the first subsection title
on the current page (or the last from the previous page if there wasn’t one). Other
combinations can’t be shown using this interface.

The commands are fully expandable, because this is how they have been always
defined in LATEX. However, this is of course only true if the content of the mark they
return is itself expandable and does not contain any fragile material. Given that this
can’t be guaranteed for arbitrary content, a programmer using them in this way should
use \protected@edef and not \edef to avoid bad surprises as far as this is possible, or
use the new interfaces (\TopMark, \FirstMark, and \LastMark) which return the ⟨text⟩
in \exp_not:n to prevent uncontrolled expansion.

\leftmark ⋆
\rightmark ⋆

4.2 Legacy interface extensions
The new implementation adds three mark classes: 2e-left, 2e-right and 2e-right-nonempty
and patches \markboth and \markright slightly so that they also update these new mark
classes, so that the new classes work with existing document classes.

As a result you can use \LastMark{2e-left} and \FirstMark{2e-right} instead of
\leftmark and \rightmark. But more importantly, you can use any of the other retrieval
commands to get a different status value from those marks, e.g., \LastMark{2e-right}
would return the last subsection on the page (instead of the first as returned by
\rightmark).

The difference between 2e-right and 2e-right-nonempty is that the latter will
only be updated if the material for the mark is not empty. Thus \markboth{title}{}
as issued by, say, \sectionmark, sets a 2e-left mark with title and a 2e-right mark
with the empty string but does not add a 2e-right-nonempty mark.

Thus, if you have a section at the start of a page and you would ask for
\FirstMark{2e-right} you would get an empty string even if there are subsections
on that page. But 2e-right-nonempty would then give you the first or last subsection

6

on that page. Of course, nothing is simple. If there are no subsections it would tell you
the last subsection from an earlier page. We therefore need comparison tools, e.g., if top
and first are identical you know that the value is bogus, i.e., a suitable implementation
would be
\IfMarksEqualTF{2e-right-nonempty}{top}{first}

{ <appropriate action if there was no real mark> }
{\FirstMark{2e-right-nonempty}}

5 Notes on the mechanism
In contrast to vanilla TEX, ε-TEX extends the mark system to allow multiple independent
marks. However, it does not solve the \topmark problem which means that LATEX still
needs to manage marks almost independently of TEX. The reason for this is that the
more complex output routine used by LATEX to handle floats (and related structures)
means that \topmark(s) remain unreliable. Each time the output routine is fired up,
TEX moves \botmark to \topmark, and while ε-TEX extends this to multiple registers the
fundamental concept remains the same. That means that the state of marks needs to be
tracked by LATEX itself. An early implementation of this package used TEX’s \botmark
only to ensure the correct interaction with the output routine (this was before the ε-TEX
mechanism was even available). However, other than in a prototype implementation for
LATEX3, this package was never made public.

The new implementation now uses ε-TEX’s marks as they have some advantages,
because with them we can leave the mark text within the galley and only extract the
marks during the output routine when we are finally shipping out a page or storing away
a column for use in the next page. That means we do not have to maintain a global data
structure that we have to keep in sync with informational marks in the galley but can
rely on everything being in one place and thus manipulations (e.g. reordering of material)
will take the marks with them without a need for updating a fragile linkage.

To allow for completely independent marks we use the following procedure:
• For every type of marks we allocate a mark class so that in the output routine TEX

can calculate for each class the current top, first, and bottom mark independently.
For this we use \newmarks, i.e., one marks register per class.

• As already mentioned firing up an output routine without shipping out a page
means that TEX’s top marks get wrong so it is impossible to rely on TEX’s approach
directly. What we do instead is to keep track of the real marks (for the last page
or more generally last region) in some global variables.

• These variables are updated in the output routine at defined places, i.e., when we
do real output processing but not if we use special output routines to do internal
housekeeping.

• The trick we use to get correctly updated variables is the following: the material
that contains new marks (for example the page to be shipped out) is stored in a
box. We then use TEX primitive box splitting functions by splitting off the largest
amount possible (which should be the whole box if nothing goes really wrong).
While that seems a rather pointless thing to do, it has one important side effect:
TEX sets up first and bottom marks for each mark class from the material it has
split off. This way we get the first and last marks (if there have been any) from the
material in the box.

7

• The top marks are simply the last marks from the previous page or region. And
if there hasn’t been a first or bottom mark in the box then the new top mark also
becomes new first and last mark for that class.

• That mark data is then stored in global token lists for use during the output routine
and legacy commands such as \leftmark or new commands such as \TopMark
simply access the data stored in these token lists.

That’s about it in a nutshell. Of course, there are some details to be taken care of—those
are discussed in the implementation sections.

6 Internal output routine functions
The functions in this section are tied to the output routine and used in the interface to
LATEX 2ε and perhaps at some later time within a new output routine for LATEX. They
are not meant for general use and are therefore made internal. Internal means that @@
automatically gets replaced in the code (and in the documentation) so we have to give it
a suitable value.

