The 1thooks package®

Frank Mittelbach'
July 21, 2020

Contents
1 Introduction
2 Package writer interface

2.1 BTEX2c interfaces o . . oL o
2.1.1 Declaring hooks and using them in code
2.1.2 Updating code for hooks L.
2.1.3 Hook names and default labels
2.1.4 Defining relations between hook code.
2.1.5 Querying hooks oL o
2.1.6 Displaying hook code
2.1.7 Debugging hook code L.

2.2 L3 programming layer (expl3) interfaces

2.3 On the order of hook code execution

2.4 The use of “reversed” hooks L L.

2.5 Private ITEX kernel hooks L oL

2.6 Legacy BTEX 2¢ interfaces L L.

2.7 I¥TEX2¢ commands and environments augmented by hooks
2.7.1 Generic hooks for all environments
2.7.2 Hooks provided by \begin{document}
2.7.3 Hooks provided by \end{document}
2.7.4 Hooks provided \shipout operations
2.7.5 Hooks provided file loading operations

The Implementation

3.1 Debugging e
3.2 Borrowing from internals of other kernel modules
3.3 Declarations L
3.4 Providing new hooks o
3.5 Parsingalabel oo
3.6 Setting rules for hooks code L.
3.7 Specifying code for next invocation oo
3.8 Usingthehook L
3.9 Queryingahook

*This package has version v0.9b dated 2020/07/19, © XTEX Project.
tCode improvements for speed and other goodies by Phelype Oleinik

N

© © 00O Utk N

3.10 MESSAZES « v v v v e e e e e e e e e e e e e 44

3.11 ITEX 2¢ package interface commands 44
3.12 Set up existing BTEX 2z hooks L. 47
4 Generic hooks for environments 48
5 Generic hooks for file loads 49
6 Hooks in \begin document 49
7 Hooks in \enddocument 50
7.1 Adjusting at atveryend interfaces 52
8 A package version of the code for testing 52
8.1 Core hook management code (kernel part) 92
8.2 Packageoptions L L L 53
8.3 Temporarily patching package until changed 53
Index 53

1 Introduction

Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface

The hook management system is offered as a set of CamelCase commands for traditional
BTEX 2¢ packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of ITEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

\NewHook

\NewReversedHook

\NewMirroredHookPair

\UseHook

\UseOneTimeHook

2.1 PETEX 2¢ interfaces
2.1.1 Declaring hooks and using them in code

With two exceptions, hooks have to be declared before they can be used. The exceptions
are hooks in environments (i.e., executed at \begin and \end) and hooks run when
loading files, e.g. before and after a package is loaded, etc. Their hook names depend on
the environment or the file name and so declaring them beforehand is difficult.

\NewHook {(hook)}

Creates a new (hook). If this is a hook provided as part of a package it is suggested
that the (hook) name is always structured as follows: (package-name)/{hook-name). If
necessary you can further subdivide the name by adding more / parts. If a hook name
is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewReversedHook {(hook)}

Like \NewHook declares a new (hook). the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewMirroredHookPair {(hook-1)} {(hook-2)}

A shorthand for \NewHook{(hook-1)}\NewReversedHook{(hook-2)}.
The (hooks) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\UseHook {(hook)}

Execute the hook code inside a command or environment.'

Before \begin{document} the fast execution code for a hook is not set up, so in
order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\UseOneTimeHook {(hook)}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \(addto-cmd) command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \(addto-cmd) to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

FMi: Maybe add an error version as well?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\AddToHook

\RemoveFromHook

2.1.2 Updating code for hooks

\AddToHook {(hook)}[{label)]{(code)}

Adds (code) to the (hook) labeled by (label). If the optional argument (label) is not
provided, if \AddToHook is used in a package/class, then the current package/class name
is used, otherwise top-level is used (see section 2.1.3).

If there already exists code under the (label) then the new (code) is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the (label), first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared later then obviously the added (code) will never be executed. This allows for
hooks to work regardless of package loading order and enables packages to add to hook of
other packages without worrying whether they are actually used in the current document.
See section 2.1.5.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\RemoveFromHook {(hook)}[(label)]

Removes any code labeled by (label) from the (hook). If the optional argument (label) is
not provided, if \AddToHook is used in a package/class, then the current package/class
name is used, otherwise top-level is used.

If the optional argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}

\RemoveFromHook{env/quote/before}
. now back to normal for further quotes

Note that you can’t cancel the setting with
\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means to font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

\AddToHookNext

\AddToHookNext {(hook)}{(code)}

Adds (code) to the next invocation of the (hook). The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.

Using the declaration is a global operation, i.e., the code is not lost, even if the
declaration is used inside a group and the next invocation happens after the group. If
the declaration is used several times before the hook is executed then all code is executed
in the order in which it was declared.?

The hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.5.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.3 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a (label)
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the (label).

Using an explicit (label) is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same (label) throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

It is not enforced, but highly recommended that the hooks defined by a package, and
the (labels) used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a (hook) and in a (label). If (hook) name or (label) consist just of a single dot
(.), or starts with a dot followed by a slash (./) then the dot denotes the (default label)
(usually the current package or class name—see \DeclareDefaultHookLabel). A “.” or
“./” anywhere else in a (hook) or in (label) is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}

\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./subl{code}
\DeclareHookRule{begindocument}{.}{<}{babel}

\AddToHook {file/after/foo.tex}{code}

are equivalent to:

\NewHook {mypackage/hook} [mypackage]{code}

\AddToHook {mypackage/hook}[mypackage]{code}

\AddToHook {mypackage/hook} [mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{<}{babel}

\AddToHook {file/after/foo.tex}{code} % unchanged

2There is no mechanism to reorder such code chunks (or delete them).

\DeclareDefaul tHookLabel

The (default label) is automatically set to the name of the current package or class
(using \@currname). If \@currname is not set (because the hook command is used outside
of a package, or the current file wasn’t loaded with \usepackage or \documentclass),
then the top-level is used as the (default label).

This syntax is available in all (label) arguments and most (hook), both in the ITEX 2¢
interface, and the KTEX3 interface described in section 2.2.

Note, however, that the replacement of . by the (default label) takes place when
the hook command is executed, so actions that are somehow executed after the package
ends will have the wrong (default label) if the dot-syntax is used. For that reason, this
syntax is not available in \UseHook (and \hook_use:n) because the hook is most of
the time used outside of the package file in which it was defined. This syntax is also
not available in the hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF) and
\IfHookExistTF (and \hook_if_exist:nTF) because these conditionals are used in some
performance-critical parts of the hook management code, and because they are usually
used to refer to other package’s hooks, so the dot-syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as (label), then the (default label) can be set
using \DeclareDefaultHookLabel:

\DeclareDefaultHookLabel {(default label)}

Sets the (default label) to be used in (label) arguments. If \DeclareDefaultHookLabel
is not used in the current package, \@currname is used instead. If \@currname is not set,
the code is assumed to be in the main document, in which case top-level is used.

The effect of \DeclareDefaultHookLabel holds for the current file, and is reset to
the previous value when the file is closed.

2.1.4 Defining relations between hook code

The default assumption is that code added to hooks by different packages is independent
and the order in which it is executed is irrelevant. While this is true in many case it is
obviously false in many others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

\DeclareHookRule

\DeclareHookRule {(hook)}{(labell)}{(relation)}{(label2)}

Defines a relation between (labell) and (label2) for a given (hook). If (hook) is 77 this
defines a relation for all hooks that use the two labels, i.e., that have chunks of code
labeled with (labell) and (label2). Rules specific to a given hook take precedence over
default rules that use 77 as the (hook).

Currently, the supported relations are the following:

before or < Code for (labell) comes before code for (label2).

after or > Code for (labell) comes after code for (label2).

incompatible-warning Only code for either (labell) or (label2) can appear for that hook (a way to say

that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a ETEX error is raised, and

the code for both labels are dropped from that hook until the conflict is resolved.

removes Code for (labell) overwrites code for (label2). More precisely, code for (label2) is

dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for (labell) and (label2) is irrelevant. This rule is there to undo

\ClearHookRule

\DeclareDefaultHookRule

an incorrect rule specified earlier.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\ClearHookRule{(hook)}{(label1)}{(label2)}

Syntactic sugar for saying that (labell) and (label2) are unrelated for the given (hook).

\DeclareDefaultHookRule{(labell)}{(relation)}{(label2)}

This sets up a relation between (labell) and (label2) for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with 7?7 as the
hook name.)

Declaring default rules is only supported in the document preamble.?

The (label) can be specified using the dot-syntax to denote the current package name.
See section 2.1.3.

2.1.5 Querying hooks
Simpler data types, like token lists, have three possible states; they can:

e exist and be empty;

e exist and be non-empty; and

3Trying to do so, e.g., via \DeclareHookRule with 77 has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

\IfHookEmptyTF *

\IfHookExistTF «*

e mnot exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: they have four possible states. A hook may exist or
not, and either way it may or may not be empty. This means that even a hook that
doesn’t exist may be non-empty.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool. A hook is said to exist when it was declared with \NewHook or
some variant thereof.

\IfHookEmptyTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookExistTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

FMi: Would be helpful if we provide some use cases

2.1.6 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

\ShowHook

\DebugHookOn
\DebugHookOff

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_use:n

\hook_use_once:n

\ShowHook {(hook)}

Displays information about the (hook) such as
o the code chunks (and their labels) added to it,
e any rules set up to order them,

EFMi: currently this is missing the default rules that apply, guess that
needs fixing

o the computed order (if already defined),
e any code executed on the next invocation only.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.7 Debugging hook code

\DebugHookOn

Turn the debugging of hook code on or off. This displays changes made to the hook data
structures. The output is rather coarse and not really intended for normal use.

2.2 L3 programming layer (expl3) interfaces

This is a quick summary of the ITEX3 programming interfaces for use with packages
written in expl3. In contrast to the KTEX2¢ interfaces they always use mandatory
arguments only, e.g., you always have to specify the (label) for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

\hook_new:n{(hook)}
\hook_new_pair:nn{(hook-1)}{(hook-2)}

Creates a new (hook) with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_use:n {(hook)}
Executes the {(hook)} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.
\hook_use_once:n {({hook)}

Changes the {(hook)} status so that from now on any addition to the hook code is
executed immediately. Then execute any {(hook)} code already set up.

FMi: better L3 name?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_gput_code:nnn

\hook_gput_next_code:nn

\hook_gremove_code:nn

\hook_gset_rule:nnnn

\hook_if_empty_p:n *
\hook_if_empty:nTF *

\hook_gput_code:nnn {(hook)} {(label)} {(code)}

Adds a chunk of {code) to the (hook) labeled (label). If the label already exists the (code)
is appended to the already existing code.

If code is added to an external (hook) (of the kernel or another package) then the
convention is to use the package name as the (label) not some internal module name or
some other arbitrary string.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gput_next_code:nn {(hook)} {{code)}

Adds a chunk of (code) for use only in the next invocation of the (hook). Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
{code).

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_gremove_code:nn {(hook)} {(label)}

Removes any code for (hook) labeled (label).

If the code for that (label) wasn’t yet added to the (hook), an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gset_rule:nnnn {(hook)} {(labell)} {(relation)} {(label2)}

Relate (labell) with (label2) when used in (hook). See \DeclareHookRule for the allowed
(relation)s. If (hook) is 77 a default rule is specified.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3. The dot-syntax is parsed in both (label) arguments,
but it usually makes sense to be used in only one of them.

\hook_if_empty:n {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

10

\hook_if_exist_p:n x \hook_if_exist:n {(hook)} {(true code)} {(false code)}

Mook _1f_exist:alF * ot if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or

\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

FMi: what are the results for generic hooks that do not need to be declared?

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_debug_on: \hook_debug_on:

\hook_debug_of?: Turns the debugging of hook code on or off. This displays changes to the hook data.

2.3 On the order of hook code execution

Chunks of code for a (hook) under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}

\AddToHook{myhook} [packageA]l {\typeout{A}}
\AddToHook{myhook} [packageB] {\typeout{B}}
\AddToHook{myhook} [packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packagel, packageB, packageC
which you can verify with \ShowHook{myhook}:

The hook ’myhook’:

Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}

Extra code next invocation:

Rules:
Execution order:
packageA, packageB, packageC

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, or example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook} [packageA]
\AddToHook{myhook} [packageA] {\typeout{A altl}}

11

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}
instead of the previous lines we get

The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Extra code next invocation:
Rules:
packagel |packageB with relation before
Execution order (after applying rules):
packageA, packageC, packageB

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{label-3}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules
that partially or fully define the order (in which you can rely on them being fulfilled).

2.4 The use of “reversed” hooks

You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example®, suppose there is a package
adding the following;:

\AddToHook{env/quote/beforel} [package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshapel}}

As a result, all quotes will be in italics. Now suppose further that the user wants the
quotes also in blue and therefore adds:

4there are simpler ways to achieve the same effect.

12

\usepackage{color}
\AddToHook{env/quote/before}{\begin{color}{blue}}
\AddToHook{env/quote/after} {\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, top-level
or vice versa) and as a result, would get:
g

\begin{itshape}\begin{color}{bluel} ...
\end{itshape}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

The hook ’env/quote/after’:
Code chunks:
package-1 -> \end {itshape}
top-level -> \end {color}
Extra code next invocation:

Rules:
Execution order (after reversal):
top-level, package-1

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

2.5 Private BTEX kernel hooks

There are a few places where it is absolutely essential for IATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document un-
necessary slow, because there has to be sorting even through the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break BTEX).

For that reason such code is not using the hook management, but instead private
kernel commands directly before or after a public hook with the following naming con-
vention: \@kernel@before@(hookname) or \@kernel@after@(hookname). For example,
in \enddocument you find

\UseHook{enddocument}/,
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.”

5As with everything in TEX there is not enforcement of this rule, and by looking at the code it is

13

2.6 Legacy KETEX 2¢ interfaces

TEX 2¢ offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management several additional hooks have been added to ETEX
and more will follow. See the next section for what is already available.

\AtBeginDocument \AtBeginDocument [{label)] {(code)}

If used without the optional argument (label), it works essentially like before, i.e., it is
adding (code) to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level if done outside of
a package or class or with the package/class name if called inside such a file.

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after the top-level code. When using the optional argument the call is
equivalent to running \AddToHook {begindocument} [(label)] {(code)}.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtEndDocument \AtEndDocument [(label)] {{code)}
Like \AtBeginDocument but for the enddocument hook.

\AtBeginDvi \AtBeginDvi [(Iabel)] {(code)}

This hook is discussed in conjunction with the shipout hooks.

2.7 FKETEX 2¢ commands and environments augmented by hooks

intro to be written

2.7.1 Generic hooks for all environments

Every environment (env) has now four associated hooks coming with it:

env/(env)/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/(env)/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/(env)/end This is executed as part of \end directly in front of the code specific to
the end of the environment (e.g., the third argument of \newenvironment).

easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

14

env/(env)/after This is executed as part of \end after the code specific to the envi-
ronment end and after the environment group has ended. Its scope is therefore not
restricted by the environment.

This hook is implemented as a reversed hook so if two packages add code to
env/(env)/before and to env/(env)/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

In contrast to other hooks these hooks do not need to be declared using \NewHook.

The hooks are only executed if \begin{(env)} and \end{(env)} is used. If the
environment code is executed via low-level calls to \(env) and \end(env) (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

2.7.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one had to fill using
\AtBeginDocument. Experience has shown that this single hook in one place was not
enough and as part of adding the general hook management system a number of addi-
tional hooks have been added at this point. The places for hooks have been chosen to
provide the same support as offered by external packages, such as etoolbox and others
that augmented \document to gain better control.

Supported are now the following hooks:

env/document/before This is the generic environment hook executed effectively before
\begin{document} starts, i.e., one can think of it as a hook for code at the end of
the preamble section.

env/document/begin This is the second generic environment hook that is executed after
the environment has started its group. But given that for the document environ-
ment this group is canceled there is little difference to the previous one as the two
are directly executed one after another (the only difference is that in this hook
\@currenvir is now set to document but anybody adding to this hook would know
that already).

begindocument This hook is added to by \AtBeginDocument and is executed after the
.aux file as be read in and most initialization are done, so they can be altered and
inspected by the hook code. It is followed by a small number of further initializa-
tions that shouldn’t be altered and are therefore coming later.