1 ⟨@@=mark⟩

__mark_update_singlecol_structures:__mark_update_singlecol_structures:

LATEX 2ε integration function in case we are doing single column layouts. It assumes that
the page content is already stored in \@outputbox and processes the marks inside that
box. It is called as part of \@opcol.

__mark_update_singlecol_structures:__mark_update_dblcol_structures:

LATEX 2ε integration function mark used when we are doing double column documents.
It assumes that the page content is already stored in \@outputbox and processes the
marks inside that box. It then does different post-processing depending on the start of
the switch \if@firstcolumn. If we are in the second column it also has to update page
marks, otherwise it only updates column marks. It too is called as part of \@opcol.

__mark_update_structure:nn {⟨region⟩} {⟨material with marks⟩}__mark_update_structure:nn

Helper function that inspects the marks inside the second argument and assigns new
mark values based on that to the ⟨region⟩ given in the first argument. For this it first
copies the mark structure from ⟨region⟩ to previous-⟨region⟩ and then takes all last
mark values currently in the region and makes them the new top mark values. Finally
it assigns new first and last values for all mark classes based on what was found in the
second argument.

As a consequence, the allowed values for ⟨region⟩ are page and column because only
they have previous-... counterparts.

Another important part to keep in mind is that marks are only recognized if they
appear on top-level, e.g., if we want to process material stored in boxes we need to put
it unboxed (using \unvcopy etc.) into the second argument.

8

__mark_update_structure_alias:nn {⟨alias⟩} {⟨source⟩}__mark_update_structure_alias:nn

Helper function that copies all mark values in the ⟨source⟩ region to ⟨alias⟩, i.e., make
the structures identical. Used to update the previous-... structures inside __mark_-
update_structure:nn and first-column and last-column structures inside __mark_-
update_singlecol_structures: or __mark_update_dblcol_structures:.

__mark_update_structure_to_err:n {⟨region⟩}__mark_update_structure_to_err:n

Helper function that sets all mark values in the ⟨region⟩ to an error message. This is
currently used for last-column at times where using marks from it would be question-
able/wrong, i.e., when we have just processed the first column in a two-column document.

7 The Implementation
2 ⟨∗2ekernel | latexrelease⟩

3 \ExplSyntaxOn

4 ⟨latexrelease⟩\NewModuleRelease{2022/06/01}{ltmarks}
5 ⟨latexrelease⟩ {Marks~handling}

7.1 Allocating new mark classes

A list holding all the mark classes that have been declared.
6 \seq_new:N \g__mark_classes_seq

\g__mark_classes_seq

\mark_new_class:n
__mark_new_class:nn

A mark class is created by initializing a number of data structures. First, we get a register
number to refer to the mark class. The new mark class is then added to the \g__mark_-
classes_seq sequence to be able to easily loop over all classes. Finally a number of
top-level global token lists are declared that hold various versions of the mark for access.

7 \cs_new_protected:Npn \mark_new_class:n #1
8 {
9 \seq_if_in:NnTF \g__mark_classes_seq {#1}

10 {
11 \msg_error:nnn { mark } { class-already-defined }
12 {#1}
13 }
14 { __mark_new_class:nn {#1} }
15 }

This is only available in the preamble.
16 \@onlypreamble \mark_new_class:n

The internal command carries out the necessary allocations.
17 \cs_new_protected:Npn __mark_new_class:nn #1
18 {
19 ⟨∗trace⟩
20 __mark_debug:n { \iow_term:x { Marks:~new~mark:~#1~\msg_line_context: } }
21 ⟨/trace⟩

9

Use the LATEX 2ε interface for now as the L3 programming layer doesn’t have one for
marks yet.

22 \exp_args:Nc \newmarks {c__mark_class_ #1 _mark}

Remember the new class in the sequence.
23 \seq_gput_right:Nn \g__mark_classes_seq {#1}

We need three token lists for each region, one for top, first, and last.
24 \tl_new:c { g__mark_page_top_ #1 _tl }
25 \tl_new:c { g__mark_page_first_ #1 _tl }
26 \tl_new:c { g__mark_page_last_ #1 _tl }

For the page region we also keep track of the previous-page.
27 \tl_new:c { g__mark_previous-page_top_ #1 _tl }
28 \tl_new:c { g__mark_previous-page_first_ #1 _tl }
29 \tl_new:c { g__mark_previous-page_last_ #1 _tl }

Same game for column and previous-column
30 \tl_new:c { g__mark_column_top_ #1 _tl }
31 \tl_new:c { g__mark_column_first_ #1 _tl }
32 \tl_new:c { g__mark_column_last_ #1 _tl }
33 \tl_new:c { g__mark_previous-column_top_ #1 _tl }
34 \tl_new:c { g__mark_previous-column_first_ #1 _tl }
35 \tl_new:c { g__mark_previous-column_last_ #1 _tl }

But for columns we also allocate token lists for the alias regions first-column and
last-column.

36 \tl_new:c { g__mark_first-column_top_ #1 _tl }
37 \tl_new:c { g__mark_first-column_first_ #1 _tl }
38 \tl_new:c { g__mark_first-column_last_ #1 _tl }
39 \tl_new:c { g__mark_last-column_top_ #1 _tl }
40 \tl_new:c { g__mark_last-column_first_ #1 _tl }
41 \tl_new:c { g__mark_last-column_last_ #1 _tl }
42 }

(End definition for \mark_new_class:n and __mark_new_class:nn. This function is documented on
page 3.)

7.2 Updating mark structures
\l__mark_box

\g__mark_tmp_tl
\g__mark_new_top_tl

For some operations we need a temporary private box and two private global token lists.
43 \box_new:N \l__mark_box
44 \tl_new:N \g__mark_tmp_tl
45 \tl_new:N \g__mark_new_top_tl

(End definition for \l__mark_box , \g__mark_tmp_tl , and \g__mark_new_top_tl.)

__mark_update_structure:nn This function updates the mark structures. The first argument is the region to update
and second argument receives the material that holds the marks. Out of this material we
extract the first and last marks for all classes (if there are any) to do the assignments.

46 \cs_new_protected:Npn __mark_update_structure:nn #1#2
47 {

First thing we do is copying the current structure to previous-...; this leaves the current
structure untouched so we can update it class by class (which is necessary).

48 __mark_update_structure_alias:nn { previous-#1 } {#1}

10

Getting the first and last marks out of the material in #2 is done by putting the material
in a box and then doing a split operation to the maximum size possible (which hopefully
means all of the content).6 Because this is an action only for the sake of getting at the
mark values we don’t want any underfull box warnings so we turn those (locally) off.

49 \group_begin:
50 \dim_set_eq:NN \tex_splitmaxdepth:D \c_max_dim
51 \int_set_eq:NN \tex_vbadness:D \c_max_int
52 \dim_set_eq:NN \tex_vfuzz:D \c_max_dim

There is a further complication: if the region contains infinite shrinking glue then a
\vsplit operation will balk with a low-level error. Now pages or columns, which are our
main concern here, can’t have such infinite shrinkage if they are cut straight from the
galley, however the use of \enlargethispage actually does add some at the very bottom
(and also wraps the whole page into a box by itself, so if we leave it this way then a) we
get this error and b) we don’t see any marks because they are hidden one level down).

Another possible issue are packages or user code that place stray \vboxes directly
into the main galley (an example is marginnote that attaches its marginals in this way).
If such boxes end up as the last item on the page we should not unpack them.

We therefore do an \unskip to get rid of that glue if present and also check if we
have then a \vbox as the last item and if so unpack that too, but only under certain
conditions, see below. All this is temporary, just for getting the marks out, so it doesn’t
affect the final page production.

In fact, we go one step further and set the box to a large negative height possible
and afterwards take a look at the reported badness: if it is zero we know that there has
still been infinite shrinkage in the box so that we can’t do a \vsplit. If that is the
case we generate an error message and bypass extracting the marks. We use only half
of \c_max_dim because otherwise TEX will report an overfull vbox despite our setting of
\tex_vfuzz:D. This test will not find existing infinite shrinkage in all cases, e.g., if there
are several glues that cancel each other, but it is the best we can do.

53 \vbox_set_to_ht:Nnn \l__mark_box { -.5\c_max_dim }
54 {
55 #2
56 \tex_unskip:D
57 \box_set_to_last:N \l__mark_box

After having removed the last box from the current list (if there was one) we check if the
list is now empty. If not, the the last box is definitely not the one from \enlargethispage
and so we can and should leave it alone. Otherwise we check if this last box is a \vbox.

58 \int_compare:nNnT \tex_lastnodetype:D < 0
59 {
60 \box_if_vertical:NT \l__mark_box
61 {

If it is we do a further test and reset the \l__mark_box to check if it contains infinitely
shrinkable glue.

62 \vbox_set_to_ht:Nnn \l__mark_box { -.5\c_max_dim }
63 {
64 \vbox_unpack:N \l__mark_box
65 \tex_kern:D \c_zero_dim % ensure that box
66 % is not empty
67 }

6We could verify this, maybe we should.

11

If not, then we unpack it, if yes we still ignore it for the process of mark extraction. We
do not generate an error though, because in all likelihood this is an ordinary box like a
marginal that does contain something like \vss.

68 \int_compare:nNnT \tex_badness:D > 0
69 { \vbox_unpack:N \l__mark_box }
70 }
71 }

If it wasn’t a vbox, it was either an hbox or there was no box. Given that we are only
interested in the marks we don’t need put it back in that case. However, we have to
make sure that the outer box under construction is not totally empty (which it might
have been from the start, or now), because TEX does not report a badness for empty
boxes and that means our test would incorrectly conclude that we have infinite shrinking
glue. A simple \kern is enough to avoid this (the same was already done above).

72 \tex_kern:D \c_zero_dim
73 }
74 \int_compare:nNnTF \tex_badness:D > 0

If the box had no infinite shrinkage (or rather if our test didn’t show any) we vsplit it.
Note that it doesn’t matter that we set it to this strange size first. If there was infinite
shrinkage after all, we end up with a low-level TEX error, but if there is, it is a coding
error and needs correcting.