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.

15

2.7.3 Hooks provided by \end{document}

TEX 2¢ always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in IXTEX 2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks:

env/document/end The generic hook inside \end.

enddocument The hook associated with \AtEndDocument. It is immediately called after
the previous hook so there could be just one.’

When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data). It is also the correct place to set up any
testing code to be run when the .aux file is re-read in the next step.

After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.

This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \1listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.

6We could make \AtEndDocument just fill the env/document/end but maybe that is a bit confusing.

16

\g__hook_debug_bool

\hook_debug_on:
\hook_debug_off:
__hook_debug:n
__hook_debug_gset:

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
IXTEX needs to be run several times, so initially it might get executed on the wrong page.
See section 2.7.4 for where to find the details.

2.7.4 Hooks provided \shipout operations
There are several hooks and mechanisms added to ITEX’s process of generating pages.
These are documented in 1tshipout-doc.pdf or with code in 1tshipout-code.pdf.

2.7.5 Hooks provided file loading operations

There are several hooks added to KTEX’s process of loading file via its high-level
interfaces such as \input, \include, \usepackage, etc. These are documented in
1ltfilehook-doc.pdf or with code in 1tfilehook-code.pdf.

3 The Implementation

1 (@@=hook)

> (*2ekernel)

5 \ExplSyntaxOn
3.1 Debugging

Holds the current debugging state.
+ \bool_new:N \g__hook_debug_bool

(End definition for \g__hook_debug_bool.)

Turns debugging on and off by redefining __hook_debug:n.

s \cs_new_eq:NN __hook_debug:n \use_none:n
s \cs_new_protected:Npn \hook_debug_on:

7 A

8 \bool_gset_true:N \g__hook_debug_bool

9 __hook_debug_gset:

10 }

11 \cs_new_protected:Npn \hook_debug_off:

12 {

13 \bool_gset_false:N \g__hook_debug_bool

14 __hook_debug_gset:

15 3

16 \cs_new_protected:Npn __hook_debug_gset:

i A{

18 \cs_gset_protected:Npx __hook_debug:n ##1
19 { \bool_if:NT \g__hook_debug_bool {##1} }
0}

(End definition for \hook_debug_on: and others. These functions are documented on page 11.)

17

3.2 Borrowing from internals of other kernel modules
__hook_str_compare:nn Private copy of __str_if_eq:nn
21 \cs_new_eq:NN __hook_str_compare:nn __str_if_eq:nn

(End definition for __hook_str_compare:nn.)

3.3 Declarations

\1__hook_return_tl Scratch variables used throughout the package.

\1__hook_tmpa_tl 22 \tl_new:N \1__hook_return_tl
\1__hook_tmpb_tl 23 \tl_new:N \1__hook_tmpa_tl
22 \tl_new:N \1__hook_tmpb_tl

(End definition for \1__hook_return_t1, \1__hook_tmpa_tl, and \1__hook_tmpb_t1.)
\g__hook_all_seq In a few places we need a list of all hook names ever defined so we keep track if them in

this sequence.
> \seq_new:N \g__hook_all_seq

(End definition for \g__hook_all_seq.)
\g__hook_removal_list_prop A property list to hold delayed removals.
26 \tl_new:N \g__hook_removal_list_tl
(End definition for \g__hook_removal_list_prop.)
\1__hook_cur_hook_t1l Stores the name of the hook currently being sorted.
>7 \tl_new:N \1__hook_cur_hook_tl
(End definition for \1__hook_cur_hook_t1.)
\g__hook_code_temp_prop A property list to temporarily save the original one so that it isn’t permanently changed
during sorting.
s \prop_new:N \g__hook_code_temp_prop
(End definition for \g__hook_code_temp_prop.)

\g__hook_hook_curr_name_t1l Default label used for hook commands, and a stack to keep track of packages within
\g__hook_name_stack_seq packages.

20 \tl_new:N \g__hook_hook_curr_name_tl
30 \seqg_new:N \g__hook_name_stack_seq

(End definition for \g__hook_hook_curr_name_t1 and \g__hook_name_stack_seq.)
__hook_tmp:w Temporary macro for generic usage.
31 \cs_new_eq:NN __hook_tmp:w 7
(End definition for __hook_tmp:w.)
\tl_gremove_once:Nx Some variants of expl3 functions.
FMi: should be moved to expl3
:2 \cs_generate_variant:Nn \tl_gremove_once:Nn { Nx }
(End definition for \t1l_gremove_once:Nx. This function is documented on page 77.)
\s__hook_mark Scan mark used for delimited arguments.
33 \scan_new:N \s__hook_mark

(End definition for \s__hook_mark.)

18

\g__hook_..
\g__hook_..

\g__hoo
\g__hook_..

._code_prop
._rules_prop
k_..._code_tl

._next_code_tl

\hook_new:n

3.4 Providing new hooks

Hooks have a (name) and for each hook we have to provide a number of data structures.
These are

\g__hook_(name)_code_prop A property list holding the code for the hook in separate
chunks. The keys are by default the package names that add code to the hook, but
it is possible for packages to define other keys.

\g__hook_(name)_rules_prop A property listing holding relation info how the code
chunks should be ordered within a hook. This is used for debugging only. The
actual rule for a (hook) is stored in a separate token lists named \g__hook_({hook)_-
rule_(labell)|(label2)_t1 for a pair of labels.

\g__hook_(name)_code_t1 The code that is actually executed when the hook is called
in the document is stored in this token list. It is constructed from the code chunks
applying the information.

\g__hook_(name)_next_code_t1 Finally there is extra code (normally empty) that is
used on the next invocation of the hook (and then deleted). This can be used to
define some special behavior for a single occasion from within the document.

(End definition for \g__hook_..._code_prop and others.)

The \hook_new:n declaration declare a new hook and expects the hook (name) as its
argument, e.g., begindocument.

s \cs_new_protected:Npn \hook_new:n #1

35 {

36 \exp_args:Nx __hook_new:n

37 { __hook_parse_label_default:nn {#1} { top-level } }
38 }

30 \cs_new_protected:Npn __hook_new:n #1 {
We check for one of the internal data structures and if it already exists we complain.

0 \hook_if_exist:nTF {#1}
a1 { \ErrorHookExists }

Otherwise we add the hook name to the list of all hooks and allocate the necessary data
structures for the new hook.

a2 { \seq_gput_right:Nn \g__hook_all_seq {#1}

This is only used by the actual code of the current hook, so declare it normally:
43 \tl_new:c { g__hook_#1_code_tl }

Now ensure that the base data structure for the hook exists:
a4 __hook_declare:n {#1}

The \g__hook_(hook)_labels_clist holds the sorted list of labels (once it got sorted).
This is used only for debugging.

a5 \clist_new:c {g__hook_#1_labels_clist}

Some hooks should reverse the default order of code chunks. To signal this we have a
token list which is empty for normal hooks and contains a - for reversed hooks.

a6 \tl_new:c { g__hook_#1_reversed_tl }

19

__hook_declare:n

\hook_new_reversed:n

\hook_new_pair:nn

__hook_provide legacy_interface:n

The above is all in L3 convention, but we also provide an interface to legacy I2TEX 2¢ for
use in the current kernel. This is done in a separate macro.

a7 __hook_provide_legacy_interface:n {#1}

48 }

29 F

(End definition for \hook_new:n. This function is documented on page 9.)

This function declares the basic data structures for a hook without actually declaring the
hook itself. This is needed to allow adding to undeclared hooks. Here it is unnecessary
to check whether both variables exist, since both are declared at the same time (either
both exist, or neither).

s0 \cs_new_protected:Npn __hook_declare:n #1

51 {

52 __hook_if_exist:nF {#1}

53 {

54 \prop_new:c { g__hook_#1_code_prop }

55 \tl_new:c { g__hook_#1_next_code_tl }

56 \prop_new:c { g__hook_#1_rules_prop } % only for debugging
57 }

58 }

(End definition for __hook_declare:n.)

Declare a new hook. The default ordering of code chunks is reversed, signaled by setting
the token list to a minus sign.

59 \cs_new_protected:Npn \hook_new_reversed:n #1 {

60 \hook_new:n {#1}

ot \tl_gset:cn { g__hook_#1_reversed_tl } { - }

6 F

(End definition for \hook_new_reversed:n. This function is documented on page 9.)

A shorthand for declaring a normal and a (matching) reversed hook in one go.
63 \cs_new_protected:Npn \hook_new_pair:nn #1#2 {
s« \hook_new:n {#1} \hook_new_reversed:n {#2}
65 T

(End definition for \hook_new_pair:nn. This function is documented on page 9.)

The IMTEX legacy concept for hooks uses with hooks the following naming scheme in the
code: \@. . .hook.

We follow this convention and insert the hook code using this naming scheme in
IMTEX 2¢. At least as long as this code is in a package, some such hooks are already
filled with data when we move them over to the new scheme. We therefore insert already
existing code under the label legacy into the hook management machinery and then
replace the \@. . .hook with its counterpart which is \g__hook_#1_code_t1.”

o \cs_new_protected:Npn __hook_provide_legacy_interface:n #1

67 {

7This means one extra unnecessary expansion on each invocation in the document but keeps the
IATEX 2¢ and the L3 coding side properly separated.

20

\

__hook parse_label default:mn

__hook parse label default:Vn

__hook_parse_dot_label:nn
__hook_parse_dot_label:nw
__hook_parse dot_label cleanup:w

__hook parse dot label aux:nw

If the expl3 code is run with checking on then assigning or using non L3 names such as
\@enddocumenthook with expl3 functions will trigger warnings so we run this code with
debugging explicitly suspended.

68 \debug_suspend:

69 \tl_if_exist:cT { @#1lhook }
Of course if the hook exists but is still empty, there is no need to add anything under
legacy or the current package name.

70 {

7 \tl_if_empty:cF { @#1lhook }

72 {

7 __hook_gput_code:nxv {#1}

74 { __hook_parse_label_default:Vn \c_novalue_tl { legacy } }
75 { @#1hook }

76 }

77 }

We need a global definition in case the declaration is done inside a group (which happens
below at the end of the file). This is another reason why need to suspend checking,
otherwise \t1l_gset:co would complain about \@. . .hook not starting with \g_.

78 \tl_gset:co{@#1hook}{\cs:w g__hook_#1_code_tl\cs_end:}

79 \debug_resume:

80 }

(End definition for __hook_provide_legacy_interface:n.)

3.5 Parsing a label

This macro checks if a label was given (not \c_novalue_t1), and if so, tries to parse the
label looking for a leading . to replace for \@currname. Otherwise __hook_currname_-
or_default:n is used to pick \@currname or the fallback value.

s1 \cs_new:Npn __hook_parse_label_default:nn #1 #2

82 {

83 \tl_if_novalue:nTF {#1}

84 { __hook_currname_or_default:n {#2} }

85 { \tl_trim_spaces_apply:nN {#1} __hook_parse_dot_label:nn {#2} }
86 }

&7 \cs_generate_variant:Nn __hook_parse_label_default:nn { V }

(End definition for __hook_parse_label_default:nn.)

Start by checking if the label is empty, which raises an error, and uses the fallback value.
If not, split the label at a ./, if any, and check if no tokens are before the ./, or if the
only character is a .. If these requirements are fulfilled, the leading . is replaced with
__hook_currname_or_default:n. Otherwise the label is returned unchanged.

s \cs_new:Npn __hook_parse_dot_label:nn #1 #2

89 {

9% \tl_if_empty:nTF {#1}

91 {

92 \msg_expandable_error:nnn { hooks } { empty-label } {#2}
03 #2

94 }

% {

9% \str_if_eq:nnTF {#1} { . }

21

97 { __hook_currname_or_default:n {#1} }
98 { __hook_parse_dot_label:nw {#2} #1 ./ \s__hook_mark }

99 ¥

100 }

101 \cs_new:Npn __hook_parse_dot_label:nw #1 #2 ./ #3 \s__hook_mark
102 {

103 \tl_if_empty:nTF {#2}

104 { __hook_parse_dot_label_aux:nw {#1} #3 \s__hook_mark }
105 {

106 \tl_if_empty:nTF {#3}

107 {#2}

108 { __hook_parse_dot_label_cleanup:w #2 ./ #3 \s__hook_mark }
109 }

110 }

111 \cs_new:Npn __hook_parse_dot_label_cleanup:w #1 ./ \s__hook_mark {#1}
112 \cs_new:Npn __hook_parse_dot_label_aux:nw #1 #2 ./ \s__hook_mark
113 { __hook_currname_or_default:n {#1} / #2 }

(End definition for __hook_parse_dot_label:nn and others.)

__hook_currnane_or default:n Uses \g__hook_hook_curr_name_t1 if it is set, otherwise tries \@currname. If neither is
set, uses the fallback value #1 (usually top-level).

114 \cs_new:Npn __hook_currname_or_default:n #1

115 {

116 \tl_if_empty:NTF \g__hook_hook_curr_name_tl
117 {

118 \tl_if_empty:NTF \@currname

119 {#1}

120 { \@currname }

121 3

122 { \g__hook_hook_curr_name_t1l }

123 }

(End definition for __hook_currname_or_default:n.)

\hook_gput_code:nnn With \hook_gput_code :nnn{{hook)}{{label)}{{code)} a chunk of (code) is added to an
__hook_gput_code:nnn existing <h00k>1abekx1wdth ﬂabeb.

__hook_gput_code:nxv 124 \cs_new_protected:Npn \hook_gput_code:nnn #1 #2
__hook hook gput code do:nnn IECH

126 \exp_args:Nxx __hook_gput_code:nnn
127 { __hook_parse_label_default:nn {#1} { top-level } }
128 { __hook_parse_label_default:nn {#2} { top-level } }
129 }
120 \cs_new_protected:Npn __hook_gput_code:nnn #1 #2 #3
131 {
First we check if the hook exists.
132 __hook_if_marked_removal:nnTF {#1} {#2}
133 { __hook_unmark_removal:nn {#1} {#2} }
134 {
First we check if the hook exists.
135 \hook_if_exist:nTF {#1}

22

__hook_gput undeclared_hook:nnn

__hook try declaring generic hook:nnn

__hook try declaring generic next hook:nn

If so we simply add (or append) the new code to the property list holding different chunks
for the hook. At \begin{document} this is then sorted into a token list for fast execution.
136 {
137 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}
However, if there is an update within the document we need to alter this execution code
which is done by __hook_update_hook_code:n. In the preamble this does nothing.

138 __hook_update_hook_code:n {#1}

139 }

140 { __hook_try_declaring_generic_hook:nnn {#1} {#2} {#3} }
141 }

142 }

s \cs_generate_variant:Nn __hook_gput_code:nnn { nxv }

This macro will unconditionally add a chunk of code to the given hook.

14 \cs_new_protected:Npn __hook_hook_gput_code_do:nnn #1 #2 #3
145 {

us % However, first some debugging info if debugging is enabled:

ur % \begin{macrocode}

148 __hook_debug:n{\iow_term:x{***x~ Add~ to~

149 \hook_if_exist:nF {#1} { undeclared~ }
150 hook~ #1~ (#2)

151 \on@line\space <-~ \tl_to_str:n{#3}} }

Then try to get the code chunk labeled #2 from the hook. If there’s code already there,
then append #3 to that, otherwise just put #3.

152 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
153

154 \prop_gput:cno { g__hook_#1_code_prop } {#2}

155 { \1__hook_return_tl #3 }

156 }

157 { \prop_gput:cnn { g__hook_#1_code_prop } {#2} {#3} }
158 }

(End definition for \hook_gput_code:nnn, __hook_gput_code:nnn, and __hook_hook_gput_code_-
do:nnn. This function is documented on page 10.)

Often it may happen that a package A defines a hook foo, but package B, that adds
code to that hook, is loaded before A. In such case we need to add code to the hook
before its declared.

150 \cs_new_protected:Npn __hook_gput_undeclared_hook:nnn #1 #2 #3

160 {

161 __hook_declare:n {#1}

162 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}

163 }

(End definition for __hook_gput_undeclared_hook:nnn.)

These entry-level macros just pass the arguments along to the common __hook_try_-
declaring_generic_hook:nNNnn with the right functions to execute when some action
is to be taken.

The wrapper __hook_try_declaring_generic_hook:nnn then defers \hook_-
gput_code:nnn if the generic hook was declared, or to __hook_gput_undeclared_-
hook:nnn otherwise (the hook was tested for existence before, so at this point if it isn’t
generic, it doesn’t exist).

23

The wrapper __hook_try_declaring generic_next_hook:nn for next-execution
hooks does the same: it defers the code to \hook_gput_next_code:nn if the generic hook
was declared, or to __hook_gput_next_do:nn otherwise.

164 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1

165 {

166 __hook_try_declaring_generic_hook:nNNnn {#1}

167 \hook_gput_code:nnn __hook_gput_undeclared_hook:nnn

168 }

160 \cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
170 {

171 __hook_try_declaring_generic_hook:nNNnn {#1}

172 \hook_gput_next_code:nn __hook_gput_next_do:nn

173 }

__hook_try_declaring_generic_hook:nNNnn now splits the hook name at the first /

(if any) and first checks if it is a file-specific hook (they require some normalization) using

\hook try declaring generic hook:nllimn __hook_if_file_hook:wTF. If not then check it is one of a predefined set for generic

hook try declaring generic hook split:nllinn names. We also split off the second component to see if we have to make a reversed hook.
_hook_try_declaring generic hook:inTF In either case the function returns (¢rue) for a generic hook and (false) in other cases.

172 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nNNnn #1

175 {

176 __hook_if_file_hook:wTF #1 / / \s__hook_mark

177 {

178 \exp_args:Ne __hook_try_declaring_generic_hook_split:nNNnn
179 { \exp_args:Ne __hook_file_hook_normalise:n {#1} }

180 }

181 { __hook_try_declaring_generic_hook_split:nNNnn {#1} }

182 }

153 \cs_new_protected:Npn __hook_try_declaring_generic_hook_split:nNNnn #1 #2 #3
184 {

185 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
186 {#2}

187 { #3 } {#1}

188 }

150 \prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
190 #1 / #2 / #3 / #4 \scan_stop: #5 { TF }

191 {

102 \tl_if_empty:nTF {#2}

103 { \prg_return_false: }

194 {

195 \prop_if_in:NnTF \c__hook_generics_prop {#1}

196 {

107 \hook_if_exist:nF {#5} { \hook_new:n {#5} }

After having declared the hook we check the second component (for file hooks) or the
third component for environment hooks) and if it is on the list of components for which
we should have declared a reversed hook we alter the hook data structure accordingly.

108 \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}

199 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

200 {

201 \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
202 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

203 }

24

Now that we know that the hook is declared we can add the code to it.

204 \prg_return_true:

205 }

206 { \prg_return_false: }
207 }

208 }

(End definition for __hook_try_declaring_generic_hook:nnn and others.)

__hook_if file hook _p:w __hook_if_file_hook:wTF checks if the argument is a valid file-specific hook (not, for
__hook_if_file hook:wTF example, file/before, but file/before/foo.tex). If it is a file-specific hook, then it
executes the (true) branch, otherwise (false).
A file-specific hook is file/(position)/(name). If any of these parts don’t exist,
it is a general file hook or not a file hook at all, so the conditional evaluates to (false).
Otherwise, it checks that the first part is file and that the (position) is in the \c__-
hook_generics_file_prop.
A property list is used here to avoid having to worry with catcodes, because expl3’s
file name parsing turns all characters into catcode-12 tokens, which might differ from
hand-input letters.

200 \prg_new_conditional:Npnn __hook_if_file_hook:w

210 #1 / #2 / #3 \s__hook_mark { TF }

211 {

212 \str_if_eq:nnTF {#1} { file }

213 {

214 \bool_lazy_or:nnTF

215 { \tl_if_empty_p:n {#3} }

216 { \str_if_eq p:nn {#3} { / } }
217 { \prg_return_false: }

218 {

219 \prop_if_in:NnTF \c__hook_generics_file_prop {#2}
220 { \prg_return_true: }

221 { \prg_return_false: }

222 }

223 }

224 { \prg_return_false: }

225 T

(End definition for __hook_if_file_hook:wTF.)

\ hook file hook normalise:n When a file-specific hook is found, before being declared it is lightly normalized by
__hook_strip_double_slash:n __hook_file_hook_normalise:n. The current implementation just replaces two con-
__hook_strip_double_slash:w secutive slashes (//) by a single one, to cope with simple cases where the user did some-

thing like \def\input@path{{./mypath/}}, in which case a hook would have to be
\AddToHook{file/after/./mypath//file.tex}.
26 \cs_new:Npn __hook_file_hook_normalise:n #1
27 { __hook_strip_double_slash:n {#1} }
25 \cs_new:Npn __hook_strip_double_slash:n #1
229 { __hook_strip_double_slash:w #1 // \s__hook_mark }
230 \cs_new:Npn __hook_strip_double_slash:w #1 // #2 \s__hook_mark

NN

231 {

232 \tl_if_empty:nTF {#2}

233 {#1}

234 { __hook_strip_double_slash:w #1 / #2 \s__hook_mark }
235 ¥

25

\c__hook_generics_prop

\c_ hook generics reversed ii prop

\c_ hook_generics r

versed 111 _prop

\c__hook_generics_file_prop

__hook_update_hook_code:n

\hook_gremove_code:nn
__hook_gremove_code:nn

(End definition for __hook_file_hook_normalise:n, __hook_strip_double_slash:n, and __hook_-
strip_double_slash:w.)

Clist holding the generic names. We don’t provide any user interface to this as this is
meant to be static.

env The generic hooks used in \begin and \end.
file The generic hooks used when loading a file

236 \prop_const_from_keyval:Nn \c__hook_generics_prop
237 {env=,file=,package=,class=,include=}

(End definition for \c__hook_generics_prop.)

Some of the generic hooks are supposed to use reverse ordering, these are the following
(only the second or third sub-component is checked):

233 \prop_const_from_keyval:Nn \c__hook_generics_reversed_ii_prop {after=,end=}
230 \prop_const_from_keyval:Nn \c__hook_generics_reversed_iii_prop {after=}
210 \prop_const_from_keyval:Nn \c__hook_generics_file_prop {before=,after=}

(End definition for \c__hook_generics_reversed_ii_prop, \c__hook_generics_reversed_iii_prop,
and \c__hook_generics_file_prop.)

Before \begin{document} this does nothing, in the body it reinitializes the hook code
using the altered data.

21 \cs_new_eq:NN __hook_update_hook_code:n \use_none:n

(End definition for __hook_update_hook_code:n.)

With \hook_gremove_code:nn{(hook)}{(label)} any code for (hook) stored under (label)
is removed.

22 \cs_new_protected:Npn \hook_gremove_code:nn #1 #2

243 {

244 \exp_args:Nxx __hook_gremove_code:nn

25 { __hook_parse_label_default:nn {#1} { top-level } }
246 { __hook_parse_label_default:nn {#2} { top-level } }
247 }

25 \cs_new_protected:Npn __hook_gremove_code:nn #1 #2

249 {

First check that the hook code pool exists. \hook_if_exist:nTF isn’t used here because
it should be possible to remove code from a hook before its defined (see section 2.1.5).

250 __hook_if_exist:nTF {#1}

Then remove the chunk and run __hook_update_hook_code:n so that the execution
token list reflects the change if we are after \begin{document}.

251 {

252 \str_if_eq:nnTF {#2} {*}

253 {

254 \prop_gclear:c { g__hook_#1_code_prop }

255 \clist_gclear:c { g__hook_#1_labels_clist } % for debugging only
256 T

257 {

26

__hook_gremove_code_do:nn

__hook_mark_removal :nn

__hook_unmark_removal :nn

__hook_if_marked_removal:nnTF

Check if the label being removed exists in the code pool. If it does, just call __hook_-
gremove_code_do:nn to do the removal, otherwise mark it to be removed.

258 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
250 { __hook_gremove_code_do:nn }
260 { __hook_mark_removal:nn }
261 {#1} {#2}
262 }

Finally update the code, if the hook exists.
263 \hook_if_exist:nT {#1}
264 { __hook_update_hook_code:n {#1} }
265 }
266 { __hook_mark_removal:nn {#1} {#2} }
267 }

265 \cs_new_protected:Npn __hook_gremove_code_do:nn #1 #2

269 {

270 \prop_gremove:cn { g__hook_#1_code_prop } {#2}
Removing the dropped label from \g_@@_#1_labels_clist is rather tricky, because that
clists holds the labels as strings (i.e., not ordinary text which is what we have in #2).

o7 \exp_args:Nco \clist_gremove_all:Nn
72 { g__hook_#1_labels_clist } { \tl_to_str:n {#2} } % for debugging only
73 3

N

(End definition for \hook_gremove_code:nn, __hook_gremove_code:nn, and __hook_gremove_code_-
do:nn. This function is documented on page 10.)

Marks (label) (#2) to be removed from (hook) (#1).

274 \cs_new_protected:Npn __hook_mark_removal:nn #1 #2

275 {

276 \tl_gput_right:Nx \g__hook_removal_list_tl
277 { __hook_removal_tl:nn {#1} {#2} }

278 ¥

(End definition for __hook_mark_removal:nn.)

Unmarks (label) (#2) to be removed from (hook) (#1). \tl_gremove_once:Nx is used
rather than \t1l_gremove_all:Nx so that two additions are needed to cancel two marked
removals, rather than only one.

279 \cs_new_protected:Npn __hook_unmark_removal:nn #1 #2

280 {

281 \tl_gremove_once:Nx \g__hook_removal_list_tl
282 { __hook_removal_tl:nn {#1} {#2} }

283 3

(End definition for __hook_unmark_removal:nn.)

Checks if the \g__hook_removal_list_tl contains the current (label) (#2) and (hook)
(#1).

23 \prg_new_protected_conditional:Npnn __hook_if_marked_removal:nn #1 #2 { TF }

286 \exp_args:NNx \tl_if_in:NnTF \g__hook_removal_list_tl
287 { __hook_removal_tl:nn {#1} {#2} }

288 { \prg_return_true: } { \prg_return_false: }

20 }

27

(End definition for __hook_if_marked_removal:nnTF.)

__hook_removal_tl:nn Builds a token list with #1 and #2 which can only be matched by #1 and #2.

20 \cs_new:Npn __hook_removal_tl:nn #1 #2
201 { & \tl_to_str:n {#2} $ \tl_to_str:n {#1} $ }

(End definition for __hook_removal_tl:nn.)

\g__hook_77_rules_prop Default rules applying to all hooks are stored in this property list. Initially it simply
\g__hook_77_code_prop used an empty “label” name (not two question marks). This was a bit unfortunate,
\g__hook_?7_code_t1 because then 13doc complains about __ in the middle of a command name when trying
\g__hook_77_reversed_tl to typeset the documentation. However using a “normal” name such as default has the
disadvantage of that being not really distinguishable from a real hook name. I now have
settled for 7?7 which needs some gymnastics to get it into the csname, but since this is
used a lot things should be fast, so this is not done with ¢ expansion in the code later
on.
\g__hook_77_code_tl isn’t used, but it has to be defined to trick the code into
thinking that 7?7 is actually a hook.
202 \prop_new:c {g__hook_7?7_rules_prop}
203 \prop_new:c {g__hook_7?7_code_prop}
204 \prop_new:c {g__hook_?7_code_t1l}
Default rules are always given in normal ordering (never in reversed ordering). If
such a rule is applied to a reversed hook it behaves as if the rule is reversed (e.g., after
becomes before) because those rules are applied first and then the order is reversed.

205 \tl_new:c {g__hook_77_reversed_tl}

(End definition for \g__hook_?7_rules_prop and others.)

__hook_debug_gset_rule:nnnn FMi: this needs cleanup and docu correction!

With __hook_debug_gset_rule:nnnn{(hook)}{(labell)}{(relation)}{(label2)} a
relation is defined between the two code labels for the given (hook). The special hook ?7?
stands for any hook describing a default rule.

206 \cs_new_protected:Npn __hook_debug_gset_rule:nnnn #1#2#3#4

207 {
If so we drop any existing rules with the two labels (in case there are any).

208 \prop_gremove:cn{g__hook_#1_rules_prop}{#2|#4}

299 \prop_gremove:cn{g__hook_#1_rules_prop}{#4|#2}
Then we add the new one (normalizing the input a bit, e.g., we always use before and
not after and instead reorder the labels):

300 \str_case_e:nnF {#3}
301 {
302 {before} { \prop_gput:cnn {g__hook_#1_rules_propt{#2|#4}{<} }
303 {after} { \prop_gput:cnn {g__hook_#1_rules_prop}{#4|#2}{<} }
More special rule types ...
304 {incompatible-error} { \prop_gput:cnn {g__hook_#1_rules_prop}{#2|#4}{xE} }
305 {incompatible-warning} { \prop_gput:cnn {g__hook_#1_rules_propr{#2|#4}{xW} }
306 {removes} { \prop_gput:cnn {g__hook_#1_rules_propt{#2|#4}{->} }

28

\hook_gset_rule:nnnn

__hook_gset_rule:nnnn

__hook_rule_before_gset:
__hook_rule_after_gset:
__hook_rule_<_gset:
__hook_rule_>_gset:

nnn

nnn

nnn

nnn

Undo a setting:

307 {unrelated}{ \prop_gremove:cn {g__hook_#1_rules_propr{#2|#4}
308 \prop_gremove:cn {g__hook_#1_rules_prop}{#4|#2} }
309 }

310 { \ERRORunknownrule }

311 3

(End definition for __hook_debug_gset_rule:nnnn.)

3.6 Setting rules for hooks code

FMi: needs docu correction given new implementation
With \hook_gset_rule:nnnn{(hook)}{(labell)I{(relation)}{(label2)} a relation is
defined between the two code labels for the given (hook). The special hook 7?7 stands for
any hook describing a default rule.

;12 \cs_new_protected:Npn \hook_gset_rule:nnnn #1#2#3#4

313 {
314 \use:x
315 {
316 __hook_gset_rule:nnnn
317 { __hook_parse_label_default:nn {#1} { top-level } }
318 { __hook_parse_label_default:nn {#2} { top-level } }
319 {#3}
320 { __hook_parse_label_default:nn {#4} { top-level } }
321 }
322 }
223 \cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4
324 {
First we ensure the basic data structure of the hook exists:
325 __hook_declare:n {#1}

Then we clear any previous relationship between both labels.
326 __hook_rule_gclear:nnn {#1} {#2} {#4}

Then we call the function to handle the given rule. Throw an error if the rule is invalid.

327 \debug_suspend:

328 \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }

329 {

330 {#1} {#2} {#4}

331 __hook_update_hook_code:n {#1}

332 }

333 { \ERRORunknownrule }

334 \debug_resume:

335 __hook_debug_gset_rule:nnnn {#1} {#2} {#3} {#4} % for debugging
336 }

(End definition for \hook_gset_rule:nnnn and __hook_gset_rule:nnnn. This function is documented
on page 10.)

Then we add the new rule. We need to normalize the rules here to allow for faster
processing later. Given a pair of labels 4 and I, the rule 4 > [p is the same as [gp <[4

29

said differently. But normalizing the forms of the rule to a single representation, say,
lp < la, then the time spent looking for the rules later is considerably reduced.

Here we do that normalization by using \ (pdf) strcmp to lexically sort labels [4 and
lp to a fixed order. This order is then enforced every time these two labels are used
together.

Here we use __hook_label_pair:nn {(hook)} {{l4)} {(l5)} to build a string i |14
with a fixed order, and use __hook_label_ordered:nnTF to apply the correct rule to
the pair of labels, depending if it was sorted or not.

337 \cs_new_protected:Npn __hook_rule_before_gset:nnn #1#2#3

338 {

339 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl1 }
340 { __hook_label_ordered:nnTF {#2} {#3} { <} { > } }

341 ¥

32 \cs_new_eq:cN { __hook_rule_<_gset:nnn } __hook_rule_before_gset:nnn

213 \cs_new_protected:Npn __hook_rule_after_gset:nnn #1#2#3

344 {

345 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#3} {#2} _tl1 }
346 { __hook_label_ordered:nnTF {#3} {#2} { <} { > 1} }

347 T

25 \cs_new_eq:cN { __hook_rule_>_gset:nnn } __hook_rule_after_gset:nnn

(End definition for __hook_rule_before_gset:nnn and others.)