75 {
76 \vbox_set_split_to_ht:NNn \l__mark_box \l__mark_box \c_max_dim

After this action we can get first and last marks of the various classes through \tex_-
splitfirstmarks:D and \tex_splitbotmarks:D. So now we loop over all classes stored
in \g__mark_classes_seq.

77 \seq_map_inline:Nn \g__mark_classes_seq
78 {

First action: get the last mark from the previous region, i.e., previous-#1. But because
it is also still inside #1, at the moment we use that to construct the name because this is
a tiny bit faster. Given that we need this value in various assignments we store it away
which avoids unnecessary further csname generations.

79 \tl_gset_eq:Nc \g__mark_new_top_tl { g__mark_#1_last_##1_tl }

This will first of all become the new top mark for the current class.
80 \tl_gset_eq:cN { g__mark_#1_top_##1_tl } \g__mark_new_top_tl

Next action is to get ourselves the new last mark from the material supplied.
81 \tl_gset:No \g__mark_tmp_tl
82 { \tex_splitbotmarks:D \use:c { c__mark_class_##1_mark } }

If this mark doesn’t exist then obviously first mark does neither, so both become the
last mark from the previous region. We have to be a little careful here: something like
\mark_insert:nn{foo}{} adds an “empty” mark that should not be confused with no
mark at all. But no mark in our material will result in \g__mark_tmp_tl being fully
empty. This is why we have to make sure that “empty” from \mark_insert:nn only
appears to be empty but fails the next test (see below how this is done).

83 \tl_if_empty:NTF \g__mark_tmp_tl
84 {
85 \tl_gset_eq:cN { g__mark_#1_last_ ##1_tl }
86 \g__mark_new_top_tl
87 \tl_gset_eq:cN { g__mark_#1_first_##1_tl }

12

88 \g__mark_new_top_tl
89 }

If it wasn’t empty, i.e., if it had a real value then we use this value for our new last mark
instead.

90 {
91 \tl_gset_eq:cN { g__mark_#1_last_##1_tl } \g__mark_tmp_tl

Because we had a last mark we also have a first mark (which might be the same, but
might be not), so we pick that up and assign it to the appropriate token list. This explains
why we first checked for the last mark because that makes the processing faster in case
there is none.

92 \tl_gset:co { g__mark_#1_first_##1_tl }
93 {
94 \tex_splitfirstmarks:D
95 \use:c { c__mark_class_##1_mark }
96 }
97 }
98 }
99 }

If the badness was zero (we actually tested for > 0 but it can’t get negative) then we
had infinite shrinkage, so we report that and set all marks to the value the last mark had
before.
100 {
101 \msg_error:nnn { mark } { infinite-shrinkage } {#1}
102 \seq_map_inline:Nn \g__mark_classes_seq
103 {
104 \tl_gset_eq:cc { g__mark_#1_top_ ##1_tl }
105 { g__mark_#1_last_ ##1_tl }
106 \tl_gset_eq:cc { g__mark_#1_first_##1_tl }
107 { g__mark_#1_last_ ##1_tl }
108 }
109 }

Once all mark classes have been processed the data structures are updated and we can
close the group which undoes our local changes and retains only the global ones.
110 \group_end:
111 }

(End definition for __mark_update_structure:nn.)

__mark_update_structure_alias:nn This function copies the structure for one region to another (name), e.g., from page to
previous-page above, or later from column to first-column, etc.
112 \cs_new_protected:Npn __mark_update_structure_alias:nn #1#2 {

This requires a simple loop through all mark classes copying the token list from one name
to the next.
113 \seq_map_inline:Nn \g__mark_classes_seq
114 {
115 \tl_gset_eq:cc { g__mark_ #1 _top_ ##1 _tl }
116 { g__mark_ #2 _top_ ##1 _tl }
117 \tl_gset_eq:cc { g__mark_ #1 _first_ ##1 _tl }
118 { g__mark_ #2 _first_ ##1 _tl }
119 \tl_gset_eq:cc { g__mark_ #1 _last_ ##1 _tl }

13

120 { g__mark_ #2 _last_ ##1 _tl }
121 }
122 }

(End definition for __mark_update_structure_alias:nn.)

__mark_update_structure_to_err:n
__mark_error:n

A slight variation is to install a fixed error message as the value.
123 \cs_new_protected:Npn __mark_update_structure_to_err:n #1 {
124 \seq_map_inline:Nn \g__mark_classes_seq
125 {
126 \tl_gset:cn { g__mark_ #1 _top_ ##1 _tl } { __mark_error:n {#1} }
127 \tl_gset:cn { g__mark_ #1 _first_ ##1 _tl } { __mark_error:n {#1} }
128 \tl_gset:cn { g__mark_ #1 _last_ ##1 _tl } { __mark_error:n {#1} }
129 }
130 }

Given that this is used in only one place, we could hardwire the argument which would
be a bit more compact, but who knows, perhaps we end up with another reason to use
this error command elsewhere, so for now we keep the argument.
131 \cs_new_protected:Npn __mark_error:n #1 {
132 \msg_error:nnn { mark } { invalid-use } {#1}
133 }

(End definition for __mark_update_structure_to_err:n and __mark_error:n.)