__hook_rule_removes gset:nn This rule removes (clears, actually) the code from label #3 if label #2 is in the hook #1.
399 \cs_new_protected:Npn __hook_rule_removes_gset:nnn #1#2#3
350 {
351 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl1 }
352 { __hook_label_ordered:nnTF {#2} {#3} { > } { <- } }
353 ¥

(End definition for __hook_rule_removes_gset:nnn.)

__hook rule_incompatible-error gset:nn These relations make an error/warning if labels #2 and #3 appear together in hook #1.
__hook_rule_incompatible-warning_gset:nnn 351 \cs_new_protected:cpn { __hook_rule_incompatible-error_gset:nnn } #1#2#3
s { \tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xE } }
356 \cs_new_protected:cpn { __hook_rule_incompatible-warning_gset:nnn } #1#2#3
357 { \tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xW } }

&

(End definition for __hook_rule_incompatible-error_gset:nnn and __hook_rule_incompatible-warning_-
gset:nnn.)

__hook_rule unrelated gset:nnn - Undo a setting. __hook_rule_unrelated_gset:nnn doesn’t need to do anything, since

__hook_rule_gclear:nnn we use __hook_rule_gclear:nnn before setting any rule.

355 \cs_new_protected:Npn __hook_rule_unrelated_gset:nnn #1#2#3 { }
350 \cs_new_protected:Npn __hook_rule_gclear:nnn #1#2#3
50 { \cs_undefine:c { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } }

(End definition for __hook_rule_unrelated_gset:nnn and __hook_rule_gclear:nnn.)

__hook_label pair:nn Ensure that the lexically greater label comes first.

361 \cs_new:Npn __hook_label_pair:nn #1#2

362 {

363 \if _case:w __hook_str_compare:nn {#1} {#2} \exp_stop_f:
364 # 1 | # 1 % 0

30

__hook_label_ordered_p:nn

365 \or: #1 | #2 9 +1

366 \else: #2 | #1 % -1
367 \fi:
368 }

(End definition for __hook_label_pair:nn.)

Check that labels #1 and #2 are in the correct order (as returned by __hook_label_-

__hook_label ordered:nnTF pair:nn) and if so return true, else return false.

__hook_if_label_case:nnnnn

__hook_initialize_all:

360 \prg_new_conditional:Npnn __hook_label_ordered:nn #1#2 { TF }

370 {

371 \if _int_compare:w __hook_str_compare:nn {#1} {#2} > O \exp_stop_f:
372 \prg_return_true:

373 \else

374 \prg_return_false:

375 \fi:

376 }

(End definition for __hook_label_ordered:nnTF.)

To avoid doing the string comparison twice in __hook_initialize_single:NNNNn (once
with \str_if_eq:nn and again with __hook_label_ordered:nn), we use a three-way
branching macro that will compare #1 and #2 and expand to \use_i:nnn if they are
equal, \use_ii:nn if #1 is lexically greater, and \use_iii:nn otherwise.

577 \cs_new:Npn __hook_if_label_case:nnnnn #1#2

378 {

379 \cs:w use_

380 \if_case:w __hook_str_compare:nn {#1} {#2}
381 i \or: ii \else: iii \fi: :nnn

382 \cs_end:

383 }

(End definition for __hook_if_label_case:nnnnn.)

Initialize all known hooks (at \begin{document}), i.e., update the fast execution token
lists to hold the necessary code in the right order.

;e \cs_new_protected:Npn __hook_initialize_all: {
First we change __hook_update_hook_code:n which so far was a no-op to now initialize

one hook. This way any later updates to the hook will run that code and also update
the execution token list.

385 \cs_gset_eq:NN __hook_update_hook_code:n __hook_initialize_hook_code:n
Now we loop over all hooks that have been defined and update each of them.

356 __hook_debug:n { \prop_gclear:N \g__hook_used_prop }
387 \seq_map_inline:Nn \g__hook_all_seq

388 {

389 __hook_update_hook_code:n {##1}

390 ¥

If we are debugging we show results hook by hook for all hooks that have data.
300 __hook_debug:n

392 { \iow_term:x{""JA1l~ initialized~ (non-empty)~ hooks:}
303 \prop_map_inline:Nn \g__hook_used_prop
304 { \iow_term:x{""J~ ##1~ ->~

31

__hook_initialize hook _code:n

395 \exp_not:v {g__hook_##1_code_tl}~ }
396 }
397 }
398 %
After all hooks are initialized we change the
initialize it (as it was done in the preamble.

“use” to just call the hook code and not

590 \cs_gset_eq:NN \hook_use:n __hook_use_initialized:n
a0 \cs_gset_eq:NN __hook_preamble_hook:n \use_none:n

a1 }

(End definition for __hook_initialize_all:.)

Initializing or reinitializing the fast execution hook code. In the preamble this is selec-
tively done in case a hook gets used and at \begin{document} this is done for all hooks
and afterwards only if the hook code changes.

202 \cs_new_protected:Npn __hook_initialize_hook_code:n #1 {

403 __hook_debug:n{ \iow_term:x{""JUpdate~ code~ for~ hook~

404 ’#1° \on@line :~"J} }
This does the sorting and the updates. If there aren’t any code chunks for the current
hook, there is no point in even starting the sorting routine so we make a quick test for that
and in that case just update \g__hook_(hook)_code_t1 to hold the next code. If there
are code chunks we call __hook_initialize_single:NNNNn and pass to it ready made
csnames as they are needed several times inside. This way we save a bit on processing
time if we do that up front.

405 \hook_if_exist:nT {#1}

406 {

407 \prop_if_empty:cTF {g__hook_#1_code_prop}

408 { \tl_gset:co {g__hook_#1_code_t1l}

409 {\cs:w g__hook_#1_next_code_tl \cs_end: } }
410 {

By default the algorithm sorts the code chunks and then saves the result in a token list for
fast execution by adding the code one after another using \tl_gput_right:NV. When
we sort code for a reversed hook, all we have to do is to add the code chunks in the
opposite order into the token list. So all we have to do in preparation is to change two
definitions used later on.

411 __hook_if_reversed:nTF {#1}

a12 { \cs_set_eq:NN __hook_tl_gput:NV \tl_gput_left:NV

a13 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_left:NV }
414 { \cs_set_eq:NN __hook_tl_gput:NV \tl_gput_right:NV

415 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_right:NV }

When sorting, some relations (namely -> <-) need to act destructively on the code
property lists to remove code that shouldn’t appear in the sorted hook token list.

416 \prop_gset_eq:Nc \g__hook_code_temp_prop { g__hook_#1_code_prop }
417 __hook_initialize_single:ccccn

418 { g__hook_#1_code_prop } { g__hook_#1_code_t1 }

419 { g__hook_#1_next_code_tl } { g__hook_#1_labels_clist }

420 {#1}

421 \prop_gset_eq:cN { g__hook_#1_code_prop } \g__hook_code_temp_prop

32

For debug display we want to keep track of those hooks that actually got code added to
them, so we record that in plist. We use a plist to ensure that we record each hook name
only once, i.e., we are only interested in storing the keys and the value is arbitrary

422 __hook_debug:n{ \exp_args:NNx \prop_gput:Nnn \g__hook_used_prop {#1}{} }
423 }

424 }

25 F

(End definition for __hook_initialize_hook_code:n.)

\g__hook_used_prop All hooks that receive code (for use in debugging display).
26 \prop_new:N\g__hook_used_prop

(End definition for \g__hook_used_prop.)

__hook_t1_csname:n It is faster to pass a single token and expand it when necessary than to pass a bunch of
__hook_seq_csname:n character tokens around.

FMi: note to myself: verify

27 \cs_new:Npn __hook_tl_csname:n #1 { 1__hook_label_#1_tl1 }
25 \cs_new:Npn __hook_seq_csname:n #1 { 1__hook_label_#1_seq }

(End definition for __hook_tl_csname:n and __hook_seq_csname:n.)

\1__hook_labels_seq For the sorting I am basically implementing Knuth’s algorithm for topological sorting as
\1__hook_labels_int given in TAOCP volume 1 pages 263—-266. For this algorithm we need a number of local
\1__hook_front_tl variables:
\1__hook_rear_tl

\1 hook label 0 t1 o List of labels used in the current hook to label code chunks:

429 \seq_new:N \1__hook_labels_seq
e Number of labels used in the current hook. In Knuth’s algorithm this is called N:
430 \int_new:N \1__hook_labels_int

o The sorted code list to be build is managed using two pointers one to the front of
the queue and one to the rear. We model this using token list pointers. Knuth calls

them F and R:
431 \tl_new:N \1__hook_front_tl
432 \tl_new:N \1__hook_rear_tl

e The data for the start of the queue is kept in this token list, it corresponds to what
Don calls QLINK[0] but since we aren’t manipulating individual words in memory
it is slightly differently done:

433 \tl_new:c { __hook_tl_csname:n { 0 } }

(End definition for \1__hook_labels_seq and others.)

33

__hook initialize single:NNNNn

\

__hook_initialize_single:NNNNn implements the sorting of the code chunks for a

__hook_initialize single:cccen hook and saves the result in the token list for fast execution (#3). The arguments

are (hook-code-plist), (hook-code-tl), (hook-next-code-tl), (hook-ordered-labels-clist) and
(hook-name) (the latter is only used for debugging—the (hook-rule-plist) is accessed us-
ing the (hook-name)).

The additional complexity compared to Don’s algorithm is that we do not use simple
positive integers but have arbitrary alphanumeric labels. As usual Don’s data structures
are chosen in a way that one can omit a lot of tests and I have mimicked that as far as
possible. The result is a restriction I do not test for at the moment: a label can’t be
equal to the number 0!

FMi: Needs checking for, just in case

232 \cs_new_protected:Npn __hook_initialize_single:NNNNn #1#2#3#4#5 {
135 \debug_suspend:

Step T1: Initialize the data structure ...

236 \seq_clear:N \1__hook_labels_seq
437 \int_zero:N \1__hook_labels_int

Store the name of the hook:
18 \tl_set:Nn \1__hook_cur_hook_t1l {#5}
We loop over the property list holding the code and record all labels listed there.
Only rules for those labels are of interest to us. While we are at it we count them (which

gives us the N in Knuth’s algorithm. The prefix label_ is added to the variables to
ensure that labels named front, rear, labels, or return don’t interact with our code.

239 \prop_map_inline:Nn #1

440 {

a41 \int_incr:N \1__hook_labels_int

442 \seq_put_right:Nn \1__hook_labels_seq {##1}

443 \tl_set:cn { __hook_tl_csname:n {##1} }{0} % the counter k for number of
444 % j before k rules

445 \seq_clear_new:c { __hook_seq_csname:n {##1} } J sequence of successors to k
446 % i.e., k before j rules (stores
447 % the names of the j’s)

448 }

Steps T2 and T3: Sort the relevant rules into the data structure. ..

This loop constitutes a square matrix of the labels in #1 in the vertical and the
horizontal directions. However since the rule l4(rel)ip is the same as Ig(rel) " ts we
can cut the loop short at the diagonal of the matrix (7.e., when both labels are equal),
saving a good amount of time. The way the rules were set up (see the implementation
of __hook_rule_before_gset:nnn above) ensures that we have no rule in the ignored
side of the matrix, and all rules are seen. The rules are applied in __hook_apply_-
label_pair:nnn, which takes the properly-ordered pair of labels as argument.

29 \prop_map_inline:Nn #1

450 {

451 \prop_map_inline:Nn #1

452

453 __hook_if_label_case:nnnnn {##1} {####1}

454 { \prop_map_break: }

455 { __hook_apply_label_pair:nnn {##1} {####1} }
456 { __hook_apply_label_pair:nnn {####1} {##1} }

34

457 {#5}
458 }
459 }
Take a breath and take a look at the data structures that have been set up:
w0 __hook_debug:n { __hook_debug_label_data:N #1 }
Step T4:

461 \tl_set:Nn \1__hook_rear_tl { O }
462 \tl_set:cn { __hook_tl_csname:n { 0 } } { 0 } % really {1__hook_label_ \1__hook_rear_tl _
263 \seq_map_inline:Nn \1__hook_labels_seq

464 {

465 \int_compare:nNnT { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
466 {

467 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_tl } }{##1}
468 \tl_set:Nn \1__hook_rear_t1 {##1}

469 }

470 }

an1 \tl_set_eq:Nc \1__hook_front_tl { __hook_tl_csname:n { O } }
a2 \tl_gclear:N #2
a3 \clist_gclear:N #4

The whole loop combines steps T5-T7:

472 \bool_while_do:nn { ! \str_if_eq_p:Vn \1__hook_front_tl { 0 } }
475 {

This part is step T5:
a76 \int_decr:N \1__hook_labels_int

a7 \prop_get:NVN #1 \1__hook_front_tl \1__hook_return_tl

478 __hook_t1l_gput:NV #2 \1__hook_return_tl

a79 __hook_clist_gput:NV #4 \1__hook_front_tl

480 __hook_debug:n{ \iow_term:x{Handled~ code~ for~ \1__hook_front_tl1l} }

This is step T6 except that we don’t use a pointer P to move through the successors,
but instead use ##1 of the mapping function.

481 \seq_map_inline:cn { __hook_seq_csname:n { \1__hook_front_tl } }
482 {
483 \tl_set:cx { __hook_tl_csname:n {##1} }
484 { \int_eval:n { \cs:w __hook_tl_csname:n {##1} \cs_end: - 1 } }
485 \int_compare:nNnT { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
486 {
487 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_t1 } } {##1}
488 \tl_set:Nn \1__hook_rear_tl {##1}
489 }
490 }
and step T7:
491 \tl_set_eq:Nc \1__hook_front_tl { __hook_tl_csname:n { \1__hook_front_tl } }

This is step T8: If we haven’'t moved the code for all labels (i.e., if \1__hook_-
labels_int is still greater than zero) we have a loop and our partial order can’t be
flattened out.

492 }
23 \int_compare:nNnF \1__hook_labels_int = 0
494 {

35

__hook_t1_gput:NV
__hook_clist_gput:NV

__hook_apply_label_pair:nnn
__hook label if exist apply:nnnF

495 \iow_term:x{ }
496 \iow_term:x{Error:~ label~ rules~ are~ incompatible:}

This is not really the information one needs in the error case but will do for now ...

497 __hook_debug_label_data:N #1
408 \iow_term:x{ }
499 }

After we have added all hook code to #2 we finish it off with adding extra code for a one
time execution. That is stored in #3 but is normally empty.

so \tl_gput_right:Nn #2 {#3}

so0 \debug_resume:

502 F

503 \cs_generate_variant:Nn __hook_initialize_single:NNNNn {cccc}

(End definition for __hook_initialize_single:NNNNn.)

These append either on the right (normal hook) or on the left (reversed hook). This is
setup up in __hook_initialize_hook_code:n, elsewhere their behavior is undefined.

s04 \cs_new:Npn __hook_tl_gput:NV {\ERROR}
s0s \cs_new:Npn __hook_clist_gput:NV {\ERROR}

(End definition for __hook_t1_gput:NV and __hook_clist_gput:NV.)

This is the payload of steps T2 and T3 executed in the loop described above. This macro
assumes #1 and #2 are ordered, which means that any rule pertaining the pair #1 and #2
is \g__hook_(hook)_rule_#1|#2_t1, and not \g__hook_(hook)_rule_#2|#1_t1. This
also saves a great deal of time since we only need to check the order of the labels once.
The arguments here are (labell), (label2), (hook), and (hook-code-plist). We are
about to apply the next rule and enter it into the data structure. __hook_apply_-
label_pair:nnn will just call __hook_label_if_exist_apply:nnnF for the (hook),
and if no rule is found, also try the (hook) name ?? denoting a default hook rule.
__hook_label_if_exist_apply:nnnF will check if the rule exists for the given
hook, and if so call __hook_apply_rule:nnn.
506 \cs_new_protected:Npn __hook_apply_label_pair:nnn #1#2#3
507 {
Extra complication: as we use default rules and local hook specific rules we first have to
check if there is a local rule and if that exist use it. Otherwise check if there is a default
rule and use that.

508 __hook_label_if_exist_apply:nnnF {#1} {#2} {#3}
509 {
If there is no hook-specific rule we check for a default one and use that if it exists.
510 __hook_label_if_exist_apply:nnnF {#1} {#2} { 77 > { }
511 }
512 }

513 \cs_new_protected:Npn __hook_label_if_exist_apply:nnnF #1#2#3
514 {
515 \if _cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:

36

What to do precisely depends on the type of rule we have encountered. If it is a before
rule it will be handled by the algorithm but other types need to be managed differently.
All this is done in __hook_apply_rule:nnnN.

516 __hook_apply_rule:nnn {#1} {#2} {#3}
517 \exp_after:wN \use_none:n

518 \else:

519 \use:nn

520 \fi:

521 }

(End definition for __hook_apply_label_pair:nnn and __hook_label_if_exist_apply:nnnF.)

__hook_apply_rule:nnn This is the code executed in steps T2 and T3 while looping through the matrix This is
part of step T3. We are about to apply the next rule and enter it into the data structure.
The arguments are (labell), (label2), (hook-name), and (hook-code-plist).

52 \cs_new_protected:Npn __hook_apply_rule:nnn #1#2#3

523 {

524 \cs:w __hook_apply_

525 \cs:w g__hook_#3_reversed_tl \cs_end: rule_

526 \cs:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end: :nnn \cs_end:
527 {#1} {#2} {#3}

528 }

(End definition for __hook_apply_rule:nnn.)

__hook_apply_rule_<:nnn The most common cases are < and > so we handle that first. They are relations < and
__hook_apply_rule_>:nnn > in TAOCP, and they dictate sorting.

520 \cs_new_protected:cpn { __hook_apply_rule_<:nnn } #1#2#3

530 {

531 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

532 \tl_set:cx { __hook_tl_csname:n {#2} }

533 { \int_eval:n{ \cs:w __hook_tl_csname:n {#2} \cs_end: + 1 } }
534 \seq_put_right:cn{ __hook_seq_csname:n {#1} }{#2}

535 }

536 \cs_new_protected:cpn { __hook_apply_rule_>:nnn } #1#2#3

537 {

538 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

539 \tl_set:cx { __hook_tl_csname:n {#1} }

540 { \int_eval:n{ \cs:w __hook_tl_csname:n {#1} \cs_end: + 1 } }
541 \seq_put_right:cn{ __hook_seq_csname:n {#2} }{#1}

542 }

(End definition for __hook_apply_rule_<:nnn and __hook_apply_rule_>:nnn.)

__hook_apply_rule_xE:nnn These relations make two labels incompatible within a hook. xE makes raises an error if
__hook_apply_rule_xW:nnn the labels are found in the same hook, and xW makes it a warning.

523 \cs_new_protected:cpn { __hook_apply_rule_xE:nnn } #1#2#3

544 {

545 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
546 \msg_error:nnnnnn { hooks } { labels-incompatible }

547 {#1} {#2} {#3} {1}

548 \use:c { __hook_apply_rule_->:nnn } {#1} {#2} {#3}

549 \use:c { __hook_apply_rule_<-:nnn } {#1} {#2} {#3}

550 3

37

__hook_apply_rule_->:
__hook_apply_rule_<-:

__hook_apply_-rule_<:
__hook_apply_-rule_>:
__hook_apply_-rule_<-:
__hook_apply_-rule_->:
__hook_apply_-rule_x:

__hook_msg_pair_found:

nnn

nnn

nnn

nnn

nnn

nnn

nnn

nnn

551 \cs_new_protected:cpn { __hook_apply_rule_xW:nnn } #1#2#3

552 {

553 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
554 \msg_warning:nnnnnn { hooks } { labels-incompatible }

555 {#1> {#2} #3x { 0 }

556 }

(End definition for __hook_apply_rule_xE:nnn and __hook_apply_rule_xW:nnn.)

If we see -> we have to drop code for label #3 and carry on. We could do a little better
and trop everything for that label since it doesn’t matter where we sort in the empty
code. However that would complicate the algorithm a lot with little gain. So we still
unnecessarily try to sort it in and depending on the rules that might result in a loop that
is otherwise resolved. If that turns out to be a real issue, we can improve the code.

Here the code is removed from \1__hook_cur_hook_tl rather than #3 because the
latter may be 7?7, and the default hook doesn’t store any code. Removing from \1__-
hook_cur_hook_t1l makes default rules -> and <- work properly.

557 \cs_new_protected:cpn { __hook_apply_rule_->:nnn } #1#2#3

558 {

550 __hook_debug:n

560 {

561 __hook_msg_pair_found:nnn {#1} {#2} {#3}

562 \iow_term:x{--->~ Drop~ ’#2’~ code~ from~

563 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~ because~ of~ ’#1’ }
564 3

565 \prop_gput:cnn { g__hook_ \1__hook_cur_hook_tl _code_prop } {#2} { }

566 }

sz \cs_new_protected:cpn { __hook_apply_rule_<-:nnn } #1#2#3

568 {

569 __hook_debug:n

570 {

571 __hook_msg_pair_found:nnn {#1} {#2} {#3}

572 \iow_term:x{--->~ Drop~ ’#1’~ code~ from~

573 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~ because~ of~ ’#2’ }
574 }

575 \prop_gput:cnn { g__hook_ \1__hook_cur_hook_tl _code_prop } {#1} { }

576 }

(End definition for __hook_apply_rule_->:nnn and __hook_apply_rule_<-:nnn.)

Reversed rules.

s77 \cs_new_eq:cc { __hook_apply_-rule_<:nnn } { __hook_apply_rule_>:nnn }
575 \cs_new_eq:cc { __hook_apply_-rule_>:nnn } { __hook_apply_rule_<:nnn }
s79 \cs_new_eq:cc { __hook_apply_-rule_<-:nnn } { __hook_apply_rule_<-:nnn }
ss0 \cs_new_eq:cc { __hook_apply_-rule_->:nnn } { __hook_apply_rule_->:nnn }
ss0 \cs_new_eq:cc { __hook_apply_-rule_xE:nnn 1} { __hook_apply_rule_xE:nnn }
s22 \cs_new_eq:cc { __hook_apply_-rule_xW:nnn } { __hook_apply_rule_xW:nnn }

(End definition for __hook_apply_-rule_<:nnn and others.)

A macro to avoid moving this many tokens around.

ss3 \cs_new_protected:Npn __hook_msg_pair_found:nnn #1#2#3
584 {
585 \iow_term:x{~ \str_if_eq:nnTF {#3} {77} {default} {~normal} ~

38

586 rule~ __hook_label_pair:nn {#1} {#2}:~
587 \use:c { g__hook_#3_rule_ __hook_label_pair:nn {#1} {#2} _tl } ~ found}
588 }

(End definition for __hook_msg_pair_found:nnn.)

__hook_debug_label_data:N

s \cs_new_protected:Npn __hook_debug_label_data:N #1 {
s00 \iow_term:x{Code~ labels~ for~ sorting:}
so0 \iow_term:x{~ \seq_use:Nnnn\l__hook_labels_seq {~and~}{,~}{~and~} } 7’ fix name!

s \iow_term:x{""J Data~ structure~ for~ label~ rules:}

503 \prop_map_inline:Nn #1

504 {

505 \iow_term:x{~ ##1~ =~ \tl_use:c{ __hook_tl_csname:n {##1} }~ ->~
506 \seq_use:cnnn{ __hook_seq_csname:n {##1} }{~->~}{~->~}{~->~}
597 }

598 }

509 \iow_term:x{}

600 F

(End definition for __hook_debug_label_data:N.)

\hook_log:n This writes out information about the hook given in its argument onto the terminal and

the .log file.
c01 \cs_new_protected:Npn \hook_log:n #1
602 {
603 \exp_args:Nx __hook_log:n
604 { __hook_parse_label_default:nn {#1} { top-level } }
605 }
s0s \cs_new_protected:Npn __hook_log:n #1
607 {
608 \iow_term:x{""JThe~ hook~ ’#1’:}
609 \hook_if_exist:nF {#1}
610 { \iow_term:x {~Hook~ is~ not~ declared!'} }
611 __hook_if_exist:nTF {#1}
612 {
613 \iow_term:x{~Code~ chunks:}
614 \prop_if_empty:cTF {g__hook_#1_code_prop}
615 { \iow_term:x{\@spaces ---} }
616 {
617 \prop_map_inline:cn {g__hook_#1_code_prop}
618 { \iow_term:x{\@spaces ##1~ ->~ \tl_to_str:n{##2} } }
619 }
620 \iow_term:x{~Extra~ code~ next~ invocation:}
621 \iow_term:x{\@spaces
622 \tl_if_empty:cTF { g__hook_#1_next_code_t1l }

623 {---} {->~ \str_use:c{g__hook_#1_next_code_t1l} } }

FMi: This is currently only displaying the local rules, but it should also show
the matching global rules!

39

624 \iow_term:x{~Rules:}

625 \prop_if_empty:cTF {g__hook_#1_rules_prop}

626 { \iow_term:x{\@spaces ---} }

627 { \prop_map_inline:cn {g__hook_#1_rules_prop}

628 { \iow_term:x{\@spaces ##1~ with~ relation~ ##2} }
629 }

630 \hook_if_exist:nT {#1}

631 { \iow_term:x { ~Execution~ order

632 \prop_if_empty:cTF {g__hook_#1_rules_prop}

633 { __hook_if_reversed:nT {#1}

634 { ~ (after~ reversal) }

635 }

636 { ~ (after~

637 __hook_if_reversed:nT {#1} {reversal~ and~}
638 applying~ rules)

639 }

640 :

641 }

642 \iow_term:x { \@spaces

643 \clist_if_empty:cTF{g__hook_#1_labels_clist}
644 {not~ set~ yet}

645 { \clist_use:cnnn {g__hook_#1_labels_clist}
646 {,~¥y{,~¥r{.,~-} 1}
647 }

648 }

649 ¥

650 { \iow_term:n { ~The~hook~is~empty. } }

651 \iow_term:n { }

652 }

(End definition for \hook_log:n. This function is documented on page ?7.)

3.7 Specifying code for next invocation

\hook_gput_next_code:nn
653 \cs_new_protected:Npn \hook_gput_next_code:nn #1

654 {

655 \exp_args:Nx __hook_gput_next_code:nn

656 { __hook_parse_label_default:nn {#1} { top-level } }
657 }

055 \cs_new_protected:Npn __hook_gput_next_code:nn #1 #2

659 {

660 __hook_declare:n {#1}

661 \hook_if_exist:nTF {#1}

662 { __hook_gput_next_do:nn {#1} {#2} }

663 { __hook_try_declaring_generic_next_hook:nn {#1} {#2} }
664 }

665 \cs_new_protected:Npn __hook_gput_next_do:nn #1 #2

666 {

667 \tl_gput_right:cn { g__hook_#1_next_code_tl }

668 { #2 \tl_gclear:c { g__hook_#1_next_code_tl } }

669 }

(End definition for \hook_gput_next_code:nn. This function is documented on page 10.)

40

\hook_use:n
__hook_use_initialized:n
__hook_preamble_hook:n

__hook_use:wn
__hook_try_file_hook:n
__hook_if_exist_use:n

3.8 Using the hook

\hook_use:n as defined here is used in the preamble, where hooks aren’t initialized
by default. __hook_use_initialized:n is also defined, which is the non-\protected
version for use within the document. Their definition is identical, except for the __-
hook_preamble_hook:n (which wouldn’t hurt in the expandable version, but it would be
an unnecessary extra expansion).

__hook_use_initialized:n holds the expandable definition while in the pream-
ble. __hook_preamble_hook:n initializes the hook in the preamble, and is redefined to
\use_none:n at \begin{document}.

Both versions do the same internally: check if the hook exist as given, and if so use
it as quickly as possible. If it doesn’t exist, the a call to __hook_use:wn checks for file
hooks.

At \begin{document}, all hooks are initialized, and any change in them causes an
update, so \hook_use:n can be made expandable. This one is better not protected
so that it can expand into nothing if containing no code. Also important in case of
generic hooks that we do not generate a \relax as a side effect of checking for a csname.
In contrast to the TEX low-level \csname ...\endcsname construct \t1_if_exist:c is
careful to avoid this.

670 \cs_new_protected:Npn \hook_use:n #1

671 {

672 \tl_if_exist:cTF { g__hook_#1_code_t1l }

673 {

674 __hook_preamble_hook:n {#1}

675 \cs:w g__hook_#1_code_tl \cs_end:

676 ¥

677 { __hook_use:wn #1 / \s__hook_mark {#1} }
678 }

679 \cs_new:Npn __hook_use_initialized:n #1

680 {

681 \tl_if_exist:cTF { g__hook_#1_code_t1l }

682 { \cs:w g__hook_#1_code_tl \cs_end: }

683 { __hook_use:wn #1 / \s__hook_mark {#1} }
684 }

635 \cs_new_protected:Npn __hook_preamble_hook:n #1
636 { __hook_initialize_hook_code:n {#1} }

(End definition for \hook_use:n, __hook_use_initialized:n, and __hook_preamble_hook:n. This
Sunction is documented on page 9.)

__hook_use:wn does a quick check to test if the current hook is a file hook: those
need a special treatment. If it is not, the hook does not exist. If it is, then __hook_-
try_file_hook:n is called, and checks that the current hook is a file-specific hook using
__hook_if_file_hook:wTF. If it’s not, then it’s a generic file/ hook and is used if it
exist.

If it is a file-specific hook, it passes through the same normalization as during decla-
ration, and then it is used if defined. __hook_if_exist_use:n checks if the hook exist,
and calls __hook_preamble_hook:n if so, then uses the hook.

637 \cs_new:Npn __hook_use:wn #1 / #2 \s__hook_mark #3
688 {

689 \str_if_eq:nnTF {#1} { file }

690 { __hook_try_file_hook:n {#3} }

41

\hook_use_once:n

601 { } % Hook doesn’t exist

692 }

03 \cs_new_protected:Npn __hook_try_file_hook:n #1

694 {

695 __hook_if_file_hook:wTF #1 / / \s__hook_mark

696 {

607 \exp_args:Ne __hook_if_exist_use:n

698 { \exp_args:Ne __hook_file_hook_normalise:n {#1} }
699 }

700 { __hook_if_exist_use:n {#1} } 7 file/ generic hook (e.g. file/before)
701 }

702 \cs_new_protected:Npn __hook_if_exist_use:n #1

703 {

704 \tl_if_exist:cT { g__hook_#1_code_tl }

705 {

706 __hook_preamble_hook:n {#1}

707 \cs:w g__hook_#1_code_tl \cs_end:

708 }

709 ¥

(End definition for __hook_use:wn, __hook_try_file_hook:n, and __hook_if_exist_use:n.)

For hooks that can and should be used only once we have a special use command that
remembers the hook name in \g__hook_execute_immediately_clist. This has the
effect that any further code added to the hook is executed immediately rather than
stored in the hook.

70 \cs_new_protected:Npn \hook_use_once:n #1

711 {

712 \tl_if_exist:cT { g__hook_#1_code_tl }

713 {

714 \clist_gput_left:Nn \g__hook_execute_immediately_clist {#1}
715 \hook_use:n {#1}

716 }

717 }

(End definition for \hook_use_once:n. This function is documented on page 9.)

3.9 Querying a hook

Simpler data types, like token lists, have three possible states; they can exist and be
empty, exist and be non-empty, and they may not exist, in which case emptiness doesn’t
apply (though \t1l_if_empty:N returns false in this case).

Hooks are a bit more complicated: they have four possible states. A hook may exist
or not, and either way it may or may not be empty (even a hook that doesn’t exist may
be non-empty).

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool (it may happen that a package A defines a hook foo, but it’s
loaded after package B, which adds some code to that hook. In this case it is important
that the code added by package B is remembered until package A is loaded).