7.3 Placing and retrieving marks
\mark_insert:nn This function puts a mark for some ⟨class⟩ at the current point.

134 \cs_new_protected:Npn \mark_insert:nn #1#2
135 {
136 \seq_if_in:NnTF \g__mark_classes_seq {#1}
137 {

We need to pass the evaluated argument into the mark but protected commands should
not expand including those protected using the \protect approach of LATEX 2ε. We also
disable \label and the like.7

At this point the code eventually should get a public (and a kernel) hook instead of
a set of hardwired settings.
138 \group_begin:

Within the group we alter some comments, e.g, \label or \index, to do the right at this
point. This is done in the kernel hook \@kernel@before@insertmark which is followed
by the public hook insertmark that can be used by packages to augment or alter that
setup as necessary.
139 \@kernel@before@insertmark
140 \hook_use:n { insertmark }
141 \unrestored@protected@xdef \g__mark_tmp_tl {#2}
142 ⟨∗trace⟩
143 __mark_debug:n{ \iow_term:x { Marks:~ set~#1~<-~
144 ’\tl_to_str:V \g__mark_tmp_tl’ ~ \msg_line_context: } }
145 ⟨/trace⟩
146 \tex_marks:D \use:c { c__mark_class_ #1 _mark }
147 {

7Straight copy from latex.ltx but is this even correct? At least a label in a running header makes
little sense if it get set several times! Maybe that needs looking at in the 2e kernel.

14

Here is the trick to avoid truly empty marks: if the result from the above processing is
empty we add something which eventually becomes empty, but not immediately; other-
wise we just put \g__mark_tmp_tl in.
148 \tl_if_empty:NTF \g__mark_tmp_tl
149 { \exp_not:n { \prg_do_nothing: } }
150 { \exp_not:o { \g__mark_tmp_tl } }
151 }
152 \group_end:

A mark introduces a possible break point and in certain situations that should not happen
in vertical mode in LATEX. This needs some cleanup
153 \if@nobreak\ifvmode\nobreak\fi\fi
154 }

If the mark class was not known, raise an error.
155 {
156 \msg_error:nnx { mark } { unknown-class }
157 { \tl_to_str:n {#1} }
158 }
159 }

(End definition for \mark_insert:nn. This function is documented on page 3.)

\@kernel@before@insertmark
insertmark

By default \label, \index, and \glossary do nothing when the mark is inserted.
160 \cs_new:Npn \@kernel@before@insertmark {
161 \cs_set_eq:NN \label \scan_stop:
162 \cs_set_eq:NN \index \scan_stop:
163 \cs_set_eq:NN \glossary \scan_stop:
164 }

The public hook to augment the setup.
165 \hook_new:n {insertmark}

(End definition for \@kernel@before@insertmark and insertmark.)

\mark_use_top:nn
\mark_use_first:nn
\mark_use_last:nn

To retrieve the first, last or top region mark, we grab the appropriate value stored in the
corresponding token list variable and pass its contents back. These functions should be
used only in output routines after __mark_update_structure:nn has acted, otherwise
their value will be wrong.

If used with an unknown class or region they generate an error (fairly low-level
because we are in an expandable context).
166 \cs_new:Npn \mark_use_first:nn #1#2 { \exp_not:v { g__mark_#1_first_#2_tl } }
167 \cs_new:Npn \mark_use_last:nn #1#2 { \exp_not:v { g__mark_#1_last_#2_tl } }
168 \cs_new:Npn \mark_use_top:nn #1#2 { \exp_not:v { g__mark_#1_top_#2_tl } }

(End definition for \mark_use_top:nn , \mark_use_first:nn , and \mark_use_last:nn. These functions
are documented on page 3.)

15

7.4 Comparing mark values
\mark_if_eq:nnnnTF

\mark_if_eq:nnnnnnTF
Test if in a given region (#1) for a given class (#2) the marks in position #3 and #4 (top,
first, or last) are identical
169 \prg_new_conditional:Npnn \mark_if_eq:nnnn #1#2#3#4 { T , F , TF }
170 {
171 \tl_if_eq:ccTF { g__mark_ #1 _#3_ #2 _tl }
172 { g__mark_ #1 _#4_ #2 _tl }
173 \prg_return_true:
174 \prg_return_false:
175 }

The fully general test (with two triplets of the form ⟨region⟩, ⟨class⟩, and ⟨position⟩) is
this:
176 \prg_new_conditional:Npnn \mark_if_eq:nnnnnn #1#2#3#4#5#6 { T , F , TF }
177 {
178 \tl_if_eq:ccTF { g__mark_ #1 _#3_ #2 _tl }
179 { g__mark_ #4 _#6_ #5 _tl }
180 \prg_return_true:
181 \prg_return_false:
182 }

(End definition for \mark_if_eq:nnnnTF and \mark_if_eq:nnnnnnTF. These functions are documented
on page 4.)