A hook is said to exist when it was declared with \hook_new:n or some variant
thereof.

42

\hook_if_empty_p:n
\hook_if_empty:nTF

\hook_if_exist_p:n
\hook_if_exist:nTF

__hook_if_exist_p:n
__hook_if_exist:nTF

__hook_if_reversed_p:n
__hook_if_reversed:nTF

Test if a hook is empty (that is, no code was added to that hook). A hook being
empty means that both its \g__hook_(hook)_code_prop and its \g__hook_(hook)_-
next_code_tl are empty.

715 \prg_new_conditional:Npnn \hook_if_empty:n #1 { p , T , F , TF }

719 {

720 __hook_if_exist:nTF {#1}

721 {

722 \bool_lazy_and:nnTF

723 { \prop_if_empty_p:c { g__hook_#1_code_prop } }
724 { \tl_if_empty_p:c { g__hook_#1_next_code_tl } }
725 { \prg_return_true: }

726 { \prg_return_false: }

727 ¥

728 { \prg_return_true: }

729 }

(End definition for \hook_if_empty:nTF. This function is documented on page 10.)

A canonical way to test if a hook exists. A hook exists if the token list that stores the
sorted code for that hook, \g__hook_(hook)_code_t1, exists. The property list \g__-
hook_(hook)_code_prop cannot be used here because often it is necessary to add code
to a hook without knowing if such hook was already declared, or even if it will ever be
(for example, in case the package that defines it isn’t loaded).

720 \prg_new_conditional:Npnn \hook_if_exist:n #1 { p , T , F , TF }

731 {

732 \tl_if_exist:cTF { g__hook_#1_code_tl }

733 { \prg_return_true: }

734 { \prg_return_false: }
735 3

(End definition for \hook_if_exist:nTF. This function is documented on page 11.)

An internal check if the hook has already been declared with __hook_declare:n. This
means that the hook was already used somehow (a code chunk or rule was added to it),
but it still wasn’t declared with \hook_new:n.

736 \prg_new_conditional:Npnn __hook_if_exist:n #1 { p , T , F , TF }

737 {

738 \prop_if_exist:cTF { g__hook_#1_code_prop }

739 { \prg_return_true: }

740 { \prg_return_false: }

741 3

(End definition for __hook_if_exist:nTF.)

An internal conditional that checks if a hook is reversed.

722 \prg_new_conditional:Npnn __hook_if_reversed:n #1 { p , T , F , TF }
743 {

744 \if_int_compare:w \cs:w g__hook_#1_reversed_tl \cs_end: 1 < O \exp_stop_f:
745 \prg_return_true:

746 \else:

747 \prg_return_false:

748 \fi:

749 }

43

(End definition for __hook_if_reversed:nTF.)

\g_hook execute immediately clist List of hooks that from no on should not longer receive code.

750 \clist_new:N \g__hook_execute_immediately_clist

(End definition for \g__hook_execute_immediately_clist.)

3.10 Messages

751 \msg_new:nnnn { hooks } { labels-incompatible }

752 {

753 Labels~‘#1’~and~‘#2’~are~incompatible

754 \str_if_eq:nnF {#3} {77} { ~in~hook~‘#3’> } .~

755 \int_compare:nNnT {#4} = { 1 }

756 { The~code~for~both~labels~will~be~dropped. }

757 }

758 {

759 LaTeX~found~two~incompatible~labels~in~the~same~hook.~
760 This~indicates~an~incompatibility~between~packages.

761 }

762 \msg_new:nnn { hooks } { empty-label }
7: { Empty~code~label~\msg_line_context:.~Using~‘#1’~instead. }

3.11 FKETgX 2¢ package interface commands

\NewHook Declaring new hooks ...

\NewReversedHook 764 \NewDocumentCommand \NewHook { m }{ \hook_new:n {#1} }
\NewMirroredHookPair 765 \NewDocumentCommand \NewReversedHook { m }{ \hook_new_reversed:n {#1} }
766 \NewDocumentCommand \NewMirroredHookPair { mm }{ \hook_new_pair:nn {#1}{#2} }

(End definition for \NewHook , \NewReversedHook , and \NewMirroredHookPair. These functions are doc-
umented on page 3.)
\AddToHook

767 \NewDocumentCommand \AddToHook { m o +m }

768 {

760 \clist_if_in:NnTF \g__hook_execute_immediately_clist {#1}
770 {#3}

m { \hook_gput_code:nnn {#1} {#2} {#3} }

772 }

(End definition for \AddToHook. This function is documented on page /.)

\AddToHookNext

772 \NewDocumentCommand \AddToHookNext { m +m }
772 { \hook_gput_next_code:nn {#1} {#2} }

(End definition for \AddToHookNext. This function is documented on page 5.)

\RemoveFromHook

775 \NewDocumentCommand \RemoveFromHook { m o }
776 { \hook_gremove_code:nn {#1} {#2} }

(End definition for \RemoveFromHook. This function is documented on page 4.)

44

\DeclareDefaultHookLabel The token list \g__hook_hook_curr_name_tl stores the name of the current pack-
__hook_curr_name_push:n age/file to be used as label for hooks. Providing a consistent interface is tricky,
__hook_curr_name_pop: because packages can be loaded within packages, and some packages may not use
\DeclareDefaultHookLabel to change the default label (in which case \@currname is

used, if set).

To pull that off, we keep a stack that contains the default label for each level of
input. The bottom of the stack contains the default label for the top-level. Since the
string top-level is hardcoded, here this item of the stack is empty. Also, since we're in
an input level, add 1thooks to the stack as well. This stack should never go empty, so
we loop through EXTEX 2¢’s file name stack, and add empty entries to \g__hook_name_-
stack_seq for each item in that stack. The last item is the top-level, which also gets
an empty entry.

Also check for the case we're loading 1thooks in the ITEX 2¢ kernel. In that case,
\@currname isn’t 1thooks and just the top-level is added to the stack as an empty entry.

777 \str_if_eq:VnTF \@currname { lthooks }

778 {

779 \seq_gpush:Nn \g__hook_name_stack_seq { lthooks }
780 \cs_set_protected:Npn __hook_tmp:w #1 #2 #3

781 {

782 \quark_if_recursion_tail_stop:n {#1}

783 \seq_gput_right:Nn \g__hook_name_stack_seq { }
784 __hook_tmp:w

785 }

786 \exp_after:wN __hook_tmp:w

787 \@currnamestack

788 \gq_recursion_tail \q_recursion_tail

789 \gq_recursion_tail \g_recursion_stop

790 }

701 { \seq_gpush:Nn \g__hook_name_stack_seq { } }

Two commands keep track of the stack: when a file is input, __hook_curr_name_-
push:n pushes an (empty by default) label to the stack:

792 \cs_new_protected:Npn __hook_curr_name_push:n #1

793 {

704 \seq_gpush:Nn \g__hook_name_stack_seq {#1}

795 \tl_gset:Nn \g__hook_hook_curr_name_tl {#1}

796 }

797 %
and when an input is over, the topmost item of the stack is popped, since the label will
not be used again, and \g__hook_hook_curr_name_t1 is updated to the now topmost
item of the stack:

795 \cs_new_protected:Npn __hook_curr_name_pop:

799 {

800 \seq_gpop:NN \g__hook_name_stack_seq \1__hook_return_tl

801 \seq_get:NNTF \g__hook_name_stack_seq \1__hook_return_tl

802 { \tl_gset_eq:NN \g__hook_hook_curr_name_tl \1__hook_return_tl }
803 { \ERROR_should_not_happen }

804 }

The token list \g__hook_hook_curr_name_t1 is but a mirror of the top of the stack.
Now define a wrapper that replaces the top of the stack with the argument, and
updates \g__hook_hook_curr_name_t1l accordingly.

45

\UseHook

\UseOneTimeHook

\ShowHook

\DebugHookOn

\DebugHookOf f

\DeclareHookRule

\DeclareDefaultHookRule

\ClearHookRule

305 \NewDocumentCommand \DeclareDefaultHookLabel { m }

806 {

807 \seq_gpop:NN \g__hook_name_stack_seq \1__hook_return_tl
808 __hook_curr_name_push:n {#1}

809 }

810 % \begin{macrocode}

si1 fh

s> % The push and pop macros are injected in \cs{@pushfilename} and

s13 % \cs{@popfilename} so that they correctly keep track of the label.s
814 \begin{macrocode}

15 % TODO! \pho{Properly integrate in the kernel}

s16 \tl_gput_left:Nn \@pushfilename { __hook_curr_name_push:n { } }

517 \tl_gput_left:Nn \@popfilename { __hook_curr_name_pop: }

s1s % TODO! \pho{Properly integrate in the kernel}

(End definition for \DeclareDefaultHookLabel, __hook_curr_name_push:n, and __hook_curr_name_-
pop:. This function is documented on page 6.)

Avoid the overhead of xparse and its protection that we don’t want here (since the hook
should vanish without trace if empty)!

510 \newcommand \UseHook { \hook_use:n }

(End definition for \UseHook. This function is documented on page 3.)

220 \cs_new_protected:Npn \UseOneTimeHook { \hook_use_once:n }

(End definition for \UseOneTimeHook. This function is documented on page 3.)

e1 \cs_new_protected:Npn \ShowHook { \hook_log:n }

(End definition for \ShowHook. This function is documented on page 9.)

52 \cs_new_protected:Npn \DebugHookOn { \hook_debug_on: }
23 \cs_new_protected:Npn \DebugHookOff { \hook_debug_off: }

(End definition for \DebugHookOn and \DebugHookOff. These functions are documented on page 9.)

324 \NewDocumentCommand \DeclareHookRule { m m m m }
225 { \hook_gset_rule:nnnn {#1}{#2}{#3}{#4} }

(End definition for \DeclareHookRule. This function is documented on page 7.)

This declaration is only supported before \begin{document}.

26 \NewDocumentCommand \DeclareDefaultHookRule { m m m }
827 { \hook_gset_rule:nnnn {7?7}{#1}{#2}{#3} }
228 \Q@onlypreamble\DeclareDefaultHookRule

(End definition for \DeclareDefaultHookRule. This function is documented on page 7.)

A special setup rule that removes an existing relation. Basically @Q_rule gclear:nnn
plus fixing the property list for debugging.

46

\IfHookExistTF
\IfHookEmptyTF

\AtBeginDocument

\AtEndDocument

FM;i: Need an L3 interface, or maybe it should get dropped

320 \NewDocumentCommand \ClearHookRule { m m m }
s30 { \hook_gset_rule:nnnn {#1}{#2}{unrelated}{#3} }

(End definition for \ClearHookRule. This function is documented on page 7.)

31 \NewExpandableDocumentCommand \IfHookExistTF { m }
g2 { \hook_if_exist:nTF {#1} }
s33 \NewExpandableDocumentCommand \IfHookEmptyTF { m }
s { \hook_if_empty:nTF {#1} }

(End definition for \IfHookExistTF and \IfHookEmptyTF. These functions are documented on page 8.)

s35 \renewcommand\AtBeginDocument{\AddToHook{begindocumentl}}

(End definition for \AtBeginDocument. This function is documented on page 1/.)

36 \renewcommand\AtEndDocument {\AddToHook{enddocumentl}}
s37 fh\renewcommand\AtEndDocument {\AddToHook{env/document/end}} 7 alternative impl

(End definition for \AtEndDocument. This function is documented on page 1/.)

3.12 Set up existing BTEX 2¢ hooks

As we are in a package calling \NewHook would label any already set up hook code
under the package name, but we want it under the name top-level so we pretend that
\Qcurrname is empty.

53 \begingroup

g9 \def\@currname{}

g0 \NewHook{begindocument}
g1 \NewHook{enddocument}

We need to initialize the mechanism at \begin{document} but obviously before every-
thing else, so we sneak® __hook_initialize_all: into the ITEX 2- hook name.
We can’t use \t1_gput_left:Nn because that complains about \@begindocumenthook
not starting with \g_ so we do this through the backdoor.
a2 % \tex_global:D\tl_put_left:Nn \@begindocumenthook
813 % {__hook_initialize_all:}
There aren’t many other hooks at the moment:

844 \NewHook{rmfamily}
s5 \NewHook{sffamily}
g6 \NewHook{ttfamily}
s7 \NewHook{defaultfamily}

Not checked what this one does and whether it should be there (or is a real “hook”.

848 \NewHook{documentclass}

a0 \endgroup

8This needs to move to \document directly.

47

4 Generic hooks for environments

50 \let\begin\relax Y% avoid redeclaration message

351 \DeclareRobustCommand*\begin[1]{%
g2 \UseHook{env/#1/beforel}y,
853 \@ifundefined{#1}/

854 {\def\reserved@a{\@latex@error{Environment~#1~undefined}\@eha}}/,
855 {\def\reserved@a{\def\@currenvir{#1}/,

856 \edef\@currenvline{\on@line}V

857 \Q@execute@begin@hook{#1}/,

858 \csname #1\endcsnamel}}/,

ss0 \@ignorefalse

s0 \begingroup\@endpefalse\reserved@a}

Before the \document code is executed we have to first undo the \endgroup as there
should be none for this environment to avoid that changes on top-level unnecessarily go
to TEX’s savestack, and we have to initialize all hooks in the hook system. So we need
to test for this environment name. But once it has be found all this testing is no longer
needed and so we redefine \@execute@begin@hook to simply use the hook

so1 \def \@execute@begin®hook #1{%

s> \expandafter\ifx\csname #1\endcsname\document

863 \endgroup

864 \gdef\Qexecute@begin@hook##1{\UseHook{env/##1/begin}}’
865 __hook_initialize_all:

866 \Q@execute@begin@hook{#1}%

If this is an environment before \begin{document} we just run the hook.
867 \else
868 \UseHook{env/#1/begin}},
869 \fi
870 F
s71 \@namedef{end~}#1{%
¢2 \UseHook{env/#1/end}’,
s73 \csname end#1\endcsname\@checkend{#1}/,
s7a \expandafter\endgroup\if@endpe\@doendpe\fi
e75 \UseHook{env/#1/after}’
s76 \1f@ignore\@ignorefalse\ignorespaces\fi}},

Version that fixes t1b3722 but the change should perhaps be made in tabularx instead.
s77 \@namedef{end~}#1{Y%
s7s \romannumeral

o \IfHookEmptyTF{env/#1/end}%

s0 {\expandafter\z@}/

st {\z@\UseHook{env/#1/end}}/

s> \csname end#1\endcsname\@checkend{#1},

53 \expandafter\endgroup\if@endpe\@doendpe\fi

ss« \UseHook{env/#1/after}’

ss5 \if@ignore\@ignorefalse\ignorespaces\fil}/,

g

J

We provide 4 high-level hook interfaces directly, the others only when etoolbox is
loaded
ss6 \newcommand\AtBeginEnvironment [1] {\AddToHook{env/#1/begin}}
ss7 \newcommand\AtEndEnvironment [1] {\AddToHook{env/#1/end}}
sss \newcommand\BeforeBeginEnvironment [1]{\AddToHook{env/#1/before}}
530 \newcommand\AfterEndEnvironment [1] {\AddToHook{env/#1/after}}

48

\document

5 Generic hooks for file loads

6 Hooks in \begin document

Can’t have @@ notation here as this is N TEX 2¢ code ... and makes for puzzling errors if
the double @ signs get substituted.

890 <@@=>

sor \ExplSyntax0ff

The begindocument hook was already set up earlier, here is now the additional one
(which was originally from the etoolbox package under the name afterpreamble.

s> \NewHook{begindocument/end}

303 \def\document{%

We do cancel the grouping as part of the \begin handling (this is now done inside
\begin instead) so that the env/(env)/begin hook is not hidden inside \begingroup
... \endgroup.

s4 % \endgroup
205 \@kernel@after@env@document@begin

Added hook to load 13backend code:

s6 \Q@expl@sys@load@backend@@

g7 \ifx\Ounusedoptionlist\@empty\else

898 \@latex@warning@no@line{Unused global option(s):~"J}
899 \@spaces[\Qunusedoptionlist]}%

900 \fi

o1 \@colht\textheight

o2 \@colroom\textheight \vsize\textheight

o3 \columnwidth\textwidth

o4 \@clubpenalty\clubpenalty

o5 \if@twocolumn

906 \advance\columnwidth -\columnsep

907 \divide\columnwidth\tw@ \hsize\columnwidth \@firstcolumntrue
208 \fi

o9 \hsize\columnwidth \linewidth\hsize

o0 \begingroup\@floatplacement\@dblfloatplacement

011 \makeatletter\let\Quwritefile\@gobbletwo

012 \global \let \@multiplelabels \relax

013 \@input{\jobname.aux}/,

ois \endgroup

915 \if@filesw

916 \immediate\openout\@mainaux\jobname.aux

017 \immediate\write\@mainaux{\relax}y,

918 \fi

o9 \process@table

020 \let\glb@currsize\@empty ¥ Force math initialization.

921 \normalsize

o \everypar{}/

o3 \ifx\normalsfcodes\Qempty

924 \ifnum\sfcode‘\.=\0m

925 \let\normalsfcodes\frenchspacing

49

\Qkernel@after@envedocunent@begin
\@kernel@hook@begindocument

\enddocument

939

940

941

942

944

945

946

947

948

949

950

951

952

\else
\let\normalsfcodes\nonfrenchspacing
\fi
\fi
\ifx\document@default@language\m@ne
\chardef\document@default@language\language
\fi
\@noskipsecfalse
\let \@refundefined \relax

\let\AtBeginDocument\@firstofone

\@begindocumenthook
\UseOneTimeHook{begindocument}
\@kernel@after@begindocument

\ifdim\topskip<lsp\global\topskip 1sp\relax\fi

\global\@maxdepth\maxdepth

\global\let\@begindocumenthook\@undefined

\ifx\@listfiles\@undefined
\globalllet\@filelist\relax
\global\let\@addtofilelist\@gobble

\fi

\gdef\do##1{\global\let ##1\@notprerrl}/,

\@preamblecmds

\global\let \@nodocument \relax

\global\let\do\noexpand

\UseOneTimeHook{begindocument/end}%
\ignorespaces}

\let\@kernel@after@begindocument\Qempty

(End definition for \document. This function is documented on page ?77.)

953

954

955

956

9

57

(End definition for \@kernel@after@env@document@begin and \Okernel@hook@begindocument.

\edef \@kernel@after@env@document@begin{’

\let\expandafter\noexpand\csname
g__hook_env/document/begin_code_tl\endcsname
\noexpand\Q@empty}

\let\@kernel@hook@begindocument\@empty

functions are documented on page 77?.)

7 Hooks in \enddocument

These

The enddocument hook was already set up earlier, here are now the additional ones:

958

G

9

961

962

963

\NewHook{enddocument/afterlastpage}
\NewHook{enddocument/afteraux}

90 \NewHook{enddocument/info}
\NewHook{enddocument/end}

\def\enddocument{Y,

\UseHook{enddocument}/,

50

964 \@kernel@after@enddocument

965 \@checkend{document}

966 \clearpage

967 \UseHook{enddocument/afterlastpagel’

968 \@kernel@after@enddocument@afterlastpage

969 \begingroup

970 \if@filesw

o7 \immediate\closeout\@mainaux

o72 \let\@setckpt\@gobbletwo

073 \let\@newl@bel\Qtestdef

o74 \@tempswafalse

075 \makeatletter \@@input\jobname.aux
976 \fi

077 \UseHook{enddocument/afteraux}/

Next hook is expect to contain only code for writing info messages on the terminal.

o78 \UseHook{enddocument/infol}
079 \endgroup

980 \UseHook{enddocument/end},

981 \deadcycles\z@\@Qend}

The two kernel hooks above are used by the shipout code.

o2 \let\@kernel@after@enddocument\Q@empty
033 \let\@kernel@after@enddocument@afterlastpage\Q@empty

(End definition for \enddocument. This function is documented on page 77.)

\Genddocument@kernelQvarnings

o34 \def\@enddocument@kernel@warnings{’

985 \ifdim \font@submax >\fontsubfuzz\relax

986 \@font@warning{Size substitutions with differences\MessageBreak
987 up to \font@submax\space have occurred.\@gobbletwol},
988 \fi

989 \@defaultsubs

990 \@refundefined

901 \if@filesw

992 \ifx \@multiplelabels \relax

993 \if@tempswa

994 \@latex@warning@no@line{Label(s) may have changed.

995 Rerun to get cross-references right}y

996 \fi

997 \else

998 \@nultiplelabels

999 \fi

1000 \fi

1001 }

1002 \AddToHook{enddocument/info} [kernel/filelist]{\@dofilelist}
100s \AddToHook{enddocument/infol} [kernel/warnings] {\@enddocument@kernel@warnings}
1004 \DeclareHookRule{enddocument/info}{kernel/filelist}{before}{kernel/warnings}

(End definition for \@enddocument@kernel@warnings. This function is documented on page 77.)

o1

\BeforeClearDocument

7.1 Adjusting at atveryend interfaces

With the new hook management all of atveryend is taken care of.
We therefore prevent the package from loading:

w05 \expandafter\let\csname ver@atveryend.sty\endcsname\fmtversion
Here are new definitions for its interfaces now pointing to the hooks in \enddocument

1005 \newcommand\AfterLastShipout {\AddToHook{enddocument/afterlastpagel}}
1007 \newcommand\AtVeryEndDocument {\AddToHook{enddocument/afteraux}}

Next one is a bit of a fake, but the result should normally be as expected. If not one
needs to add a rule to sort the code chunks in enddocument/info.
1008 \newcommand\AtEndAfterFileList{\AddToHook{enddocument/info}}

1000 \newcommand\AtVeryVeryEnd {\AddToHook{enddocument/end}}

This one is the only one we don’t implement or rather don’t have a dedicated hook in
the code.
1010 \ExplSyntaxOn

1011 \newcommand\BeforeClearDocument [1]
1012 { \AtEndDocument{#1}

1013 \@DEPRECATED{BeforeClearDocument \tl_to_str:n{#1}}
1014 ¥

1015 \cs_new:Npn\@DEPRECATED #1

1016 {\iow_term:x{======~DEPRECATED~USAGE~#1~==========}}
1017 \ExplSyntax0ff

(End definition for \BeforeClearDocument. This function is documented on page 77.)

1018 (/2ekerne|)

8 A package version of the code for testing

1019 (*package}

1020 \RequirePackage{xparse}
1021 \ProvidesExplPackage{lthooks}{\1lthooksdate}{\1lthooksversion}
1022 {Hook management interface for LaTeX2e}

8.1 Core hook management code (kernel part)

This should run in older formats so we can’t use \IfFormatAtLeastTF right now.
1023 \@1f1@t@r\fmtversion{2020/10/01}

1024 {}

1025 {\input{lthooks.1ltx}

1026 \input{ltshipout.ltx}
1027 \input{ltfilehook.ltx}
1028 }

52

8.2 Package options

For now we offer a simple debug option which turns on a lot of strange \typeout messages,

nothing fancy.
1020 \ExplSyntaxOn

1030 \hook_debug_off:

1031 \DeclareOption { debug } { \hook_debug_on:
1032 \shipout_debug_on: }

For now we offer a simple debug option which turns on a lot of strange \typeout

messages, nothing fancy.

1033 \shipout_debug_off:

103+ \DeclareOption { debug-shipout } { \shipout_debug_on: }

1035 \ProcessOptions

8.3 Temporarily patching package until changed

filehook support until that package is patched:

1036 \RequirePackage{filehook-1tx}
w37 (/package)

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
N 924
AN 563, 573
\(addto-cmd) 2
\(env) 14
A

\AddToHook 1,2, 8,3, 4,7, 9, 13,

767, 835, 836, 837, 886, 887, 888,

889, 1002, 1003, 1006, 1007, 1008, 1009
\AddToHookNext 3, 4, 7, 9, 773
\advanceia... 906
\AfterEndEnvironment 889
\AfterLastShipout 1006
\AtBeginDocument .. 2, 13, 13, 14, 835, 935
\AtBeginDvi 13
\AtBeginEnvironment 886
\AtEndAfterFileList 1008
\AtEndDocument 18, 15, 836, 1012
\AtEndEnvironment 887
\AtVeryEndDocument 1007
\AtVeryVeryEnd 1009

53

B
\BeforeBeginEnvironment 888
\BeforeClearDocument 1010

1, 13,

14, 25, 48, 48, 147, 810, 814, 850, 851
\begingroup 48, 838, 860, 910, 969
bool commands:

\begin

\bool_gset_false:N 13
\bool_gset_true:N 8
\bool_if:NTF 19
\bool_lazy_and:nnTF 722
\bool_lazy_or:nnTF 214
\bool _new:N 4
\bool_while_do:nn 474
C
\chardef 931
\ClearHookRule 6, 829
\clearpage 15, 966
clist commands:
\clist_gclear:N 255, 473
\clist_gput_left:Nn 413, 714
\clist_gput_right:Nn 415
\clist_gremove_all:Nn 271

\clist_if_empty:NTF 643
\clist_if_in:NnTF 769
\clist_new:N 45, 750
\clist_use:Nnnn 645
\closeout 971
\clubpenalty 904
\columnsepiio... 906
\columnwidth 903, 906, 907, 909
\CS 812, 813

cs commands:
\cs:w 78, 379, 409, 465, 484, 485, 524,

525, 526, 533, 540, 675, 682, 707, 744

\cs_end:
78, 382, 409, 465, 484, 485, 515

525, 526, 533, 540, 675, 682, 707, 744

\cs_generate_variant:Nn

32, 87, 143, 503
385, 399, 400
......... 18
328

\cs_gset_eq:NN
\cs_gset_protected:Npx
\cs_if_exist_use:NTF
\cs_new:Npn 81, 88, 101, 111,
112, 114, 226, 228, 230, 290, 361,
377, 427, 428, 504, 505, 679, 687, 1015
\cs_new_eq:NN 5, 21, 31, 241,
342, 348, 577, 578, 579, 580, 581, 582
\cs_new_protected:Npn 6, 11, 16
34, 39, 50, 59, 63, 66, 124, 130, 144,
159, 164, 169, 174, 183, 242, 248,
268, 274, 279, 296, 312, 323, 337,
343, 349, 354, 356, 358, 359, 384,
402, 434, 506, 513, 522, 529, 536,
543, 551, 557, 567, 583, 589, 601,
606, 653, 658, 665, 670, 685, 693,
702, 710, 792, 798, 820, 821, 822, 823
\cs_set_eq:NN 412, 413, 414, 415
\cs_set_protected:Npn 780
\cs_undefine:N 360
\csname 858, 862, 873, 882, 954, 1005

\deadcycles
debug commands:
\debug_resume:

79, 334, 501

\debug_suspend: 68, 327, 435
\DebugHookOff 8, 822
\DebugHookOn 8, 822
\DeclareDefaultHookLabel . 4, 5, 5, 44, 777
\DeclareDefaultHookRule 6, 826
\DeclareHookRule 1, 6, 6, 9, 824, 1004
\DeclareOption 1031, 1034

851

\DeclareRobustCommand

\def 839, 854, 855, 861, 893, 962, 984
\divide 907
NdO .. 946, 949

\document

\documentclass 5
E

Nedef 856, 953

\else 373, 867, 897, 926, 997

else commands:

\else: 366, 381, 518, 746
Nend 1, 18-15, 25
\end{env) 1
\endcsname . 858, 862, 873, 882, 955, 1005
\enddocument 12, 15, 49, 51, 962
\endgroup 47,

48, 849, 863, 874, 883, 894, 914, 979
\NERRORo.vinin... 504, 505
ERROR commands:

\ERROR_should_not_happen 803
\ErrorHookExists 41
\ERRORunknownrule 310, 333
\everypar, 922
exp commands:

\exp_after:wN 517, 786

\exp_args:Nco 271

\exp_args:Ne 178, 179, 697, 698

\exp_args:NNx 286, 422

\exp_args:Nx 36, 603, 655

\exp_args:Nxx 126, 244

\exp_not:n 395

\exp_stop_f: 363, 371, 744
\expandafter . 862, 874, 880, 883, 954, 1005
\ExplSyntax0ff 891, 1017
\ExplSyntaxOn 3, 1010, 1029

F
NfL 869, 874, 876,

883, 885, 900, 908, 918, 928, 929,
932, 939, 945, 976, 988, 996, 999, 1000
fi commands:

\fi: 367, 375, 381, 520, 748
\fmtversion 1005, 1023
\fontsubfuzz 985
\frenchspacing 925

G
\gdef 864, 946
\globaloo.... 912,

939, 940, 941, 943, 944, 946, 948, 949

H
hook commands:
\hook_debug_off:
\hook_debug_on:
\hook_gput_code:nnn
9,9, 21, 22,124, 167, 771

5, 10, 823, 1030
5, 10, 822, 1031

54

\hook_gput_next_code:nn
............. 9, 23, 172, 653, 774

\hook_gremove_code:nn 9, 25, 242, 776

\hook_gset_rule:nnnn
.......... 9, 28, 312, 825, 827, 830

\hook_if empty:n 9
\hook_if_empty:nTF 5, 9, 718, 834
\hook_if_empty_p:n 9, 718
\hook_if_exist:n 10

\hook_if_exist:nTF
........ 5, 10, 25, 40, 135, 149,
197, 263, 405, 609, 630, 661, 730, 832

\hook_if_exist_p:n 10, 730

\hook_log:n 601, 821

\hook_new:n

8, 18, 34, 41, 42, 60, 64, 197, 764

\hook_new_pair:nn 8, 63, 766

\hook_new_reversed:n 8, 59, 64, 765
\hook_use:n 4, 8, 40, 399, 670, 715, 819
\hook_use_once:n 8, 710, 820
hook internal commands:
\g__hook_..._code_prop 34
\g__hook_..._code_tl 34
\g__hook_..._next_code_tl 34
\g__hook_..._rules_prop 34
\g__hook_77_code_prop 292
\g__hook_??_code_tl 27, 292
\g__hook_7?7_reversed_tl 292
\g__hook_77_rules_prop 292
\g__hook_#1_code_tl 19
\g__hook_(hook)_code_t1l 31
\g__hook_(hook)_labels_clist 18
\g__hook_(name)_code_prop 18
\g__hook_(name)_code_tl 18
\g__hook_(name)_next_code_tl I8
\g__hook_(name)_rules_prop 18
\g__hook_all_seq 25, 42, 387
__hook_apply_-rule_->:nnn 577
__hook_apply_-rule_<-:mnnn 577
__hook_apply_-rule_<:nnn 577
__hook_apply_-rule_>:nnn 577
__hook_apply_-rule_x:nnn 577

__hook_apply_label_pair:nnn .
............ 33, 35, 455, 456, 506

__hook_apply_rule:nnn .. 35, 516, 522
__hook_apply_rule:nnnN 36
__hook_apply_rule_->:nnn 557
__hook_apply_rule_<-:nnn 557
__hook_apply_rule_<:nnn 529
__hook_apply_rule_>:nnn 529
__hook_apply_rule_xE:nnn 543
__hook_apply_rule_xW:nnn 543

__hook_clist_gput:Nn
.............. 413, 415, 479, 504

55

\g__hook_code_temp_prop . 28, 416, 421
\1__hook_cur_hook_tl

..... 27, 37, 438, 563, 565, 573, 575

__hook_curr_name_pop: 77

__hook_curr_name_push:n 44, 777
__hook_currname_or_default:n ...

.......... 20, 20, 84, 97, 113, 114
__hook_debug:n
5, 16, 148, 386, 391, 403, 422,

460, 480, 531, 538, 545, 553, 559, 569

\g__hook_debug_bool 4, 8,13, 19

__hook_debug_gset: 5

__hook_debug_gset_rule:nnnn .
................... 27, 296, 335

__hook_debug_label_data:N
................. 460, 497, 589
__hook_declare:n
.......... 42, 44, 50, 161, 325, 660
\g__hook_execute_immediately_-
clist 41, 714, 750, 769
__hook_file_hook_normalise:n ...
............... 24, 179, 226, 698
\1__hook_front_t1l
429, 471, 474, A7T7, 479, 480, 481, 491
\c__hook_generics_file_prop .
.................. 24, 219, 238