7.5 Messages
Mark errors are LaTeX kernel errors:
183 \prop_gput:Nnn \g_msg_module_type_prop { mark } { LaTeX }

184 \msg_new:nnnn { mark } { class-already-defined }
185 { Mark~class~’#1’~already~defined }
186 {
187 \c__msg_coding_error_text_tl
188 LaTeX~was~asked~to~define~a~new~mark~class~called~’#1’:~
189 this~mark~class~already~exists.
190 \c__msg_return_text_tl
191 }

192 \msg_new:nnnn { mark } { unknown-class }
193 { Unknown~mark~class~’#1’. }
194 {
195 \c__msg_coding_error_text_tl
196 LaTeX~was~asked~to~manipulate~a~mark~of~class~’#1’,~
197 but~this~class~of~marks~does~not~exist.
198 }

199

200 \msg_new:nnnn { mark } { invalid-use }
201 { Mark~region~’#1’~not ~usable }
202 {
203 \c__msg_coding_error_text_tl
204 The~region~’#1’~can~only~be~used~after~
205 all~columns~have~been~assembled.
206 \c__msg_return_text_tl
207 }

16

208 \msg_new:nnnn { mark } { infinite-shrinkage }
209 { Infinite~shrinkage~found~in~’#1’. }
210 {
211 \c__msg_coding_error_text_tl
212 The~mark~region~’#1’~contains~some~infinite~negative~glue~
213 allowing~it~to~shrink~to~an~arbitrary~size.~
214 This~makes~it~impossible~to~split~the~region~apart~to~
215 get~at~its~marks.~They~are~lost.
216 }

7.6 Debugging the mark structures
Code and commands in this section are not final, it needs more experimentation to see
what kind of tracing information is going to be useful in practice. For now the tracing is
mainly meant to be used for code testing and not so much for application testing.

It is quite likely that the commands and the behavior of the tracing might change
in the future once we gained some experience with it.

\g__mark_debug_bool Holds the current debugging state.
217 \bool_new:N \g__mark_debug_bool

(End definition for \g__mark_debug_bool.)

\mark_debug_on:
\mark_debug_off:
__mark_debug:n

__mark_debug_gset:

Turns debugging on and off by redefining __mark_debug:n.
218 \cs_new_eq:NN __mark_debug:n \use_none:n
219 \cs_new_protected:Npn \mark_debug_on:
220 {
221 \bool_gset_true:N \g__mark_debug_bool
222 __mark_debug_gset:
223 }
224 \cs_new_protected:Npn \mark_debug_off:
225 {
226 \bool_gset_false:N \g__mark_debug_bool
227 __mark_debug_gset:
228 }
229 \cs_new_protected:Npn __mark_debug_gset:
230 {
231 \cs_gset_protected:Npx __mark_debug:n ##1
232 { \bool_if:NT \g__mark_debug_bool {##1} }
233 }

(End definition for \mark_debug_on: and others. These functions are documented on page 5.)

\DebugMarksOn
\DebugMarksOff

CamelCase commands for debugging.
234 \cs_new_eq:NN \DebugMarksOn \mark_debug_on:
235 \cs_new_eq:NN \DebugMarksOff \mark_debug_off:

(End definition for \DebugMarksOn and \DebugMarksOff. These functions are documented on page 5.)

__mark_class_status:nn Shows the mark values across all regions for one mark class (#2). The first argument
gives some ⟨info⟩ to help identifying where the command was called.
236 ⟨∗trace⟩
237 \cs_new_protected:Npn __mark_class_status:nn #1#2
238 {

17

239 \typeout{ Marks:~#2~ #1:}
240 \typeout{\@spaces page~ (current):
241 | \exp_not:v { g__mark_page_top_ #2 _tl }
242 | \exp_not:v { g__mark_page_first_ #2 _tl }
243 | \exp_not:v { g__mark_page_last_ #2 _tl } |}
244 \typeout{\@spaces page~ (previous):
245 | \exp_not:v { g__mark_previous-page_top_ #2 _tl }
246 | \exp_not:v { g__mark_previous-page_first_ #2 _tl }
247 | \exp_not:v { g__mark_previous-page_last_ #2 _tl } |}
248 \typeout{\@spaces column~ (previous):
249 | \exp_not:v { g__mark_previous-column_top_ #2 _tl }
250 | \exp_not:v { g__mark_previous-column_first_ #2 _tl }
251 | \exp_not:v { g__mark_previous-column_last_ #2 _tl } |}
252 \typeout{\@spaces column~ (current):
253 | \exp_not:v { g__mark_column_top_ #2 _tl }
254 | \exp_not:v { g__mark_column_first_ #2 _tl }
255 | \exp_not:v { g__mark_column_last_ #2 _tl } |}
256 \typeout{\@spaces column~ (first):
257 | \exp_not:v { g__mark_first-column_top_ #2 _tl }
258 | \exp_not:v { g__mark_first-column_first_ #2 _tl }
259 | \exp_not:v { g__mark_first-column_last_ #2 _tl } |}
260 \typeout{\@spaces column~ (second):
261 | \exp_not:v { g__mark_last-column_top_ #2 _tl }
262 | \exp_not:v { g__mark_last-column_first_ #2 _tl }
263 | \exp_not:v { g__mark_last-column_last_ #2 _tl } |}
264 }

(End definition for __mark_class_status:nn.)

__mark_status:n Show all mark class values across all regions.
265 \cs_new_protected:Npn __mark_status:n #1
266 {
267 \seq_map_inline:Nn \g__mark_classes_seq
268 { __mark_class_status:nn {#1} {##1} }
269 }
270 ⟨/trace⟩

(End definition for __mark_status:n.)

7.7 Designer-level interfaces
\NewMarkClass

\InsertMark
These two are identical to the L3 programming layer commands.
271 \cs_new_eq:NN \NewMarkClass \mark_new_class:n
272 \@onlypreamble \NewMarkClass

273 \cs_new_eq:NN \InsertMark \mark_insert:nn

(End definition for \NewMarkClass and \InsertMark. These functions are documented on page 3.)

\TopMark
\FirstMark
\LastMark

The following commands take an optional argument that defaults to page. There is no
checking that the region is actually valid. If not there is simply an empty return.
274 \NewExpandableDocumentCommand \FirstMark { O{page} m }
275 { \mark_use_first:nn {#1}{#2} }

276 \NewExpandableDocumentCommand \LastMark { O{page} m }
277 { \mark_use_last:nn {#1}{#2} }

18

278 \NewExpandableDocumentCommand \TopMark { O{page} m }
279 { \mark_use_top:nn {#1}{#2} }

(End definition for \TopMark , \FirstMark , and \LastMark. These functions are documented on page 3.)

\IfMarksEqualTF We only provide a CamelCase command for the case with one region (optional) and
one class. One could think of also providing a version for the general case with several
optional arguments, but use cases for this are most likely rare, so not done yet.
280 \NewExpandableDocumentCommand \IfMarksEqualTF {O{page}mmm} {
281 \mark_if_eq:nnnnTF {#1}{#2}{#3}{#4}
282 }

(End definition for \IfMarksEqualTF. This function is documented on page 4.)

8 LATEX 2ε integration
8.1 Core LATEX 2ε integration

__mark_update_singlecol_structures: This command updates the mark structures if we are producing a single column docu-
ment.
283 \cs_new_protected:Npn __mark_update_singlecol_structures: {

First we update the page region (which also updates the previous-page.
The \@outputbox is normally in \vbox in LATEX but we can’t take that for granted

(an amsmath test document changed it to an \hbox just to trip me up) so we are a little
careful with unpack now.
284 \box_if_vertical:NTF \@outputbox
285 {
286 __mark_update_structure:nn {page}
287 { \vbox_unpack:N \@outputbox }
288 }
289 {
290 __mark_update_structure:nn {page}
291 { \hbox_unpack:N \@outputbox }
292 }

The we provide the necessary updates for the aliases.
293 __mark_update_structure_alias:nn {previous-column}{previous-page}
294 __mark_update_structure_alias:nn {column}{page}
295 __mark_update_structure_alias:nn {first-column}{page}
296 __mark_update_structure_alias:nn {last-column}{page}
297 ⟨∗trace⟩
298 % move this into status itself?
299 __mark_debug:n
300 {
301 __mark_status:n
302 { in~ OR~ (
303 \legacy_if:nTF {@twoside}
304 { twoside-
305 \int_if_odd:nTF \c@page
306 { odd }{ even }
307 }
308 { oneside }
309)

19

310 }
311 }
312 ⟨/trace⟩
313 }

(End definition for __mark_update_singlecol_structures:.)

__mark_update_dblcol_structures: This commands handles the updates if we are doing two-column pages.
314 \cs_new_protected:Npn __mark_update_dblcol_structures: {

First we update the column and previous-column regions using the material assembled
in \@outputbox.
315 \box_if_vertical:NTF \@outputbox
316 {
317 __mark_update_structure:nn {column}
318 { \vbox_unpack:N \@outputbox }
319 }
320 {
321 __mark_update_structure:nn {column}
322 { \hbox_unpack:N \@outputbox }
323 }

How we have to update the alias regions depends on whether or not \@opcol was called
to process the first column or to produce the completed page
324 \legacy_if:nTF {@firstcolumn}
325 {

If we are processing the first column then column is our first-column and there is no
last-column yet, so we make those an error.
326 __mark_update_structure_alias:nn {first-column}{column}
327 __mark_update_structure_to_err:n {last-column}
328 }
329 {

If we produce the completed page then the first-column is the same as the new
previous-column. However, the structure should already be correct if you think about
it (because is was set to column last time which is now the previous-column), thus there
is no need to make an update.
330 % __mark_update_structure_alias:nn {first-column}{previous-column}

However, we now have a proper last-column so we assign that.
331 __mark_update_structure_alias:nn {last-column}{column}

What now remains doing is to update the page and previous-page regions. For this we
have to copy the settings in page into previous-page and then update page such that
the top and first marks are taken from the first-column region and the last marks are
taken from the last-column region. All this has to be done for all mark classes so we
loop over our sequence.