\c__hook_generics_prop 195, 236
\c__hook_generics_reversed_ii_-
PIOP . . o oot 198, 238
\c__hook_generics_reversed_iii_-
PIOP -« v v it 201, 238
__hook_gput_code:nnn 73, 124
__hook_gput_next_code:nn .. 655, 658

__hook_gput_next_do:nn
............... 28, 172, 662, 665
__hook_gput_undeclared_hook:nnn
................... 22, 159, 167
__hook_gremove_code:nn 242
__hook_gremove_code_do:nn
................... 26, 259, 268
__hook_gset_rule:nnnn 312
\g__hook_hook_curr_name_tl
. 21,29, 44, 44, 44, 116, 122, 795, 802
__hook_hook_gput_code_do:nnn . ..
..................... 124, 162
__hook_if_exist:nTF
............ 52, 250, 611, 720, 736
__hook_if_exist_p:n 736
__hook_if_exist_use:n 40, 687
__hook_if_file_hook:wTF
.......... 28, 24, 40, 176, 209, 695
__hook_if_file_hook_p:w 209
__hook_if_label_case:nnnnn 377, 453

__hook_if_marked_removal:nnTF ..
132, 284

__hook_if_reversed:nTF
411, 633, 637, 742
__hook_if_reversed_p:n 742
__hook_initialize_all:
46, 384, 843, 865
__hook_initialize_hook_code:n ..
35, 385, 402, 686
__hook_initialize_single:NNNNn .
............. 30, 31, 33, 417, 434
\1__hook_label_0O_t1 429
__hook_label_if_exist_apply:nnnTF
506
30

__hook_label_ordered:nn
__hook_label_ordered:nnTF
29, 340, 346, 352,
__hook_label_ordered_p:nn .
__hook_label_pair:nn 29, 30, 339
345, 351, 355, 357, 360, 361, 586,
\1__hook_labels_int
34, 429, 437, 441, 476, 493
\1__hook_labels_seq
429, 436, 442, 463, 591
__hook_log:n 603, 606
__hook_mark_removal:nn 260, 266, 274
__hook_msg_pair_found:nnn
. 531, 538, 545, 553, 561, 571, 583
\g__hook_name_stack_seq 29
44, 779, 783, 791, 794, 800, 801, 807

369
369

5

87

__hook_new:n 36, 39
__hook_parse_dot_label:nn 85, 88
__hook_parse_dot_label:nw 88
__hook_parse_dot_label_aux:nw .. 88

__hook_parse_dot_label_cleanup:w
.......................... 88
__hook_parse_label_default:nn ..
37, 74, 81, 127,
128, 245, 246, 317, 318, 320, 604, 656
__hook_preamble_hook:n
40, 40, 400, 670, 706
__hook_provide_legacy_interface:n
47, 66

\1__hook_rear_tl

. 429, 461, 462, 467, 468, 487, 488
\g__hook_removal_list_prop 26
\g__hook_removal_list_tl
26, 26, 276, 281, 286
__hook_removal_tl:nn

.............. 277, 282, 287, 290
\1__hook_return_t1l 22, 152

155, 258, 477, 478, 800, 801, 802, 807
__hook_rule_<_gset:nnn 337
__hook_rule_>_gset:nnn

56

__hook_rule_after_gset:nnn 337
__hook_rule_before_gset:nnn 33, 337
__hook_rule_gclear:nnn . 29, 326, 358
__hook_rule_incompatible-error_-
gset:nnn
__hook_rule_incompatible-warning_-
gset:nnn
__hook_rule_removes_gset:nnn . .
__hook_rule_unrelated_gset:nnn .
29,

__hook_seq_csname:n
427, 445, 481, 534, 541,
__hook_str_compare:nn

21, 363, 371,
__hook_strip_double_slash:n
__hook_strip_double_slash:w
__hook_tl_csname:n 427,433
443, 462, 465, 467, 471, 483, 484,
485, 487, 491, 532, 533, 539, 540
__hook_t1l_gput:Nn . 412, 414, 478
__hook_tmp:w 31, 780, 784,
\1__hook_tmpa_tl
\1__hook_tmpb_t1l
__hook_try_declaring_generic_-
hook:nnn 22, 140,
__hook_try_declaring_generic_-
hook :nNNnn 22, 23, 166, 171, 174
__hook_try_declaring_generic_-
hook:wnTF
__hook_try_declaring_generic_-
hook_split:nNNnn
__hook_try_declaring_generic_-
next_hook:nn 25, 164,
__hook_try_file_hook:n 40.
__hook_unmark_removal:nn .. 133,
__hook_update_hook_code:n 22,
25, 30, 138, 241, 264, 331, 385, 389
__hook_use:wn .. 40, /0, 677, 683, 687

380
226
226

595

504
786
22
22

164

663
687
279

__hook_use_initialized:n /0, 399, 670

\g__hook_used_prop . 386, 393, 422, 426
\hsize 907, 909

I

if commands:

\if _case:w 363, 380

\if_cs_exist:w 515

\if _int_compare:w 371, 744
\ifdim 939, 985
\IfFormatAtLeastTF 51
\IfHookEmptyTF 5, 7, 831, 879
\IfHookExistTF 5, 7, 831
\ifnum, 924
\ifx 862, 897, 923, 930, 942, 992
\ignorespaces 14, 876, 885, 951

\immediate 916, 917, 971
\include 16
\input 16, 1025, 1026, 1027

int commands:

\int_compare:nNnTF . 465, 485, 493, 755

\int_decr:N 476

\int_eval:in 484, 533, 540

\int_incr:N 441

\int_new:N 430

\int_zero:N 437
iow commands:

\iow_char:N 563, 573

\iow_term:n 148, 392
394, 403, 480, 495, 496, 498, 562,
572, 585, 590, 591, 592, 595, 599,
608, 610, 613, 615, 618, 620, 621,
624, 626, 628, 631, 642, 650, 651, 1016

J
\jobname 913, 916, 975
L
\language 931
\let .. 850, 911, 912, 920, 925, 927, 934,

935, 941, 943, 944, 946, 948, 949,
952, 954, 957, 972, 973, 982, 983, 1005

\linewidth 909
\listfilesco...... 15
\1lthooksdate 1021
\1lthooksversion 1021
M
\makeatletter 911, 975
\maxdepth 940
\MessageBreak 986
msg commands:
\msg_error:nnnnnn 546
\msg_expandable_error:nnn 92
\msg_line_context: 763
\msg_new:nnn 762
\msg_new:nnnn 751
\msg_warning:nnnnnn 554

\newcommand 819, 886, 887
888, 889, 1006, 1007, 1008, 1009, 1011
\NewDocumentCommand 764, 765,
766, 767, 773, 775, 805, 824, 826, 829
\newenvironment 13
\NewExpandableDocumentCommand . 831, 833
\NewHook 2,2, 2,7 17 10,
11, 14, 46, 764, 840, 841, 844, 845,
846, 847, 848, 892, 958, 959, 960, 961
\NewMirroredHookPair 2, 7, 10, 764
\NewReversedHook 2,2, 7, 10, 11, 764

57

\noexpand 949, 954, 956
\nonfrenchspacing 927
\normalsfcodes 923, 925, 927
\normalsize 3, 921
(0]
\Openoutiii 916
or commands:
Nor: ... 365, 381
P
\pho Ll 815, 818

prg commands:
\prg_new_conditional:Npnn
....... 209, 369, 718, 730, 736, 742
\prg_new_protected_conditional:Npnn
..................... 189, 284
\prg_return_false: 193, 206, 217,
221, 224, 288, 374, 726, 734, 740, 747
\prg_return_true: 204,
220, 288, 372, 725, 728, 733, 739, 745
\ProcessOptions 1035
prop commands:
\prop_const_from_keyval:Nn
236, 238, 239, 240

\prop_gclear:N 254, 386
\prop_get:NnN 477
\prop_get:NoNTF 152, 258
\prop_gput:Nnn 154, 157

302, 303, 304, 305, 306, 422, 565, 575
\prop_gremove:Nn 270, 298, 299, 307, 308

\prop_gset_eq:NN 416, 421
\prop_if_empty:NTF . 407, 614, 625, 632
\prop_if_empty_p:N 723
\prop_if_exist:NTF 738
\prop_if_in:NnTF ... 195, 198, 201, 219
\prop_map_break: 454

\prop_map_inline:Nn
. 393, 439, 449, 451, 593, 617, 627
\prop_new:N 28 54, 56, 292, 293, 294, 426

\ProvidesExplPackage 1021
Q

quark commands:
\quark_if_recursion_tail_stop:n 782
\gq_recursion_stop 789
\q_recursion_tail 788, 789

quark internal commands:
\s__hook_mark 33,

98, 101, 104, 108, 111, 112, 176,
210, 229, 230, 234, 677, 683, 687, 695

\relax0...... 40, 850,

912, 917, 934, 939, 943, 948, 985, 992

\RemoveFromHook 3, 3, 775
\renewcommand 835, 836, 837
\RequirePackage 1020, 1036
\romannumeral 878
S
scan commands:
\scan_new:N 33
\scan_stop: 185, 190
seq commands:
\seq_clear:N 436
\seq_clear_new:N 445
\seq_get:NNTF 801
\seq_gpop:NN 800, 807
\seq_gpush:Nn 779, 791, 794
\seq_gput_right:Nn 42, 783
\seq_map_inline:Nn 387, 463, 48
\seq_new:N 25, 30, 429
\seq_put_right:Nn 442, 534, 541
\seq_use:Nnnn 591, 596
\sfcode 924
\shipout 16
shipout commands:
\shipout_debug_off: 1033
\shipout_debug_on: 1032, 1034
\ShowHook 8, 10, 12, 821
\small, 3
\space 151, 987
\special 16
str commands:
\str_case_e:nnTF 300
\str_if_eq:nn 30

\str_if_eq:nnTF
..... 96, 212, 252, 585, 689, 754, 777

\str_if_eq_p:nn 216, 474
\str_use:N 623
str internal commands:
__str_if_eq:nn 17, 21
T
TEX and BTEX 2¢ commands:
\@...hook 19, 20
\@end 981
\@Q@input 975
\@DEPRECATED 1013, 1015
\@addtofilelist 944
\@begindocumenthook /6, 842, 936, 941
\@checkend 873, 882, 965
\@clubpenalty 904
\@colht 901
\@colroom0..uu.... 902
\Qcurrenvir 14, 855
\@currenvline 856

58

\@currname 5,
5, 20, 21, 44, 46, 118, 120, 777, 839

\@currnamestack 787
\@dblfloatplacement 910
\@defaultsubs 989
\@doendpe 874, 883
\@dofilelist 1002
\@eha 854
\@empty
897, 920, 923, 952, 956, 957, 982, 983
\@enddocument@kernel@warnings .. 984
\@enddocumenthook 20
\@endpefalse 860
\@execute@begin@hook
............ 47, 857, 861, 864, 866
\@expl@sys@load@backend@@ 896
\@filelist 943
\@firstcolumntrue 907
\@firstofone 2, 935
\@floatplacement 910
\@font@warning 986
\@gobble 944
\Q@gobbletwo 911, 972, 987
\@ifl@tOr 1023
\@ifundefined 853
\@ignorefalse 859, 876, 885
\@input 913
\@kernel@after@(hookname) 12

\@kernel@after@begindocument 938, 952
\@kernel@after@enddocument . 964, 982
\@kernel@after@enddocument@afterlastpage

..................... 968, 983
\@kernel®@after@env@document@begin

..................... 895, 953
\@kernel@before@(hookname) 12
\@kernel@hook@begindocument ... 953
\@latex@error 854
\@latex@warning@no@line 898, 994
\@listfiles 942
\N@m . .. 924
\@mainaux 916, 917, 971
\@maxdepth 940
\@multiplelabels 912, 992, 998
\@namedef 871, 877
\@newl®@bel 973
\@nodocument 948
\@noskipsecfalse 933
\@notprerr 946
\@onlypreamble 828
\@popfilename 817
\@preamblecmds 947
\@pushfilename 816
\@refundefined 934, 990
\@setckpt 972

\@spaces 615, 618, 621, 626, 628, 642, 899 \tl_if_empty:nTF 90, 103, 106, 192, 232

\@tempswafalse 974 \tl_if_empty_p:N 724
\@testdef 973 \tl_if_empty_p:m 215
\@undefined 941, 942 \tl_if_exist:N 40
\Qunusedoptionlist 897, 899 \tl_if_exist:NTF
\@writefile 911 69, 672, 681, 704, 712, 732
\@@end 15 \tl_if in:NoTF 286
\document@default@language . 930, 931 \tl_if_novalue:nTF 83
\font@submax 985, 987 \tl new:N 22, 23, 24,
\glb@currsize 920 267 27a 293 433 467 557 2957 4317 4327 433
\if@endpe 874, 883 \tl_put_left:Nn 842
\ifefilesw 915, 970, 991 \tl_set:Nn 438, 443, 461,
\if@ignore 876, 885 462, 467, 468, 483, 487, 488, 532, 539
\if@tempswa 993 \tl_set_eq:NN 471, 491
\if@twocolumn 905 \tl_to_str:n . 151, 272, 291, 618, 1013
\m@ne 930 \tl_trim_spaces_apply:nN 85
\on@line 151, 404, 856 \tl use:N 595
\process@table 919 Mopskip ... 939
\protected 40 \typeout 52, 52
\reserved®@a 854, 855, 860 U
\EtW@ 907 ds:
\Z@ 880, 881, 981 ”seion“nﬁn > S
e commands e e
\tex_global:D 842 \use:nn 519
\textheight 901, 902 \USe 1O . .o 20
\textwidth 903 \use_ii:nn 20
tl commands: \use_iii:nn 30
\c_novalue_tl 20, 74 \use_none:n 5, 40, 241, 400, 517
\tl_gclear:N 472, 668 \yseHook 2, 5, 10, 819, 852, 864, 868, 872
\tl_gput_left:Nn ... /0, 412, 816, 817 875, 881, 884, 963, 967, 977, 978, 980
\tl_gput_right:Nn 31, 276, 414, 500, 667 \UseOneTimeHook 2, 820, 937, 950
\tl_gremove_all:Nn 26 \usepackage 5, 16
\tl_gremove_once:Nn .. 26, 32, 32, 281
\tl_gset:Nn 20, 61, 78, 199, Vv
202, 339, 345, 351, 355, 357, 408, 795 \vsizeccouii. . 902
\tl_gset_eq:NN 802
\tl_if_empty:N 41 w
\tl_if_empty:NTF 71, 116, 118,622 \write 917

59

	Contents
	1 Introduction
	2 Package writer interface
	2.1 LaTeX2e interfaces
	2.1.1 Declaring hooks and using them in code
	2.1.2 Updating code for hooks
	2.1.3 Hook names and default labels
	2.1.4 Defining relations between hook code
	2.1.5 Querying hooks
	2.1.6 Displaying hook code
	2.1.7 Debugging hook code

	2.2 L3 programming layer (expl3) interfaces
	2.3 On the order of hook code execution
	2.4 The use of "reversed" hooks
	2.5 Private LaTeX kernel hooks
	2.6 Legacy LaTeX2e interfaces
	2.7 LaTeX2e commands and environments augmented by hooks
	2.7.1 Generic hooks for all environments
	2.7.2 Hooks provided by \begin{document}
	2.7.3 Hooks provided by \end{document}
	2.7.4 Hooks provided \shipout operations
	2.7.5 Hooks provided file loading operations

	3 The Implementation
	3.1 Debugging
	3.2 Borrowing from internals of other kernel modules
	3.3 Declarations
	3.4 Providing new hooks
	3.5 Parsing a label
	3.6 Setting rules for hooks code
	3.7 Specifying code for next invocation
	3.8 Using the hook
	3.9 Querying a hook
	3.10 Messages
	3.11 LaTeX2e package interface commands
	3.12 Set up existing LaTeX2e hooks

	4 Generic hooks for environments
	5 Generic hooks for file loads
	6 Hooks in \begin document
	7 Hooks in \enddocument
	7.1 Adjusting at atveryend interfaces

	8 A package version of the code for testing
	8.1 Core hook management code (kernel part)
	8.2 Package options
	8.3 Temporarily patching package until changed

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