Note that one loop is needed if we arrange the copy statements in a suitable way.
332 \seq_map_inline:Nn \g__mark_classes_seq
333 {
334 \tl_gset_eq:cc { g__mark_previous-page_top_ ##1 _tl }
335 { g__mark_page_top_ ##1 _tl }
336 \tl_gset_eq:cc { g__mark_previous-page_first_ ##1 _tl }
337 { g__mark_page_first_ ##1 _tl }
338 \tl_gset_eq:cc { g__mark_previous-page_last_ ##1 _tl }
339 { g__mark_page_last_ ##1 _tl }

20

The page updates need to come after the corresponding updates for previous-page
otherwise we loose the necessary value.
340 \tl_gset_eq:cc { g__mark_page_top_ ##1 _tl }
341 { g__mark_first-column_top_ ##1 _tl }
342 \tl_gset_eq:cc { g__mark_ page_first_ ##1 _tl }
343 { g__mark_first-column_first_ ##1 _tl }
344 \tl_gset_eq:cc { g__mark_page_last_ ##1 _tl }
345 { g__mark_last-column_last_ ##1 _tl }
346 }
347 }
348 ⟨∗trace⟩
349 __mark_debug:n
350 {
351 __mark_status:n
352 { in~ OR~ (
353 \legacy_if:nTF {@twoside}
354 { twoside-
355 \int_if_odd:nTF \c@page
356 { odd }{ even }
357 }
358 { oneside }
359 \space
360 \legacy_if:nTF {@firstcolumn}
361 { first~ }{ second~ }
362 column)
363 }
364 }
365 ⟨/trace⟩
366 }

(End definition for __mark_update_dblcol_structures:.)

367 ⟨@@=⟩

\@expl@@@mark@update@singlecol@structures@@
\@expl@@@mark@update@dblcol@structures@@ 368 \cs_new_eq:NN \@expl@@@mark@update@singlecol@structures@@

369 __mark_update_singlecol_structures:
370 \cs_new_eq:NN \@expl@@@mark@update@dblcol@structures@@
371 __mark_update_dblcol_structures:

(End definition for \@expl@@@mark@update@singlecol@structures@@ and \@expl@@@mark@update@dblcol@structures@@.)

8.2 Other LATEX 2ε output routines
This section will cover multicol and other packages altering or providing their own output
routine. Not done yet.
372 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}{ltmarks}%
373 ⟨latexrelease⟩ {Undo~Marks~handling}
374 ⟨latexrelease⟩

We keep the interface commands around even if we roll back in case they are used in
packages that don’t roll back. Not likely to do a lot of good, but then there is not much
we can do, but this at least then doesn’t give errors.
375 ⟨latexrelease⟩\DeclareRobustCommand \NewMarkClass[1]{}

21

376 ⟨latexrelease⟩\DeclareRobustCommand \InsertMark[2]{}
377 ⟨latexrelease⟩\RenewExpandableDocumentCommand \FirstMark { O{} m } { }
378 ⟨latexrelease⟩\RenewExpandableDocumentCommand \LastMark { O{} m } { }
379 ⟨latexrelease⟩\RenewExpandableDocumentCommand \TopMark { O{} m } { }
380 ⟨latexrelease⟩\RenewExpandableDocumentCommand \IfMarksEqualTF { O{} mmm }{ }
381 ⟨latexrelease⟩
Same here, this avoided extra roll back code in the OR.
382 ⟨latexrelease⟩\let \@expl@@@mark@update@singlecol@structures@@ \relax
383 ⟨latexrelease⟩\let \@expl@@@mark@update@dblcol@structures@@ \relax
384 ⟨latexrelease⟩
385 ⟨latexrelease⟩
386 ⟨latexrelease⟩\EndModuleRelease

387 \ExplSyntaxOff

388 ⟨/2ekernel | latexrelease⟩

Reset module prefix:
389 ⟨@@=⟩

22

	Contents
	1 Introduction
	2 Design-level and code-level interfaces
	2.1 Debugging mark code

	3 Application examples
	4 Legacy LaTeX2ε interface
	4.1 Legacy design-level and document-level interfaces
	4.2 Legacy interface extensions

	5 Notes on the mechanism
	6 Internal output routine functions
	7 The Implementation
	7.1 Allocating new mark classes
	7.2 Updating mark structures
	7.3 Placing and retrieving marks
	7.4 Comparing mark values
	7.5 Messages
	7.6 Debugging the mark structures
	7.7 Designer-level interfaces

	8 LaTeX2ε integration
	8.1 Core LaTeX2ε integration
	8.2 Other LaTeX2ε output routines

